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Abstract
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1. Introduction

Nowadays Kac–Moody algebras are widely used in many other mathematics branches and
physics. The theory of finite and affine types of Kac–Moody algebras has been well developed.
On the other hand, it is well known that the structure of non-symmetrizable Kac–Moody algebras
(indefinite type) is very complicated (see [5,10,11]). Even we do not know the multiplicities of
imaginary roots of these Kac–Moody algebras (see [1,2]). Our purpose of this paper is to expect
to understand the structure of Kac–Moody algebras by studying related Lie algebras with simpler
structure.

Recently, a class of interesting Lie algebras corresponding to symmetrizable Kac–Moody
algebras was studied by Lu [6–8] and Zhang [12,13] where they studied finite-dimensional non-
degenerate solvable Lie algebras. A finite-dimensional solvable Lie algebra g over the field C of
complex numbers is called a solvable Lie algebra with a non-degenerate invariant bilinear form
(or simply, a non-degenerate solvable Lie algebra) if there exists a non-degenerate symmetric
bilinear form (·,·) :g × g → C satisfying ([a, b], c) = (a, [b, c]) for a, b, c ∈ g.

Generalizing their constructions, we define the so-called deformed Kac–Moody algebras
G(A) associated to generalized Cartan matrices A. For the triangular decomposition of the Kac–
Moody algebra g(A) = n+ ⊕h⊕n−, we denote b+ = n+ ⊕h. Using the graded dual b+-module
b− = (b+)∗ we have the deformed Kac–Moody algebras G(A) = b+ ⊕ b− where b− is abelian
and a b+-module.

Note that when A is of finite type (G(A),b+,b−) gives the Manin triple associated to the
canonical Poisson Lie group structure on b− � (b+) (see e.g. Section 11 of [3]). It will be mean-
ingful to study the triple (G(A),b+,b−) for non-finite type A.

The Lie algebra G(A) has much simpler structure than the corresponding Kac–Moody alge-
bra g(A), but has the same root spaces with g(A). In particular, it has the abelian subalgebra b−
which is of “half size” of the whole algebra. We hope that some new progress will be achieved
on the structure of the Kac–Moody algebras of indefinite types by further studying their corre-
sponding simpler algebras G(A). The present paper is just a beginning of this project.

This paper is arranged as follows: In Section 2, associated to a generalized Cartan matrix A,
we introduce the deformed Kac–Moody algebra G(A). When A is a finite type GCM this algebra
was introduced in [12] which is a finite-dimensional non-degenerate solvable Lie algebra. In
other cases, G(A) is not solvable.

In Section 3, we show that G(A) has a non-degenerate invariant symmetric bilinear form if
and only if A is symmetrizable.

In Section 4, we prove that G(X1) ∼= G(X2) if and only if the GCMs X1 and X2 are the same
up to a permutation of rows and columns.

In Section 5, we study the lowest weight Verma module V̄ (λ) over G(A), obtain the nec-
essary and sufficient conditions for V̄ (λ) to be irreducible, and determine the maximal proper
submodule of V̄ (λ) when it is reducible.

In Section 6, we study the highest weight Verma module Ṽ (λ) over G(A). Unlike the lowest
weight module V̄ (λ), we cannot directly obtain the necessary and sufficient conditions for Ṽ (λ)

to be irreducible. Fortunately, we can employ the graded dual module of the irreducible lowest
weight module L(λ) to get the necessary and sufficient conditions for Ṽ (λ) to be irreducible. But
in this case we are not able to explicitly give the maximal proper submodule of Ṽ (λ) when it is
reducible.

In Section 7, we obtain better form of our results established in previous sections in the case
of symmetrizable A.
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2. Deformed Kac–Moody algebras G(A)

Definition 2.1. An n × n integral matrix A = (aij )
n
i,j=1 is called a generalized Cartan matrix

(GCM) if

(C1) aii = 2, for all i = 1,2, . . . , n;
(C2) aij � 0, for all i �= j ;
(C3) aij = 0 implies aji = 0.

In this paper we always assume that A is an n × n GCM, unless otherwise stated.
Let g(A) be the Kac–Moody algebra associated to A, h the Cartan subalgebra of g(A),

Π = {α1, α2, . . . , αn} ⊆ h∗ the root basis, Π∨ = {α∨
1 , α∨

2 , . . . , α∨
n } ⊆ h the coroot basis, and

e1, e2, . . . , en; f1, f2, . . . , fn the Chevalley generators of g(A). Note that 〈α∨
i , αj 〉 = aij . De-

note by Δ, Δ+ and Δ− the sets of all roots, positive roots and negative roots respectively. Set
Q = ∑n

i=1 Zαi , Q± = ∑n
i=1 Z±αi where Z+ (respectively Z−) is the set of all nonnegative

(respectively nonpositive) integers. Then Δ = Δ+ ∪ Δ− (a disjoint union), Δ− = −Δ+ and
Δ± = Δ ∩ Q±. The root space decomposition of g(A) with respect to h is

g(A) =
∑

α∈Δ+
gα ⊕ h ⊕

∑
α∈Δ+

g−α. (2.1)

Let n+ = ∑
α∈Δ+ gα , n− = ∑

α∈Δ+ g−α and b+ = h ⊕ n+. Then n+ (respectively n−)
is the subalgebra of g(A) generated by e1, e2, . . . , en (respectively f1, f2, . . . , fn), and gα

is the linear span of the elements of the form [ei1, [ei2, [· · · [eis−1, eis ] · · ·]]] (respectively
[fi1, [fi2, [· · · [fis−1, fis ] · · ·]]]) with αi1 + αi2 + · · · + αis = α (respectively = −α). In partic-
ular, gαi

= Cei , g−αi
= Cfi , for i = 1,2, . . . , n.

Let (g(A), ad) be the adjoint representation of g(A). Under this adjoint action, g(A) can be
regarded as a b+-module. As a b+-module, g(A) has a submodule n+. Hence we can obtain a
b+-quotient module

b− = g(A)/n+ = h̄ ⊕ n̄−. (2.2)

It is clear that the set of weights of b− with respect to h is P(b−) = {0}∪Δ− and b+ · h̄ = {0}.
For simplicity, we write the action of b+-module b− as x · v, ∀x ∈ b+, v ∈ b−.

Now let us define the deformed Kac–Moody algebras G(A) associated to A as follows.
Set

G(A) = b+ ⊕ b−. (2.3)

Define the following bracket operator [·,·] on G(A):

{ [x, y] = [x, y]0 , ∀x, y ∈ b+;
[v1, v2] = 0, ∀v1, v2 ∈ b−;
[x, v] = −[v, x] = x · v, ∀x ∈ b+, ∀v ∈ b−,

(2.4)

where [·,·]0 is the bracket operator on g(A). It is easy to show that G(A) becomes a Lie algebra
under the above bracket operator [·,·].
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It is clear that, as vector spaces, h ⊕ n− ∼= b−. Let π be the canonical homomorphism
from g(A) onto b−. Then σ = π |h⊕n− is an isomorphism between h ⊕ n− and b−, such that
h̄ = σ(h), n̄− = σ(n−). We see that[

x,σ (y)
] = σ

([x, y]0

)
, for x ∈ gα, y ∈ g−β; α � β, α,β ∈ Δ+. (2.5)

By the construction of g(A), (h,Π,Π∨) is a realization of A. We supplement α∨
n+1, . . . , α

∨
2n−l to

Π∨ = {α∨
1 , α∨

2 , . . . , α∨
n } to form a basis of h, where l is the rank of GCM A. Denote zi = σ(α∨

i ),
1 � i � 2n − l. Thus z1, z2, . . . , z2n−l form a basis of h̄. For any y ∈ n−, we still write its image
σ(y) in n̄− as y, i.e., write elements in n̄− as elements in the Lie algebra (n−, [·,·]0) by using
f1, f2, . . . , fn. Using these notations, we deduce that

[ei, fj ] = δij zi , for 1 � i � n. (2.6)

Let H = h ⊕ h̄. We can consider H as a Cartan subalgebra of G(A). For any α ∈ Δ+, define
α̃ ∈ H∗ such that α̃|h = α and α̃|

h̄
= 0. Thus Δ̃ = {±α̃ ∈ H∗ | α ∈ Δ+} is the set of all roots

of G(A). In addition, for any α ∈ Δ+, the root space attached to α̃ (respectively −α̃) is Gα̃ = gα

(respectively G−α̃ = g−α). Hence, α̃, −α̃ and Δ̃ can be identified with α, −α and Δ respectively.
So we get the root space decomposition of G(A) with respect to H:

G(A) =
∑

α∈Δ+
Gα ⊕ H ⊕

∑
α∈Δ+

G−α. (2.7)

Denote G+ = ∑
α∈Δ+ Gα , G− = ∑

α∈Δ+ G−α . Then we have the triangular decomposition
of G(A):

G(A) = G+ ⊕ H ⊕ G−. (2.8)

Hence the universal enveloping algebra U(G(A)) of G(A) can be factored as

U
(
G(A)

) = U(G+) ⊗ U(H) ⊗ U(G−). (2.9)

Now we collect some properties of G(A) in the following lemma.

Lemma 2.1.

(1) The set of all roots of G(A) with respect to H is Δ;
(2) as vector spaces, G− is isomorphic to n−;
(3) h̄ ⊕ G− is an abelian subalgebra of G(A), h̄ is in the center of G(A);
(4) h̄ ⊕ G− is a h ⊕ G+-module, and G+ · h̄ = {0}.

Recall that Δ has a partial order: α � β iff α − β is a sum of positive roots (equivalently, of
simple roots) or α = β .

In order to study the representations of G(A), we need the following identities which are easy
to prove.

Lemma 2.2. For α,β ∈ Δ+, r ∈ Z+, eα ∈ Gα and e−β ∈ G−β , we have the following identities
in U(G(A)):
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(1) [eα, er−β ] = 0, if α > β , or α − β /∈ Δ and α �= β;

(2) [eα, er+1−α ] = (r + 1)er−α[eα, e−α];
(3) [eα, er+1

−β ] = (r + 1)eα−βer−β , for some eα−β ∈ Gα−β , if α − β ∈ Δ and α < β .

Corollary 2.3. The following identities hold in U(G(A)), for α ∈ Δ+, r ∈ Z+, 1 � i, j � n:

(1) [ei, f
r
j ] = 0, when i �= j ;

(2) [eα, f r+1
i ] = δα,αi

(r + 1)f r
i zi ;

(3) if α ∈ Δ+ is not a simple root, and 0 �= e−α ∈ G−α , then there exist some ei and 0 �= eαi−α ∈
Gαi−α such that

[
ei, e

r+1−α

] = (r + 1)eαi−αer−α, for r ∈ Z+. (2.10)

Lemma 2.4. For α,β ∈ Δ+, r ∈ Z+, eα ∈ Gα and e−β ∈ G−β , we have the following identities
in U(G(A)):

(1) [e−β, er
α] = 0, if α > β , or α − β /∈ Δ and α �= β;

(2) [e−α, er+1
α ] = −(r + 1)er

α[eα, e−α];
(3) [e−β, er+1

α ] = ∑r
i=0 ei

αeα−βer−i
α for some eα−β ∈ Gα−β , if α − β ∈ Δ and α < β .

Corollary 2.5. For α,β,β − α ∈ Δ+, r ∈ Z+, there exist some e
iα−β

∈ G
iα−β

such that we have
the following identity in U(G(A)):

e−β er
α =

r∑
i=0

(−1)i
(

r

i

)
er−i
α e

iα−β
, (2.11)

where e
iα−β

= 0 if β − iα /∈ Δ ∪ {0}.

Proof. For x ∈ G(A) we write Rx,Lx for the right and left multiplication by x in U(G(A))

respectively. Then Rx = Lx − ad(x). Denote eiα−β = (ad eα)ie−β . Note that if β is an imaginary
root, eiα−β may not be 0 even if β − iα is 0 or a negative root. Applying binomial formula to
Rr

eα
e−β = (Leα − ad(eα))re−β we easily obtain (2.11) where eiα−β = 0 if β − iα �= Δ∪{0}. �

3. Invariant bilinear forms on G(A)

Recall that a C-valued symmetric bilinear form (·,·) on a complex Lie algebra g is said to be
invariant if

([x, y], z) = (
x, [y, z]), for all x, y, z ∈ g. (3.1)

Also recall that a complex n × n matrix A is called symmetrizable if there exist a non-singular
n × n diagonal matrix D and an n × n symmetric matrix B such that

A = DB. (3.2)
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Lemma 3.1. (See [11].) Let A = (aij )
n
i,j=1 be a symmetrizable GCM. Then the diagonal ma-

trix D = diag(ε1, ε2, . . . , εn) in (3.2) can be chosen so that ε1, ε2, . . . , εn are positive rational
numbers. If, further, A is indecomposable, then the matrix D is unique up to a constant factor.

Theorem 3.2. The Lie algebra G(A) has a non-degenerate symmetric invariant bilinear form
(·,·) if and only if A is symmetrizable.

Proof. “⇒” Suppose (·,·) is a non-degenerate symmetric invariant bilinear form on G(A). It is
easy to see that (Gα,Gβ) = {0} if α +β �= 0. Recall that we denote by [·,·]0 the bracket operator
on g(A), [·,·] the bracket operator on G(A).

First, in g(A), we have the following identities: for i �= j ,

[
ei, [fi, fj ]0

]
0
= [[ei, fi]0 , fj

]
0
+ [

fi, [ei, fj ]0

]
0
= [

α∨
i , fj

]
0
= −〈

α∨
i , αj

〉
fj = −aijfj

and

[
ej , [fi, fj ]0

]
0
= [[ej , fi]0 , fj

]
0
+ [

fi, [ej , fj ]0

]
0
= [

fi,α
∨
j

]
0
= 〈

α∨
j , αi

〉
fi = ajifi .

Hence, by the invariance of (·,·), we deduce that

([ei, ej ], [fi, fj ]0

) = (
ei,

[
ej , [fi, fj ]0

]) = (
ei, ej · [fi, fj ]0

) = (
ei,

[
ej , [fi, fj ]0

]
0

)
= aji(ei, fi);

but

([ei, ej ], [fi, fj ]0

) = −([ej , ei], [fi, fj ]0

) = −(
ej ,

[
ei, [fi, fj ]0

]) = −(
ej , ei · [fi, fj ]0

)
= −(

ej ,
[
ei, [fi, fj ]0

]
0

) = aij (ej , fj ).

So, for i, j = 1,2, . . . , n, we have

aji(ei, fi) = aij (ej , fj ). (3.3)

Let εi = (ei, fi), i = 1,2, . . . , n. Then the matrix

Adiag(ε1, ε2, . . . , εn) (3.4)

is symmetric. We claim that εi �= 0 for i = 1,2, . . . , n. Instead, if εi = (ei, fi) = 0 for some i

(1 � i � n), then ei, fi are in the kernel of (·,·), which is impossible. Thus

diag
(
ε−1

1 , ε−1
2 , . . . , ε−1

n

)
A (3.5)

is symmetric, then A is symmetrizable.
“⇐” Now we assume that A is symmetrizable. It is well known that the Kac–Moody algebra

g(A) associated to A has a non-degenerate symmetric invariant bilinear form (·,·)0 . Let us use
(·,·) to define a non-degenerate symmetric invariant bilinear form on G(A). Recall that σ is the
0
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vector space isomorphism from h ⊕ n− onto h̄ ⊕ G−. We define the bilinear form (·,·) on G(A)

as follows:

(h + G+,h + G+) = {0}, (h̄ + G−, h̄ + G−) = {0}, (3.6)

(u, v) = (v,u) = (
u,σ−1(v)

)
0
, ∀u ∈ h + G+, v ∈ h̄ + G−. (3.7)

It is easy to see that (·,·) is a non-degenerate symmetric bilinear form on G(A). We need only to
show that (·,·) is invariant.

Note that (Gα,G−β) = {0} if α,β ∈ Δ with α �= β . Since all other cases are trivial, we need
only to verify that for any x ∈ Gα , y ∈ Gβ , z ∈ G−α−β where α,β,α + β ∈ Δ+, we have
([x, y], z) = (x, [y, z]). Let σ(z′) = z for some z′ ∈ n−. Using (2.5) we have

([x, y], z) = ([x, y], z′)
0
= (

x, [y, z′]0

)
0
= (

x,σ−1([y, z]))
0
= (

x, [y, z]).
The theorem holds. �

Note that there are actually other non-degenerate symmetric invariant bilinear forms on G(A),
they are not induced from those of g(A) if A is degenerate.

4. Isomorphism problem on G(A)

In this section we solve the isomorphism problem on G(A), i.e., determine the conditions on
GCMs X1 and X2 for G(X1) ∼= G(X2). Here Moody’s results in [9] play a crucial role.

For i = 1,2, let Xi be an ni × ni GCM of rank li . Then the deformed Kac–Moody algebra
G(Xi) associated to Xi has the decomposition:

G(Xi) = Gi+ ⊕ hi ⊕ h̄i ⊕ Gi−, (4.1)

where h̄i = ∑2ni−li
j=1 Czi

j is in the center of G(Xi). Denote G(Xi)
(0) = G(Xi) and G(Xi)

(j+1) =
[G(Xi)

(j),G(Xi)
(j)] (j ∈ Z+). From the definition of G(Xi), we know that G(Xi)

(1) = Gi+ ⊕∑ni

j=1 Czi
j ⊕ Gi−.

First, we give a simple fact in Kac–Moody algebra.

Lemma 4.1. Let A be an indecomposable non-finite type GCM, and g(A) = h + ∑
α∈Δ gα the

Kac–Moody algebra associated to A. Then for each 0 �= eα ∈ gα , α ∈ Δ+, there exists some i

(1 � i � n) such that [ei, eα] �= 0.

Proof. Suppose that there exists some 0 �= eα ∈ gα , α ∈ Δ+, such that [ei, eα] = 0 for all
1 � i � n. Let I be the ideal of g(A) generated by eα . By Lemma 1.5 in [5], there exist some
fi1, fi2, . . . , fis (1 � i1, . . . , is � n) such that 0 �= [fi1, [fi2, [· · · [fis , eα] · · ·]]] ∈ Cα∨

i1
. Hence

α∨
i1

∈ I . Since A is indecomposable, we can deduce that e1, e2, . . . , en ∈ I . It follows that∑
α∈Δ+ gα ⊆ I . From the fact that for every 1 � i � n, [ei, eα] = 0, we see that gβ � I for

β ∈ Δ+ with htβ > htα, which is a contradiction. Hence for each 0 �= eα ∈ gα , α ∈ Δ+, there
exists some i (1 � i � n) such that [ei, eα] �= 0. This completes the proof of this lemma. �
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Table 1

Type of g dimg Rank of g

An (n � 1) (n + 1)2 − 1 n

Bn (n � 2) 2n2 + n n

Cn (n � 3) 2n2 + n n

Dn (n � 4) 2n2 − n n

E6 78 6
E7 133 7
E8 248 8
F4 52 4
G2 14 2

Lemma 4.2. (See Chapter 3 in [4].) The type, the dimension, and the rank of a finite-dimensional
simple Lie algebra g are as in Table 1.

Lemma 4.3. Let X1 and X2 be Cartan matrices Bn and Cn (n � 3) types respectively. Then
G(X1) and G(X2) cannot be isomorphic.

Proof. Suppose that ψ is an isomorphism of Lie algebras from G(X1) onto G(X2). Then we
see that ψ(G(X1)

(j)) = G(X2)
(j) for j ∈ Z+. Since h̄i is the center of G(Xi), we know that

ψ(G(X1)
(j)/h̄1) = G(X2)

(j)/h̄2. It follows that dimG(X1)
(j)/h̄1 = dimG(X2)

(j)/h̄2.
Let Π1 = {α1, α2, . . . , αn} and Π2 = {β1, β2, . . . , βn} be the root bases of Bn and Cn respec-

tively. Then it is well known that all positive roots of Bn and Cn are:

Δ(X1)+ = {αi + αi+1 + · · · + αj | 1 � i � j � n}
∪ {αi + αi+1 · · · + αj−1 + 2αj + · · · + 2αn | 1 � i < j � n}

and

Δ(X2)+ = {βi + βi+1 + · · · + βj | 1 � i � j � n}
∪ {βi + βi+1 + · · · + βj−1 + 2βj + · · · + 2βn−1 + βn | 1 � i � j � n − 1}.

Denote by θ1 and θ2 the highest roots in Δ(X1)+ and Δ(X2)+ respectively. Then

θ1 = α1 + 2α2 + 2α3 + · · · + 2αn and θ2 = 2β1 + 2β2 + · · · + 2βn−1 + βn.

Now, for i = 1,2, we can check that

G(Xi)
(1)/h̄i = Gi+ ⊕ Gi− =

∑
γ∈Δ(Xi)+

Gi
γ ⊕

∑
γ∈Δ(Xi)+

Gi−γ

and

G(Xi)
(2)/h̄i =

∑
Gi

γ ⊕
∑

Gi−γ .
γ∈Δ(Xi)+,htγ �=1 γ∈Δ(Xi)+, γ �=θi
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Hence dimG(X1)
(1)/h̄1 = dimG(X2)

(1)/h̄2 = 2n2 and dimG(X1)
(2)/h̄1 = dimG(X2)

(2)/h̄2 =
2n2 − n − 1.

Next we can get that

G(X2)
(3)/h̄2 =

∑
β∈Δ(X2)+,htβ�4

G2
β ⊕

∑
β∈Δ(X2)+\Δ2

G2−β,

where Δ2 = {β ∈ Δ(X2)+ | htβ = ht θ2 −1 or ht θ2 −2}. But we notice that there are two special
elements in Δ(X1)+:

α = αn−2 + αn−1 + 2αn and α′ = α2 + α3 + 2α4 + · · · + 2αn−1 + 2αn,

where α cannot be written as the sum of two positive roots with height 2 and β cannot be gotten
from α1 + α2 + 2α3 + 2α4 + · · · + 2αn−1 + 2αn by decreasing a positive root with height 2. Let
Δ1 = {γ ∈ Δ(X1)+ | htγ = ht θ1 − 1 or ht θ1 − 2} ∪ {α′}. Then

G(X1)
(3)/h̄1 =

{
Gθ ⊕ G−α1 ⊕ G−α3, n = 3;∑

γ∈Δ(X1)+,
htγ�4 but γ �=α

G1
γ ⊕ ∑

γ∈Δ(X1)+\Δ1 G1−γ , n � 4.

It is straightforward to check that

dimG(X1)
(3)/h̄1 =

{
3, n = 3;
2n2 − 3n − 4, n � 4,

and

dimG(X2)
(3)/h̄2 =

{
7, n = 3;
2n2 − 3n − 2, n � 4.

Thus dimG(X1)
(3)/h̄1 �= dimG(X2)

(3)/h̄2. It is a contradiction. Hence there cannot exist an
isomorphism of Lie algebras from G(X1) onto G(X2). This lemma holds. �
Theorem 4.4. For i = 1,2, let Xi be an ni × ni indecomposable GCM of rank li . Then G(X1)

and G(X2) are isomorphic if and only if X1 and X2 are the same up to a permutation of rows
and columns.

Proof. “⇐” Suppose that X1 and X2 are the same up to a permutation of rows and columns. For
i = 1,2, let g(Xi) = ni− ⊕hi ⊕ni+ be the Kac–Moody algebra associated to Xi . Then there exists
a Lie algebra isomorphism ψ :g(X1) → g(X2) such that ψ(h1) = h2 and ψ(n1±) = n2±. Apply the
construction in Section 2 to g(X1) and g(X2) to get the deformed Kac–Moody algebras G(X1)

and G(X2). It follows that G(X1) and G(X2) are isomorphic.
“⇒” Assume that G(X1) and G(X2) have the decompositions as in (4.1) and ϕ :G(X1) →

G(X2) is an isomorphism of Lie algebras.

Case 1. X1 and X2 are finite type GCMs.
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In this case, G(Xi)
(1) = Gi+ ⊕ h̄i ⊕ Gi− for i = 1,2, and ϕ(G(X1)

(1)) = G(X2)
(1). So

dimG(X1)
(1) = dimG(X2)

(1). Since the codimension of G(Xi)
(1) in G(Xi) is dimhi = ni ,

we deduce that n1 = n2, i.e., X1 and X2 have the same size n = n1 = n2. By Lemma 4.2,
we know that if X1 and X2 are different finite type GCMs (except for Bn and Cn), then
dimG(X1) �= dimG(X2). In addition, if X1 and X2 are Bn and Cn types respectively, then,
by Lemma 4.3, G(X1) � G(X2). So X1 and X2 must be the same type GCMs. Hence X1 and
X2 are the same up to a permutation of rows and columns.

Case 2. X1 and X2 are non-finite type GCMs.

Note that G(Xi)
(1) = Gi+ ⊕ ∑ni

j=1 Czi
j ⊕ Gi− for i = 1,2. Since the center of G(Xi)

(1) is∑ni

j=1 Czi
j with dimension ni , we see that n1 = n2. Now assume that n = n1 = n2. Denote

Ki = {
x ∈ G(Xi)

(1)
∣∣ dim〈x〉 < ∞}

,

where 〈x〉 is the ideal of G(Xi)
(1) generated by x. We shall show that Ki = Gi− ⊕ ∑n

j=1 Czi
j .

In fact, since
∑n

j=1 Czi
j is in the center of G(Xi), and by Lemma 2.2, we can deduce that

Gi− ⊕ ∑n
j=1 Czi

j ⊆ Ki . On the other hand, by Lemma 4.1, we get that for any x ∈ Gi+, x /∈ Ki .

Hence Ki = Gi− ⊕ ∑n
j=1 Czi

j .

Obviously, ϕ(K1) = K2. Since Ki is an ideal of G(Xi)
(1), we deduce that ϕ(G(X1)

(1)/K1)

= G(X2)
(1)/K2. Hence G1+ and G2+ are isomorphic. By Theorem 8.2 in [9], we deduce that X1

and X2 are the same up to a permutation of rows and columns. This completes the proof of this
theorem. �

From the proof of the previous theorem, we have obtained the following.

Corollary 4.5. Let X1 and X2 be indecomposable GCMs. Then G(X1) and G(X2) are isomor-
phic if and only if G(X1)

(1) and G(X2)
(1) are isomorphic.

Lemma 4.6. Let A = (aij )
n
i,j=1 be an indecomposable GCM of rank l, and G(A) the deformed

Kac–Moody algebra associated to A. Then G(A)(1) is an indecomposable ideal, i.e., G(A)(1)

cannot be written as G(A)(1) = I1 ⊕ I2 where I1 and I2 are nonzero ideals of G(A).

Proof. Note that G(A) = G+ ⊕ h ⊕ h̄ ⊕ G− where h̄ = ∑2n−l
i=1 Czi . Then G(A)(1) = G+ ⊕∑n

i=1 Czi ⊕ G−. Suppose that G(A)(1) can be written as: G(A)(1) = I1 ⊕ I2 where I1 and I2
are nonzero ideals of G(A). We know that I1 and I2 are h∗ graded ideals. Hence there exist non-
empty sets P1 = {ei1, . . . , eis } ⊆ I1 and P2 = {ej1, . . . , ejt } ⊆ I2, such that P1 ∪P2 = {e1, . . . , en}
(a disjoint union) and [eip , ejq ] = 0 for eip ∈ P1, ejq ∈ P2. It follows that aipjq = 0. This contra-
dicts the fact that A is indecomposable. Hence G(A)(1) is indecomposable. �

Now we are ready to give the main result in this section.

Theorem 4.7. Let X1 and X2 be GCMs. Then G(X1) and G(X2) are isomorphic if and only if
X1 and X2 are the same up to a permutation of rows and columns.
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Proof. The sufficiency is clear. We need only to consider the necessity.
Assume that X1 and X2 have the following direct sum decompositions of indecomposable

matrices:

X1 = M1 ⊕ M2 ⊕ · · · ⊕ Ms and X2 = N1 ⊕ N2 ⊕ · · · ⊕ Nt, for s, t � 1.

Then we have the corresponding decompositions:

G(X1) = G(M1) ⊕ G(M2) ⊕ · · · ⊕ G(Ms) and G(X2) = G(N1) ⊕ G(N2) ⊕ · · · ⊕ G(Nt ).

Clearly, G(Mi) (i = 1,2, . . . , k) are ideals of G(X1), and [G(Mi),G(Mj )] = {0} for i �= j .
Hence

G(X1)
(1) = G(M1)

(1) ⊕ G(M2)
(1) ⊕ · · · ⊕ G(Ms)

(1).

By Lemma 4.6, we can see that G(Mi)
(1) is an indecomposable ideal of G(X1)

(1). It is straight-
forward to check that

[
G(Mi)

(1),G(X1)
] = G(Mi)

(1). (4.2)

Moreover, we claim that G(Mi)
(1) is a maximal indecomposable ideal of G(X1)

(1) with the
property (4.2). Let us take G(M1)

(1) as an example. In fact, suppose that I is an indecomposable
ideal of G(X1)

(1) with [I,G(X1)] = I , which contains G(M1)
(1) properly. Then

I = [
I,G(M1) ⊕ G(M2) ⊕ · · · ⊕ G(Ms)

] = [
I,G(M1)

] ⊕ [
I,G(M2)

] ⊕ · · · ⊕ [
I,G(Ms)

]
= G(M1)

(1) ⊕ [
I,G(M2)

] ⊕ · · · ⊕ [
I,G(Ms)

]
.

Thus G(M1)
(1) �= I and [I,G(M2)] ⊕ · · · ⊕ [I,G(Ms)] �= I are ideals of G(X1)

(1). This contra-
dicts the fact that I is indecomposable.

Similarly,

G(X2)
(1) = G(N1)

(1) ⊕ G(N2)
(1) ⊕ · · · ⊕ G(Nt )

(1),

and G(Ni)
(1) (1 � i � t) are maximal indecomposable ideals of G(X2)

(1) with

[
G(Ni)

(1),G(X2)
] = G(Ni)

(1).

Let ϕ be an isomorphism from G(X1) onto G(X2). Then we know that

ϕ
(
G(M1)

(1)
) ⊕ ϕ

(
G(M2)

(1)
) ⊕ · · · ⊕ ϕ

(
G(Ms)

(1)
) = G(N1)

(1) ⊕ G(N2)
(1) ⊕ · · · ⊕ G(Nt )

(1).

Since G(M1)
(1) is a maximal indecomposable ideal of G(X1)

(1) with [G(M1)
(1),G(X1)] =

G(M1)
(1), we can deduce that ϕ(G(M1)

(1)) is a maximal indecomposable ideal of G(X2)
(1)

with [ϕ(G(M1)
(1)),G(X2)] = ϕ(G(M1)

(1)). Hence

ϕ
(
G(M1)

(1)
)=[

ϕ
(
G(M1)

(1)
)
,G(N1)

] ⊕ · · · ⊕ [
ϕ
(
G(M1)

(1)
)
,G(Nt )

]
.
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Since ϕ(G(M1)
(1)) is indecomposable, there exists a matrix Nj such that ϕ(G(M1)

(1)) =
[ϕ(G(M1)

(1)),G(Nj )] and [ϕ(G(M1)
(1)),G(Nk)] = {0} for k �= j . Hence ϕ(G(M1)

(1)) ⊆
G(Nk)

(1). By the maximality of ϕ(G(M1)
(1)) we can see that ϕ(G(M1)

(1)) = G(Nj )
(1). By The-

orem 4.4 and Corollary 4.5, Nj is the same up to a permutation of rows and columns with M1.
In addition, ϕ(G(X1)/G(M1)) ∼= G(X2)/G(Nj ). By induction on s, we can deduce that s = t

and Mi (i = 1,2, . . . , s) is the same up to a permutation of rows and columns with some Nj . It
follows that X1 and X2 are the same up to a permutation of rows and columns. This completes
the proof of this theorem. �
5. The lowest weight modules over G(A)

In this section we study the lowest weight Verma modules V̄ (λ) over G(A) for any λ ∈ H∗.
More precisely, we obtain the necessary and sufficient conditions for V̄ (λ) to be an irreducible
G(A)-module, and determine the maximal proper submodule of V̄ (λ) when it is reducible.

For any linear function λ ∈ H∗, we define the 1-dimensional (H ⊕ G−)-module Cωλ via

G− · ωλ = 0; x · ωλ = λ(x)ωλ, if x ∈ H. (5.1)

Thus we have the induced G(A)-module

V̄ (λ) = IndG(A)
H⊕G−Cωλ = U

(
G(A)

) ⊗U(H⊕G−) Cωλ. (5.2)

This G(A)-module V̄ (λ) is called a lowest weight Verma module with lowest weight λ.
Note that by (2.9), condition (5.2) can be replaced by

V̄ (λ) = U(G+) ⊗ Cωλ. (5.3)

It is clear that V̄ (λ) ∼= U(G+) as vector spaces. Hence we have the decomposition of weight
spaces

V̄ (λ) =
⊕
μ∈H∗

V̄ (λ)μ, (5.4)

where V̄ (λ)μ = {v ∈ V̄ (λ) | x · v = μ(x)v, ∀x ∈ H}. It is clear that V̄ (λ)μ = {0}, for μ < λ;
dim V̄ (λ)μ < ∞, for μ � λ, and V̄ (λ)λ = Cωλ.

Since the weight space with weight λ is 1-dimensional, the module V̄ (λ) has a unique maxi-
mal proper submodule J . Then we obtain the irreducible module

L(λ) = V̄ (λ)/J. (5.5)

It is clear that L(λ) is uniquely determined by the linear function λ.
Prior to our main result in this section, we first give a fact in linear algebra.

Lemma 5.1. Let W and V be two vector spaces over C with dimW = dimV = r , and f any
bilinear function on W × V . Then for any fixed nonzero vector x1 ∈ W , there exist a basis
x1, x2, . . . , xr of W and a basis y1, y2, . . . , yr of V , such that

f (xi, yj ) = 0, for i �= j ; i, j = 1,2, . . . , r.
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Proof. The result is obvious when f is trivial on W ×V , so we can assume that f (W,V ) �= {0}.
We shall prove this lemma by induction on r . Clearly, it is true for r = 1.

Suppose that the lemma holds for dimW = dimV < r (r � 2). Now consider the case that
dimW = dimV = r . If f (x1,V ) �= {0}, there exists some y1 ∈ V satisfying f (x1, y1) �= 0. Then
we can find the complementary subspace W1 (respectively V1) of Cx1 (respectively Cy1), such
that f (x1,V1) = {0} and f (W1, y1) = {0}. Since dimW1 = dimV1 = r − 1 and the restriction
of f to W1 ×V1 is also a bilinear function, by inductive hypothesis, there exist a basis x2, . . . , xr

of W1 and a basis y2, . . . , yr of V1, such that

f (xi, yj ) = 0, for i �= j ; i, j = 2, . . . , r.

Hence x1, x2, . . . , xr of W and y1, y2, . . . , yr of V are the bases desired.
If f (x1,V ) = {0}, then there exists some y1 ∈ V such that f (W,y1) = {0}. Thus we can

take any complementary subspace W1 (respectively V1) of Cx1 (respectively Cy1). Applying the
induction, we obtain the result in this case. This completes the proof. �
Corollary 5.2. Suppose α ∈ Δ+, λ ∈ H∗. For any fixed nonzero e

(1)
α ∈ Gα , there exist a basis

e
(1)
α , e

(2)
α , . . . , e

(r)
α of Gα and a basis e

(1)
−α, e

(2)
−α, . . . , e

(r)
−α of G−α , where r = dimGα = dimG−α ,

such that

λ
([

e(i)
α , e

(j)
−α

]) = 0, for i �= j ; i, j = 1,2, . . . , r. (5.6)

Proof. It is clear that λ([·,·]) is a bilinear function on Gα × G−α . Applying Lemma 5.1 we can
easily obtain the corollary. �

Recall that for α = ∑n
i=1 kiαi ∈ Δ+, the positive integer htα := ∑n

i=1 ki is called the height
of α. For α = ∑n

i=1 kiαi , β = ∑n
i=1 liαi ∈ Δ+, we define a new order ≺ on Δ+:

α ≺ β iff htα < htβ, or htα = htβ and the first nonzero li − ki is positive. (5.7)

This is a total order on Δ+. Note that αn ≺ αn−1 ≺ · · · ≺ α1.

Since dimGα = dimG−α < ∞ for any α ∈ Δ+, by Corollary 5.2, we can fix a basis

e
(1)
α , e

(2)
α , . . . , e

(r)
α of Gα and a basis e

(1)
−α, e

(2)
−α, . . . , e

(r)
−α of G−α such that λ([e(i)

α , e
(j)
−α]) = 0, for

i �= j ; i, j = 1,2, . . . , r , where r = dimGα = dimG−α . Thus the order ≺ on Δ+ can induce an
order on the basis of G+, still write as ≺,

e(i)
α ≺ e

(j)
β iff α ≺ β, or α = β and i < j. (5.8)

Set

B+ = {
e(1)
α , e(2)

α , . . . , e(r)
α

∣∣ r = dimGα, α ∈ Δ+
}
. (5.9)

Then B+ is an ordered basis of G+. Hence, by PBW Theorem,

{
x

j1
1 x

j2
2 · · ·xjs

s · ωλ

∣∣ x1 ≺ x2 ≺ · · · ≺ xs, xi ∈ B+, ji ∈ Z+, 1 � i � s
}

(5.10)

forms a basis of V̄ (λ).
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Moreover, we can define an order on the above basis of V̄ (λ). If x1 ≺ x2 ≺ · · · ≺ xs , xi ∈ B+,
define

x
i1
1 x

i2
2 · · ·xis

s · ωλ < x
j1
1 x

j2
2 · · ·xjs

s · ωλ

iff ik = jk, ik+1 = jk+1 · · · , is = js, but ik−1 < jk−1, for some k, 1 � k � s. (5.11)

It is clear that ωλ is the least nonzero element under the above order.

Theorem 5.3. V̄ (λ) is irreducible if and only if for each α ∈ Δ+, the bilinear form λ([·,·])|Gα×G−α

is non-degenerate.

Proof. “⇒” Suppose that there exist α ∈ Δ+ and 0 �= eα ∈ Gα such that λ([eα,G−α]) = 0. Let
U(G+)eα be the left ideal of U(G+) generated by eα . Denote

N = U(G+)eα · ωλ.

We shall prove that N is a nonzero proper submodule of V̄ (λ).
First, applying Lemma 2.4 and Corollary 2.5, we deduce that

e−β x
i1
1 x

i2
2 · · ·xis

s ∈ U(G+)h̄ + U(G+)G−, for β ∈ Δ+, xj ∈ B+, ij ∈ Z+.

In addition, from the fact that λ([eα, e−α]) = 0 for every e−α ∈ G−α , then for all β ∈ Δ+, e−β ∈
G−β ,

e−βeα · ωλ = eαe−β · ωλ + [e−β, eα] · ωλ = −δβαλ
([eα, e−α]) · ωλ = 0.

Hence, for any v = ∑k
i=1 aix

i1
1 x

i2
2 · · ·xis

s eα · ωλ ∈ N , β ∈ Δ+, we have

e−β · v =
k∑

i=1

aie−βx
i1
1 x

i2
2 · · ·xis

s eα · ωλ ∈
s∑

j=1

U(G+)h̄eα · ωλ + U(G+)G−eα · ωλ

⊆ U(G+)eα · ωλ = N.

It is clear that xN ⊆ N for any x ∈ G+ + H. Since ωλ /∈ N , hence N is a proper submodule
of V̄ (λ). This direction follows.

“⇐” Suppose that for each 0 �= eα ∈ Gα , α ∈ Δ+, there exists some e−α ∈ G−α such that
λ([eα, e−α]) �= 0, and that N is a nonzero submodule of V̄ (λ). Any nonzero element v ∈ N can
be written as v = ∑k

i=1 aix
i1
1 x

i2
2 · · ·xis

s · ωλ satisfying (x
11
1 x

12
2 · · ·x1s

s · ωλ) < · · · < (x
k1
1 x

k2
2 · · ·

x
ks
s · ωλ) under the order defined in (5.11), where ai ∈ C \ {0} and xi ∈ B+ with x1 ≺ x2 ≺ · · · ≺

xs . Let us call x
k1
1 x

k2
2 · · ·xks

s · ωλ the leading term of v.
We may choose v ∈ N such that its leading term is minimum among the elements in N . If the

leading term of v is ωλ, then k = 1 and v ∈ Cωλ. Therefore ωλ ∈ N and N = V̄ (λ).
If the leading term of v is greater than ωλ, there exists some i (1 � i � k) with i1 �= 0.

Assume that x1 ∈ Gα . From Lemma 2.4 and Corollary 5.2, there exists some y ∈ G−α such that
λ([x1, y]) �= 0, λ([xi, y]) = 0 if xi ∈ Gα with i > 1, and [xi, y] = 0 if xi /∈ Gα . So we deduce
that 0 �= y ·v = ∑k

i1λ([y, x1])xi1−1
x

i2 · · ·xis
s · ω̄λ ∈ N whose leading term is clearly less than
i=1 1 2
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that of v. This contradicts the choice of v. Hence N = V̄ (λ). This completes the proof of this
theorem. �

Now we can further determine the maximal submodule of V̄ (λ).
For any α ∈ Δ+ and λ ∈ H∗, by Corollary 5.2, we can fix a basis e

(1)
α , e

(2)
α , . . . , e

(r)
α of Gα and

a basis e
(1)
−α, e

(2)
−α, . . . , e

(r)
−α of G−α such that

λ
([

e(i)
α , e

(j)
−α

]) = δij , for i, j = 1,2, . . . , t (0 � t � r), and

λ
([

e(k)
α ,G−α

]) = λ
([

Gα, e
(k)
−α

]) = 0, t + 1 � k � r,

where r = dimGα = dimG−α . Denote

B(1)
α (λ) = {

e(1)
α , . . . , e(t)

α

}
, B(2)

α (λ) = {
e(t+1)
α , . . . , e(r)

α

}
and

Bα(λ) = B(1)
α (λ) ∪ B(2)

α (λ).

Thus Bα(λ) is a basis of Gα . Put

B
(1)
+ (λ) =

⋃
α∈Δ+

B(1)
α (λ) and B

(2)
+ (λ) =

⋃
α∈Δ+

B(2)
α (λ).

Then the basis of G+ given in (5.9) can be written as

B+(λ) = B
(1)
+ (λ) ∪ B

(2)
+ (λ). (5.12)

From the proof of the previous theorem we see that

J =
∑

eα∈Gα, α∈Δ+
λ([eα, G−α ])=0

U(G+)eα · ωλ (5.13)

is a submodule of V̄ (λ). We also know that if λ([eα, G−α ]) = 0 for some eα ∈ Gα , then eα can

be written as a linear combination of elements in B
(2)
α (λ). Hence the submodule in (5.13) can be

simplified as

J =
∑

α∈Δ+, x∈B
(2)
α (λ)

U(G+)x · ωλ =
∑

x∈B
(2)
+ (λ)

U(G+)x · ωλ. (5.14)

In the following theorem, we shall prove that J is maximal.

Theorem 5.4. Let λ ∈ H∗. Then

J =
∑

x∈B
(2)
+ (λ)

U(G+)x · ωλ (5.15)

is the maximal submodule of V̄ (λ).
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Proof. We only need to prove that J is maximal. Assume that N is a submodule of V̄ (λ) which
contains J properly. By PBW Theorem, every element v ∈ V̄ (λ) can be written as

v =
k∑

i=1

aix
i1
1 · · ·xit

t x
it+1
t+1 · · ·xis

s · ωλ,

where xi ∈ B
(1)
+ (λ), 1 � i � t ; xj ∈ B

(2)
+ (λ), t + 1 � j � s; ai ∈ C \ {0}, 1 � i � k. Then we

have a nonzero vector v = ∑
xi∈B

(1)
+ (λ)

aix
i1
1 · · ·xit

t · ωλ ∈ N where ai ∈ C \ {0}, ij ∈ Z+. As in

the proof of “⇐” of the previous theorem, we can deduce that N = V̄ (λ). Therefore J is the
maximal submodule of V̄ (λ). This completes the proof. �
Corollary 5.5. If λ ∈ H∗ with λ|

h̄
= 0, then V̄ (λ) is reducible, and has the maximal proper

submodule J such that V̄ (λ)/J is the 1-dimensional trivial module.

6. The highest weight modules over G(A)

In this section we shall study highest weight Verma modules Ṽ (λ) over G(A) for any λ ∈ H∗,
and employ the graded dual module of the irreducible lowest weight module L(λ) to get the
necessary and sufficient conditions for Ṽ (λ) to be irreducible.

For any linear function λ ∈ H∗, we define the 1-dimensional (H ⊕ G+)-module Cω̃λ via

G+ · ω̃λ = 0; x · ω̃λ = λ(x)ω̃λ, if x ∈ H. (6.1)

Then the highest weight Verma module with highest weight λ is defined as

Ṽ (λ) = IndG(A)
H⊕G+Cω̃λ = U

(
G(A)

) ⊗U(H⊕G+) Cω̃λ. (6.2)

It is clear that Ṽ (λ) ∼= U(G−) as vector spaces. Hence we also have the decomposition of weight
spaces

Ṽ (λ) =
⊕
μ∈H∗

Ṽ (λ)μ, (6.3)

where Ṽ (λ)μ = {v ∈ Ṽ (λ) | x · v = μ(x)v, ∀x ∈ H}. It is clear that Ṽ (λ)μ = {0}, for μ > λ;
dim Ṽ (λ)μ < ∞, for μ � λ, and Ṽ (λ)λ = Cω̃λ.

Since the weight space with weight λ is 1-dimensional, the module Ṽ (λ) has a unique maxi-
mal proper submodule J . Then we obtain the irreducible module

V (λ) = Ṽ (λ)/J. (6.4)

It is clear that V (λ) is uniquely determined by the linear function λ.
For any α ∈ Δ+, since dimG−α < ∞, we can fix a basis e

(1)
−α, e

(2)
−α, . . . , e

(r)
−α of G−α , where

r = dimG−α . Thus the order ≺ on Δ+ also induces an order on the basis of G−, still write as ≺,

e
(i)
−α ≺ e

(j) iff α ≺ β, or α = β and i < j. (6.5)
−β
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Set

B− = {
e
(1)
−α, e

(2)
−α, . . . , e

(r)
−α

∣∣ r = dimG−α, α ∈ Δ+
}
. (6.6)

Then B− is an ordered basis of G−. Since G− is an abelian subalgebra of G(A), U(G−) is
isomorphic to polynomial algebra with infinitely many indeterminates e

(1)
−α, e

(2)
−α, . . . , e

(r)
−α , r =

dimG−α , α ∈ Δ+. Hence

{
y

j1
1 y

j2
2 · · ·yjs

s · ω̃λ

∣∣ y1 ≺ y2 ≺ · · · ≺ ys, yi ∈ B−, ji ∈ Z+, 1 � i � s
}

(6.7)

forms a basis of Ṽ (λ).
Unlike Theorem 5.3, we are not able to give a direct proof of a result similar to that. We

have to employ the graded dual module of L(λ), where L(λ) is the irreducible lowest weight
module with lowest weight λ defined in (5.5). The dual space L(λ)∗ of L(λ) can be made into a
G(A)-module under the following action

(x · f )(v) = −f (x · v), for all f ∈ L(λ)∗, x ∈ G(A) and v ∈ L(λ). (6.8)

In general, we call L(λ)∗ the G(A)-module contragredient to L(λ).
Recall that we have the weight space decomposition of L(λ):

L(λ) =
⊕
μ�λ

L(λ)μ, (6.9)

with L(λ)λ = Cωλ and dimL(λ)μ < ∞. Denote by P(λ) =: {μ ∈ H∗ | L(λ)μ �= {0}} the weight
set of L(λ). For each μ ∈ P(λ), we can identify the dual space L(λ)∗μ of L(λ)μ with {f ∈ L(λ)∗ |
f (L(λ)ν) = 0, for all ν �= μ}. Then the subspace

L∗(λ) =
⊕
μ�λ

L(λ)∗μ (6.10)

of L(λ)∗ is a weight submodule over G(A). We call L∗(λ) the graded dual module of L(λ).
It is straightforward to check that L∗(λ) is irreducible. In addition, for any 0 �= ω∗

λ ∈ L(λ)∗λ,
one has

G+ · ω∗
λ = 0; x · ω∗

λ = −λ(x)ω∗
λ, for x ∈ H. (6.11)

Hence L∗(λ) is an irreducible highest weight module over G(A) with highest weight −λ. By the
universal property of Verma module, there exists an epimorphism from Ṽ (−λ) onto L∗(λ). We
deduce that Ṽ (−λ) is irreducible iff L∗(λ) ∼= Ṽ (−λ). Comparing the dimension of weight spaces
of these two modules, since dimGα = dimG−α , we see that dim Ṽ (−λ)−λ−α = dim V̄ (λ)λ+α for
any α ∈ Q+. It follows that Ṽ (−λ) is irreducible iff V̄ (λ) is irreducible. Hence we have proved
the following theorem:

Theorem 6.1. Ṽ (λ) is irreducible if and only if V̄ (−λ) is irreducible, if and only if for each
α ∈ Δ+, the bilinear form λ([·,·])|Gα×G−α

is non-degenerate.

Question. What is the maximal proper submodule of Ṽ (λ) when it is reducible?
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7. The case that A is a symmetrizable GCM

In this section, we assume that A is an n × n symmetrizable GCM.
We use the construction in the proof of Theorem 3.2. For any fixed non-degenerate symmetric

invariant bilinear form (·,·)0 on g(A), we have a non-degenerate symmetric invariant bilinear
form (·,·) on G(A) such that

(x, y)0 = (
x,σ (y)

)
, ∀x ∈ gα, y ∈ g−β, α,β ∈ Δ+; (7.1)

(h1, h2)0 = (
h1, σ (h2)

)
, ∀h1, h2 ∈ h. (7.2)

Clearly, for any x ∈ H, we can uniquely determine an element in H∗, denote by μ(x), such that

〈
y,μ(x)

〉 = (y, x), ∀y ∈ H. (7.3)

Thus we have a vector space isomorphism

μ :H → H∗, x �→ μ(x). (7.4)

Now μ induces in a natural way a non-degenerate bilinear form on H∗, still denote by (·,·),
satisfying

(λ1, λ2) = (
μ−1(λ1),μ

−1(λ2)
)
, ∀λ1, λ2 ∈ H∗. (7.5)

It is clear that for any α,β ∈ Δ, we have

(α,β) = (
μ−1(α),μ−1(β)

) = 0. (7.6)

This is very different from the case of Kac–Moody algebras (see Chapter 2 in [5]).
Similar to the Kac–Moody algebra case, we have the following lemma.

Lemma 7.1. Let A be a symmetrizable GCM, G(A) the deformed Kac–Moody algebra asso-
ciated to A, (·,·) a non-degenerate symmetric invariant bilinear form on G(A). Then for any
α ∈ Δ, x ∈ Gα , y ∈ G−α , we have

[x, y] = (x, y)μ−1(α). (7.7)

Proof. It is clear that two sides of the above identity are in H. Hence we only need to check that

(
h + z, [x, y]) = (

h + z, (x, y)μ−1(α)
)
, ∀h ∈ h, z ∈ h̄.

We have

(
h + z, [x, y]) = ([h + z, x], y) = α(h)(x, y)

and

(
h + z, (x, y)μ−1(α)

) = (x, y)
(
h + z,μ−1(α)

) = α(h)(x, y). �
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It is clear that (·,·)|Gα×G−α
is non-degenerate and (·,·)|Gα×G−β

is trivial if α,β ∈ Δ with

α +β �= 0. For any α = ∑n
i=1 kiαi ∈ Δ+, we can get a basis e

(1)
α , e

(2)
α , . . . , e

(r)
α of Gα and a basis

e
(1)
−α, e

(2)
−α, . . . , e

(r)
−α of G−α , where r = dimGα = dimG−α , such that

(
e(i)
α , e

(j)
−α

) = δij , i, j = 1,2, . . . , r. (7.8)

Thus, by the previous lemma,

[
e(i)
α , e

(j)
−α

] = δijμ
−1(α) ∈ h̄, i, j = 1,2, . . . , r. (7.9)

We see that λ([Gα,G−α]) = Cλ(μ−1(α)) = C(λ,α).
Hence we can simplify the theorems in the previous two sections.

Theorem 7.2. Let A be a symmetrizable GCM, G(A) the deformed Kac–Moody algebras asso-
ciated to A, λ ∈ H∗.

(a) The lowest weight Verma module V̄ (λ) over G(A) is irreducible if and only if for every
α ∈ Δ+, (λ,α) = λ(μ−1(α)) �= 0. If V̄ (λ) is reducible, then the maximal proper submodule
of V̄ (λ) is

J =
∑

(λ,α)=0, α∈Δ+
U(G+)Gαωλ.

(b) The highest weight Verma module Ṽ (λ) over G(A) is irreducible if and only if for every
α ∈ Δ+, (λ,α) = λ(μ−1(α)) �= 0.
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