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Let D be a non-commutative division ring and M a maximal
subgroup of GLn(D) (n � 2). This paper continues the ongoing
effort to show that the structure of maximal subgroups of GLn(D)

is similar, in some sense, to the structure of GLn(D). It is known
that every locally soluble normal subgroup of GLn(D) is abelian.
Here, among other results, we prove that if either (i) D is finite-
dimensional over its center, or (ii) the center of D contains at least
five elements and M is soluble-by-finite, or (iii) char D = 0 and
M is (locally soluble)-by-finite, then every locally soluble normal
subgroup of M is abelian.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper D denotes a division ring with center F , n is a natural number, Mn(D) is
the full n × n matrix ring over D and GLn(D) is the group of units of Mn(D). The maximal soluble,
maximal nilpotent, and maximal locally nilpotent subgroups of general linear groups over algebraically
closed fields were extensively studied by Suprunenko; the main results are expounded in [25]. Our
object here is to discuss the general skew linear groups whose maximal subgroups are of some special
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types. Some properties of maximal subgroups of GLn(D) have been studied in a series of papers, see,
e.g., [1,3,5,10,13,18,21].

In all of those papers, authors attempted to show that the structure of maximal subgroups of
GLn(D) is similar, in some sense, to the structure of GLn(D). For instance, if D is an infinite division
ring, in [5] it was shown that every nilpotent maximal subgroup of GLn(D) is abelian, and in [21] the
authors proved that for n � 2, every locally nilpotent maximal subgroup of GLn(D) is abelian. Also, if
D is non-commutative and n � 2, in [3] it was shown that every soluble maximal subgroup of GLn(D)

is abelian, and in [21] the authors proved that for n � 3, every locally soluble maximal subgroup of
GLn(D) is abelian. Note that in [1] and [17] it was proved that C∗ ∪C∗ j is a non-abelian soluble
maximal subgroup of the real quaternions division ring. So, GL1(D) can have a non-abelian soluble
maximal subgroup. Also, note that if D = F is a field, then it is known that the set

M =
{[

a c
0 b

] ∣∣∣ a,b ∈ F ∗, c ∈ F

}

is a non-abelian soluble maximal subgroup of GL2(F ). Thus in the mentioned results, the natural
number n was considered bigger than 1 and D was non-commutative. Moreover, in [12] the authors
showed that if a maximal subgroup M of GLn(D) is an FC-group (i.e., each element of M has only a
finite number of conjugates), then M is abelian.

In this paper, we try to generalize above results. It is known that every locally soluble normal
subgroup (or FC-normal subgroup) of GLn(D) is abelian (see [12, Lemma 1]). Now we ask is any locally
soluble normal subgroup (or FC-normal subgroup) of a maximal subgroup of GLn(D) abelian? In this paper
we try to give an affirmative answer to this question. For example, we will show that in the finite-
dimensional case the answer is “yes” (Theorem 2). We summarize our results as follows:

Theorem 1. Let D be a non-commutative division ring, M a maximal subgroup of GLn(D), n � 2, and H a
normal subgroup of M such that M/H is locally finite.

(i) If M is absolutely irreducible, then H is locally soluble (or FC-group) iff H is abelian.
(ii) If M is not absolutely irreducible and char D = 0, then H is locally soluble (or FC-group) iff M is abelian.

(iii) If the center of D contains at least five elements, then H is soluble iff H is abelian.

Corollary 1. Let D be an infinite division ring, M a maximal subgroup of GLn(D), n � 2, and H a normal
subgroup of M. In each of the following cases H is abelian:

(i) D is non-commutative, char D = 0, M/H is locally finite and H is locally soluble or FC-group.
(ii) n � 3, char D = 0, M/H is locally finite and H is locally nilpotent.

(iii) n � 3, the center of D contains at least five elements, M/H is finite and H is nilpotent.

Theorem 2. Let D be a non-commutative division ring and M a maximal subgroup of GLn(D). In each of the
following cases, every locally soluble normal subgroup of M is abelian.

(i) D is finite-dimensional over its center;
(ii) the center of D contains at least five elements and M is soluble-by-finite;

(iii) char D = 0 and M is (locally soluble)-by-finite.

A famous result of Tits, known as the Tits’ Alternative, asserts that if G is a finitely generated
linear group over a (commutative) field, then either G contains a noncyclic free subgroup or G is
soluble-by-finite. Let D be a non-commutative division algebra of finite-dimension over its center F ,
and M a maximal subgroup of GLn(D). In [18], by a long discussion, it was proved that either M
contains a noncyclic free subgroup or there exists a finite family {Ki}r

i=1 of fields properly containing
F with K ∗

i ⊆ M for all 1 � i � r such that M/A is finite if char F = 0 and M/A is locally finite if
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char F = p > 0, where A = K ∗
1 × · · · × K ∗

r . In the next corollary, using Theorem 2, we generalize this
result with a simple proof.

Corollary 2. Let D be a non-commutative division ring, finite-dimensional over its center, and M a maximal
subgroup of GLn(D). Then either M contains a noncyclic free subgroup or there exists a maximal subfield K of
Mn(D) such that K ∗ � M and M/K ∗ is finite.

Since every locally nilpotent group is an Engel group, the next result can be viewed as a general-
ization of [5, Theorem 6] and [21, Theorem 1.6].

Theorem 3. Let D be an infinite division ring and M an Engel maximal subgroup of GLn(D). Then every
nilpotent normal subgroup of M is abelian. Specially, for n � 2, the Hirsch–Plotkin radical of M is abelian.

Our final result concerns maximal subgroups of subnormal subgroups of GLn(D) which are nilpo-
tent; it is a generalization of [20, Proposition 1.1 and Theorem 1.1].

Theorem 4. Let D be an infinite division ring, N a subnormal subgroup of GLn(D), and M a nilpotent maximal
subgroup of N.

(i) If n = 1 and every element of M is algebraic over Z(D), then M is abelian.
(ii) If the center of D contains at least five elements, then M is metabelian.

2. The proofs

Our notation is standard. To be more precise, we shall identify the center F I of Mn(D) with F . Let
G be a subgroup of GLn(D). We denote by F [G] the F -linear hull of G , i.e., the F -algebra generated in
Mn(D) by elements of G over F . If n = 1, then F (G) is the division ring generated in D by F and G;
note that if each element of G is algebraic over F , then F (M) = F [M]. If Dn is the space of row
n-vectors over D , then Dn is a D–G bimodule in the obvious manner. We say that G is irreducible,
reducible, or completely reducible, whenever Dn has the corresponding property as D–G bimodule.
Also, G is called absolutely irreducible if F [G] = Mn(D). G is called FC-group if each element of G has
only a finite number of conjugates. Also, G ′ represents the derived subgroup of G . For a given ring R ,
the group of units of R is denoted by R∗ . Let S be a subset of R , then the centralizer of S in R is
denoted by C R(S).

We begin with a simple lemma which will be used frequently in the proofs.

Lemma 1. Let D be a division ring such that GLn(D) is (locally soluble)-by-(locally finite) or (FC-group)-by-
(locally finite). Then D is a field and for n � 2, GLn(D) is a locally finite group.

Proof. Suppose H is a locally soluble normal subgroup of GLn(D) and GLn(D)/H is locally finite. By
[28, Theorem 1.1], H contains an abelian normal subgroup A of GLn(D) with H/A locally finite. But
A must be central since it is abelian. So GLn(D)/F ∗ is locally finite and thus (GLn(D))′ is also locally
finite. For n = 1 use [9, Theorem 8] to conclude that D∗ is soluble and thus D is a field, and for n � 2
we conclude that D∗ is locally finite and so GLn(D) is locally finite.

For the other assertion, use [12, Lemma 1] and similar arguments as above to complete the
proof. �

To proceed our study, we shall frequently apply the following results.

Lemma 2. (See [3].) Given a division ring D, let M be a maximal subgroup of GLn(D). Then, either M is
primitive or contains a copy of D∗ .

Lemma 3. (See [3].) Let N be normal in a primitive subgroup M of GLn(D). Then, we have:
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(1) F [N] is a prime ring.
(2) CMn(D)(N) is a simple Artinian ring.
(3) If CMn(D)(N) is a division ring, then N is irreducible.

Lemma 4. (See [7].) Let D be an F -central division ring and M be a maximal subgroup of GLn(D). If D �= F or
n � 2, then M/(M ∩ F ∗) cannot be a locally finite group unless char F = p > 0 and either

(1) [D : F ] = p2 , n = 1 and M ∪ {0} is a maximal subfield of D, or
(2) D = F and n = p and M ∪ {0} is a maximal subfield of M p(F ), or
(3) D = F and F is a locally finite field.

Proof of Theorem 1 (i). Let H be locally soluble. By [28, Theorem 1.1], H contains an abelian normal
subgroup N of M with H/N locally finite. We use of similar methods to those used in the proof
of [3, Theorem 3.6]. Let N be a maximal abelian normal subgroup of M such that M/N is locally
finite, and by Lemma 4, we may assume N is noncentral. We claim that K := N ∪ {0} is a maximal
subfield of Mn(D) such that K ∗ � M . Since M ⊆ NGLn(D)(CMn(D)(N)∗) and N is noncentral, by the
Cartan–Brauer–Hua theorem for matrix ring we obtain CMn(D)(N)∗ ⊆ M . Since D is non-commutative,
Lemma 2 implies that M is primitive. Using Lemma 3 we see that CMn(D)(N) is a simple Artinian ring.
If CMn(D)(N)∗ is a locally finite group, then N is also locally finite; this implies that M is locally finite
and hence M is abelian by Lemma 4. Therefore, by Lemma 1 we may suppose that CMn(D)(N) is a
field. Hence, CMn(D)(N) = K = CMn(D)(K ) is a maximal subfield of Mn(D), as claimed.

We next claim that M/N is simple. To do this, assume that N � A � M is a subgroup of M and set
R := F [A] = K [A]. Since A/N is locally finite, we may write R = ⋃

G K [G], where the union is taken
over all subgroups G of A such that G/N is finite. As CMn(D)(K ) = K , K ∗ is irreducible by Lemma 3,
and so is any subgroup containing it. Thus, by [24, p. 9], K [G] = F [G] is a prime ring that is of finite-
dimension over K and hence a simple Artinian ring by [22, Corollary 1.6.30]. Therefore, R is the union
of simple Artinian rings. Now, it is clear that M ⊆ NGLn(D)(R∗). If M = NGLn(D)(R∗), then R∗ ⊆ M and
hence K [G]∗ ⊆ M; this leads to the commutativity of K [G] which contradicts the maximality of N
(we again used of Lemmas 1 and 4). Consequently NGLn(D)(R∗) = GLn(D) which implies R = Mn(D),
i.e., F [M] = F [A].

Now, to complete the proof of the simplicity of M/N , it is enough to verify that A = M . To do so,
given x ∈ M , there exists a subgroup G with K ∗ ⊆ G ⊆ A such that G/K ∗ is finite and x ∈ K [G]. Also,
it is easily seen that (K [G], K , G, G/K ∗) is a crossed product central simple algebra with center E ,
say. Setting C = K [G], the Skolem–Noether theorem gives us

G/K ∗ ⊆ NC∗(K )/K ∗ 	 Gal(K/E).

Therefore, by the Centralizer Theorem in [4] we have

∣∣G/K ∗∣∣ �
∣∣Gal(K/E)

∣∣ = dimE K = dimK C = ∣∣G/K ∗∣∣,
which implies that G/K ∗ = NC∗ (K )/K ∗ . But x ∈ NC∗ (K ) = G which says that x ∈ A, and hence A = M .

Now we have N ⊆ N H ⊆ M , and since M/N is a simple group we either have N H = N or N H = M .
In the former case we conclude that H = N is abelian, and in the second case M is locally soluble
which is impossible by [21, Theorem 1.5].

Now assume H is an FC-group. Clearly we have M ⊆ NGLn(D)(F [H]). If NGLn(D)(F [H]) = GLn(D),
by the Cartan–Brauer–Hua theorem for matrix ring we either have H is central or F [H] = Mn(D). In
the later case, clearly Z(H) = H ∩ F ∗ . Now H is center-by-(locally finite) by [23, Theorem 15.1.16];
consequently M/(H ∩ F ∗) is locally finite which is impossible by Lemma 4. Thus by the maximality
of M in GLn(D) we may assume NGLn(D)(F [H]) = M , i.e., F [H]∗ ⊆ M . On the other hand, F [H] is
semisimple Artinian by [24, Theorem 1.2.12]. It is also a prime ring by Lemma 3. Thus, there exists
a natural number m and a division rings � such that F [H]∗ 	 GLm(�) as F -algebras. If m > 1, then
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H (and so M) is locally finite by Lemma 1, contracting Lemma 4. So, m = 1 and thus F [H]∗ (and
hence H) is abelian. This completes the proof of part (i). �

Our next proofs rely on the following four technical results due to Wehrfritz, Lichtman and Faith.

Lemma 5. (See [29].) Let A be a one-sided Artinian ring. Suppose S is a subring of A such that every prime
image of S with the ascending chain condition on right annihilators is right Goldie. Let G be a locally soluble
subgroup of the group of units of A normalizing S and set R = S[G]. Then R has a semiprime nilpotent ideal n
such that R/n is right Goldie.

Lemma 6. (See [16, Lemma 4.3].) Let D be a division ring and K be a subring of Mn(D). Let V be a subgroup
of GLn(D), U be its normal subgroup. Assume that K [V ] is a semiprime ring and K [U ] is a (semiprime) Goldie
ring, and the quotient group is either abelian or locally finite. Then K [V ] is a Goldie ring.

Lemma 7. (See [6].) If R is a ring which has a classical right quotient ring Q = Mn(D) (D being a division ring),
then there is a right Ore domain S with right quotient ring D such that R contains the matrix ring Mn(S).

Lemma 8. (See [16, Corollary 4.6].) Let D be a division ring and K be a subring of Mn(D). Let V be a subgroup
of GLn(D) such that K [V ] is semiprime and assume that V is an extension of an FC-subgroup by a locally finite
group. Then K [V ] is a Goldie ring.

Proof of Theorem 1 (ii). Suppose H is a locally soluble normal subgroup of M such that M/H is
locally finite. By Lemma 2, M is irreducible and thus F [M] is a prime ring and F [H] is a semiprime
ring by [24, 1.1.14]. Now, Lemma 5 yields that F [H] is a Goldie ring, and therefore F [M] is also a
Goldie ring by Lemma 6. So by Goldie’s theorem, its classical quotient ring Q is simple Artinian,
and by [24, Theorem 5.7.8], Q is naturally embedded in Mn(D). Now, M = Q ∗ implies that M is
abelian (see Lemmas 1 and 4). Therefore, let M �= Q ∗ and by maximality of M in GLn(D) we conclude
that Q = Mn(D). Now, by Lemma 7, there exists an Ore domain S with quotient ring D such that
F [M] contains the matrix ring Mn(S). So GLn(S) ⊆ F [M]∗ = M is (locally soluble)-by-(locally finite).
If char S = 0, then GLn(Z) must be (locally soluble)-by-(locally finite), contracting the fact that it
contains a noncyclic free subgroup.

Now let H be an FC-group. As above we can assume F [M] is a prime ring. Now, Lemma 8 yields
that F [M] is a Goldie ring. The rest of the proof is now as of the previous paragraph. �
Lemma 9. (See [15, Theorem 2].) Let R be a prime ring with 1, Z = Z(R) be the center of R containing at least
five elements, U the group of units of R, and U the Z -subalgebra of R generated by U . Assume that U contains
a nonzero ideal of R. If N is a soluble normal subgroup of U , then either R is a domain or N ⊆ Z .

Proof of Theorem 1 (iii). Let R := F [M]. If R = Mn(D), then H is abelian by part (i) of this theorem.
Now, assume that R∗ = M . As in the proof of part (ii), we know that R is a prime Goldie ring. On the
other hand, since the Z(R)-subalgebra of R generated by M is R itself, we can use of Lemma 9 to
deduce that either R is a domain or H ⊆ Z(R). But, in the first case R is in fact an Ore domain (since
it is also prime Goldie). Therefore, the classical quotient ring of R is a division ring D1 which by [24,
Theorem 5.7.8], D1 is naturally embedded in Mn(D). Since n � 2, maximality of M in GLn(D) implies
that M = R∗ = D∗

1, and so M is abelian. �
Proof of Corollary 1. The case (i) follows directly from Theorem 1. We prove (ii) and (iii) simultane-
ously. By part (i) (or Theorem 1 (iii)) we assume D = F . First assume M is not absolutely irreducible.
If M is reducible, there exists an invertible matrix P and a natural number 0 < m < n such that

P M P−1 =
{[

A B
0 C

] ∣∣∣ A ∈ GLm(D), C ∈ GLn−m(D), B ∈ Mm×(n−m)(D)

}
.
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Now, both of GLm(D) and GLn−m(D) are (locally soluble)-by-(locally finite), which Lemma 1 implies
m = n − m = 1, so n = 2, a contradiction. So, M is irreducible and thus F [M] is a prime ring. The rest
of the proof for this case is now as of part (ii) (or of part (iii)) of Theorem 1.

Now suppose M is absolutely irreducible. Clearly we have M ⊆ NGLn(D)(F [H]). If NGLn(D)(F [H]) =
GLn(D), we either have H is central or F [H] = Mn(D). In the later case, clearly Z(H) = H ∩ F ∗ . Now
H is center-by-(locally finite) by [24, Theorem 5.7.11] (or center-by-finite by [2, p. 114]); consequently
M/(H ∩ F ∗) is locally finite (or finite) which is impossible by Lemma 4 (or by [1, Lemma 9]). Thus
by the maximality of M in GLn(D) we may assume NGLn(D)(F [H]) = M , i.e., F [H]∗ ⊆ M . On the other
hand, F [H] is semisimple Artinian by [24, Theorem 1.2.12]. Thus, there exist natural numbers ni and
division rings Di such that F [H]∗ 	 GLn1 (D1)×· · ·×GLns (Ds) as F -algebras. If for some i, ni > 1, then
F ∗ ⊆ D∗

i is locally finite by Lemma 1 (or finite: see the proof of Lemma 1), contracting the fact that
D is of characteristic zero (or D is infinite). So, F [H]∗ (and hence H) is abelian. �
Proof of Theorem 2. (i) Since D is finite-dimensional over its center, we may view M as a linear
group. Hence by a result of Zassenhaus, each locally soluble subgroup of M is soluble and M has a
unique maximal soluble normal subgroup which we shall denote by Sol(M) (see [27, Corollary 3.8]).
But, the factor group M/Sol(M) is locally finite by Tits’ theorem [26]. Now, Theorem 1 (iii) implies
that Sol(M) is abelian, and thus the result follows.

For (ii) and (iii), by Theorem 1, H is abelian in all cases. So M is abelian-by-finite, and hence by
Lemma 1.11 in [19, p. 176], the group ring F M satisfies a polynomial identity. Therefore F [M] as a
homomorphic image of F M , satisfies a polynomial identity too. If F [M] = Mn(D), we use Kaplansky’s
theorem in [22, p. 36] to obtain [D : F ] < ∞; thus every locally soluble normal subgroup of M is
abelian by (i). Now suppose F [M]∗ = M . Let F1 := CMn(D)(M), and recall that M is irreducible. So F1 is
a field (see Lemma 2 of [12] and its proof) which we may assume F ∗

1 ⊆ M by Lemma 1. Consequently,
F [M] is a prime PI-ring whose center F1 is a field and therefore, by [22, Corollary 1.6.28], it is a
simple ring. So, again by Kaplansky’s theorem we have F1[M] 	 Mm(�) for some natural number m
and a division ring �. Thus, M = F1[M]∗ 	 GLm(�). Now, use Lemmas 1 and 4 to conclude that M is
abelian. This completes the proof. �
Proof of Corollary 2. The case n = 1 follows from [17, Theorem 8]. Let n � 2. By Theorem 2 (i), Sol(M),
the unique maximal soluble normal subgroup of M , is abelian. Assume M contains no noncyclic free
subgroup. Since D∗ contains a noncyclic free subgroup [8], Lemma 2 implies that M is primitive and
thus by similar arguments as the first paragraph of the proof of part (i) of Theorem 1 we can show
that K := Sol(M) ∪ {0} is a maximal subfield of Mn(D) and clearly K ∗ � M . If F [M]∗ = M , then as
in the proof of Theorem 2 we have M = F [M]∗ 	 GLm(�) for some natural number m and a division
ring �. Thus M contains a noncyclic free subgroup (unless in the case where m = 1 and � is a
field, which implies that M = K ∗). Now assume F [M] = Mn(D). Then it is easily seen that for every
a ∈ M , the mapping φa : K → K given by φa(x) = axa−1, belongs to Gal(K/F ) and that F ix(G) = F
where G is the group of all such automorphisms φa , a ∈ M . Consider the mapping f : M → G given
by f (a) = φa . From this epimorphism we conclude that G 	 M/K ∗ (since K ∗ = CMn(D)(K ∗) by the
maximality of the subfield K ). Now, from Galois theory we have |G| � |Gal(K/F )| � [K : F ] < ∞, and
we are done. �

In order to prove Theorem 3, we need the following lemma.

Lemma 10. (See [30, 3.11].) Let G be a locally nilpotent subgroup of the multiplicative group D∗ of the division
ring D. Suppose also that H = ND∗(G), E = C D(G), and D = E(G). Denote the maximal 2-subgroup of G
by Q . Then one of the following holds:

(i) T (the maximal locally finite normal subgroup of G) is abelian and H/G E∗ is abelian;
(ii) G = Q · CG (Q ) where Q is quaternion of order 8 and H/G E∗ ∼= Sym(3) × Y for Y abelian;

(iii) G �= Q · CG(Q ) where Q is quaternion of order 8 and H/G E∗ is abelian;
(iv) Q is non-abelian with |Q | > 8 and H/G E∗ has an abelian subgroup Y with index in H/G E∗ at most 2

(1 if Q is infinite).



M. Ramezan-Nassab, D. Kiani / Journal of Algebra 376 (2013) 1–9 7
Proof of Theorem 3. First we consider n = 1. Let G be a nilpotent normal subgroup of M . Since
M ⊆ ND∗(F (G)∗), we either have F (G)∗ ⊆ M or (by the Cartan–Brauer–Hua theorem) F (G) = D . In
the former case, G as a nilpotent normal subgroup of F (G)∗ is abelian. So assume F (G) = D .

If M is absolutely irreducible, then M/CM(G) is torsion by [24, Theorem 5.7.11]. Since CM(G) ⊆ F ∗
(because of F (G) = D), we conclude that M is torsion over F and therefore F [G] = F (G) = D , i.e., G is
absolutely irreducible. Clearly, Z(G) = G ∩ F ; so G/(G ∩ F ) is locally finite by [24, Theorem 5.7.11]. This
implies that D is locally finite-dimensional over F , and hence M is abelian by [21, Corollary 1.7]. Now,
suppose M is not absolutely irreducible, so F [M]∗ = M . Since F (G) = D , F = C D(G). On the other
hand, M ⊆ ND∗ (G) ⊆ D∗ . If ND∗(G) = D , then G as a nilpotent normal subgroup of D∗ is central. So
assume M = ND∗(G). Now we can apply Lemma 10. Denote the maximal 2-subgroup of G by Q which
is non-abelian by Lemma 10. If Q is finite, then F [Q ]∗ ⊆ F [M]∗ = M implies that the multiplicative
group of the division ring F [Q ] is Engel which asserts that it is abelian by [21, Theorem 1.3]. This
contradiction shows that M/G F ∗ must be abelian. This gives us M ′ ⊆ G F ∗ is nilpotent. Therefore M
is soluble; so it is abelian by [3, Theorem 3.7]. This completes the proof for n = 1.

Now, assume n � 2. Let H denote the Hirsch–Plotkin radical of M and let R := F [H]. Then we
have M ⊆ NGLn(D)(R∗) and hence either R = Mn(D) or R∗ ⊆ M . In the first case, clearly Z(H) =
H ∩ F ; so H/(H ∩ F ) is locally finite by [24, Theorem 5.7.11]. This implies that D is locally finite-
dimensional over F , and hence M is abelian by [21, Corollary 1.7]. Therefore, assume R∗ ⊆ M , i.e.,
R∗ is Engel. On the other hand, by Lemmas 2, 3 and 5, R is a prime Goldie ring with a classical
quotient ring Q , contained in Mn(D), which is simple Artinian. If M = NGLn(D)(Q ∗), then we have
H � Q ∗ ⊆ M , which implies that H is abelian. If not, NGLn(D)(Q ∗) = GLn(D), i.e., Q = Mn(D). Now,
by Lemma 7, there exists an Ore domain S with quotient ring D such that R contains the matrix
ring Mn(S). So GLn(S) ⊆ R∗ ⊆ M is Engel. If char S = 0, then GLn(Z) must be Engel, contracting the
fact that it contains a noncyclic free subgroup. So char S = p > 0. But then GLn(Zp) must be Engel,
a contradiction. �
Lemma 11. Let D be an infinite division ring, N a subnormal subgroup of GLn(D), and M a maximal subgroup
of N. If M is nilpotent, then F [M ′] �= Mn(D).

Proof. By [13, Corollary 1], we may assume D is infinite-dimensional over F . Suppose on the contrary
that F [M ′] = Mn(D), thus we also have F [M] = Mn(D). Then, M is center-by-(locally finite) by [24,
Theorem 5.7.11], which implies that D is locally finite-dimensional over F and that M ′ is a locally
finite group.

If char D = 0, then M ′ is abelian-by-finite by [24, 2.5.2]. Consequently, F [M ′] = Mn(D) satisfies a
polynomial identity which gives us [D : F ] < ∞, contracting our assumption.

Next let char D = p > 0. If F is a locally finite field, then D is algebraic over a finite field and hence
by Jacobson’s theorem [14, p. 208], we obtain D = F , a contradiction. Let K �= F be a maximal locally
finite subfield of F . By [24, p. 7], K [M ′] is simple Artinian; thus K [M ′] 	 Ms(�) for some division ring
� and a positive integer s. If a ∈ K [M ′]∗ , then there exist n1, . . . ,nk in M ′ and a1, . . . ,ak in K such
that a = a1n1 + · · ·+aknk . Since M ′ is a locally finite group and K is a locally finite field, we conclude
that Zp[a1, . . . ,ak] is a finite field and so Zp[a1, . . . ,ak][〈n1, . . . ,nk〉] is a finite ring. Thus, a must be
torsion and hence K [M ′]∗ is a torsion group; consequently � is a locally finite field. Now we have
K ⊆ � ⊆ CMn(D)(F [M ′]) = F . By the maximality of K , we conclude that K = �. Now F [M ′] = Mn(D)

implies that F [K [M ′]] = Mn(D). Since [K [M ′] : K ] = s2, we conclude that [Mn(D) : F ] � s2 and thus
D is of finite-dimension over F . This contradiction shows that F [M ′] �= Mn(D) and completes the
proof. �

We close this paper by proving our final theorem using the above lemma.

Proof of Theorem 4. (i) Since M is a maximal subgroup of N , we either have F (M)∗ ∩ N = M or
F (M)∗ ∩ N = N . In the first case, M as a nilpotent subnormal subgroup of the multiplicative group of
the division ring F (M) is abelian. In the second case, by [23, 14.3.8], we conclude that F (M) = D , i.e.,
M is absolutely irreducible. Then, M is center-by-(locally finite) by [24, Theorem 5.7.11], which implies
that D is locally finite-dimensional over F . Moreover, we may let M ′ ⊆ F ∗ by [20, Theorem 1.1].
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First we assume F ∗ ⊆ M . Given x, y ∈ M such that xy �= yx, we have F ∗〈x, y〉 � M and hence
M ⊆ ND∗ (F [〈x, y〉]∗) ∩ N . By the maximality of M in N , we obtain either ND∗ (F [〈x, y〉]∗) ∩ N = M
or ND∗(F [〈x, y〉]∗) ∩ N = N . In the first case, F [〈x, y〉]∗ ∩ N as a nilpotent subnormal subgroup of
F [〈x, y〉]∗ is abelian, contracting the choose of x and y. In the second case, by [23, 14.3.8], we ob-
tain F [〈x, y〉]∗ = D∗ . Since x and y are algebraic over F , we have F [〈x, y〉] = F [x, y], consequently,
F [x, y] = D . So [D : F ] < ∞ since D is locally finite-dimensional over F ; this contradicts [13, Corol-
lary 1]. Therefore M is abelian.

Now, if F ∗ � M , let M1 = F ∗M and N1 = F ∗N . Then N1 is a subnormal subgroup of D∗ and M1
is a nilpotent subgroup of N1. If M1 = N1, then M1 is abelian. If M1 �= N1, then M1 is a maximal
subgroup of N1 containing F ∗ . Therefore, M1 (and thus M) is abelian by above.

(ii) For n = 1 the result follows from [20, Proposition 1.1]. Let n � 2 and R := F [M]. Then M ⊆
R ∩ N ⊆ N; hence by the maximality of M in N we may consider the following two cases:

Case 1. Let M = R ∩ N . Then M is a subnormal subgroup of R∗ . On the other hand, if M is reducible,
then it contains an isomorphic copy of D∗ by [11, Lemma 1]; so D is a field and therefore M is abelian
by [13, Corollary 1]. Assume that M is irreducible; thus R is a prime Goldie ring by [24, 1.1.14] and
Lemma 5. As of the proof of Theorem 1 (iii), we may assume that R is an Ore domain. Denote the
classical quotient ring of R by �; then � is a division ring contained in Mn(D). If N = � ∩ N , then
SLn(D) ⊆ N ⊆ �∗ by [8, Lemma 2.3]; so the Cartan–Brauer–Hua theorem for matrix ring implies that
� = Mn(D) which is impossible since n � 2. Therefore M = � ∩ N , consequently M as a nilpotent
subnormal subgroup of �∗ is abelian.

Case 2. In this case, we consider the case N = R ∩ N . Thus SLn(D) ⊆ N ⊆ R∗ , therefore R = Mn(D).
Then, M is center-by-(locally finite), which implies that D is locally finite-dimensional over F . Let
A := F [M ′]∗ ∩ N . Since M ⊆ NN (F [M ′]∗) ⊆ N , we either have NN(F [M ′]∗) = N or NN (F [M ′]∗) = M . In
the former case, A is a subnormal subgroup of GLn(D). Now if A is central, then M ′ ⊆ A is abelian;
if not, SLn(D) ⊆ A ⊆ F [M ′]∗ yields that F [M ′] = Mn(D), contracting Lemma 11. In the second case,
A is a nilpotent subnormal subgroup of F [M ′]∗ . But F [M ′] is a semisimple Artinian ring by [24, p. 7],
consequently M ′ ⊆ A is abelian. �
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