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1. Introduction

Throughout this Introduction, let H be a subgroup of a finite solvable group G, and let w =
{p1,p2,..., Pm} be a set of prime numbers. We use the notation of Doerk and Hawkes [2], and in
particular we define the m-socle of H to be the subgroup Soc; H generated by the minimal normal
7 -subgroups of H. If p is a prime number, write Socp, H = Soc(p) H, and note that

Socy H =Socp, H x Socp, H x --- x Socp,, H,

where each subgroup Socp, H is an elementary abelian p;-group [2, A(10.5.a) and (4.4)]. Following
Gaschiitz [2, IX §2, Construction D and (2.9.a)], define Z™ to be the class of finite solvable groups
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H such that Soc; H < Z(H), and as before write ZP = Z{P}_ Then the above direct decomposition of
Soc; H implies that

Zr=zhnzPrn...NZPm,

These classes were investigated by Frantz and by Lockett [2, 1X(4.18)], and also by Blessenohl [1] in
his study of dominant Fitting classes. Each class Z7 is closed under taking normal subgroups and
normal products, so it is a Fitting class [2, IX(2.8)]. It follows that G has a unique maximal normal
ZT -subgroup, called the Z7 -radical of G [2, 1I(2.9)]; moreover G has a unique conjugacy class of
subgroups J, called the Z7-injectors of G, with the property that, for every subnormal subgroup X
of G, J N X is a maximal Z7 -subgroup of X [2, VIII(2.9)].

Now let V), be the p-socle of the ZP-radical of G, and let Syl, G be the set of Sylow p-subgroups
of G (where p is a prime number). It was proved by Frantz and by Lockett [2, [X(4.19)] that if P €
Syl, G, then the subgroup

DS (P) =Cg(Cy, (P))

is a ZP-injector of G. In Theorem 1 we shall rework this proof. Doerk and Hawkes asked [2, IX §4,
p. 628] whether an analogous description can be given of the Z7-injectors when 7 is an arbitrary
set of prime numbers. To do this, recall that a Sylow basis ¥ in G is a set of Sylow subgroups of G,
with [ X N Syl, G| =1 for each prime number p, such that every pair of members of X' permute with
each other [2, I(4.7)]. If ¥ is a Sylow basis in G, with {P} = £ NSyl, G, write DS (X) =D (P), and
define

DS (2) = D§(2).

pem

If the set Y N H={PNH: Pe X} is a Sylow basis in H, we say that X reduces into H, and we write
¥ N\ H [2, 1(4.15)]. We shall show that X \ D% (%), which allows us to make the inductive definition

Di(z) _ { G 4 wheni=0,
12D (zAD1(x)) wheni>1.

There is an integer k such that D°(X) > D'(X) > --- > D¥(¥) =D¥*1(X), and in Theorem 2 we shall
prove that D¥(X) is a Z7-injector of G. Moreover in Example 1 we shall exhibit a group with k =3
(based on an example due to Blessenohl); we do not know whether there are groups with k > 3.
We shall also reprove Blessenohl'’s result that if H is a maximal Z” -subgroup containing the 7 -socle
of the Z7-radical of G, then H is a Z”-injector; indeed the above construction is suggested by the
proof of this fact [2, 1X(4.20)].

The class N of nilpotent groups is closed under taking normal subgroups and normal products
[2, A(8.2.a) and (8.8.b)], so N is a Fitting class. Hence G has an A -radical F (the Fitting subgroup)
and N -injectors. Let q1,q>2,...,qn be the prime factors of |F|, and for each index i, choose S; e
Syl CG(Oq;(F)). It has been shown by Dade and by Mann [2, 1X(4.12)] that (S, S2,...,Sy) is an
N-injector of G.

If H e N, then every chief factor of H is central, which implies that A" € Z7. This suggests that
it may be possible to construct the Z”-injectors by adapting the above characterization of the N-
injectors. To do this, let N; be the Z7-radical of G, and suppose N, < H < G with H € Z”. For each
prime number p; € m, take W; = Opxq(Socn H). Then H < Cg(W;), so we can choose S? € Sylp,, Cc(Wi)

such that HN S e Syl,, H. Take H® = (H,$9,59,...,59), and put MS (H) = Cg(Soc; H). We shall
show that N, < M,G,(H) and M]GT (H) € Z™, which allows us to make the inductive definition
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i N wheni=0
! = T . 5
MHe= {MJGT M~1(G)) wheni>1.

There is an index k such that M®(G) < M'(G) < --- < M¥(G) = M¥*1(G), and in Theorem 3 we shall
prove that M¥(G) is a Z7 -injector of G.

This construction can be modified by introducing a Sylow basis X. Recall that H is said to be
pronormal in G if, for every element g € G, H and H® are conjugate in (H, HS); in this case we
write H pr G. Suppose N; < H < G, with H € Z7 and ¥ \( H. Assume also that H pr G and H =
C;(Soc; H), and put L = Ng(H). For each prime number p; € m, take W; = Op; (Soc; H) as above.
We shall show that X'\ C;(W;), which allows us to take {S}} = (¥ N C(W;)) N Syl, Cr(W;). As
before put H* = (H, S}, S5, ..., S;,), and EZ (H) = Cg(Soc; H*). We shall show that N <EZ (H) and
EZ (H) € 27, with X \(EZ (H) and EZ (H) pr G, and moreover EZ (H) = C; (Soc; EZ (H)). This allows
us to make the inductive definition

i N wheni =0,
E(E)_{Ef(ﬁi—l(z)) when'i > 1.
There is an index k such that E®(X) < E!(X) < --- < EX(X) = E¥t1(X), with E/(X) pr G for all in-
dices i, and in Theorem 4 we shall prove that E¥(X) is a Z7 -injector of G.

The lay-out of the paper is as follows. In Section 2 we prove some preliminary results which will
be used later; in particular, when H < G with H € Z7, it is convenient to introduce the subgroup
l(g(H) = C¢(Soc; H). In Section 3 we prove Theorems 1 and 2, and construct Example 1. Then Theo-
rems 3 and 4 are proved in Sections 4 and 5 respectively. Finally in Section 6 we construct Example 2,
which shows that the chain E®(X) <E!(X) < --- < E¥(X) = E¥*t1(X) may be arbitrarily long.

2. The subgroup K (H)

In our first lemma we write down some easy results about subgroups which contain the Fitting
subgroup. Then we state a property of Z7 -groups proved by Doerk and Hawkes, which will be used
implicitly throughout the paper, and in Lemma 3 we record some consequences of this property. Re-
call that the socle of a group H is the subgroup Soc H generated by all the minimal normal subgroups
of H.

Lemma 1. Let F be the Fitting subgroup of a finite solvable group G.

(a) If Ny is the Z™ -radical of G (where 7 is a set of prime numbers), then F < Ny.
(b) If F < N<G,thenCg(N) <N.

(¢) IfF <N < H <G, then Z(H) < Z(N).

(d) If F < N < H <G, then SocH < SocN.

Proof. (a) This holds because F is a normal Z7 -subgroup of G.

(b) From the inclusion Cg(F) < F [2, A(10.6.a)] we get Cc(N) < Cg(F) < F <N.

(c) Using (b) we deduce that Z(H) < Cc(N) =Cn(N) =Z(N).

(d) Suppose U is a minimal normal subgroup of H, and put V = Soc N; we must show that U < V.
If UNN=1 then [U L N]SUNN=1,s0 U<UNCg(N)<UNN =1 using (b), which contradicts
the definition of U. This proves that UNN # 1, so U < N by the minimality of U. Thus U <N, so U
contains a minimal normal subgroup of N. Therefore UNV # 1, and hence U V. O

Lemma 2. (See Doerk and Hawkes [2, IX(4.17)].) Suppose p is a prime number, and @ = {p1, p2, ..., Pm}
is a set of prime numbers. Let H be a finite solvable group, with L < H and V,, V; <\ H, where V, is an
elementary abelian p-group, while V; = V1 x V3 x --- x Vi, and V; is an elementary abelian p;-group
a<gigm).
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(a) Suppose H € ZP.If P € Syl, H, then Cy,, (P) < Z(H).
(b) Suppose H € ZP.If V), > Socp H and p{ [H : L|, then Cy,, (L) = Soc,, H.
(c) Suppose H € Z".If V; > Socy H and |H : L| is a w'-number, then Cy_ (L) = Socy H.

Proof. (a) This is proved in the given reference.

(b) Since H € 2P, it is clear that Socy H < Vp, NZ(H) < Cy,(L). Conversely we can choose P €
Syl, L € Syl, H, and it follows from (a) that Cy, (L) < Cy, (P) < Socp Z(H) < Socp H.

(c) We claim first that

CV,, (L) = Cv1 (L) X CV2 (L) X e X Cvm (L)

Suppose v =Vv1Vy...Vy € Cy (L), with v; € V; (1 <i<m), and put w; =V1...Vi_1Vit1...Vyy and
Wi =0, (Vy). If xeL, then 1=[v,x] = [viw;, x] = [vi, x][w;, x], 50 [vi,x] = [w;, x] T e VinW; =1;
thus v; € Cy;(L), and the claim follows. Since H € Z" = ﬂf"zl ZPi, (b) implies that

Socy H =Socp, H x Socy, H x --- x Socp,, H
=Cy, (L) x Cy, (L) x -+ x Cy,, (L)

=Cy, (D),
as required. 0O

Lemma 3. Let F be the Fitting subgroup of a finite solvable group G, and suppose p is a prime number, and 7
is a set of prime numbers.

(a) Suppose F < H < G with H € ZP.If P is a p-subgroup of G with P N H € Syl, H, then (P, H) € ZP.

(b) Suppose F < N < G with N € ZP, and take V = Socp N. If P is a p-subgroup of G, then PN € ZP and
Socp(PN) =Cy (P).

(c) Suppose F < H < H* < G with H, H* € Z7. Then Soc; H > Soc; H*.

(d) Suppose F < H < H* < G with H, H* € Z" . If |H* : H| is a r'-number, then Soc; H = Soc; H*.

Proof. (a) Put L = (P, H), and suppose U is a minimal normal p-subgroup of L; we must deduce that
U <Z(L). Taking V = Soc, F we get U < V by Lemma 1(d), and hence Cy(P) < Cy(P N H) < Z(H)
by Lemma 2(a). But Cy(P) is also centralized by P and therefore Cy(P) < Z(L). Thus U NZ(L) >
Cy(P) #1 [2, A(5.5)], so the minimality of U implies that U < Z(L).

(b) Choose P* € Syl,(PN) with P* > P, and note that P* N N e Syl, N [2, A(6.4.a)]. Applying (a)
with H = N, we deduce that PN = P*N € ZP. Moreover p{|PN : P*|, so it follows from Lemma 2(b)
that Socp(PN) = Cy (P*) =Cy (P(P*NN)) =Cy(P) (since P* NN centralizes V).

(c) Take V = Socy F, and choose subgroups L < L* which are Hall w-subgroups of H and H*
respectively. Then it follows from Lemma 2(c) that Soc; H =Cy (L) > Cy (L*) = Soc; H*.

(d) Take V = Socy F and let L be a Hall w-subgroup of H. Then L is also a Hall w-subgroup of H*,
so Lemma 2(b) implies that Soc; H =Cy (L) = Soc; H*, as in (c). O

We end this section by recalling the definition of l(IG,(H). and by recording some of its properties,
which follow from Lemma 3, and which will be used repeatedly in the following sections.

Notation. Let G be a finite solvable group and let 7 be a set of prime numbers. If H < G we define
K& (H) = Cg(Socy H).

If p € 7, we also write K (H) = l(fp}(H) and K§_,(H) =K§

7 —(py (-



R. Dark et al. / Journal of Algebra 381 (2013) 209-232 213

Remark. Doerk and Hawkes showed that when H = G, then 1(,6,(0) is the Z7-radical of G
[2, 1X(2.9.a.2)]. However we shall consider l(g(H) when H € Z7.

Lemma 4. Let F be the Fitting subgroup of a finite solvable group G, and let 7 be a set of prime numbers.

Suppose H < G. If t C 7, then KS (H) < K (H).

Suppose H < G with H € Z*. Then H < K& (H).

(c) Suppose F < H < H* < G with H, H* € Z7. Then K$ (H) < KS (H¥).

(d) Suppose F < H < H* < G with H, H* € Z". If |H* : H| is a /-number, then K& (H) = K& (H*).

e) Suppose F < H < G with H e Z7. If H < L < K$(H), then L € Z7. In particular K& (H) € 27, and if
Ny is the Z7 -radical of G, then Ny = K& (Ny).

(f) Suppose F < H < G with H € Z™. Then Soc; H = Socy, Kfr(H), and hence Ng (l(,GT(H)) = Ng(Soc; H)
and K& (K¢ (H)) = KS (H).

(g) Suppose F < H < G with H=K§ (H), and take L =Ng(H) and p € 7. Then p { |K5 _,(H) : H| if and

only if p{ [KJ, _,(H) : HI.

RN AN e

(a
(b
(

Proof. (a) This holds because Soc; H > Soc; H.

(b) This is a consequence of the definitions.

(c) This follows from Lemma 3(c).

(d) Similarly this follows from Lemma 3(d).

(e) Suppose p € w and let U be a minimal normal p-subgroup of L; we must deduce that U <Z(L).
Take P € Syl, H and V = Socp F, and note that U < V by Lemma 1(d). Using Lemmas 2(b) and 1(c)
we get Cy(P) < Cy(P)=Socp H < Z(I(fi(H)) < Z(L). Hence U NZ(L) > Cy(P) #1 [2, A(5.5)], so it
follows from the minimality of U that U < Z(L). The last equation holds because l(,G, (Nyz) is a normal
Z™ -subgroup of G with Ny <K& (Ny).

(f) Clearly Soc; H < Socy Z(KS (H)) < Socy K& (H). Conversely (b) implies that H < K& (H), so
Soc; H > Socy K,GT (H) by Lemma 3(c). This proves the first equation, and hence

N¢ (KS (H)) < Ng(Socz KS (H)) = Ng(Socy H) < Ng (K (H)).

It also follows that KS (K& (H)) = Cg (Socy K& (H)) = Cg (Socy H) =KS (H).

(g) Clearly KS_,(H) > K% _,(H), and it follows that if p {[KS_,(H) : H| then p{[KL_,(H): H|.
Conversely suppose that p is a factor of |I(g_p(H) : H|, and choose subgroups P < P* with P € Syl, H
and P* € Syl, KG_,(H). Take P® =Np:(P) and V = Soc, F, and note that P? > P [2, A(8.3.c)]. Also P°

normalizes Cy (P) and centralizes Soc; _p H. But Cy (P) =Soc, H by Lemma 2(b), so P9 < N¢(Socy H).
Using (f) we deduce that P? < Ng (K (H)) =Ng(H) =L, and hence P <K% _, (H). Thus p is a factor

of K, _,(H):H|. O

3. The subgroup D¢ (X)
Our first aim in this section is to prove Theorem 1 and its corollary, which are due to Blessenohl,
Frantz and Lockett. We first give a modified definition of Dg(P). and use Lemma 3 to prove some of

its properties.

Notation. Let N, be the ZP-radical of a finite solvable group G (where p is a prime number). If P is
a p-subgroup of G, define

DS (P) =KS (PNp).

Remark. We shall show in Lemma 5(b) below that this is equivalent to the definition given by Doerk
and Hawkes [2, 1X(4.18)].
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Lemma 5. Let N, be the ZP-radical of a finite solvable group G, and suppose P is a p-subgroup of G (where
p is a prime number).

(a) Then D§(P) € ZP.
(b) If Vp =Soc, N and U = Cy,, (P), then DS (P) = Cg (U).
(c) Suppose Socy Np < H < GwithH € ZP.IfPNH e Syl, H, then H < Dg(P).

Proof. (a) Lemma 3(b) implies that PN, € ZP, and the result follows from Lemma 4(e).

(b) Lemma 3(b) also shows that Soc,(PNp) = U, from which the result follows.

(c) As in (b), put Vp =Socy; Ny and U = Cy,(P). Then U = Cy,(P) < Cy,(P N H) <Z(H) by
Lemma 2(a), and hence H < Cs(U) = Dg(P), using (b). O

Theorem 1 (Frantz, Lockett). (See [2, IX(4.19)].) Let G be a finite solvable group, and let p be a prime number.
If P € Syl,, G, then DS (P) is a ZP-injector of G.

Proof. Let | be a ZP-injector of G, and choose P such that PN J € Syl, J. Then Np < J € ZP, and
it follows from Lemma 5(c) that | < Dg(P). But J is a maximal ZP-subgroup of G, so Lemma 5(a)
implies that ] =D$(P). O

Corollary 1. (See Blessenohl [1, (4.8)].) Let N be the ZP-radical of a finite solvable group G. If Socy Np <
H < G with H € ZP, then H is contained in a ZP -injector of G.

Proof. Choose P € Syl, G such that P N H € Syl, H. Then Lemma 5(c) shows that H < Dg(P), so the
result follows from Theorem 1. O

We now recall the definition of Dg(E), and in the next 2 lemmas we use Lemma 5 to prove some
of its properties. We are then able to deduce Theorem 2.

Notation. Suppose X is a Sylow basis in a finite solvable group G. If p is a prime number and
{P}= X NSyl, G, write DS (X) =DS(P). If 7 is a set of prime numbers, define

DS (2) = () D§(2).

pem

Lemma 6. Let X' be a Sylow basis in a finite solvable group G.

(a) If p is a prime number, then X \ Dg(Z‘).
(b) If 7w is a set of prime numbers, then X \, DS (X).

Proof. (a) Take {P} = X N Syl, G, and put D =D$(P) =D (X). Then there is a conjugate D¢ such
that X\ D# [2, 1(4.16)], and in particular P N D& € Syl, D&. But D& € ZP by Lemma 5(a), and clearly
Socp Np < D#, so D < D by Lemma 5(c). Therefore ¥\, D8 = D.

(b) This follows from (a) [2, 1(4.22.3a)]. O

Lemma 7. Let N;; be the Z™ -radical of a finite solvable group G (where 7 is a set of prime numbers), and
suppose X is a Sylow basis in G.

(@) IfG ¢ 27, then DS (X)) < G.
(b) IfSocy Ny < H < G, with H e Z™ and ¥ \( H, then H < DS (X).
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(c) Suppose 7w = {p1, P2, ..., Pm}. For each index j, take {Pj} = X' N Sylpj G, and suppose Socp; Nz <
W; < G, where W is an elementary abelian p j-group. Put Uj = Cy,;(Pj) (1 < j <m), and take U =
U1 x Uz X -+ x Up. Then DS (2) = C¢ (V).

Proof. (a) Since G ¢ Z™ =(,c, 2P, there must be a prime number p € 7 such that G ¢ ZP. Then
DS (X) <D§(X) < G by Lemma 5(a).

(b) Suppose p € 7, and let N, be the ZP-radical of G. Then N; < Np, so it follows from
Lemma 1(d) that Soc, Ny < Socy Ny < H. Also H e 27 € ZP and ¥ \( H, so H < Dg(E) by
Lemma 5(c). Thus H <(,c, DS (X) =D5(X).

(c) For each index j, let N;j be the ZPi-radical of G, and put Hj = PjN;. Then H; € ZPi by
Lemma 3(b), and N; < Nj < H;. Now Lemma 1(d) implies that W; > Socp; Nz > Socp; Hj, so
Socp; Hj = Uj by Lemma 2(b). Therefore DIG,J_(E) =Cc(U;) (1< j<m), from which the result fol-
lows. O

Construction. Let ¥ be a Sylow basis in a finite solvable group G, and let w be a set of prime

numbers. Take D°(X) = G, and when i > 0, assume inductively that a subgroup Di~1(X) has been
constructed such that X \,D'~1(X). Now define

D'(x)=D2 P (znD1(x)).

It follows from Lemma 6(b) that ¥ NDI~1(X) \ D!(X), and hence ¥ \,D!(X), so the Construction
can proceed.

Theorem 2. Let G be a finite solvable group, and let 7t be a set of prime numbers. Choose a Sylow basis X' in G,

take D; = D!(X) as in the above Construction, and let N; be the Z™ -radical of D;. Then there is an index k
such that

G=Do>Dy>:->Dg=Ng=Nr_12-=No,
and Dy =DX(X) is a Z7 -injector of G.

Proof. Let | be a Z7 -injector of G, and choose the Sylow basis X such that X N\ J [2, 1(4.16)]. We
claim that for all indices i >0

N; < J <D

Since Ng < J < Do, we can suppose i > 0 and assume inductively that N;_; < J < Dj_1. Then
Socy Ni—1 < J, and ¥ N Dj_1 N\, J, so the hypotheses of Lemma 7(b) hold in D;_1, and therefore
J <D2-(¥ N D;_1) = Di. Since J is a Z7-injector of G, it is also a Z7 -injector of D;, and hence
N; < ] < Dj as required.

By definition D; < D;j_1, and we have proved that N;_; < J < D;. Hence N;_; is a normal Z7 -
subgroup of Dj, and therefore

Ni—1 < N; < D; < Dj_1.
Moreover the strict inclusion N; < D; means that D; ¢ Z7, so Lemma 7(a) shows that
if N; < D;, then Dj4q < D;.

The result follows from the above inclusions. O
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Corollary 2a. (See Blessenohl [2,1X(4.20)].) Let N be the Z” -radical of a finite solvable group G. If Soc; Ny <
H < G with H € Z7, then H is contained in a Z” -injector of G.

Proof. Choose a Sylow basis X such that ¥ N\ H, and using the notation of Theorem 2 put V; =
Soc; Ni. We claim that for all indices i >0

Vi<H<D;.

By hypothesis Vo < H < Do, so we can suppose i > 0 and assume inductively that V;_{ < H < D;_1.
Then N;_1; < N;j < D;j_1 by Theorem 2, and using Lemma 1(d) we get V; < V;_1 < H. Moreover as in

Theorem 2, it follows from Lemma 7(b) that H < Dgi" (¥ N Dj_1) = Dji. This proves the claim, and
therefore H < Dy = D¥(X), so the result follows from Theorem 2. O

Corollary 2b. With the notation of Theorem 2, suppose © = {p1, p2, ..., Pm}, and let N be the Z™ -radical
of G. For each index j, take

{Pj}:Z‘ﬂSylij, W =Socp; Nr,

Pij =P; N Dj, Uij = Cw; (Pij), Ui=Uj1 x Ujp x -+ x Uim.

Then Djy1 = Cg(U;), and if Vi = Socy N; (0 < i < k) then

Up<Up < - <Up1 <Upg =V < Vi <--- < Vo =S0cy Ny

Proof. Note that

Socy Ny =W1 x W x -+ x Wy, Pgj > P1j = -+ = Py,

Ugj <Uypj <--- < Uk < Wy, Uo<Up <--- < Ug<Socy Ny

Now Ny < N; as in Theorem 2, so W; is an elementary abelian normal pj-subgroup of N;. Also
Lemma 1(d) shows that W > Socp; N, and moreover {Pjj} = (X N D;j) N Sylpj D;. Then Lemma 7(c)
implies that

Di+1 =Cp,(Uy).

In particular D1 = Cp,(Up) = C5(Up), so in proving that D;; 1 = C¢(U;), we may suppose i > 0 and as-
sume inductively that D; = Cg(U;_1). Then U;j_1 < Uj, so Cs(U;) < Cs(Uj—1) = Dj, and it follows that
Cc(Uj) =Cp,;(U;) = Dj41, as required. Now the strict containment D; > D;;¢ implies that U;_; < U;
(1<i<k).

Finally Nz = No < Di, so W; > Socp; Dy by Lemma 1(d). Also Dy € ZPi by Theorem 2, and hence
Ukj = Cw; (Pkj) = Socp; Dy by Lemma 2(b). Thus Uy = Socy Dy = Socy Ny = Vi, while Lemma 1(d)
implies that V; < V;_1 (1<i<k). O

Corollary 2b gives a procedure for calculating Z7 -injectors, and we end this section by using it to
show that the chain in Theorem 2 may have length 3. As we remarked in the Introduction, we do not
know whether this length can be greater than 3, but we note that a group with this property must
have a similar chain of elementary abelian normal 7 -subgroups.
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Example 1. There is a finite solvable group G with a Sylow basis X, and a set 7 of prime numbers,
such that

¢=D%>)>D!(X)>D?*¥)>D*X)=D*>).

Proof. We can extend an example of Blessenohl [2, §4] as follows. Take the symmetric group H =Sy,
and put P1 = ((12)), P2 = ((12)(34), (13)(24)), P = P1P; and Q = ((123)); then P e Sy, H and Q €
Syl3 H. Next take N = V5 x V3, where V5 = (u1, uz, u3, ug) = C; and V3 = (vq, vy, v3, v4) = €3 are
elementary abelian groups of order 24 and 3% respectively. Make H act on N by taking u? =uj, and

v¢ =vj, (0 € H), and form the corresponding semidirect product G = HN; then G can be regarded

as the natural wreath product Cg : S4. Finally put 7 = {2, 3}, and take

X ={1,PV,,QVs}, Up = Uiy, Vo =V1VaV3, Ugo = U1l U3U4.
Note that X' is a Sylow basis in G.

Now N is the Z7-radical of G, with V; =Soc; N and V3 = Socz N. Moreover Cy,(PV3) = (Ux)
and Cy,(Q V3) = (v, v4), and as in Corollary 2b we get

DS (2)=Cc(us) =G,  D§(Z)=Cc((vo,va)) = P1QN.

Therefore D1 =D!(¥) =GN P1QN=P1QN, and X N D; = {1, P1V3, Q V3}. Repeating the process
we get Cy, (P1V2) = (up, u3, ug) and Cy,(Q V3) = (vo, v4), and hence

D} (X ND1)=Cp, ((uo. us,ug)) =P1N,  D3'(¥ ND1)=Cp, ((vo.va)) = D1.

Therefore Dy =D?(X) = P{NN Dy = PyN, and X N D, = {1, P1 V3, V3}. Now Cy,(P1V2) = (ug, us, ug)
and Cy,(V3) = V3, and hence

D§2(2 N D3) = Cp, ((uo, u3, ug)) = Dy, D?Z(E N D) =Cp,(V3)=N.
Therefore D?(X) =D, NN =N € 27, and hence D3(X) =D*(¥). O

4. The subgroup MS (H)

This section contains the proof of Theorem 3, which follows at once from Lemmas 8 and 9; these
lemmas depend on the properties of l(g(H) recorded in Lemma 4. We first recall the definition
of MS (H).

Construction. Let N; be the Z”-radical of a finite solvable group G (where 7 is a set of prime
numbers) and suppose Ny < H < G and H € Z7. For each prime number p € 7, choose a subgroup
S €Syl, KS_,(H) such that S} N H € Syl, H. Finally define

H*=(H.Sy: pem),  MS(H) =K (H).
Remark. The above Construction may depend on the choice of the Sylow subgroups S*, but we shall
see in Lemma 8(b) below that the truth or falsity of the equation H = Mg(H) is independent of these

choices.

Lemma 8. Let N, be the Z7 -radical of a finite solvable group G (where 1 is a set of prime numbers), and
suppose Ny < H< GwithH e Z".
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(a) Then H <K (H) < MS (H) and H* < MS (H), with H* € Z7 and M& (H) € Z7.
(b) Moreover H = Mg(H) if and only if H satisfies the condition (Ko) below, together with the conditions
(Kp) for all prime numbers p e :

(Ko) H=K5(H):  (Kp) pt[KS_,(H):H|

(c) Suppose H < H® < G with H® € Z7 and |H® : H| = ¢* (where q is a prime number). Then the Construc-
tion can be carried out so that H® < M& (H).

(d) Suppose w = {p1, p2. ..., pm). Foreachindex j,if P € Sylpj H, there are p j-subgroups P;?o > P;‘f > Pj,
which can be constructed by taking

Vj=Socp; Nx, Uj=Cv;(P)).
Wj:U1 X ---XU]'_] X Uj+1 X ---XUm,
Piesyl, Cc(Wj),  Uj=Cy;(P}), U*=UjxU;x---xUp,

G —
P$°esyl, My (H), U7 =Cy,;(PS).
These definitions imply that Soc,, H = U j and Soc,; Mg (H) = Ut = U, with MS (H) = Ce(U™).

Proof. (a) Suppose p € 7, take Hp = (H, S;), and note that Hy, € ZP by Lemma 3(a). f gem —p
then S; <K§_(H) < K§(H) by Lemma 4(a), and K§(H) <K§(Hp) by Lemma 4(c). This proves
that H* = (Hp,Sg: qem — p) < I(g(Hp), and it follows from Lemma 4(e) that H* € ZP. There-
fore H* € ()., 2P = Z". Applying Lemma 4(c) again we get K5 (H) <K (H*) = M3 (H), and using
Lemma 4(e), we also deduce that MS (H) = K& (H*) € Z7.

(b) Assuming that H = Mg(H). it follows from (a) that (Ko) holds. Moreover if p € 7 then S} <
Mg(H) =H, so S;’; € Syl, H, which proves (Kp). Conversely suppose that (Kp) holds when p € {0}U.
If p e 7 it follows from (Kp) that S} € Syl, H, and hence H* = (H, S};: p € w) = H. Now (Ko) implies
that H =KS (H) = K$ (H*) = MS (H).

(c) If g ¢ 7, then Lemma 4(d) shows that H <K% (H®) = K& (H) < M& (H), as required. On the
other hand, if g € 7w then H? <K$_,(H% =K§_,(H) by Lemma 4(d). Hence we can choose subgroups
Sq < Sg < S with Sg € Syl H, S7 € Syl, H® and S} € Syl K3 _,(H). Then SJ < H* < Mg (H), and so
HO = HSJ <M (H).

(d) Note that V;j > Socy; H by Lemma 1(d), and pj {|H : Pj|, so Lemma 2(b) implies that
Socy; H=1Uj. Also W; = Socz—p; H < Socy H, so H < Cg(Wj). We can therefore choose a subgroup
P}'.‘ € Sylpj Cq (W) with P}f > Pj. Put H*=(H, Py, P;,..., P;) as in the Construction of M,G, (H), and
choose subgroups P? € Sylpj H* and P;’Q € Sylpj MC (H) such that P}‘ < P? < P?O. Finally put

U?:CVJ.(P?), U'=U9x U9 x---xUY.

As before, Lemma 2(b) implies that Soc,, H* = U? and Socy; M§ (H) = US°. But Socy, H* =
Socp; M§ (H) by Lemma 4(f), so these equations show that Soc, M$ (H) = U? =U. Also MS (H) =
C;(Socy H*) = Cg(U9), so it suffices to show that U? =Us.

Clearly UY = Cy;(P9) < Cy;(P}) = Uj. To prove the converse, note that U% = Cy;(P¥) < Cv,(P)) =
Uj=Socp; H, so U;-‘ is centralized by H. Also U;f =Cvj(P;f) is centralized by Pj. Finally if i # j, then
U}‘ < Uj < Wi, and hence U;’f is centralized by Pj. This proves that U;f < Socp; Z(H*), and therefore
U}‘ < Socp; H* = U?. O
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Lemma 9. Let N, be the Z” -radical of a finite solvable group G (where 1 is a set of prime numbers), and
suppose Ny <H < GwithH € Z7.

(a) Let G° be a maximal normal subgroup of G, such that N < G° < G, and take H = HN GO, If H =
MC (H), then HO = MG’ (HO).
(b) If H=MS (H), then H is a Z7 -injector of G.

Proof. (a) Note that that N is still the Z7 -radical of G°, so by Lemma 8(b), we must show that if
p € (0} U, then (K,) holds for H® in G°. Now K& (H®) < K& (H) by Lemma 4(c), and by applying
Lemma 8(a) and (b), we deduce that H% < l(,GT0 (H% =G%nKS& (H%) < GONKS& (H) = GO N H = HO. This
implies that (Ko) still holds for H® in GO. Next consider a prime number p € 7, and suppose first
that H < G°. Then KS* ,(H) <KS_,(H), so [KS" ,(H) : H| is a factor of [KS_,(H): H], and hence
(Kp) also continues to hold for H? in G%. We may now assume that H £ G°.

Put g =|G/G°| (where q is a prime number), and suppose first that p # q. Then l(gO,p(HO) <
KS_,(H% <K$_,(H) by Lemma 4(c), while |[H| =q-|H°|. Hence |1(§‘1P(H°) : HY is a factor of the
product q - [K§_,(H) : H|, which implies that H° satisfies (K,) in G°. We may now assume that
p =g, and it remains to verify (Kg). Now H <K$_,(H) =K§_ (H® by Lemma 4(d), and hence
KG ,(H%) = H(G® NKS_,(H?) = Hl(f,“_q(HO). Moreover HO < HN Kg"_q(HO) <HNGY=HO and
hence H N I(go_q(HO) = HY. We deduce that

KS_,(H): H| = |HKS” (HO) : H|
= [KS” ,(H) : HNKE (HO)]
= K", (H°) : HO|,

which implies that (Kq) still holds for H in G°.

(b) If Ny =G then the result is clear, so we may suppose that N; < G and use induction on
|G/Ny|. Choose a maximal normal subgroup G° <I G such that N; < G® < G, and suppose first that
H < G°. Then (a) implies that H = M,G,O(H), so H is a Z7 -injector of G° by the induction hypothesis,
and it suffices to show that H is a maximal Z7-subgroup of G [2, VIII(2.10)]. But if H < H* < G
with H* € Z7, then H = H* N G° < H*; it now follows from Lemma 8(c) that H* < MS (H), which
contradicts our hypothesis. We may therefore assume that H £ G°, and put H® = HNGP. As before we
deduce from (a) and the induction hypothesis that H? is a Z7 -injector of G°. Since H covers G/G°,
this implies that H is a Z7 -injector of G [2, VIII(2.11)]. O

Construction. Let G be a finite solvable group, and take M%(G) = N, to be the Z”-radical of G

(where 7 is a set of prime numbers). For each index i > 0, assume inductively that a subgroup
M~1(G) has been constructed such that N; <M~1(G) < G and Mi~1(G) € Z7. Now define

M'(G) = M& (M1(G)).
It follows from Lemma 8(a) that N; < M{(G) < G and Mi(G) € Z7, so the Construction can proceed.

Theorem 3. Let N be the Z”™ -radical of a finite solvable group G (where 7 is a set of prime numbers), and
take M'(G) as in the above Construction. Then there is an index k such that

Ny =M°(G) <M'(G) < --- < MK(G) = M**1(G),

and M¥(G) is a Z7 -injector of G.
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Proof. This follows from Lemmas 8(a) and 9(b). O

Corollary 3. With the notation of Theorem 3, suppose T = {p1, p2, ..., Pm}. For each index j, there are p ;-
subgroups

Poj < Po; < P1j <Py < < Propj <Py

]

which can be constructed by taking

Pij € Syly, M'(G).  Vj=Socp;Nx.  Uij=Cy,(Pyj),
W;’j=Ui] X oo X Ui,j*l X Ui’j+] X - X Uim,

Pij € Sylp; Cc(Wij), Ui=Cy(Pf),  Uf=UfjxUj5x---xUg.
Then M'*(G) = C¢(U}) and Soc,, MH1(G) = US; = Uiy j, with
Socy Np 2 UG > U7 > --->Uj_; 2 Uy,

Proof. For each index j, arguing by induction on i, we can use Lemma 8(d) to construct the sub-
groups Pjj < P < Piyq,j. Also M *1(G) = Cg(U}), so the strict inclusion M'(G) < M'T1(G) implies
that U | > Uf (1<i<k). O

5. The subgroup EZ (H)

We now consider Theorem 4. Most of the proof is carried out in Lemma 11, but we first record
some properties of pronormality. Recall that a subgroup H < G is said to be pronormal in G if, for
every element g € G, H and H® are conjugate in (H, H8); in this case we write H pr G. Moreover H
is normally embedded in G if, for every prime number p and every subgroup P € Syl, H, P is also a

Sylow p-subgroup of its normal closure (P®) = (P8: g € G).
Lemma 10. Let G be a finite solvable group, and suppose H < G.

(a) (Lockett [2, 1(7.8)]) Suppose X' is a Sylow basisin G.If H1, Ha, ..., H, are normally embedded subgroups
of G with ¥ \( H; for all indices i, then H;H; = HjH; for all indices i and j, and the product Ho =
]_[?:1 H; is normally embedded in G, with X | Ho.

(b) (Chambers [2, [(7.2.b) and (6.14)]) If H is normally embedded in G, then H pr G.

(c) (Mann [2, [(6.6)]) Moreover H pr G if and only if the following condition holds:

(P) if X is a Sylow basis in G, and g € G with X, X8 \  H, then g € N¢(H).

(d) (Lockett [2, 1(6.8)]) Let X be a Sylow basis in G, and suppose Ng(H) < L < G.IfHpr G and ¥ \( H,
then X \( L.

(e) (P. Hall)If H pr G and H < H* pr Ng(H), then H* pr G.

(f) Let X be a Sylow basis in G, and suppose H € Z™ (where 7 is a set of prime numbers). If H pr G and
X N\ H, then K& (H) pr G and ¥ \(KS (H).

Proof. The statements (a), (b) and (c) are proved in the given references.

(d) By extending X N H, we can choose a Sylow basis X& in G such that ¥ N H = X N H and
Y8\ L [2, 1(416)]. Then (c) implies that g € Ng(H) < L, and hence X &' =1

(e) Suppose that g € G, and that X, ¥8 \( H*; by (c) it suffices to deduce that g € Ng(H*). Put
L =Ng(H). Now H { H*, so the hypothesis implies that X, X8 \( H [2, [(3.2.c)], and hence g € L
by (c). Also X, X8 N\ L by (d), and therefore in L we have Sylow bases X N L, (X NL)S \  H*. But
H* prL so it follows from (c) that g € N; (H*) < Ng(H™).
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(f) Suppose g € G; since H pr G, there is an element x € (H, H8) such that H* = Hé. But H € Z7,
and hence x € (H, H8) < (K& (H), K$ (H)8) and K& (H)* = KS (H*) = K& (H8) = K& (H)#, which proves
that KG (H) pr G. Note next that N(;(H) NG(Socﬂ H) <Ng (l(G (H)), so it follows from (d) that X \{
Nc (K,G,(H)). This implies that ¥ \(K$(H). O

Construction. Let X be a Sylow basis in a finite solvable group G, and let N; be the Z7-radical of G
(where 7 is a set of prime numbers). Suppose N; < H < G, with H € Z7 and ¥ \( H, such that
HprG and H = Kg(H). Put L =N¢(H), and for each prime number p € 7, take {Sf,o} =X NSyl, G,
and put S, =S NH and S = S° NKL_,(H). Note that S, € Syl, H and S) e Syl, K:_,(H) by
Lemma 10(f) and (d), and define

H'=(H.S%: pem).  Ey(H)=KS(H°).

Lemma 11. Let N;; be the Z” -radical of a finite solvable group G (where 7t is a set of prime numbers), and let
X be a Sylow basis in G. Suppose Ny < H < G, with H € Z™ and X \( H, such that H pr G and H = Kg(H).
Put L = Ng (H), and perform the above Construction.

(a) Then H* = H - ], S% and H® € Z™, with X\, H® and H® pr G.

(b) The Construction of MS (H) can be carried out in such a way that H < EZ (H) < MS (H). Also EZ (H) €
Z7 and ¥ \ EZ (H), with EZ (H) pr G and EZ (H) = K& (EZ (H)).

(c) Moreover H =EZ (H) if and only if the following condition holds for all prime numbers p € 7:

(Lp) p1t[K;_,(H):H|.

(d) Hence H =EZ (H) if and only if H = MS (H).
(e) Suppose m = {p1, D2, ..., Pm}. For each index j, take

{PF?}=Znsyl, G, Vj=Socy, Ny,
Pj=P¥NH,  Uj=Cy;(P)),
Wij=U1 x---xUjoq xUjg1 x - xUn,
PO=P¥NC(W)), UJ=Cy,(PY), U=U)xUJx--xUp,
Pt =PPNE;(H), Uj=Cy,(P)).

These definitions imply that Soc,, H = Uj and Socy, EZ (H) = U? = U7, with EZ (H)=Cc(U?).

Proof. (a) Note that H < L and X N\ H. Moreover for each prime number p € 7, SO € Syl, K _p(H)
with K, (H) <L, so S0 is normally embedded in L. Also X\ S, so it follows from Lemma 10(a)
that H0 H [Tper Sp is normally embedded in L, and that ¥\ H0 Hence HO pr L by Lemma 10(b),
and therefore H® pr G by Lemma 10(e).

Finally suppose p € 7, take H, = HSO p» and note that Hp € ZP by Lemma 3(a). f qem —p
then 53 <KL _,(H) <Kj(H) by Lemma 4(a), and K}, (H) <Kj(Hp) by Lemma 4(c). Thus HO=H, -
[Tyer—p ST <KL(Hp), and it follows from Lemma 4(e) that H® € ZP. Therefore H® € (., ZP = Z”.

(b) If p em, then K;_,(H) <KS_,(H), so we can choose subgroups S§ < S} with S9 e
Syl, KL _,(H) and S} € Syl,K§_,(H). Then H* = H - Myer SO < (H.S}: pem)=H* and it fol-
lows from Lemma 4(c) that EZ (H) = K$(H?) < K$(H*) = MS (H). Moreover EZ (H) = K$(EZ (H))
by Lemma 4(f). From (a) we get ¥ N\, H® and HO pr G, so Lemma 10(f) implies that ¥ \, EZ (H)
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and EZ (H) pr G. Finally (a) also shows that H® € Z7, and therefore EZ(H) = KS(H) € Z7 by
Lemma 4(e).

(c)IfH= E,{(H) and p € m, then Sg < E?(H) =H, so Sg € Syl, H which proves (Lp). Conversely if
(Lp) holds for all prime numbers p € 7, then S, = S9, so H = H? and hence H =K¢ (H) =K$(HO) =
EZ (H).

(d) This follows from (b) and (c), together with Lemmas 8(b) and 4(g).

(e) We can copy the proof of Lemma 8(d) as follows. Note that V; > Socp; H by Lemma 1(d),

and pj{|H : Pj|, so Lemma 2(b) implies that Socp; H = U;. Hence Socy_p, H = Wj, so HO =
(H, P9 PY,...,P%) as in the Construction of EX (H). Now X\, H® by (a), and we put

P¥*=P¥NH’,  UP=Cy(P), U™=UPxUs*x-- xUp.

As before, Lemma 2(b) implies that Socp, H® = U¥* and Socp, EX(H) = U%. But Socp, HO =
Socp, EZ (H) by Lemma 4(f), so it follows from these equations that Socp; EZ(H) = U}'f* = U}‘. Also
EZ (H) = Cc(Socy HO) = Cc(U*), so it suffices to show that U= U?.

Clearly U}k* = CV].(P}**) < CV).(P?) = U?. To prove the converse, note that U? = Cvj(P?) <
Cv;(Pj)=Uj=Socp; H, so US.’ is centralized by H. Also U? = Cvj(P?) is centralized by P?. Finally if
i j, then U? < Uj <Wj, and hence U? is centralized by P,Q. This proves that U? < Socp; Z(H?), and
therefore U? < Socp; HO = Uy, O

Construction. Let ¥ be a Sylow basis in a finite solvable group G, and take E®(X) = N, to be the
Z7 -radical of G (where 7 is a set of prime numbers). For each index i > 0, assume inductively that
a Z7-subgroup EI~1(X) has been constructed, with N; <E~1(X) < G and ¥ \(E~1(X), such that
E~1(¥) =K (E~'(X)) and E~1(X) prG. Then we define

E(2)=EZ(E'(2)).

It follows from Lemma 11(b) that E/(X) € 27, with N; <E/(X) <G and ¥ \(E/(X), and that
E'(X)prG and E'(XY) = Kg (E'(X)), so the Construction can proceed.

Theorem 4. Let N be the Z” -radical of a finite solvable group G (where 7 is a set of prime numbers). Let X
be a Sylow basis in G, and take E'(X) as in the above Construction. Then there is an index k such that

Ny =E%(Z) <E'(X) <--- <E{Z) = E“1(2),
and EX(X) is a Z7 -injector of G, with E/(X) pr G for all indices i.
Proof. This follows from Lemma 11(b) and (d), together with Lemma 9(b). O
Corollary 4. With the notation of Theorem 4, suppose T = {p1, p2, ..., Pm}. For each index j, take
{Pj}=XNSyl,, G, Vj=Socy; Nz,  Li=Ng(E'(Y)),
Pj=P;NE(X),  Uj=Cy,(Pj).

Wij=Ui1 x --- X Uj jo1 X Uj j41 X -+ X Ui,

P:_J]:PJQCLI(WU)’ USZCVJ(PS)’ U?:U?] XU?ZXXU?m
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Then E+1(X) = Cg(U?) and Socy, ET1(X) = U?j = Uijy1,j, with

Socy Ny >UJ>UY> ... >Up > U

Proof. It follows from Lemma 11(e) that Soc,, E*+!(X) = U?j =Uj41,j. Also EF1(Z) = Cc(U?), so the
strict inclusion E!(X) < Eit1(X) implies that U}l1 > U? (1<i<k). O

6. Construction of Example 2

In this section, we first prove Lemma 12, which describes a way to construct a solvable group with
a unique chief series of arbitrary length. We then use these groups to obtain Example 2, in which the
chain in Theorem 4 is also arbitrarily long.

Notation. Suppose that P and Q are groups, and let Hom(P, Q) be the set of homomorphisms
A:P — Q.If uis an automorphism of P, we can define an action of u on Hom(P, Q) by the equation
AU (x) = A(x"""), where A € Hom(P, Q) and x € P.

Write Fyn for the field of order p" (where p is a prime number and n is a positive integer), and
let F;n and F;n be the additive and multiplicative groups respectively; then F;,, is elementary abelian
of order p", and F;n is cyclic of order p" — 1. In particular let F4 = {0, 1,0, 62} be the field of order 4,
with 63 =6 4 02 = 1. Identify Fj{ with a multiplicative group (y, y’), where y and y’ correspond to 6
and 62 respectively (and so yy’ corresponds to the element 6 + 62 =1¢ FZ). Make the elements of
F4 act ‘multiplicatively’ on (y, y’) by taking

then F; is identified with a group of automorphisms of (y, y’).

Lemma 12. For each integer n > 0, there is a group

Ky =P1Q1P2Q2... Py41Qns1

and a subgroup Hy = P1Q1P2Q3 ... PnQuPny1, with the following properties:

(a) foreachr > 0, K; = HyQr41 is a semidirect product, with Q11 < K, and H; N Q1 = 1; similarly
whenr>1, H- = K;—1Pr4q with Priy < Hrand K1 NP =1;

(b) for each r > 0, Pr1q and Q41 are the unique minimal normal subgroups of H, and K, respectively;
moreover

3 whenr=1,

_ )2 _
|Pr] =142 whenr =2, 3011 whenr > 2:

2 whenr=1,
[Qrl {
221Pr=1l whenr > 3,

(c) there are generators a and b of P1 and Q1 respectively, and a basis {c,c’} of P, such that b = b~1,
“=cP=¢, *=candc’’ = c*, where c* = cc’; hence Cp, (Ho) = Cp, (P1) = (c*);
(d) for each n > 1, there is a basis {x,: u € Qn} of Qu+1, and a homomorphism A € Hom(Pp41, F3X), such

u
that when h € Hy_1, u,u’ € Q, and y € Pyq, then xﬁ = Xh, xﬂ/ = Xy and X, = xﬁ ) (where u
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acts on Hom(Pp41, F;) as in the Notation above); hence Cq,,,, (Kn—1) = Cq,.,(Qn) = (x*), where x* =
HueQ,, Xu;
(e) for each n > 2, there is a basis {yy,y,: v € Py} of Ppi1, and a homomorphism . € Hom(Q,, F)),

’ v
such that when k € Kn_a, v,v' € Py and x € Qq, then y& =y, ¥ = yyu, y§ =y @ and

y(/" =V y:/"/ =y, ¥ = y(,“v(x) (where 1V (x) acts on (yv, ¥,,) as in the Notation above); hence

CP,,+1 (Hn—l) = CPn+1 (Pl‘l) = (y*s y/*>v where y* = l_[vePn Yv and y,* = HvePn y:/

Proof. This is based on a well-known construction [2, B(9.15)]. As in (c), take H;y = P1Q1P3 = Sg4,
with Py = {a) =C, Q1 = (b) =C3 and P, = (c,¢’) = C; x C,. Then Py, Qq and P, are the unique
minimal normal subgroups of Hy, Ko and H; respectively, as in (b), and HoN Q1 =KgN Py =1, as
in (a).

We next construct the group K; = H1Q,, using a method which will be generalized to continue
the proof. Since F}' = {+1} = C;, we can define a homomorphism A € Hom(P3, F}) by taking

A Y) = (=) (a,a' €{0,1) =F).

Then the kernel of X is KerA = (c*) = [P, P1], where c¢* =cc’. Extend A to a map A*: PP, — F by
defining A*(hy) = A(y) (h € Pq, y € P). Since P1[Py, P1] < P1P3, it follows that A* € Hom(P1 P>, F3X)
with Ker A* = P[Py, P1]. Let X = F3x be the corresponding 1-dimensional F3(P{P;)-module, where
xg = 2*(g)x (g € P1P3), and let Q, = XM = X ®F, (P, P,) F3H1 be the induced module [2, B(6.1)]. Now
Q is a transversal to P1P; in Hi, so the set {x ® u: u € Q1} is an Fs-basis of Q. Suppose h € Py,
u,u’ € Q1 and y € Py; then the action of H; = P1Q1P on Q3 is determined by the equations

x@uh=x@hu" =x@u", xuu =x®uu’,

xQuUy=x®y" u :A(y”f])x®u =AY (yxu.

Thus P1 permutes the given basis of Q», Qq permutes it regularly, and P, acts diagonally (with
the basis elements as eigenvectors). Now Ker = (c*), KerA? = (c) and Kerab> = (c), so the lin-
ear characters A" of P, (u € Qq) are distinct, and hence Q, is F3Hq-irreducible [2, B(7.8)]. Also
Cp,(Q2) < P2, and therefore Cy, (Q2) =1, because P; is the unique minimal normal subgroup of Hj.
Thus Q» is a faithful irreducible F3H1-module. Now write Q, multiplicatively, with x, = x ® u, so
Q2 = (xy: u € Q1). We form the semidirect product K1 = H1 Q3 as in (a), and we deduce that Q; is
the unique minimal normal subgroup of K1, with |Q2| =3!1l, as in (b). Moreover if h € P1, u,u’ € Q4
and y € P, then the above relations show that xﬁ = Xyh, xﬁ/ = Xy and x) :x,)ju(”, as in (d). We
now suppose that n > 2 and assume inductively the existence of the group K,_1, and aim to con-
struct K.

By (d), there is a basis {x,: u € Q,—1} of Qy, so we can define a homomorphism u € Hom(Q,, ij)
by taking

M( [1 X5”>:92”6Q”*1 7
ueQp_1

where y, € {0,+1} =F3 (u € Qu—1). Moreover this basis of Q, is permuted transitively by K,_», and
therefore

I(eru:i 1_[ PeA Z VuZO}:[QmKn—Z]-

ueQn-1 u€Qn-1
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As before, we extend pu to a map u*: Kp—2Qn — FZ by defining w*(kx) = u(x) (k € Kp—»,
X € Qp). Since Kn—2[Qn, Kn—2] < Kp—2Q,, it follows that u* € Hom(Kj—> Qn,FZ) with Ker u* =
Kn—2[Qn, Kn—2]. Let Y = F4y* be the corresponding 1-dimensional F4(K,_3Q,)-module, where
y*g = u*(g)y* (g € Kn_2Qy), and put y =0y*, y’' =62y*. Then (y,y’} is an Fp-basis of Y, so
that Y can also be regarded as a 2-dimensional F(K;—2Qp)-module. Next form the induced mod-
ule Ppyq =YK=y ®F,(Kp_20n) F2Kn—1. Now Py is a transversal to K,_»Qy in K;_q, so the set
{y®v,y ®v: ve P} is an Fy-basis of P,1. Suppose k € K,_2, v,v' € P, and x € Qp; then the
action of K,—1 = K;—2PQ, on P,yq is determined by the equations

(yek=yek' =y YRV =y vV,
yex=yex v=u@ )yev=p'®yev,
(Y @v)k=y @ vk (Yov)V=y v, (Yeovix=u'®y ev.

Here pV(x) € Ff ={1,0,62%} = C3, and its action on Y =F,y @F,’ is determined by the rules 6y = y’
and 0y’ =y + y'. Thus the subspaces Y @ v=F,(y @ v) ®F2(y' ® v) (v € P;;) are permuted by K;_3,
and permuted regularly by P,, and stabilized by Q.

Now suppose v € P, with v # 1; we claim that

Ker 1" # Ker .

To prove this, note first that (b) implies that Cq, ,(Pn) = 1. Hence there is an element u’ € Qu—1 such
that v—'u’ % u/v~!. Now (b) also implies that H,_; acts faithfully on Qy, and {x,: u e Qu_1} is a
basis of Q,. Hence there is an element u € Q,—1 such that x[l“/ # xﬁ"’fl. Now (d) shows that

—1,,7 AU (v—l)u/ )\”(Vfl) | -1 )Luu’(v—l)
v_u _ uv — vV —
u =Xy - xuu’ ’ Xy =X = qu’ ’

X
and therefore A (v—1) AU (y=1), Take x = xux;ul,, and note that w(x) =1, using the definition of .
_ uy,—1 uu’ ¢, —1 _
However x"~' =xﬁ v ;L:\, ") and hence w'x) =’ 1) # 1, which proves the claim.

The claim shows that the 2-dimensional representations @' of Q, over F» (v € P,) are in-
equivalent, which implies that P41 is FpKy_1-irreducible. Moreover Cgq, (Pn+1) < Qu, and hence
Ck,_,(Pnt1) =1, because Qj is the unique minimal normal subgroup of K,_i. Thus Ppy1 is a faithful
irreducible F,K;_i-module. Now write P, multiplicatively, with y, =y ® v and y, =y’ ® v, so
Pni1=(yv,¥,: v € Py). We form the semidirect product H, = Kn—1Ppy+1 as in (a), and we deduce
that P,q is the unique minimal normal subgroup of H,, with |P, 1| =2%"nl as in (b). If k € K,_5,
v,V € P, and x € Qu, then the above relations show that y* =y, y¥' =y, y* =y4 ® and
vk = Vi V= yn v = ¥, ® This proves that (e) holds for Pn.1.

Now Fy acts on Y, = (y,, y,) with y0=1, yl =y, y0 =y, y =y,y, and y,° =1, y, =y,
y(,g =YY, y(,gz =yy, as in the Notation above. Put y% = y,y/, and note that y, = y3? and y| =

yt‘)z. Hence Y, = {yT,‘S: 8 € F4}, so the elements of P,y1 can be written as ]_[,,epn y’f,‘sV with §, € F4

(v € Pp). Let 7 : Ff — FJ be the trace homomorphism, with 7(8) =8 + 82 (3 € F4), and note that
7(#) =1(#?) =1 and (1) = 0. Define a homomorphism v € Hom(P;11, F}) by taking

”( [ VC‘”) = (1) Cren ),

vePy

where 8, € F4 (v € P,). Writing 8, = o,0 + B,62 with «y, By € F2, we deduce that
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Kerv=1{ [ vi®: r(Z 8V> :0}
vePy vePy,
=1 [T v, Z(av+ﬂv>=0}
vePy vePy
AT Yo=Y o =0
veP, veP, veP,
= [Pn+13 Hn—]]s

because the sets {y,: v € P;} and {y,: v € P,} are permuted transitively by H,_;. Extend v to a
map v*: Hp_1Pny1 — F5 by defining v*(hy) = v(y) (h € Hy—1, ¥ € Ppy1). Then Hy1[Pry1, Hpo1] <
Hy_1.Kerv < Hyp—1Ppy1, with Hyp_1[Pyq1, Hp-1] < Hp—1Ppy1 and

Hn—1Pny1/Hn-1[Pn+1, Hn-1] EFI =0 xC.

Hence H,_1.Kerv < Hy,—1Pp+1, and therefore v* € Hom(Hn_1Pn+1,F3X) with Kerv* = Hp_1.Kerv.
Let Z = F3z be the corresponding 1-dimensional F3(H,_1Pp4+1)-module, where zg = v*(g)z (g €
Hp—1Pp41). Next form the induced module Qp41 = ZHn = Z ®F;(Hy_1 Pnyq) F3Hn. Now Qj is a transver-
sal to Hy—1Pypy1 in Hp, so the set {z® w: w € Qg} is an Fs-basis of Qp4+1. Suppose h € H,_1,
w,w’ € Qn and y € Pp4q; then the action of H, = Hy—1QpPp41 on Qu4q is determined by the equa-
tions

zwh=z®@hw' =z@ wh, Z@wWw =z ww/,
zowy=z8y" w= v(y""fl)z® w=v"{y)zew.
Thus H,_1 permutes the above basis of Qp+1, Qn permutes it regularly, and P4 acts diagonally

(with the basis elements as eigenvectors).
Now suppose w € Q, with w # 1; we claim that

Kerv" # Kerv.

To prove this, note first that (b) implies that Cp, (Q,) = 1. Hence there is an element v’ € P, such that
w1V £ v'w~1, Now (b) also implies that K,_; acts faithfully on P, 1, and P, is generated by the

subgroups Yy, = (yv, y,: v € Py). Hence there is an element v € P, such that either yv’q"/ #* y“jr”“1
or y(,wfl"/ £ yQ,"lW?l. We deduce from (e) that

—1., v =1y, v -1 ro—1 -1 v/ -1
wly prw=Hy prw™) v'w w n(wTh)
yv =.yV =yvvl 3 yv =yvv’ =yVV/ ’
—1,/ Vp—1 r—1 v =1
s Wy rouV(wTh) s v'w roopw(wTh)
.yV = yvv’ ’ yv = yv‘// ’

and hence p'(w™!) # u’'(w=1). To complete the proof, suppose first that T(u’(w™1)) #
T(u"’ (w™ 1)), and take y = y}y¥ ,. Then

wol _ s e (W)
v

y =Yy v/ s

and it follows from the definition of v that v(y) =1 anc} vW(y) = v(y""*l) # 1. This proves the
claim in this case, so we may assume that p¥(w=1) # u"" (w=1) but T(n’ (w= 1)) = (" (w ).
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It follows that either u¥(w~') =6 and "V (w=1) =62 or else u’(w') =62 and pu""'(w') =6.
In both cases we can take y =y, yyy = yi‘,eyts,, and note that

wl #0pY (Wl sopvY (wh) x %02

y =Yy Yov yv yvv’aoryvyvv/'

Again it follows from the definition of v that v(y) =1 and v%¥(y) = v(y""_]) # 1, which completes
the proof of the claim.

The claim shows that the linear characters v of Pp1q (w € Qp) are distinct, which implies that
Qn+1 is F3Hy-irreducible. Also Cp,,,(Qn+1) < Ppt1, and hence Cy, (Qny1) =1, because Ppyq is the
unique minimal normal subgroup of Hy. Thus Qp41 is a faithful irreducible F3 H,-module. Now write
Qn4+1 multiplicatively, with zy, =z ® w, so Qu4+1 = (zw: W € Qp). We form the semidirect product
Kn = HpQny1 as in (a), and we deduce that Q41 is the unique minimal normal subgroup of K;;, with
[Qnt1l = 3|Q”‘ asin (b). If he Hn_1, w, w’ € Qn and y € P;11, then the above relations show that

sz =2Z,n, Zy =Zyy and zh =2y ") This proves that (d) holds for Qu4+1. O

Example 2. For each integer n > 1, there is a finite solvable group G with a Sylow basis X, and a set
7 of prime numbers, such that

EO(E) < El(ZJ) < EZ(E) << EZH(E) =E2n+l(2),

Proof. Consider groups Hq, K1, Hz, K3, ..., Hy, Kn which are isomorphic to the groups constructed in
Lemma 12, but are not regarded as subgroups of each other. More explicitly, take

Hr = PlrerPZrQZr-~~PerrrPr+1,r7
00 p0 AHO
Ky = P3,Qq P Q5 - r+] rQr+1 o

with isomorphisms P; = Pj = P?r 1<i< 1), Q;=Q;r = er (1<j<r)and Qry1 = Qr0+1’r.
Suppose further that if xe P; and y € Q;, then X and y;, are the corresponding elements of P; and
Q jr respectively, and similarly x; and y; are the corresponding elements of P0 and Q0 respectively.
Now form the direct product

Go=H1 x Ky xHy x Ky x--- x Hy x Ky,

and take the ‘diagonal’ subgroups

P} = {X-X{Xr1X, 1 .. XX} X € Pr}
< Hy x Kr X Hrp1 X Kpp1 X -+ X Hp x Ky,
Qf = {Vryri1Yri1Yre2Yria - Yn¥ni ¥ € Qr}
<Ky x Hryq X Krp1 X Hegp X Kryp X - -+ X Hyp X Kp,

with P} = P, and Q; = Q, (1 <r < n). We also put

er Hr’ Tr - Pr+l r K
Ur= Pr+1 r < Hy, V= Qr()+1 rx < Ky,
Up=Ui xUyx---xUpy<H{xHyx---x Hp,

Vo=VixVyx- - xV, <Ky x Ky x---x K.
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Clearly S; Uy, T;V; < Gy, and Py normalizes Q;f (1 <r < n); moreover the subgroup P;S;U;- Q}T,V;
normalizes P} and Q; (1 <r <s<n), and we can define

G= PTS]U] . QTT1V1 . P;SZUZ . Q;T2V2 o P:SnUn . Q:Tnvn.
There are Sylow subgroups
TOZPTU1 -T] -P;Uz-sz..-P,TUn-TnGSy]zG,
So=S51-QiV1-52-Q5Va-...-Sp-Q;VneSyl3G,

so we put 7 = {2, 3}, and take the Sylow basis X = {1, To, So}. We also put U} = Cy, (P;r) = Cy, (P})
and V= Cvr(QrOr) =Cy,(Q;), and we note that Lemma 12(c), (e) and (d) show that

C whenr =1,

U =€ (P1QP3 05 P {2 o) et

V¥=Cy,(P{QfP3Q5...P;Q) =C3 whenr>1.
We take
Ey = P:—r+1 Q;f—r+1 P:;—r+2 Q:f—r+2 ... PQ UoVo
=U1 x Vi x-- xUp—y x Vpr X P:,rJr]Un—r-&-l : Q,T,r+1vn—r+1 Tl P;:Un : Q;:Vn,
and we claim that
E(X)=Ey (0O<r<n).

To prove this, note that UgVg = C¢,(UoVo) = Cs(Ug Vo) is the Z7 -radical of G, and therefore E/(X) =
UgVo = Ep, with

SOCz Eqo =Up, SOC3 Eqo = Vy.
Arguing by induction on r, we may now suppose that r <n, and assume that E?"(X) = E,;, and aim

to prove the corresponding formula for E¥+2(%).
We first calculate Ly = Ng(Eor). Now Np?‘siui(P;kUi) = P{Ns,(P{)U;, and

Ns; (P;) =Ng; (Pij) =Cq; (Pii) =1,

because Q;; is a faithful irreducible module over Fs for the group

P1iQ1iP2iQ2i. .. Pi—1,iQi-1,i Pii.
Thus Npl_*siui(P;kUi) = P}'U;, and similarly NQ;‘T.-Vi(Qi*Vf) = Q;*V;. Hence
Lar =Ng(E2r)
= PTS1U1 . QTTl Vi-oo.o» P:_rsn—run—r : Q:_rTn—rVn—r

. P:_r+1 Un7r+1 : Q:—r-H Vn7r+1 teeet P;;Un . Q,va
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Using the procedure of Corollary 4, take

SoMEgr =V x Vo x oo x Var X Q1 Viorir - QFpioVnria - Q Vi
€ Syl Eor,
Wir2 =Cyo(So N Eyr)
=VixVox oo x Vo x Vi X Vi X x Vi,
Cr,, (War2) =S1U1 x Vi X -+ X SpyUn—r X Vi X Py Unrp

: Q:,r+1 Vn—r+1 BERE P;:Un . Q:Vﬂs

SO
ToNCp,, (Wyr2)=Us x Uz x-+- X Up_p X P:,r+1un—r+1 : P:7r+2un—r+2 teel P:Un»
W35 = Cu, (To N €y (War.2))
=UyxUpx - xUnpypxUy g xUp 5% xUp.
Similarly
ToNEy=U1 xUy x--- xUp_r x P:zlr+] Un—rt1- P:7r+2Un—r+2 e P:U,—,
€ Syl, Ear,

War 3 =Cyy(To N Ear)
=U;xUy x---xUp_ x U;7r+1 X U:—HZ x - x UX,
Cr,, (Wor3)=U1 xT1V1 x--- x Up—r—1 X Tn—r—1Vy—r—1 X Un—r X Q:_rTn—rVn—r

' P:,r+1 Un—r-H : Q:,r+1 Vn—r-H Tt P:;Un ' Q:Vna

with an extra factor Q;_,, so

SoNCpr,, (War3)=Vy x Vax - x Vpr1 x Q:;_rvn—r : Q;,r+1 Va—rgt oo Q:;Vn,
W3, 3 =Cvy(So N Cry (W2 3))
=VixVyx oo x Vypq x Vi o x Vi X x

We therefore take

Wl =Wl Wl
=Uy x Vi x oo xUpro1 X Vo X Upp x Vi x U g X Vg X x U x Vi
Exr1 =B T1(2) = Co(W3)
=Uy x Vi X xUp—po1 X Vo1 X Upp X Qi Vi
Py qUn—r+1- Qury1Vnors1 ... PoUn - QaVy

= Q:_rEZh
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Lary1 =Ng(Eart1)
= PTSI Ug - Q1*T1 Vi P:_r_lsnfrfl Un—r-1- Q:_r_lTnfrfl Vi—r-1
. P;Lrsn—run—r . Q;:frvn—r . P:—r-ﬁ-] Un—r+1 . Q:_r_1 Vn—r—l el P:Un . Q: Vn-

Repeating the process, take

So N Eare1 = Vi x Vo x o X Vi1 X Qi Vs - QF oy Vs - QVi
€ Syl3 Eor41,
Wari1,2 =Cyo(So N E2rt1)
=VixVyx oo x Vyprqg x Vi o x Vi g xx
Clyiy (Worp12) =S1U1 x Vi X oo X SppqUn—yr—1 X Vnp1 X Py SpUn—r - Qp_ Vit

. P;“;—H—l Un—r+1 . Qr;k—r+1 Vn—r+1 ceet P:Un . Q,;k Vi,
with an extra factor P;_, so

ToNCryy (Warp12) =Uy x Uz x -+ X Unr—1 X Py Un—r-Py_ . qUnyq1-...- PyUn,
Wé’m,z = Cuy(To N CLyyy (Wars1,2))

* * *
=Up xUyx- - XUprq XUy, xUp ;g x---XUp.

Similarly

ToNEy1=Ur x Uy X - xUpy x Py_ yUnyi1-Py_ oUn_ry2-...- PyUy
€ Syl Eori1,

Wari1,3 =Cuyy(To N E2ry1)
=UyxUpx - xUpypxUs_ g xUp_5x---xUp,

CL2r+] Wart13) =U1 xT1Vy x -+ - X Upy—1 X Tn—r—1Vyp—r—1 X Up— - Q:,:rvn—r

* E3 * *
: Pn,rJr] Un—r+1 . anr+l Vn—r+1 teels Pn Un- Qn Va,
SO

So mc"zr“ Wart1,3) = Vi x Vo -0 X Vippq1 X Q;:rvn—r : Q:—r-&-] Vaorg1 ..o Q:Vn,
Wgr+1,3 = Cy, (S0 N Cryppy (Warg1.3))

=VixVyxooxVypq x Vi x Vi g x--x V.
We therefore take

0 _ 0 0
Wot1 =Wor1 2 X Woiq3

* * * *
=Ur xVyx oo xUpraxVyppqgxUp_, xVi_ . x---xU; x Vg,
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2r4-2 _ 0
B72(3) = Co(We,,1)
=Ui x Vi x-+- X Upro1 X Vppmg x Pp_ Uy - Q) Vnr - ...- PrUy - Q1 Vi
=Py Eari1=Eary2,

which completes the proof of the claim.
The claim shows that

E"(2) = En=PQ}P3Q5 ... PEQUg Vo
=PiUq-Q}Vy-PiUs-Q3Va-...  PiU,- Q) Vy,

and it remains to deduce that E?**1(X) = E5,. By Lemma 11(c) it suffices to verify the conditions
(Lz) and (L3) with H = E;. Now

Lyn =Ng(E2n) = Eon,
SocEy =Uf x Vi xU;xVyx--xUsxVy,
Soc; 2 Eon = Socs EZnZVT X V; X oo X VTT,

Lon
K>, (Ezn) =Cey, (V] X V3 x - x Vi) = Egn,

which shows that (L) holds. Similarly
Soc;_3 Eop =So0c Eyp = UT X U; X oee X U:,
Lon
K 2" 3(Eon) = Ck,y, (U] X U3 x -+ x U%) = Egp,
which proves (L3). O
Remark. We have found it convenient to describe a group
G<Gp=HixK{xHyxKyx---xHpxKp,

with a Sylow basis X such that E2*~1(X) < E?"(X) = E2"*1(X), where 2n is even. A similar method
can be used to construct a group

G*<G§=H1 x K1 x Hy x K3 x -+ x Hyp—1 x Kn—1 x Hp,
with a Sylow basis X* such that E2"—2(X*) < E2"~1(X*) = E"(X*), where 2n — 1 is odd.
Remark. It may be checked that in Example 2, E/(¥) = Mi(G) for all i >0, i.e., the chains
E°(2) <EN(2) <E*(®) <--- <E*(X) =E*""(2)
and
M’(G) < M'(G) < M?(G) < --- < M**(G) = M*""1(G)

coincide.
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