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1. Preliminaries

1.1. Introduction

In [BW], Block and Wilson proved the conjecture raised by Kostrikin and Shafarevich in [KS] which
asserts all simple finite-dimensional Lie algebras over an algebraically closed field of characteristic
� 7 fall into two types of infinite series: classical type and Cartan type. The former are analogue of
complex simple Lie algebras, and the latter are Lie algebras of derivations on the truncated polynomial
algebras. Kac’s classification result on finite-dimensional simple Lie superalgebras over the complex
numbers in [K] shows that a complex superversion of Kostrikin–Shafarevich conjecture is true. Cartan
type Lie superalgebras in prime characteristic can be given naturally (cf. [L] and [ZL]). One naturally
expects a supercounterpart of Kostrikin–Shafarevich conjecture on the simple finite-dimensional Lie
superalgebras over k.

Let g = W (n) be the Lie superalgebra of superderivations on the Grassmann algebra of rank n
over an algebraically closed filed k of characteristic p > 3, which is of simplest series in Cartan type
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Lie superalgebras over k. The aim of this paper is to study restricted representations of g, i.e. repre-
sentations of the restricted enveloping algebra u(g). Our work is motivated by Serganova’s work on
the complex Witt superalgebras. Recall that Bernstein and Leites studied the representations of this
complex Lie superalgebra W (n) early in 1983, giving a construction for all simple modules and giving
their dimensions (cf. [BL]). Serganova reworked with this subject, classifying all simple modules and
giving their character formulas for the Z-graded module category of Cartan type Lie supalgebras over
the complex numbers (cf. [S]). We apply Serganova’s arguments to the category (T, u(g))-mod (to see
Definition 2.8) in the modular case, which is a refined version of the restricted module category for g,
subject to the admissibility with T-action for the canonical maximal torus T of GL(n,k). We obtain
the character formulas for simple modules in this category. Then we study projective modules in
u(g)-module category, finally we obtain the Cartan invariants for this category, extending the result
on the restricted module category for the ordinary Witt algebra obtained by Nakano (cf. [N]).

1.2. The Witt superalgebra

In this subsection and next subsection, we record some basic properties of the Witt superalge-
bras and fix some notations. Let k be an algebraically closed field of characteristic p > 0. Let

∧
(n)

be the free commutative superalgebra with n odd generators ξ1, . . . , ξn (isomorphic to the Grass-
mann algebra), and let W (n) be the Lie superalgebra of superderivations of

∧
(n). Then W (n) :=

{∑n
i=1 f i∂i | f i ∈ ∧

(n)}, where ∂i is a superderivation defined via ∂i(ξ j) = δi j . The superstructure
on W (n) arises from the Z-grading over W (n) = ∑n−1

j=−1 W (n) j with W (n) j = span-{ξt1 · · · ξt j+1∂s |
t1 < t2 < · · · < t j+1, s = 1, . . . ,n}, more precisely with convention deg(ξi) = 1 and deg(∂i) = −1. Set
W (n)i = ∑n−1

j=i W (n) j , i = −1,0,1, . . . ,n − 1. There is a natural filtered structure on Wn: W (n) =
W (n)−1 ⊃ W (n)0 ⊃ W (n)1 ⊃ · · · ⊃ W (n)i ⊃ · · · .

If n = 1, then W (n) becomes a 2-dimensional Lie algebra. So we will always assume n � 2 throughout
the paper.

Recall that a Lie superalgebra g = g0̄ ⊕ g1̄ is called restricted if g0̄ is a restricted Lie algebra in
the usual sense (cf. [J] and [SF]), and g1̄ is a restricted g0̄-module under the adjoint action. The
restricted enveloping algebra u(g) of g is defined to be a quotient of U (g) by the ideal generated by
{X p − X [p] | X ∈ g0̄}. A supermodule (ρ, V ) of g is said to be restricted if ρ satisfies for all X ∈ g0̄

ρ(X)p − ρ
(

X [p]) = 0.

All restricted modules of g constitute a full subcategory of the g-module category, which coincides
with the u(g)-module category, denoted by u(g)-mod.

By a direct computation, we know that W (n) is a restricted Lie superalgebra. Especially, the
p-mapping [p] on W (n)0̄ is just given as the usual pth power of derivations.

1.3. More structural information

Let g = W (n), and g−1 = W−1 and g1 = ∑
i�0 W2i+1, g0 = W0. Then g0̄ = g0 +∑

i>0 W2i , and g1̄ =
g−1 + g1. Recall that g0 ∼= gl(n) under the map g0 → gl(n), ξi D j �→ Eij . Furthermore, g0 = n− +h+n+
for n− = ∑

i> j kξi D j , h = ∑
i khi for hi = ξi Di and n+ = ∑

i< j ξi D j , b± = n± + h. (By convention,

b+ can be simply denoted by b.) Set N− := g−1 + n− , N+ := n+ + W 1; B− := N− + h and B+ =
N+ + h; g+ := g0 + W 1 (= W 0), g− := g0 + g−1. Then N± , g+ = g0̄ + g1 and g− are all restricted
supersubalgebras of g.

The Cartan subalgebra h of g0 is also a Cartan subalgebra of g. We have a root decomposition
g = h ⊕ ∑

α∈� gα . Taking the standard basis {ε1, . . . , εn} ∈ h∗ with εi(h j) = δi j , we have

� = {εi1 + · · · + εit − ε j | 1 � i1 < · · · < it � n; 1 � t, j � n} ∪ {−εi | i = 1, . . . ,n}.
We recall some facts on the roots. A root α is either satisfying −α /∈ �, or satisfying −α ∈ �,

which is by definition called nonessential, or essential, dependent on the corresponding situation. So all
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roots are of three basic types: nonessential, even essential and odd essential. If α is even essential,
then both gα and g−α are in g0, the multiplicity of α and −α is 1 with gα,g−α generating a subalge-
bra isomorphic to sl(2). If α is odd essential, then one of the two spaces gα and g−α has dimension 1
and the other one has dimension n − 1. The corresponding root space belongs to g−1 in the former
case, or belongs to W1 in the later case. For an essential root α, dimhα = n − 1 if α is old, and 1 if α
is even, where hα = [gα,g−α]. Clearly, an essential root is some one from the set {±εi,±(εi − ε j)}.

Another important fact on g is that the restricted enveloping algebra u(g) can be formulated as

∧
(g−1) ⊗k u

(
g+)

.

Convention. The terminology of ideals, subalgebras, modules etc. of a Lie superalgebra instead of
superideals, subsuperalgebras, supermodules, etc. is adopted in this paper. The notation A-mod will
stand for the module category for an algebraic object A.

2. Restricted representations and character formulas of irreducible modules for W (n)

Keep the notations as in the previous section. In particular, we always assume that k is an al-
gebraically closed field of characteristic p > 3, and all vector spaces are defined over k. Assume
g = W (n) in the sequel.

2.1. Restricted irreducible representations of W (n)

Recall that the iso-classes of all restricted simple modules of g0 are parameterized by Λ := {λ =
(λ1, . . . , λn) | λi ∈ Fp, i = 1, . . . ,n} which coincides with the set Fn

p (cf. [J2]). Take a set of representa-

tives of restricted simple modules: {L0(λ) | λ ∈ Λ}. Precisely, L0(λ) can be regarded as the simple head
of the baby Verma module Z(λ) = u(g0) ⊗u(b) kλ . Similarly, we can define L0

min(λ) to be the simple
head of Z−(λ) = u(g0) ⊗u(b−) kλ . And {L0

min(λ) | λ ∈ Λ} becomes another set of representatives of the
iso-classes of restricted simple modules of g0.

Since every element in W 1 nilpotently acts on g. So each simple restricted module of g0 can be
extended to the one of g+ = g0 + W 1 with trivial action of W 1. Define the Kac modules

K +(λ) = u(g) ⊗u(g+) L0(λ)
as k-superspace=

∧
(g−1) ⊗k L0(λ), (2.1)

λ ∈ Λ. In some cases, K +(λ) is written as K (λ) for simplicity (note: both notations are used in the
text, dependent on different situations). The weight λ can be expressed as λ = ∑n

i=1 λiεi for εi =
(δi1, . . . , δin).

Lemma 2.1. Let vλ be a fixed maximal vector of L0(λ).

(1) For any f ∈ u(N−)N− , there exists a positive integer r such that f r = 0.
(2) Set J (λ) to be the sum of all proper submodules of K (λ). Then J (λ) is a proper submodule of K (λ).

Proof. (1) We observe that N− has a decomposition of root spaces under the (adjoint) action
of h: N− = ∑

α∈�− Nα where �− = {−εi, 1 � i � n; εi − ε j, 1 � i < j � n}, and [Nα, Nβ ] =
δα+β∈�−,trueNα+β , where δα+β∈�−,true equals 1 or 0 dependent on whether α + β lies in �− , or
not. Hence N− is nilpotent. On the other hand, D2

i = 0 and (ξi D j)
p = 0 in u(N−). Hence, u(N−) is a

local algebra with maximal ideal u(N−)N− which is nilpotent.
(2) We first observe that any nonzero proper submodule M in K (λ) is included in u(N−)N−vλ ,

where vλ is the maximal vector of L0(λ). Actually, suppose M �⊂ u(N−)N−vλ , then there is a nonzero
vector w = (1 − f )vλ ∈ M , f ∈ u(N−)N− . Accordingly, by (1), f ∈ u(N−)N− satisfies f r = 0 for some
positive integer r. So we have for f ′ = 1 + f + · · · + f r−1 ∈ u(N−), f ′w = vλ , and then M = K (λ).
Obviously, u(N−)N−vλ is a proper subspace of K (λ). So J (λ) is really a proper submodule. �
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Thus, by the above lemma we know that K (λ) has a unique simple quotient, denoted by L(λ),
λ ∈ Λ. In the same way, we can define

K ∨(λ) = u(g) ⊗u(g+) L0
min(λ), (2.2)

which admits a unique simple quotient denoted by L∨(λ). Note that there is a bijection σ on Λ:
λ �→ σ(λ) which is defined via

L0(λ) ∼= L0
min

(
σ(λ)

)
.

Obviously, L0(λ) admits a unique lowest weight vector fλvλ of weight σ(λ), up to scalar, where
fλ ∈ u(n−). Additionally, we have

K −(λ) := U (g) ⊗u(g−) L0(λ). (2.3)

By the same reason, K −(λ) has a unique simple quotient denoted by L�(λ).

Proposition 2.2. The family L(λ) constitute the set of iso-classes of restricted irreducible modules of g. Simi-
larly, the family L∨(λ) (resp. L�(λ)) constitute the set of iso-classes of restricted irreducible modules of g.

Proof. It suffices to prove that λ = μ if L(λ) ∼= L(μ) for λ,μ ∈ Λ.
By the hypothesis L(λ) ∼= L(μ), there is an isomorphism K (λ)/ J (λ) ∼= L(μ). Thus there must exist

a vector wμ ∈ K (λ)\ J (λ) with (W 1 + n+)wμ ∈ J (λ) and hwμ ∈ μ(h)wμ + J (λ), for h ∈ h. We can
write

wμ = avλ +
∑

i

ωi ⊗ f i vλ,

where a ∈ k× (here and further, k× means the multiplicative group k\{0}) and ωi ⊗ f i ∈ ∧
(g−1)g−1 ⊗

u(n−) + ∧
(g−1) ⊗ u(n−)n− . From hwμ − μ(h)wμ ∈ J (λ), it follows that λ(h) = μ(h) for all h ∈ h,

thereby λ = μ. �
Thus, we can define two bijections ∨ and � on Λ via: L(λ) ∼= L∨(λ∨) and L(λ) ∼= L�(λ�).
Next, let us analyze the structure of L(λ). Consider u(g0)-submodules Li

min, i = 0,1, . . . ,n which is

generated by the homomorphic image vi
λ of the vector

vi
λ = (D1 ∧ D2 ∧ · · · ∧ Di) ⊗ fλvλ

under the canonical projection of K (λ) onto L(λ).
Call λ regular, if λ(hi) �= 0, i = 2, . . . ,n, and λ(h1, . . . ,hn−1) �= (1,1, . . . ,1). We first have the fol-

lowing lemma.

Lemma 2.3. Assume σ(λ) is regular. Then all Li
min are nonzero g0-submodules in L(λ), i = 0,1, . . . ,n.

Proof. We need to prove that vi
λ does not lie in J (λ). This is to say, the g-submodule generated by vi

λ

is the whole K (λ). That is obvious for i = 0. Now fix i ∈ {1, . . . ,n − 1}. Denote K (λ)i the g-submodule
generated by vi

λ . Recall that n− fλvλ = 0, and W 1L0(λ) = 0. We have the following calculation:

(ξiξi+1 Di+1)vi
λ = (D1 ∧ · · · ∧ Di) ⊗ ξi+1 Di+1 fλvλ

= σ(λ)(hi+1)vi−1
λ .
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By induction, we know that K (λ)i = K (λ) for i = 0,1, . . . ,n − 1.
Now consider the case when i = n. We have for j = 1, . . . ,n − 1

(ξnξ j D j)vn
λ = (−1)n− j−1(1 − σ(λ)(h j)

)
vn−1

λ ,

which means that K (λ)n = K (λ). Thus, all g0-submodules Li
min are nonzero because the generators vi

λ

are all nonzero. �
Furthermore, it’s not hard to see that Li

min is a lowest weight module with the lowest weight

vector vi
λ of weight λi where λi = σ(λ)−∑i

j=1 ε j , i.e. n−vi
λ = 0 and hvi

λ = λi(h)vi
λ for h ∈ h. So there

is a canonical surjective homomorphism of g0-module from Li
min to the irreducible lowest weight

module L0
min(λi). Set K i

min the g0-submodule in K (λ) generated by vi
λ . Then the above argument

for Li
min is true for K i

min. Furthermore, Li
min is the homomorphic image of K i

min under the canonical
surjective g0-homomorphism from K (λ) onto L(λ).

Proposition 2.4. Maintain the above notations.

(1) K i
min

∼= Li
min

∼= L0
min(λi).

(2) Assume σ(λ) is regular, then as a g0-module, Socu(g0)(K (λ)) = ⊕n
i=0 K i

min and Socu(g0)(L(λ)) =⊕n
i=0 Li

min .

Proof. (1) Observe the fact that K (λ) is a direct sum of all g0-submodules Ω i(λ) := ∧i
(g−1) ⊗ L0(λ),

i = 0,1, . . . ,n. Obviously, K i
min ⊂ Ω i(λ). Next, we assert that K i

min is the simple socle of Ω i(λ) as
g0-module. For this, we consider An−(Ω i(λ)) := {v ∈ Ω i(λ) | n−v = 0}. Clearly, kvi

λ ⊂ An− (Ω i(λ)).

Claim 1. An− (Ω i(λ)) = kvi
λ .

Assume w is a nonzero vector in An−(Ω i(λ)). Set ω j := D j1 ∧· · ·∧ D ji for j = {1 � j1 < j2 < · · · <
ji � n}. We may write

w =
∑

1� j1< j2<···< ji�n

c jω j ⊗ u j vλ,

where c j ∈ k, and u j ∈ u(n−).
We first assert that j = {1 < 2 < · · · < i} if c j �= 0. Set d(w) = max{q | jq = q for all j, with c j �= 0}

(appoint d(w) = 0 if no such a q exists). Then the assertion is equivalent to say that d(w) = i. Suppose
d < i, then there is j with c j �= 0 and jd+1 > d + 1. Fix j0 with j0

d+1 = min{ jd+1(> d + 1) | c j �= 0},
and denote d(w) by d for simplicity. Then we have

(ξ j0
d+1

Dd+1)w =
∑

j

−c j(D1 ∧ · · · ∧ Dd ∧ δ jd+1, j0
d+1

Dd+1 ∧ D jd+2 ∧ · · · ∧ D ji ) ⊗ u j vλ

+
∑

j

c jω j ⊗ ξ j0
d+1

Dd+1u j vλ

= w ′ + w ′′

where w ′ and w ′′ respectively denote the first and the second summation appearing on the RHS of
the first equation. By the choice of j0, we know w ′ �= 0 and d(w ′) = d(w) + 1. And d(w ′′) = d(w)

if w ′′ �= 0, which implies w ′ and w ′′ are linearly independent. Thus we prove that (ξ j0 Dd+1)w �= 0

d+1
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which contradicts with the assumption of w . Hence our assertion is true. This is to say, w is of the
form

w = (D1 ∧ · · · ∧ Di) ⊗ f vλ

where f ∈ u(n−). Then w ∈ An− (Ω i(λ)) means that f vλ is the minimal vector of L0(λi), thereby
f vλ ∈ kfλvλ . Hence w ∈ kvi

λ .
Thus, we complete the proof of Claim 1.

Claim 2. K i
min is a simple g0-module, thereby isomorphic to Li

min, both of which are isomorphic to
L0

min(λi). Furthermore, Socu(g0)(Ω
i(λ)) = K i

min.
For any irreducible g0-submodule L in Ω i(λ) must admit a nonzero vector annihilated by n− .

Thanks to the argument above, L contains kvi
λ . Hence L includes K i

min, which means that L coincides
with K i

min, and K i
min is an irreducible g0-module. Thus, K i

min is a unique simple g0-submodule in
Ω i(λ), i.e. naturally becoming the simple socle. Furthermore, the analysis before the lemma implies
that both K i

min and Li
min are isomorphic to L0

min(λi).
(2) Recall that as a g0-module, K (λ) = ⊕n

i=0 Ω i(λ). Hence

Socu(g0)

(
K (λ)

) =
n⊕

i=0

Socu(g0)

(
Ω i(λ)

) =
n⊕

i=0

K i
min.

The proof is completed. �
Proposition 2.5.

(1) Soc(K (λ)) ∼= L�(λ − ∑n
i=1 εi).

(2) L∨(σ (λ)) ∼= L(λ).

Proof. (1) Observe that for any nonzero vector w ∈ K (λ), u(g)w contains vs
λ . We can write w =∑s

i=1 wi for wi(�= 0) ∈ K ji , j1 < j2 < · · · < js . By the arguments in the proof of Proposition 2.4,
vs

λ ∈ u(g0)w . Hence, vn
λ ∈ u(g)w . This means that u(g)vn

λ = Soc(K (λ)). Furthermore, vn
λ is annihilated

by N− , with weight λ − ∑n
i=1 εi . Hence u(g)vn

λ is a homomorphic image of K −(λ − ∑n
i=1 εi). Thus,

Soc(K (λ)) ∼= L�(λ − ∑n
i=1 εi).

(2) This is because L0
min(σ (λ)) ∼= L0(λ). �

Call λ ∈ Λ typical if K (λ) = L(λ). Otherwise, it is called atypical. By Proposition 2.5, we know
that λ� = λ − ∑

i εi if λ is typical (here and further, simply write
∑

i for
∑n

i=1). Conversely, suppose
λ� = λ − ∑

i εi . Then L(λ) ∼= L�(λ − ∑
i εi). According to the structure of L(λ), the weight vector of

weight λ − ∑
i εi must have a nonzero inverse image wλ−∑

i εi
in K (λ) of weight λ − ∑

i εi . By the
previous analysis, such a weight vector in K (λ) is contained in Soc K (λ), which implies that J (λ)

must be zero. Hence K (λ) = L(λ). Furthermore, we have by the same arguments as in [S] without any
change:

Proposition 2.6. Let λ ∈ Λ. Then λ is atypical if and only if λ is of the form λ = aεi + ∑n
j=i+1 ε j for a ∈

{0,1,2, . . . , p − 1} and i ∈ {1, . . . ,n}. In this case, λ� = −ε1 − · · · − εi−1 + aεi .

Remark 2.7. The above result on simple modules and weights can be generalized to more general case
W (m;n) (cf. [SZ]).
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2.2. Rational T-module category

Let T be the canonical maximal torus of GL(n,k), which consists of diagonal matrices
Diag(t1, . . . , tn), ti ∈ k× . Recall that the character group X(T) of T is a free abelian group of
rank n, identified with Zn . By definition, a rational T-module V means that V = ⊕

λ∈X(T) Vλ ,

where Vλ = {v ∈ V | T (v) = tλ1
1 · · · tλn

n v} for λ = (λ1, . . . , λn) ∈ Zn and T = Diag(t1, . . . , tn). Set
WT(V ) = {λ ∈ X(T) | Vλ �= 0} (sometimes simply denoted by W(V )). Set T := {t := Diag(t, t, . . . , t) ∈
T | t ∈ k×} ∼= k× . Then we have a Z-graded decomposition for a rational T-module V = ∑

s V s with
V s = {v ∈ V | tv = ts v} and WT(V ) := {s ∈ Z | V s �= 0}.

Recall that the automorphism group of g contains a closed subgroup GL(n,k) which admits a
natural representation on the space k-span{ξ1, . . . , ξn}. The action of T on g is given via T ξi = tiξi ,
and then

T (ξi1 · · · ξis∂ j) = ti1 · · · tis t
−1
j ξi1 · · · ξis∂ j,

where T = Diag(t1, . . . , tn). Obviously, Lie(T) = 〈Eii = Diag(δi1, . . . , δin), i = 1, . . . ,n〉 ∼= h, we will iden-
tify both with each other, under the map Eii �→ ξi∂i . So for τ ∈ X(T) = Homalgebraic groups(T,k×),
its differential dτ : h → k, is a homomorphism of restricted Lie algebras and satisfies dτ (h[p]) =
(dτ (h))[p] . This means that dτ ∈ Λ. The map ϕ : τ �→ dτ has kernel p X(T). And this induces a bijec-
tion X(T)/p X(T) ∼= Λ. With identification h = Lie(T), we may identify X(T)/p X(T) with Λ. Sending
τ ∈ X(T) to τ ∈ Λ = X(T)/p X(T), we write dτ (h) directly as τ (h) without any confusion, and call
them restricted weights. (Sometimes, dλ and λ are not discriminated in use if no confusion happens in
context.)

Naturally, u(g) and its canonical subalgebras which will be used later become rational T-modules
with the action denoted by Ad(T )a for T ∈ T and a ∈ u(g).

Let us introduce the full subcategory (u(g),T)-mod of the u(g)-module category u(g)-mod:

Definition 2.8. 1 The category (u(g),T)-mod is defined as such a category whose objects are finite-
dimensional k-superspaces endowed with both u(g)-module and rational T-module structure satisfy-
ing the following compatibility conditions for V ∈ (u(g),T)-mod:

(i) The action of u(h) coincides with the action of Lie(T) induced from T.
(ii) For a ∈ u(g), T ∈ T, and v ∈ V : T (av) = (Ad T (a))T v .

The morphisms of (u(g),T)-mod are defined to be linear maps of k-superspaces acting as both
u(g)-module homomorphisms, and rational T-module homomorphisms.

Remark 2.9. (1) Let u be a Hopf subalgebra of u(g) containing u(h). We can define a category of
(u,T)-mod in the same way as above, of which each object is simply called a û-module.

(2) The û-module category can be realized a module category of the precise Hopf algebra û =
u # Dist(T), where Dist(T) denotes the distribution algebra of T as defined in [LN].

Example 2.10. According to the arguments in Section A.2 of Appendix A, we have rational T-modules
K̂ B(λ), K̂ •(λ), and L̂(λ) and L̂•(λ), where • ∈ {∨,�}, for λ ∈ X(T).

For illustration, we explain the structure on one of them: K̂ (τ ) = û(g) ⊗û(g+) L̂0(τ ) for τ ∈ X(T)

where L̂0(τ ) is a simple û(g0)-module (i.e. a simple G1T-module in [J1], for G = GL(n,k)). Naturally,
K̂ (τ ) is isomorphic to, as a u(g)-module, K (τ ), and is endowed with T-structure as long as defining
T -action as diagonal action for T ∈ T, i.e. T · (u ⊗ v) = Ad(T )u ⊗ T v for u ∈ u(g) and v ∈ L0(τ ).

1 With the same spirit of Jantzen’s idea, there are other formulations different from the category (u(g),T)-mod, such as the
G1T-module category (cf. [J1]), the Z-graded U0(g)-module category (cf. [J2, §11]), and the u(g) # Dist(T)-module category (cf.
[LN], see Remark 2.9(2)).
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For more information about the category (u(g),T)-mod, see Appendix A. The following basic facts
are clear.

Proposition 2.11.

(1) K̂ (τ ) is irreducible if and only if K (τ ) is irreducible.
(2) The iso-classes of irreducible modules in (u(g),T)-mod are in one-to-one correspondence with X(T).

Precisely, each simple objects in (u(g),T)-mod is isomorphic to L̂(τ ) for τ ∈ X(T).
(3) K̂ (τ )|u(g)

∼= K (τ ), and L̂(τ )|u(g)
∼= L(τ ). Furthermore, sending τ ∈ X(T) to τ ∈ Λ = X(T)/p X(T) gives

rise to the map L̂(τ ) �→ L(τ ) from the set of iso-classes of simple objects of (u(g),T)-mod and to those
of u(g)-mod.

By the above proposition, good understanding of (u(g),T)-mod can provide us the complete in-
formation on restricted simple modules of g. Naturally, we may call τ ∈ X(T) typical (resp. atypical) if
τ is typical (resp. atypical). Set Ωa := {τ ∈ X(T) | τ is atypical}. By the same argument as in [S] with
aid of odd reflections (cf. [S, §5–7], or see Appendix A, Section A.1), we have:

Lemma 2.12.

(1) Ωa = {tεi + εi+1 + · · · + εn | t ∈ Z, i = 1, . . . ,n}.
(2) For any nonzero τ = tεi + εi+1 + · · · + εn ∈ Ωa, τ� = −ε1 − · · · − εi−1 + tεi .

Definition 2.13. For V ∈ (u(g),T)-mod, define the weight length �(V ) = #WT(V ) − 1.

Lemma 2.14. Let τ ∈ X(T).

(1) �(L̂(τ )) � n. Furthermore, τ is typical if and only if �(L̂(τ )) = n.
(2) If the nontrivial character τ is atypical, then �(L̂(τ )) = n − 1.

Proof. (1) Note L̂(τ ) is the unique simple quotient of K̂ (τ ), the latter of which has weight length n.
Hence �(L̂(τ )) � n. Furthermore, WT(L̂(τ )) = {|τ | := ∑

i τi, |τ | − 1, . . . , |τ∨| = ∑
i τ

∨
i }. So

�
(
L̂(τ )

) = |τ | − ∣∣τ∨∣∣. (2.4)

On the other hand, the number |τ | − |τ∨| equals the number of typical odd reflections on the way
from τ to τ∨ . Since n is the number of all odd essential reflections (see Section A.2 of Appendix A),
it follows that |τ | − |τ∨| = n if and only if τ is typical.

(2) By Lemma 2.12(2), τ� = −ε1 −· · ·− εi−1 + tεi while τ = tεi + εi+1 +· · ·+ εn . By (2.4), we have
�(L̂(τ )) = n − 1. �

Set m(τ , ν) := [K̂ (τ ) : L̂(ν)].

Lemma 2.15. Let τ = tεi + εi+1 + · · · + εn ∈ Ωa. The following statements on m(τ , ν) hold.

(1) For ν �= 0, m(τ , ν) �= 0 if and only if τ = ν or ν� = τ − ∑n
i=1 εi . In such cases, m(τ , ν) = 1.

(2) For ν = 0, m(τ ,0) = 0 if t �= 1; m(τ ,0) = 1 if t = 1.

Proof. (1) This follows directly from Lemmas 2.12 and 2.14.
(2) Suppose m(τ ,0) �= 0. Then K̂ (τ ) must contain a nonzero û(b)-module primitive vector v of

weight 0, i.e. the submodule û(b)v contains a maximal submodule M(v) such that u(b)v/M(v) is a
one-dimensional trivial b-module. Note that as û(g0)-module, K̂ (τ ) = ∧

(g−1) ⊗ L̂0(τ ), and
∧

(g−1)
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is a û(b)-module. Especially, the weights of all possible û(b)-module primitive vectors in
∧

(g−1) are
−(ε j1 + · · · + ε js ) with j1 < · · · < js , the set of which is denoted by P (

∧
(g−1)).

Recall that the weights of all possible û(b)-module primitive vectors in K̂ (τ ) are of the form
δ + τ for δ ∈ P (

∧
(g−1)) by the modular version of Littlewood–Richardson rule (cf. [FH, p. 456] and

[G, D10]). Thus, m(τ ,0) �= 0 implies that τ coincides with the negative one of a certain element from
P (

∧
(g−1)). Combining with τ = tεi + ∑n

j=i+1 ε j , we know that t = 1, i.e. τ = ∑n
j=i ε j .

Next for τ = ∑n
j=i ε j , we assert that m(τ ,0) = 1. This is because the following items are true:

(1◦) In K̂ (τ ), w = ∂i ∧ · · · ∧ ∂n ⊗ vτ is a û(b)-module primitive vector. Hence m(τ ,0) � 1.
(2◦) On the other hand, Littlewood–Richardson rules tell us that m(τ ,0) � 1. �

Corollary 2.16.

(1) For τ = tεi + εi+1 + · · · + εn ∈ Ωa, with t �= 1,0, there is the following exact sequence:

0 −→ L̂(τ − εi) −→ K̂ (τ ) −→ L̂(τ ) −→ 0. (2.5)

(2) For τ = ∑n
j=i ε j , with i > 1, there are two exact sequences:

0 −→ Ĵ (τ ) −→ K̂ (τ ) −→ L̂(τ ) −→ 0; (2.6)

0 −→ L̂(τ − εi−1) −→ Ĵ (τ ) −→ L̂(0) −→ 0. (2.7)

(3) For τ = ∑n
j=1 ε j , there are the following two exact sequences:

0 −→ L̂(−εn) −→ K̂ (0) −→ L̂(0) −→ 0; (2.8)

0 −→ L̂(0) −→ K̂ (τ ) −→ L̂(τ ) −→ 0. (2.9)

Proof. (1) It’s clear, by Proposition 2.5 and Lemma 2.15.
(2) By Proposition 2.5 and Lemma 2.12, Soc K̂ (τ ) = L̂�(τ − ∑n

i=1 εi) = L̂(τ − εi−1). Then
Lemma 2.15 gives rise to the statement.

(3) The exact sequence (2.9) mainly follows from Proposition 2.5 because Soc K̂ (τ ) = L̂�(0) = L̂(0).
Next Lemma 2.15 tells us that K̂ (τ ) has two factors both of which have multiplicity one.

There is the same reason for Soc K̂ (0) = L̂�(−∑n
j=1 εi) ∼= L̂(−εn), which gives rise to the exact

sequence (2.8). �
2.3. Character formula

Let V be an object in (u(g),T)-mod with V = ∑
τ∈W(V ) Vτ . We denote the character of V by

ch(V ) which is by definition equal to
∑

τ (dim Vτ )eτ .
Set Π := ∏n

i=1(1 + e−εi ).

Theorem 2.17. Let τ be typical. Then ch(L̂(τ )) = ch(K̂ (τ )) = Π ch(L̂0(τ )).

Proof. It follows directly from the definition of K̂ (τ ). �
Theorem 2.18. Let τ = tεi + εi+1 + · · · + εn, with t �= 0.

(1) If t ∈ Z− , then

ch L̂(τ ) = Π

∞∑
j=1

(−1) j ch
(
L̂0(τ − jεi)

)
.
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(2) If t ∈ Z+ and i > 1, then

ch L̂(τ ) = Π

(
t−1∑
j=0

(−1) j ch L̂0(τ − jεi) +
∞∑

s=1

(−1)s+t ch L̂0(τ − sεi−1 − (t − 1)εi
))

+ (−1)t ch L̂(0).

(3) If t ∈ Z+ and i = 1, then

ch L̂(τ ) = Π

(
t−1∑
j=0

(−1) j ch L0(τ − jε1) +
∞∑

s=0

(−1)s+t ch L̂0(−sεn)

)
.

Proof. (1) In this case, we have the following complex:

· · · −→ K̂ (τ − sεi) −→ · · · −→ K̂ (τ − εi) −→ K̂ (τ ) −→ 0

which gives a resolution of L̂(τ ). Hence we obtain the desired character formula.
(2) By Corollary 2.16(1) and (2), we have for τ = tεi + εi+1 + · · · + εn , with i > 1, the following

complexes:

· · · −→ K̂
(
τ − (t − 1)εi − sεi−1

) −→ · · · −→ K̂
(
τ − (t − 1)εi − εi−1

) −→ 0

0 −→ L̂
(
τ − (t − 1)ε − εi−1

) −→ Ĵ
(
τ − (t − 1)εi

) −→ L̂(0) −→ 0

0 −→ Ĵ
(
τ − (t − 1)εi

) −→ K̂
(
τ − (t − 1)εi

) −→ · · · −→ K̂ (τ − εi) −→ K̂ (τ ) −→ 0.

Those complexes give rise to the desired character formula.
(3) When i = 1, we have the following complex by Corollary 2.16(1) and (3):

· · · −→ K̂ (−sεn) −→ · · · −→ K̂ (0) −→ K̂ (ε1 + · · · + εn) −→ · · ·
−→ K̂ (tε1 + · · · + εn) −→ 0.

Such a complex gives a resolution of L̂(τ ). Hence we have the character formula. �
Corollary 2.19. The following formulas give rise to the complete calculation of characters, combining with
Theorem 2.18(1):

ch L̂(0) = ch K̂ (0) − ch L̂(−εn) = ch K̂ (E) − ch L̂(E)

for E = ∑n
j=1 ε j .

3. Projective representations and Cartan invariants for restricted representations of W (n)

3.1. General facts on projective supermodules

Let A be a finite-dimensional superalgebra over k, and A-mod the supermodule category of A. We
denote by |A| the underlying k-algebra of the superalgebra A and by |M| the underlying |A|-module
of the A-supermodule M .

Recall that there is a parity change functor π : A-mod → A-mod [Ma, 3.1.5], with π(M) being
the same underlying vector space but the new left A-action via a · m = (−1)|a|am for homogeneous
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a ∈ A (of parity |a| ∈ Z2) and m ∈ M . There is a linear map δM : M → M on homogeneous vectors by
δM(v) = (−1)|v|v . Let N ⊂ M be a subspace. There is obviously a judgement that N is a subsuperspace
of M if and only if N is δM -stable.

Recall the Jacobson radical R of |A| can be characterized as the unique smallest superideal of A

such that A := A/R is a semisimple superalgebra (cf. [BK, 2.6]).
Recall that the semisimple superalgebra A can be decomposed into a direct product of some simple

superalgebras of type M and of some simple algebras of type Q (cf. [Jo, 2.11]),

A ∼=
m∏

i=1

M(ri|si) ×
n∏

j=1

Q (t j). (3.1)

And up to isomorphisms, simple supermodules over A are parameterized by I(ri |si)

l := M(ri |si)E(i)
l,l ,

l = 1, . . . , ri + si , where E(i)
l,l is an (ri |si)-matrix with 1 at the (l, l) position and zero elsewhere, and

J
(n j)

l := I
(n j |0)

l + I
(n j |0)

l t, l = 1, . . . ,n j , where t2 = −1. Here we use the isomorphism Q (n j) ∼= M(n j |0)⊗
Q (1), Q (1) = k + kt. Note that U+

j,l := I
(n j |0)

l and U−
j,l := I

(n j |0)

l t are simple |A|-modules, but not
supermodule.

Furthermore, {V i,l := I(ri |si)

l , l = 1, . . . , ri + si}, i = 1, . . . ,m, are irreducible supermodules of A, as

|A|-modules, and {U j,l := J
(n j)

l , l = 1, . . . ,n j}, j = 1, . . . ,m, are self-associative irreducible supermod-
ules. All V i,l, U j,l above constitute a complete set of pairwise non-isomorphic simple supermodules in
A-mod.

Let P (S) denote the projective cover of simple module S in the |A|-module category. We assert
that P (V i,l) is just a projective cover in the A-supermodule category, and that P (U j,l) := P (U+

j,l) +
P (U+

j,l)t is just a projective cover of U j,l in the A-supermodule category. For this, we only need

to show that P (V i,l) and P (U j,l) are all supermodules of A. It can be seen from that |A| can be
decomposed into a direct sum of left ideas of |A|, ∑

i Aei,l + ∑
j Ae+

j,l + Ae−
j,l , where ei,l and e±

j,l
are lifted primitive idempotents with respect to the primitive idempotent decomposition of identity,
corresponding to the primitive idempotents of the corresponding identity decomposition for A in (3.1)
(cf. [CR, §6A]). The assertion follows from the structures of V i,l and U j,l , and from the judgement of
supermodules. So we have the following facts:

Lemma 3.1. Keep the notations as above. Each simple module S in A-mod has a projective cover, which is
unique, up to isomorphism, denoted by Q (S).

Now, let A = u(g). Then the A-mod is just the restricted supermodule category of g. The above
lemma holds in the u(g)-mod. It’s easily seen that the above lemma also holds for (u(g),T)-mod.

3.2. K̂ -filtrations

We first need the following notations and facts:

Notations and Facts 3.2.

(1) Denote by Q̂ (τ ), Q̂ 0(τ ) the projective cover of L̂(τ ) in (u(g),T)-mod, and the projective cover
of L̂0(τ ) in (u(g0),T)-mod respectively.

(2) Set Î(τ ) := u(g) ⊗u(g0) Q̂ 0(τ ), which is equal to

u(g) ⊗u(g+)

(
u
(
g+) ⊗u(g0) Q̂ 0(τ )

)
.
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(3) Set K̂ ±
Q (τ ) := u(g) ⊗u(g±) Q̂ 0(τ ), with trivial W 1-action on Q̂ 0(τ ) for K̂ +

Q (τ ), and with trivial

g−1-action on Q̂ 0(τ ) for K̂ −
Q (τ ). It’s obvious that K̂ ±

Q (τ ) is the projective cover of the simple

object L̂(λ) in the û(g∓)-module category.
(4) Set G := g−1 + g0 + g(1) , where g(1) := k-span of {ξi h̄ | i = 1, . . . ,n} for h̄ = ∑n

j=1 ξ j∂ j . One can
show that G ∼= sl(n|1) is a classical Lie-subsuperalgebra of g with G0̄ = g0, and G1̄ = g−1 + g(1) .
Further set B+

G = b+ + g(1) , and B−
G = g−1 + b− . Denote in û(G)-mod

V̂ ±
G (τ ) = u(G) ⊗u(B±

G) kτ .

The iso-classes of simple û(G)-modules can be parameterized by

{
L̂G(τ ) = the simple head of V̂ +

G (τ )
∣∣ τ ∈ X(T)

}
.

(5) Recall that B− = N− + h = g−1 + n− + h and B+ = N+ + h = W 1 + n+ + h. Both B± are re-
stricted Lie superalgebras. The iso-classes of restricted irreducible B±-modules are represented
by {kτ̄ | τ ∈ X(T)}. The iso-classes of restricted irreducible g±-modules coincide with those
of restricted irreducible g0-modules represented by {L0(τ̄ ) | τ ∈ X(T)}, endowed with trivial
g−1-action (resp. W 1-action). In comparison with baby Verma modules for restricted Lie al-
gebra g0: V 0±(τ ) = u(g0) ⊗u(b±) kτ , τ ∈ X(T), we can define generalized baby Verma modules

Vg± (τ̄ ) := u(g±) ⊗u(B±) kτ̄ , and V ±(τ̄ ) := u(g) ⊗u(B±) kτ̄ . Similarly, we have V̂g± (τ ), V̂ ±(τ ).

Then we turn to a definition which will be necessary in the sequel.

Definition 3.3. Let M ∈ (u(g),T)-mod. We say that M has a K̂+-filtration (resp. K̂+
Q -filtration) if there

is a submodule filtration of M:

0 = Ml ⊂ Ml−1 ⊂ · · · ⊂ M1 ⊂ M0 = M (3.2)

such that each sub-quotient Mi/Mi+1 ∼= K̂ +(τi) (resp. K̂ +
Q (τi)) for some τi ∈ X(T), i = 0,1, . . . , l − 1.

Denote by [M : K̂ +(τi)] (resp. [M : K̂ +
Q (τi)]) the times of occurrence of K̂ +(τi) (resp. K̂ +

Q (τi)) in the

sub-quotients of the above filtration, called the multiplicity of K̂ +(τi). Those numbers are independent
of the choice of K̂+-filtration (resp. K̂+

Q -filtration).2 The number l in (3.2) is called the filtration

length, denoted by l(M) (resp. lQ (M)). In the same way, one can define K̂−-filtration (resp. K̂−
Q -

filtration); and l−(M) (resp. l−Q (M)).

In the same sense, we can say a module in û(g±)-mod (resp. in û(g)-mod) to admit a filtration or
to say it to be filtrable by V̂g± (resp. by V̂ ±).

Next, we continue to list the last items of Notations and Facts 3.2:

(6) Regarded as a û(g±)-module with trivial g±1-action, Q̂ 0(τ ) is filtrable by V̂g± (υ), υ ∈ X(T).

Hence K̂ ±
Q (τ ) = u(g) ⊗u(g±) Q̂ 0(τ ) can be filtrable by V̂ ±(υ), which equals u(g) ⊗u(g±) V̂g± (υ),

υ ∈ X(T).
(7) For M ∈ Ob(u(g)-mod) (resp. M̂ ∈ Ob(û(g)-mod)), we have the corresponding element [M] in

the Grothendieck group G[u(g)-mod] (resp. the corresponding element [M̂] in the Grothendieck
group G[û(g)-mod]).

2 This statement can be known from the fact that in the Grothendieck group G[(u(g),T)-mod], {K̂ (τ ) | τ ∈ X(T)} constitute
a basis because of Theorems 2.17 and 2.18, along with Corollary 2.19.
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(8) In the category û0(g0)-mod, [V̂ 0−(λ)] = [V̂ 0(−w0λ+2(p −1)ρ)], where w0 is the longest element
of the Weyl group of g0, and ρ is half-sum of all positive roots of g0, and [M] shares the same
meaning in the above item (7) for M ∈ Ob(û0(g0)-mod).

Lemma 3.4.

(1) The one-to-one correspondence σ̃ on X(T)

σ̃ : τ �→ −w0(τ ) +
n∑

i=1

εi + 2(p − 1)ρ

gives rise to

[
V̂ −

G (τ )
] = [

V̂ +
G

(
σ̃ (τ )

)]
, (3.3)

where w0 is the longest element of the Weyl group W of g0 , and ρ is half-sum of all positive roots of g0 .
(2) [V̂g± (τ ) : L̂0(η)] = [V̂ 0±(τ ) : L̂0(η)] and [K̂ ±

Q (τ ) : V̂ ±(υ)] = [Q̂ 0(τ ) : V̂g± (υ)].

Proof. (1) Note that G ∼= sl(n|1). The proof is similar to the one for the ordinary case as in Notations
and Facts 3.2(8). We give a sketchy argument here. Let ω be an automorphism of GL(n,k) such that
ω(T) = T with (extended) derivative that acts on the G in the way ω(xα) = x−w0α and ω(hα) =
h−w0α . Then we can define for M ∈ û(G)-mod an ω-dual ωM of M , which has the ground space M∗
and has ω-twisted action defined via gϕ = (−1)|g||ϕ|ϕ ◦ (−ω(g)) (we denote |g|, |ϕ| by the parity
of g ∈ G and ϕ ∈ M∗). Similar to the arguments of [AJS, 1.13], we have V̂G(τ ) ∼= ω(V̂ −

G (τ − ∑n
i=1 εi −

2(p −1)ρ)∗). On the other hand, by analogy of the arguments in the ordinary cases (cf. [J, II.2.13]), we
can prove that there is an isomorphism in û(G)-mod: V̂G(τ )∗ ∼= ω V̂G(−w0τ ). Combining the above
arguments, we can get the desired formula.

(2) Recall as k-vector spaces, V̂g± (τ ) = u(g±)⊗u(B±) kτ = u(n∓)⊗k kτ = V̂ 0±(τ ). On the other hand,

L̂0(τ ) can be extended a û(g±)-module by trivial W 1-action or trivial g−1-action. So, the multiplicity
of V̂g± (τ ) by L̂0(τ ) in û(g±)-mod is clearly equal to the multiplicity of V̂ 0±(τ ) by L̂0(τ ) in û(g0)-mod.
So the first equation holds. The argument for the second one is the same. �

We have some further results on filtrable modules.

Lemma 3.5.

(1) The following formulas hold:3

(i) [V̂ −(τ )] = [V̂ +(σ̃ (τ ))] if n = 2, and
(ii) [V −(τ̄ )] = ps−n2t ∑

ῡ∈Λ[V +(ῡ)] if n > 2, where s = dim N++
0̄

and t = dim N++
1̄

, and N++ is de-

fined by a decomposition of B+ = BG ⊕ N++ . More precisely, when n = 3, N++ = G′
(1) + W2 for

the decomposition W1 = G(1) ⊕ G′
(1) . When n > 3, N++ = N++

0̄
⊕ N++

1̄
for N++

0̄
= ∑

j�1 W2 j , and

N++
1̄

= G′
(1)

+ ∑
j�2 W2 j−1 .

(2) [V̂ +(τ ) : L̂(η)] = ∑
υ∈X(T)[V̂ 0(τ ) : L̂0(υ)][K̂ +(υ) : L̂(η)].

(3) For υ,η ∈ Λ, [V −(υ) : L(η)] = ps−n2t ∑
κ∈Λ[V +(κ) : L(η)] if n > 2. And [V −(υ) : L(η)] =

[V +(σ̃ (υ)) : L(η)] if n = 2.

Proof. (1) Note that B− = B−
G = g−1 + b− . We have

3 The second formula happens in the u(g)-module category.
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V̂ −(τ ) = u(g) ⊗u(B−) kτ

= u(g) ⊗u(G)

(
u(G) ⊗u(B−

G) kτ

)
.

By the argument of Lemma 3.4(1),

V̂ −(τ ) ∼= u(g) ⊗u(G)

(
u(G) ⊗u(B+

G) kσ̃ (τ )

)
(3.4)

= u(g) ⊗u(B+)

(
u
(

B+) ⊗u(B+
G) kσ̃ (τ )

)
. (3.5)

Hence V̂ −(τ ) has a V̂ +(υ)-filtration. Furthermore, we assert

[
V̂ −(τ )

] = [
V̂ +(

σ̃ (τ )
)]

if n = 2, (3.6)[
V −(τ̄ )

] =
∑
ῡ∈Λ

ps−n2t[V +(ῡ)
]

if n > 2 (3.7)

where s, t will be explained below.
The proof for (3.6) and (3.7) will be given below by steps:

Step 1. If n = 2, then B+ = B+
G . So (3.6) follows from Lemma 3.4(1).

Step 2. Now we assume n > 2 for (3.7). By (3.4), the multiplicity of V +(υ) in the V +-filtration of
V −(τ ) is equal to the multiplicity of the one-dimensional factor kυ in the composition series of B :=
u(B+) ⊗u(B+

G) kσ̃ (τ ) . Consider the decomposition B+ = B+
G ⊕ N++ , where N++ is defined as below.

When n = 3, N++ = G′
(1) + W2 for the decomposition W1 = G(1) ⊕ G′

(1) . When n > 3, N++ = N++
0̄

⊕
N++

1̄
where N++

0̄
= ∑[ n−1

2 ]
j=1 W2 j , and N++

1̄
= G′

(1)
+ ∑( n−1

2 )

j=2 W2 j−1. Here [n−1
2 ] means the greatest

positive integer not greater than n−1
2 , and (n−1

2 ) means the least positive integer not less than n−1
2 .

We can always take an ordered basis X1, . . . , Xs in N++
0̄

, and an ordered basis Y1, . . . , Yt

in N++
1̄

such that {Xi; i = 1, . . . , s} and {Y j; j = 1, . . . , t} have weights in X(T) {αi; i =
1, . . . , s} and {β j; j = 1, . . . , t}, and the restricted weights {ᾱi; i = 1, . . . ,n} are k-linearly inde-
pendent. Actually, {X1, . . . , Xn} can be chosen to be {ξ1 · · · ξn∂i, ξ1ξ2ξ3∂3 | i = 1, . . . ,n − 1} when
n is odd, and to be {ξ1 · · · ξ̂ j · · · ξn∂n | j = 1, . . . ,n} when n is even and p � n − 2, and to be
{ξ1 · · · ξ̂ j · · · ξn∂n, ξ1ξ2ξn∂2, ξ2 · · · ξn−1ξn∂n−1 | j = 1, . . . ,n − 2} when n is even and p | n − 2. Set

U = k-span
{

ua,b := Xa1
1 · · · Xas

s Y b1
1 · · · Y bt

t

∣∣ 0 � ai � p − 1, 0 � b j � 1, i = 1, . . . , s; j = 1, . . . , t
}
.

As a u(h)-module, B is isomorphic to U , the latter of which has a direct-sum decomposition of
weight spaces Ua,b of weights {λa,b := ∑s

i=1 aiαi + ∑t
j=1 b jβ j} corresponding to the one-dimensional

space kua,b . For each given choice of a′ := {ai, i = n + 1,n + 2, . . . , s} and b = {b j, j = 1, . . . , t}, the

corresponding space Ua′,b := k-span{Xa1
1 · · · Xas

s Y b1
1 · · · Y bt

t } is a u(h)-module with all restricted weights
occurring and the restricted weight spaces all have dimension 1. Hence, U as u(h)-module admits a
weight space decomposition with all possible restricted weights occurring, and with all restricted
weight spaces having the same dimension. So the multiplicity in the composition series of B, all
irreducible factors are of the same multiplicity. As a result, this multiplicity is equal to ps−n2t .

Step 3. Note that V̂ +(τ ) = u(g)⊗u(B+)kτ = u(g)⊗u(g+) Vg+ (τ ). Hence V̂ +(τ ) is filtrable by K̂+ . And

[V̂ +(τ ) : K̂ +(υ)] = [V̂g+ (τ ) : L0(υ)] = [V̂ 0(τ ) : L0(υ)]. The last equation follows from statement (2) of
this lemma.
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(2) By the argument in Step 3 above, we finally have

[
V̂ +(τ ) : L̂(η)

] =
∑

υ∈X(T)

[
V̂ +(τ ) : K̂ +(υ)

][
K̂ +(υ) : L̂(η)

]

=
∑

υ∈X(T)

[
V̂ 0(τ ) : L̂0(υ)

][
K̂ +(υ) : L̂(η)

]
.

(3) This statement follows directly from the first two. �
3.3. Frobenius extensions

In this subsection we need some relation between coinduced modules and induced modules for re-
stricted superrepresentations. We first recall the notion of Frobenius extension on ring extensions. Let
R be a ring and S a subring of R , and suppose that θ is an automorphism of S . If M is an S-module,
we let θ M denote the S-module with a new action defined by s ∗ m = θ(s)m. Let HomS (R, θ S) de-
note the set of additive maps f : R → S such that f (sr) = θ(s) f (r) for all s ∈ S , r ∈ R . This is an
(R, S)-bimodule via the action (r · f · s)(x) = f (xr)s.

We say R is a θ -Frobenius extension of S if

(i) R is a finitely generated projective S-module, and
(ii) there exists an isomorphism Θ : R → HomS (R, θ S) of (R, S)-bimodules.

Suppose R : S is a θ -Frobenius extension, and let V be an S-module. The theory of Frobenius exten-
sions [NT, p. 96f] provides a natural equivalence

R ⊗S V ∼= HomS(R, θ V ). (3.8)

We return to the case with R = U (g) and S = U (g+). Note that g+ contains g0̄ with codimension n
in g. Let f : g+ → gl(g/g+) = gl(W−1) be a map defined by f (a)(y + g+) := [a, y] + g+ for a ∈ g+
and y ∈ g, which is a homomorphism of Lie superalgebras. We then have t : g+ → k defined by
t(a) := tr( f (a)) = − str( f (a)), which is a linear function on g+ vanishing on [g+,g+]+ g

+
1̄

. Then there

is a unique automorphism θ in Aut(u(g+)) satisfying

θ(a) =
{

a + t(a)1 for a ∈ g
+
0̄
,

(−1)na for a ∈ g
+
1̄
.

(3.9)

According to [BF, Theorem 2.2], the extension U (g) : U (g+) is a free θ -Frobenius extension. We can
easily see that (3.9) gives rise to a unique automorphism of u(g+), still denoted by θ . This is because
λ(a[p]) = λ(a)p for a ∈ g

+
0̄

. Furthermore, we have the following result.

Lemma 3.6. Let R = u(g) and S = u(g+) be the restricted enveloping algebras of restricted Lie superalgebras
g and g+ respectively. The following statements hold.

(1) The extension R : S is a free θ -Frobenius extension.
(2) Denote by K ±(λ) the coinduced module Coindu(g±)(L0(λ)) := Homu(g±)(u(g), L0(λ)). Then K +(λ) ∼=

K +(λ − E), where E = ∑n
j=1 ε j .

Proof. (1) The proof is the same as that of Theorem 2.2 in [BF].
(2) According to (1) and the formula (3.8), we have

Homu(g)

(
u
(
g+)

, θ L0(λ)
) ∼= u(g) ⊗u(g+) L0(λ).
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Note that g+ = g0̄ + g
+
1̄

= g0 + W 1. Obviously, we have θ(x) = x for every x ∈ W 1 = g
+
1̄

∪ {W 1 ∩ g0̄}.

Hence θ L0(λ) is still an irreducible g+-module with trivial W 1-action. We only need to consider the
u(g0)-module structure on θ L0(λ), which is still irreducible. The highest weight vector v of module
L0(λ) is a highest weight vector of highest weight λ+E. This is because each x ∈ n+ still annihilates v ,
due to t(x) = tr(ad x|g−1 ) = 0. In the meantime, t(h) = tr(ad h|g−1 ) = E(h) for h ∈ h, and t(y) = 0 for
y ∈ n− . The proof is completed. �

Correspondingly, we can consider Frobenius extensions for û(g)-mod. In particular, for K ±(λ) :=
Homû(g±)(û(g), L̂0(λ)) we have K̂ +(λ) ∼= K̂ +(λ − E). Parallel to Nakano’s results [N, 1.3.6, 1.3.7] in the
Lie algebra case, we have a counterpart in the supercase as follows.

Proposition 3.7.

(1) Each projective module in (u(g),T)-mod has K̂±
Q -filtration, and also has K̂±-filtration.

(2) For the projective module Q̂ (τ ), we have the following multiplicity formula of K̂±
Q -filtration:

[
Q̂ (τ ) : K̂ ±

Q (η)
] = [

K̂ ∓(η) : L̂(τ )
]
.

Proof. (1) Note that for υ ∈ X(T),

K̂ ±
Q (υ) = û(g) ⊗û(g±) Q̂ 0(υ) = û

(
g∓) ⊗û(g0) Q̂ 0(υ), (3.10)

as û(g∓)-module. Hence, K̂ ±
Q (υ) is a projective û(g∓)-module. On the other hand,

Homû(g∓)

(
K̂ ±

Q (υ), L̂0(η)
) = Homû(g∓)

(
u
(
g∓) ⊗u(g0) Q 0(υ), L̂0(η)

)
= Homû(g0)

(
Q̂ 0(υ), L̂0(η)

)
= δυ,ηk.

This means that K̂ ±
Q (υ) is the projective cover of L0(υ) in the û(g∓)-module category. From this

observation, it follows that in the û(g∓)-module category, the projective module Q̂ (τ ) for any τ ∈
X(T), must be a direct sum of the K̂ +

Q (υ)’s (resp. K̂ −
Q (υ)’s) for some υ ∈ X(T). And Q̂ (τ ) is K±

Q -
filtrable.

As to the second part, comparing the structure of K̂ ±(η) = u(g) ⊗u(g±) L̂0(η) with K̂ ±
Q (υ) =

u(g) ⊗u(g±) Q̂ 0(υ), we easily know K̂ ±
Q (υ) has a K̂∓-filtration. Observing that u(g0) is a symmet-

ric algebra (cf. [Sch] and [FP]), we have the further fact which will be used later:

[
K̂ ±

Q (υ) : K̂ ±(η)
] = [

Q̂ 0(υ) : L̂0(η)
] = [

Q̂ 0(η) : L̂0(υ)
]
. (3.11)

(2) We prove this statement in steps, with several assertions and their proofs.

1◦ Assertion. V ∈ Ob((u(g),T)-mod) has a K̂±
Q -filtration if and only if V is a projective module in

the û(g∓)-module category.
We have known that K̂ ±

Q (υ) is a projective cover of simple object L̂0(υ) in the û(g∓)-module

category. So each projective module in this category has K̂±
Q -filtration. Conversely, assume that V ∈

Ob((u(g),T)-mod) has a K̂±
Q -filtration, we show that V is a projective û(g±)-module by induction on

l := l±Q (V ). When l = 1, it’s true because V ∼= K̂ ±
Q (υ) as û(g∓)-module, for some υ ∈ X(T). Suppose

that the assertion is true for modules admitting such a filtration of length less than l. The inductive
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hypothesis, and the splitting property of any short exact sequence with the ending projective term
ensure that V is a projective û(g∓)-module.

2◦ Assertion. Suppose V has a K̂±
Q -filtration, then

[
V : K̂ ±

Q (η)
] = dim Homû(g)

(
V , K̂ ∓(η)

)
. (3.12)

According to 1◦ , we know

[
V : K̂ ±

Q (η)
] = [

V |û(g∓) : K̂ ±
Q (η)|u(g∓)

] = dim Homû(g∓)

(
V , L̂0(η)

)
.

The last term is equal to

dim Homû(g)

(
V ,Coindû(g∓)

(
L̂0(η)

)) = dim Homû(g)

(
V , K̂ ∓(η)

)
,

from which (3.12) follows.

3◦ . In particular, for V = Q̂ (τ ) in 2◦ we have

[
Q̂ (τ ) : K̂ ±

Q (η)
] = dim Homû(g)

(
Q̂ (τ ), K̂ ∓(η)

)
.

The right hand side is equal to [K̂ ∓(η) : L̂(τ )]. Hence we have proved

[
Q̂ (τ ) : K̂ ±

Q (η)
] = [

K̂ ∓(η) : L̂(τ )
]
. �

3.4. Cartan invariants

We turn to the u(g)-module category. We have the following primary result.

Proposition 3.8.

(1) Assume n > 2. The following formula holds

[
Q (τ ) : L(η)

] = ps−n2t
∑

υ,υ1∈Λ

[
K +(υ1 − E) : L(τ )

][
Q 0(υ1) : V 0(σ̃ (υ) − E

)]

×
∑

ω,ω1∈Λ

[
V 0(ω) : L0(ω1)

][
K +(ω1) : L(η)

]

for τ ,η ∈ Λ.
(2) Let n = 2. Then

[
Q (τ ) : L(η)

] =
∑

υ,υ1,υ2∈Λ

[
K +(υ1 − E) : L(τ )

][
Q̂ 0(υ1) : V 0(σ̃ (υ) − E

)]

× [
V 0(υ) : L0(υ2)

][
K +(υ2) : L(η)

]
.



B. Shu, C. Zhang / Journal of Algebra 324 (2010) 652–672 669
Proof. By Notations and Facts 3.2(6) we know K̂ ±
Q (τ ) is filtrable by V̂ ±(υ). Furthermore, by Proposi-

tion 3.7(1), Q̂ (τ ) is filtrable by K±
Q . Hence we know that Q̂ (τ ) is filtrable by V ±(υ), υ ∈ X(T). The

calculation of multiplicity can be done as

[
Q̂ (τ ) : L̂(η)

] =
∑

υ∈X(T)

[
Q̂ (τ ) : V̂ −(υ)

][
V̂ −(υ) : L̂(η)

]
.

On the other hand, we have

[
Q̂ (τ ) : V̂ −(υ)

] =
∑

υ1∈X(T)

[
Q̂ (τ ) : K̂ −

Q (υ1)
][

K̂ −
Q (υ1) : V̂ −(υ)

]
Prop. 3.7=

∑
υ1∈X(T)

[
K̂ +(υ1) : L̂(τ )

][
K̂ −

Q (υ1) : V̂ −(υ)
]

Lem.3.4(2)=
∑

υ1∈X(T)

[
K̂ +(υ1) : L̂(τ )

][
Q̂ 0(υ1) : V̂ 0

g−(υ)
]

Lem. 3.4(2)=
∑

υ1∈X(T)

[
K̂ +(υ1) : L̂(τ )

][
Q̂ 0(υ1) : V̂ 0−(υ)

]

=
∑

υ1∈X(T)

[
K̂ +(υ1) : L̂(τ )

][
Q̂ 0(υ1) : V̂ 0+

(−w0υ + 2(p − 1)ρ
)]

=
∑

υ1∈X(T)

[
K̂ +(υ1) : L̂(τ )

][
Q̂ 0(υ1) : V̂ 0+

(
σ̃ (υ) − E

)]
.

According to Lemma 3.5(3), [V −(υ) : L(η)] = ps−n2t ∑
ω∈Λ[V +(ω) : L(η)] if n > 2, [V −(υ) : L(η)] =

[V +(σ̃ (υ)) : L(η)] if n = 2. With those formulas, we continue the arguments in two cases.
(1) For n > 2, we have

[
Q (τ ) : L(η)

] =
∑
υ∈Λ

[
Q (τ ) : V −(υ)

][
V −(υ) : L(η)

]

=
∑
υ∈Λ

( ∑
υ1∈Λ

[
K +(υ1) : L(τ )

][
Q 0(υ1) : V 0+

(
σ̃ (υ) − E

)])[
V −(υ) : L(η)

]
Lem. 3.5(3)=

∑
υ,υ1∈Λ

([
K +(υ1) : L(τ )

][
Q 0(υ1) : V 0+

(
σ̃ (υ) − E

)])
ps−n2t

∑
ω∈Λ

[
V +(ω) : L(η)

]
Lem. 3.5(2)= ps−n2t

∑
υ,υ1∈Λ

([
K +(υ1) : L(τ )

][
Q 0(υ1) : V 0+

(
σ̃ (υ) − E

)])

×
( ∑

ω,ω1∈Λ

[
V 0(ω) : L0(ω1)

][
K +(ω1) : L(η)

])

Lem. 3.6= ps−n2t
∑

υ,υ1∈Λ

([
K +(υ1 − E) : L(τ )

][
Q 0(υ1) : V 0+

(
σ̃ (υ) − E

)])

×
∑

ω,ω ∈Λ

[
V 0(ω) : L0(ω1)

][
K +(ω1) : L(η)

]
.

1



670 B. Shu, C. Zhang / Journal of Algebra 324 (2010) 652–672
(2) For n = 2, we have

[
Q (τ ) : L(η)

] =
∑
υ∈Λ

[
Q (τ ) : V −(υ)

][
V −(υ) : L(η)

]

=
∑
υ∈Λ

( ∑
υ1∈Λ

([
K +(υ1) : L(τ )

][
Q 0(υ1) : V 0+

(
σ̃ (υ) − E

)])[
V −(υ) : L(η)

])

=
∑

υ,υ1∈Λ

[
K +(υ1) : L(τ )

][
Q 0(υ1) : V 0+

(
σ̃ (υ) − E

)][
V +(

σ̃ (υ)
) : L(η)

]
Lem. 3.5(2)=

∑
υ,υ1∈Λ

([
K +(υ1) : L(τ )

][
Q 0(υ1) : V 0+

(
σ̃ (υ) − E

)])

×
( ∑

υ2∈Λ

[
V 0(σ̃ (υ)

) : L0(υ2)
][

K +(υ2) : L(η)
])

Lem. 3.6=
∑

υ,υ1,υ2∈Λ

[
K +(υ1 − E) : L(τ )

][
Q 0(υ1) : V 0+

(
σ̃ (υ) − E

)]

× [
V 0(σ̃ (υ)

) : L0(υ2)
][

K +(υ2) : L(η)
]
. �

Suppose aα,β := [K (α) : L(β)] for α,β ∈ Λ, which can be computed, according to Corollary 2.16.
And suppose bα,β := [V 0(α) : L0(β)] for α,β ∈ Λ, which coincides with [Q 0(β) : V 0(α)], thanks to
the classical modular representation theory of classical Lie algebras.4 Then we have matrices A =
(aα,β)t

α,β∈Λ and B = (bα,β)t
α,β∈Λ . Denote by AE the column switched matrix of A by E-switching

right, this is to say AE = (aα−E,β )t
α,β∈Λ . Similarly, we have BE . Denote σ̃ (B) = (bσ̃ (α),β )α,β . Then we

can state the main result of this section.

Theorem 3.9. Denote the Cartan invariants by cτη = [Q (τ ) : L(η)], τ ,η ∈ Λ in the u(g)-module category.
Then the Cartan invariants can be given via the following matrix formula for C = (cτη)τ ,η∈Λ:

(1) Assume n > 2. Then C = AEσ̃ (B)E P B t At , where P = (ps−n2t) is the square matrix of size #Λ, the entries
of which are all ps−n2t ;

(2) Assume n = 2. Then C = AEσ̃ (B)Eσ̃ (B)
t At .

Appendix A. Odd reflections for (u(g),T)-mod

Maintain the notations in §1.3. Especially, g = h + ∑
α∈� gα , and

� = {εi1 + · · · + εit − ε j | 1 � i1 < · · · < it � n; 1 � t, j � n} ∪ {−εi | i = 1, . . . ,n}.

A.1. Borel subalgebras and odd reflections

Set Bmax := b + W 1. This is a restricted supersubalgebra. We call Bmax the maximal Borel sub-
algebra, which corresponds to the positive root set �(Bmax)+ = {εi − ε j | 1 � i < j � n} ∪ {εi1 +
· · · + εit − ε j | 1 � i1 < · · · < it � n, 2 � t � n, 1 � j � n}. We simply denote �(Bmax)+ by �+ . Set
�s := ⋃n

j=n−s+1{α + ε j | α ∈ �+ ∪ {0}}, s = 1, . . . ,n. And set B0 := Bmax, Bs = b + ∑n
j=n−s+1 k∂ j +

4 When p satisfies some condition relevant to the Coxeter number h (= n here), the classical Cartan invariants are predicted
by Lusztig conjecture, which has not been completely proved yet (cf. [J1, II.8.22]).
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∑
α∈�+\�s

gα , s = 1, . . . ,n. Those Bs are called (lower) Borel subalgebras, associated with the posi-
tive root set �(Bs)+ := {�+\�s} ∪ {−εn−s+1, . . . ,−εn}. Naturally, we can set �(Bs)− = �\�(Bs)+ .
The following meaning is clear for a given Borel subalgebra B as above: g = NB

− ⊕ h ⊕ NB
+ , and

B = h ⊕ NB
+ with NB

± = ∑
α∈�(B)± gα . It’s easily shown that all Bs are restricted Lie supersubal-

gebras.
Following Serganova [S], we define a sequence of odd reflections rεi , i = 1, . . . ,n so that the corre-

sponding chain of Borel subalgebras can be produced, reflecting the different Kac modules.
Define r1 by sending Bmax to B1, here B1 is actually obtained from Bmax by removing εn from

�+ and adding −εn . We can inductively define the ith odd reflection ri by sending Bi−1 to Bi by
removing εn−i+1 from �(Bi−1) and adding −εn−i+1. Then Bn = rn ◦ · · · ◦ r1(Bmax) = b+g−1, denoted
by Bmin. Those subalgebras Bi and Bi+1 are called adjacent Borel subalgebras. We may denote ri by
rεn−i+1 in more general setting (see [S] or see below).

We call a root α ∈ �+ simple for a given Borel subalgebra B if we may obtain a set of positive
roots for some other Borel subalgebra B′ by removing α from �+ and adding −α as long as such a
root exists. And denote the relation between Borel subalgebras by B′ = rα(B), which means a relation
from B to B′ . Call rα an even (essential) reflection if α is even essential, an odd (essential) reflection
if α is odd essential, and a nonessential reflection if α is nonessential.

A.2. K̂ B(λ) and L̂B(λ)

Keep the notations as above. Recall that the set of iso-classes of all simple modules in G1T-mod
have representatives {L̂0(λ), λ ∈ X(T)} for G = GL(k,n) (cf. [J1] and [J2]). And u(g), u(g+) naturally
become T-modules, compatible with the restricted g-module structure. Hence one naturally has û(g)-
module structure on K̂ +(λ) = û(g) ⊗û(g+) L0(λ), the projection on u(g)-mod of which coincides with
K +(dλ). Note that each submodule in K +(λ) naturally admits T-module structure, compatible with
its u(g)-module structure. Hence we have û(g)-module L̂+(λ) which is the unique simple quotient of
K̂ +(λ) in û(g)-mod, so that the projection on u(g)-mod of L̂+(λ) coincides with L+(dλ). Similarly,
one can work with K̂ B(λ) := û(g) ⊗û(B) L̂0(λ) and its unique simple quotient L̂B(λ) for a Borel
subalgebra B.

By the same arguments as in [S, 5.1], we have the following properties for the odd reflection,
which is helpful to understand Lemma 2.14:

Lemma A.1. (See [S, 5.1].) Let B and B′ be adjacent Borel subalgebras.

(1) If they are related by an odd reflection rα for a simple α of B, then L̂B(τ ) ∼= L̂B′
(τ − α) if τ (hα) �= 0.

(2) If they are related by an odd reflection rα for a simple α of B, then L̂B(τ ) ∼= L̂B′
(τ ) if τ (hα) = 0.

Proof. (1) Let α be an old essential root with τ (hα) �= 0. We might as well assume that gα ∈ g−1.
Then dimg−1 = 1. Let Y be a nonzero element of g−α . By the assumption, we can find X ∈ gα with
τ ([X, Y ]) �= 0. Let v be a highest vector of L̂B(τ ). We have XY v = [X, Y ]v − Y X v = τ ([X, Y ]) �= 0.
Hence Y v �= 0.

Furthermore, the nonzero vector Y v is a highest vector of L̂B′
(τ − α). Actually, we can check that

Y v is annihilated by B′ . For this, we only need to look at Z Y v for Z ∈ gβ ⊂ B′ with β �= −α because
g−α = kY and Y 2 = 0, thereby Z Y v ∈ kY 2 v = 0. Hence we consider Z ∈ gβ ⊂ B ∩ B′ , which implies
Z v = 0, and [Z , Y ] = 0 or [Z , Y ] ∈ B ∩ B′ . We have

Z Y v = [Z , Y ]v = 0.

(2) By the same argument as above, we can prove this statement. �
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