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In response to an Open Question of Doerk and Hawkes (1992)
[2, IX §4, p. 628], we shall describe three constructions for the
Zπ -injectors of a finite solvable group, where Zπ is the Fitting
class formed by the finite solvable groups whose π-socle is central
(and π is a set of prime numbers).
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1. Introduction

Throughout this Introduction, let H be a subgroup of a finite solvable group G , and let π =
{p1, p2, . . . , pm} be a set of prime numbers. We use the notation of Doerk and Hawkes [2], and in
particular we define the π -socle of H to be the subgroup Socπ H generated by the minimal normal
π -subgroups of H . If p is a prime number, write Socp H = Soc{p} H , and note that

Socπ H = Socp1 H × Socp2 H × · · · × Socpm H,

where each subgroup Socpi H is an elementary abelian pi -group [2, A(10.5.a) and (4.4)]. Following
Gaschütz [2, IX §2, Construction D and (2.9.a)], define Zπ to be the class of finite solvable groups
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H such that Socπ H � Z(H), and as before write Z p = Z{p} . Then the above direct decomposition of
Socπ H implies that

Zπ = Z p1 ∩Z p2 ∩ · · · ∩Z pm .

These classes were investigated by Frantz and by Lockett [2, IX(4.18)], and also by Blessenohl [1] in
his study of dominant Fitting classes. Each class Zπ is closed under taking normal subgroups and
normal products, so it is a Fitting class [2, IX(2.8)]. It follows that G has a unique maximal normal
Zπ -subgroup, called the Zπ -radical of G [2, II(2.9)]; moreover G has a unique conjugacy class of
subgroups J , called the Zπ -injectors of G , with the property that, for every subnormal subgroup X
of G , J ∩ X is a maximal Zπ -subgroup of X [2, VIII(2.9)].

Now let V p be the p-socle of the Z p-radical of G , and let Sylp G be the set of Sylow p-subgroups
of G (where p is a prime number). It was proved by Frantz and by Lockett [2, IX(4.19)] that if P ∈
Sylp G , then the subgroup

DG
p (P ) = CG

(
CV p (P )

)

is a Z p-injector of G . In Theorem 1 we shall rework this proof. Doerk and Hawkes asked [2, IX §4,
p. 628] whether an analogous description can be given of the Zπ -injectors when π is an arbitrary
set of prime numbers. To do this, recall that a Sylow basis Σ in G is a set of Sylow subgroups of G ,
with |Σ ∩ Sylp G| = 1 for each prime number p, such that every pair of members of Σ permute with
each other [2, I(4.7)]. If Σ is a Sylow basis in G , with {P } = Σ ∩ Sylp G , write DG

p (Σ) = DG
p (P ), and

define

DG
π (Σ) =

⋂
p∈π

DG
p (Σ).

If the set Σ ∩ H = {P ∩ H: P ∈ Σ} is a Sylow basis in H , we say that Σ reduces into H, and we write
Σ ↘ H [2, I(4.15)]. We shall show that Σ ↘ DG

π (Σ), which allows us to make the inductive definition

Di(Σ) =
{

G when i = 0,

DDi−1(Σ)
π (Σ ∩ Di−1(Σ)) when i � 1.

There is an integer k such that D0(Σ) > D1(Σ) > · · · > Dk(Σ) = Dk+1(Σ), and in Theorem 2 we shall
prove that Dk(Σ) is a Zπ -injector of G . Moreover in Example 1 we shall exhibit a group with k = 3
(based on an example due to Blessenohl); we do not know whether there are groups with k > 3.
We shall also reprove Blessenohl’s result that if H is a maximal Zπ -subgroup containing the π -socle
of the Zπ -radical of G , then H is a Zπ -injector; indeed the above construction is suggested by the
proof of this fact [2, IX(4.20)].

The class N of nilpotent groups is closed under taking normal subgroups and normal products
[2, A(8.2.a) and (8.8.b)], so N is a Fitting class. Hence G has an N -radical F (the Fitting subgroup)
and N -injectors. Let q1,q2, . . . ,qn be the prime factors of |F |, and for each index i, choose Si ∈
Sylqi

CG(Oq′
i
(F )). It has been shown by Dade and by Mann [2, IX(4.12)] that 〈S1, S2, . . . , Sn〉 is an

N -injector of G .
If H ∈ N , then every chief factor of H is central, which implies that N ⊆ Zπ . This suggests that

it may be possible to construct the Zπ -injectors by adapting the above characterization of the N -
injectors. To do this, let Nπ be the Zπ -radical of G , and suppose Nπ � H � G with H ∈Zπ . For each
prime number pi ∈ π , take W i = Op′

i
(Socπ H). Then H � CG(W i), so we can choose S0

i ∈ Sylpi
CG(W i)

such that H ∩ S0
i ∈ Sylpi

H . Take H0 = 〈H, S0
1, S0

2, . . . , S0
m〉, and put MG

π (H) = CG(Socπ H0). We shall
show that Nπ � MG

π (H) and MG
π (H) ∈Zπ , which allows us to make the inductive definition
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Mi(G) =
{

Nπ when i = 0,

MG
π (Mi−1(G)) when i � 1.

There is an index k such that M0(G) < M1(G) < · · · < Mk(G) = Mk+1(G), and in Theorem 3 we shall
prove that Mk(G) is a Zπ -injector of G .

This construction can be modified by introducing a Sylow basis Σ . Recall that H is said to be
pronormal in G if, for every element g ∈ G , H and H g are conjugate in 〈H, H g〉; in this case we
write H pr G . Suppose Nπ � H � G , with H ∈ Zπ and Σ ↘ H . Assume also that H pr G and H =
CG(Socπ H), and put L = NG(H). For each prime number pi ∈ π , take W i = Op′

i
(Socπ H) as above.

We shall show that Σ ↘ CL(W i), which allows us to take {S∗
i } = (Σ ∩ CL(W i)) ∩ Sylpi

CL(W i). As
before put H∗ = 〈H, S∗

1, S∗
2, . . . , S∗

m〉, and EΣ
π (H) = CG(Socπ H∗). We shall show that Nπ � EΣ

π (H) and
EΣ
π (H) ∈Zπ , with Σ ↘ EΣ

π (H) and EΣ
π (H) pr G , and moreover EΣ

π (H) = CG(Socπ EΣ
π (H)). This allows

us to make the inductive definition

Ei(Σ) =
{

Nπ when i = 0,

EΣ
π (Ei−1(Σ)) when i � 1.

There is an index k such that E0(Σ) < E1(Σ) < · · · < Ek(Σ) = Ek+1(Σ), with Ei(Σ) pr G for all in-
dices i, and in Theorem 4 we shall prove that Ek(Σ) is a Zπ -injector of G .

The lay-out of the paper is as follows. In Section 2 we prove some preliminary results which will
be used later; in particular, when H � G with H ∈ Zπ , it is convenient to introduce the subgroup
KG

π (H) = CG(Socπ H). In Section 3 we prove Theorems 1 and 2, and construct Example 1. Then Theo-
rems 3 and 4 are proved in Sections 4 and 5 respectively. Finally in Section 6 we construct Example 2,
which shows that the chain E0(Σ) < E1(Σ) < · · · < Ek(Σ) = Ek+1(Σ) may be arbitrarily long.

2. The subgroup KG
π (H)

In our first lemma we write down some easy results about subgroups which contain the Fitting
subgroup. Then we state a property of Zπ -groups proved by Doerk and Hawkes, which will be used
implicitly throughout the paper, and in Lemma 3 we record some consequences of this property. Re-
call that the socle of a group H is the subgroup Soc H generated by all the minimal normal subgroups
of H .

Lemma 1. Let F be the Fitting subgroup of a finite solvable group G.

(a) If Nπ is the Zπ -radical of G (where π is a set of prime numbers), then F � Nπ .
(b) If F � N � G, then CG(N) � N.
(c) If F � N � H � G, then Z(H) � Z(N).
(d) If F � N � H � G, then Soc H � Soc N.

Proof. (a) This holds because F is a normal Zπ -subgroup of G .
(b) From the inclusion CG(F ) � F [2, A(10.6.a)] we get CG(N) � CG(F ) � F � N .
(c) Using (b) we deduce that Z(H) � CG(N) = CN (N) = Z(N).
(d) Suppose U is a minimal normal subgroup of H , and put V = Soc N; we must show that U � V .

If U ∩ N = 1 then [U , N] � U ∩ N = 1, so U � U ∩ CG(N) � U ∩ N = 1 using (b), which contradicts
the definition of U . This proves that U ∩ N 
= 1, so U � N by the minimality of U . Thus U � N , so U
contains a minimal normal subgroup of N . Therefore U ∩ V 
= 1, and hence U � V . �
Lemma 2. (See Doerk and Hawkes [2, IX(4.17)].) Suppose p is a prime number, and π = {p1, p2, . . . , pm}
is a set of prime numbers. Let H be a finite solvable group, with L � H and V p, Vπ � H, where V p is an
elementary abelian p-group, while Vπ = V 1 × V 2 × · · · × Vm, and V i is an elementary abelian pi -group
(1 � i � m).
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(a) Suppose H ∈Z p . If P ∈ Sylp H, then CV p (P ) � Z(H).
(b) Suppose H ∈Z p . If V p � Socp H and p � |H : L|, then CV p (L) = Socp H.
(c) Suppose H ∈Zπ . If Vπ � Socπ H and |H : L| is a π ′-number, then CVπ (L) = Socπ H.

Proof. (a) This is proved in the given reference.
(b) Since H ∈ Z p , it is clear that Socp H � V p ∩ Z(H) � CV p (L). Conversely we can choose P ∈

Sylp L ⊆ Sylp H , and it follows from (a) that CV p (L) � CV p (P ) � Socp Z(H) � Socp H .
(c) We claim first that

CVπ (L) = CV 1(L) × CV 2(L) × · · · × CVm (L).

Suppose v = v1 v2 . . . vm ∈ CVπ (L), with vi ∈ V i (1 � i � m), and put wi = v1 . . . vi−1 vi+1 . . . vm and
W i = Op′

i
(Vπ ). If x ∈ L, then 1 = [v, x] = [vi wi, x] = [vi, x][wi, x], so [vi, x] = [wi, x]−1 ∈ V i ∩ W i = 1;

thus vi ∈ CV i (L), and the claim follows. Since H ∈Zπ = ⋂m
i=1 Z pi , (b) implies that

Socπ H = Socp1 H × Socp2 H × · · · × Socpm H

= CV 1(L) × CV 2(L) × · · · × CVm (L)

= CVπ (L),

as required. �
Lemma 3. Let F be the Fitting subgroup of a finite solvable group G, and suppose p is a prime number, and π
is a set of prime numbers.

(a) Suppose F � H � G with H ∈Z p . If P is a p-subgroup of G with P ∩ H ∈ Sylp H, then 〈P , H〉 ∈Z p .
(b) Suppose F � N � G with N ∈ Z p , and take V = Socp N. If P is a p-subgroup of G, then P N ∈ Z p and

Socp(P N) = CV (P ).
(c) Suppose F � H � H∗ � G with H, H∗ ∈Zπ . Then Socπ H � Socπ H∗ .
(d) Suppose F � H � H∗ � G with H, H∗ ∈Zπ . If |H∗ : H| is a π ′-number, then Socπ H = Socπ H∗ .

Proof. (a) Put L = 〈P , H〉, and suppose U is a minimal normal p-subgroup of L; we must deduce that
U � Z(L). Taking V = Socp F we get U � V by Lemma 1(d), and hence CU (P ) � CV (P ∩ H) � Z(H)

by Lemma 2(a). But CU (P ) is also centralized by P and therefore CU (P ) � Z(L). Thus U ∩ Z(L) �
CU (P ) 
= 1 [2, A(5.5)], so the minimality of U implies that U � Z(L).

(b) Choose P∗ ∈ Sylp(P N) with P∗ � P , and note that P∗ ∩ N ∈ Sylp N [2, A(6.4.a)]. Applying (a)
with H = N , we deduce that P N = P∗N ∈ Z p . Moreover p � |P N : P∗|, so it follows from Lemma 2(b)
that Socp(P N) = CV (P∗) = CV (P (P∗ ∩ N)) = CV (P ) (since P∗ ∩ N centralizes V ).

(c) Take V = Socπ F , and choose subgroups L � L∗ which are Hall π -subgroups of H and H∗
respectively. Then it follows from Lemma 2(c) that Socπ H = CV (L) � CV (L∗) = Socπ H∗ .

(d) Take V = Socπ F and let L be a Hall π -subgroup of H . Then L is also a Hall π -subgroup of H∗ ,
so Lemma 2(b) implies that Socπ H = CV (L) = Socπ H∗ , as in (c). �

We end this section by recalling the definition of KG
π (H), and by recording some of its properties,

which follow from Lemma 3, and which will be used repeatedly in the following sections.

Notation. Let G be a finite solvable group and let π be a set of prime numbers. If H � G we define

KG
π (H) = CG(Socπ H).

If p ∈ π , we also write KG
p (H) = KG{p}(H) and KG

π−p(H) = KG
π−{p}(H).
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Remark. Doerk and Hawkes showed that when H = G , then KG
π (G) is the Zπ -radical of G

[2, IX(2.9.a.2)]. However we shall consider KG
π (H) when H ∈Zπ .

Lemma 4. Let F be the Fitting subgroup of a finite solvable group G, and let π be a set of prime numbers.

(a) Suppose H � G. If τ ⊆ π , then KG
π (H) � KG

τ (H).
(b) Suppose H � G with H ∈Zπ . Then H � KG

π (H).
(c) Suppose F � H � H∗ � G with H, H∗ ∈Zπ . Then KG

π (H) � KG
π (H∗).

(d) Suppose F � H � H∗ � G with H, H∗ ∈Zπ . If |H∗ : H| is a π ′-number, then KG
π (H) = KG

π (H∗).
(e) Suppose F � H � G with H ∈ Zπ . If H � L � KG

π (H), then L ∈ Zπ . In particular KG
π (H) ∈ Zπ , and if

Nπ is the Zπ -radical of G, then Nπ = KG
π (Nπ ).

(f) Suppose F � H � G with H ∈ Zπ . Then Socπ H = Socπ KG
π (H), and hence NG(KG

π (H)) = NG(Socπ H)

and KG
π (KG

π (H)) = KG
π (H).

(g) Suppose F � H � G with H = KG
π (H), and take L = NG(H) and p ∈ π . Then p � |KG

π−p(H) : H| if and

only if p � |KL
π−p(H) : H|.

Proof. (a) This holds because Socπ H � Socτ H .
(b) This is a consequence of the definitions.
(c) This follows from Lemma 3(c).
(d) Similarly this follows from Lemma 3(d).
(e) Suppose p ∈ π and let U be a minimal normal p-subgroup of L; we must deduce that U � Z(L).

Take P ∈ Sylp H and V = Socp F , and note that U � V by Lemma 1(d). Using Lemmas 2(b) and 1(c)
we get CU (P ) � CV (P ) = Socp H � Z(KG

π (H)) � Z(L). Hence U ∩ Z(L) � CU (P ) 
= 1 [2, A(5.5)], so it
follows from the minimality of U that U � Z(L). The last equation holds because KG

π (Nπ ) is a normal
Zπ -subgroup of G with Nπ � KG

π (Nπ ).
(f) Clearly Socπ H � Socπ Z(KG

π (H)) � Socπ KG
π (H). Conversely (b) implies that H � KG

π (H), so
Socπ H � Socπ KG

π (H) by Lemma 3(c). This proves the first equation, and hence

NG
(
KG

π (H)
)
� NG

(
Socπ KG

π (H)
) = NG(Socπ H) � NG

(
KG

π (H)
)
.

It also follows that KG
π (KG

π (H)) = CG(Socπ KG
π (H)) = CG(Socπ H) = KG

π (H).
(g) Clearly KG

π−p(H) � KL
π−p(H), and it follows that if p � |KG

π−p(H) : H| then p � |KL
π−p(H) : H|.

Conversely suppose that p is a factor of |KG
π−p(H) : H|, and choose subgroups P < P∗ with P ∈ Sylp H

and P∗ ∈ Sylp KG
π−p(H). Take P 0 = NP∗ (P ) and V = Socp F , and note that P 0 > P [2, A(8.3.c)]. Also P 0

normalizes CV (P ) and centralizes Socπ−p H . But CV (P ) = Socp H by Lemma 2(b), so P 0 � NG(Socπ H).
Using (f) we deduce that P 0 � NG(KG

π (H)) = NG(H) = L, and hence P 0 � KL
π−p(H). Thus p is a factor

of |KL
π−p(H) : H|. �

3. The subgroup DG
π (Σ)

Our first aim in this section is to prove Theorem 1 and its corollary, which are due to Blessenohl,
Frantz and Lockett. We first give a modified definition of DG

p (P ), and use Lemma 3 to prove some of
its properties.

Notation. Let N p be the Z p-radical of a finite solvable group G (where p is a prime number). If P is
a p-subgroup of G , define

DG
p (P ) = KG

p (P Np).

Remark. We shall show in Lemma 5(b) below that this is equivalent to the definition given by Doerk
and Hawkes [2, IX(4.18)].
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Lemma 5. Let N p be the Z p-radical of a finite solvable group G, and suppose P is a p-subgroup of G (where
p is a prime number).

(a) Then DG
p (P ) ∈Z p .

(b) If V p = Socp N p and U = CV p (P ), then DG
p (P ) = CG(U ).

(c) Suppose Socp N p � H � G with H ∈Z p . If P ∩ H ∈ Sylp H, then H � DG
p (P ).

Proof. (a) Lemma 3(b) implies that P N p ∈Z p , and the result follows from Lemma 4(e).
(b) Lemma 3(b) also shows that Socp(P N p) = U , from which the result follows.
(c) As in (b), put V p = Socp N p and U = CV p (P ). Then U = CV p (P ) � CV p (P ∩ H) � Z(H) by

Lemma 2(a), and hence H � CG(U ) = DG
p (P ), using (b). �

Theorem 1 (Frantz, Lockett). (See [2, IX(4.19)].) Let G be a finite solvable group, and let p be a prime number.
If P ∈ Sylp G, then DG

p (P ) is a Z p-injector of G.

Proof. Let J be a Z p-injector of G , and choose P such that P ∩ J ∈ Sylp J . Then N p � J ∈ Z p , and
it follows from Lemma 5(c) that J � DG

p (P ). But J is a maximal Z p-subgroup of G , so Lemma 5(a)

implies that J = DG
p (P ). �

Corollary 1. (See Blessenohl [1, (4.8)].) Let N p be the Z p-radical of a finite solvable group G. If Socp N p �
H � G with H ∈Z p , then H is contained in a Z p-injector of G.

Proof. Choose P ∈ Sylp G such that P ∩ H ∈ Sylp H . Then Lemma 5(c) shows that H � DG
p (P ), so the

result follows from Theorem 1. �
We now recall the definition of DG

π (Σ), and in the next 2 lemmas we use Lemma 5 to prove some
of its properties. We are then able to deduce Theorem 2.

Notation. Suppose Σ is a Sylow basis in a finite solvable group G . If p is a prime number and
{P } = Σ ∩ Sylp G , write DG

p (Σ) = DG
p (P ). If π is a set of prime numbers, define

DG
π (Σ) =

⋂
p∈π

DG
p (Σ).

Lemma 6. Let Σ be a Sylow basis in a finite solvable group G.

(a) If p is a prime number, then Σ ↘ DG
p (Σ).

(b) If π is a set of prime numbers, then Σ ↘ DG
π (Σ).

Proof. (a) Take {P } = Σ ∩ Sylp G , and put D = DG
p (P ) = DG

p (Σ). Then there is a conjugate D g such
that Σ ↘ D g [2, I(4.16)], and in particular P ∩ D g ∈ Sylp D g . But D g ∈Z p by Lemma 5(a), and clearly
Socp N p � D g , so D g � D by Lemma 5(c). Therefore Σ ↘ D g = D .

(b) This follows from (a) [2, I(4.22.a)]. �
Lemma 7. Let Nπ be the Zπ -radical of a finite solvable group G (where π is a set of prime numbers), and
suppose Σ is a Sylow basis in G.

(a) If G /∈Zπ , then DG
π (Σ) < G.

(b) If Socπ Nπ � H � G, with H ∈Zπ and Σ ↘ H, then H � DG
π (Σ).
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(c) Suppose π = {p1, p2, . . . , pm}. For each index j, take {P j} = Σ ∩ Sylp j
G, and suppose Socp j Nπ �

W j � G, where W j is an elementary abelian p j -group. Put U j = CW j (P j) (1 � j � m), and take U =
U1 × U2 × · · · × Um. Then DG

π (Σ) = CG(U ).

Proof. (a) Since G /∈ Zπ = ⋂
p∈π Z p , there must be a prime number p ∈ π such that G /∈ Z p . Then

DG
π (Σ) � DG

p (Σ) < G by Lemma 5(a).
(b) Suppose p ∈ π , and let N p be the Z p-radical of G . Then Nπ � N p , so it follows from

Lemma 1(d) that Socp N p � Socp Nπ � H . Also H ∈ Zπ ⊆ Z p and Σ ↘ H , so H � DG
p (Σ) by

Lemma 5(c). Thus H �
⋂

p∈π DG
p (Σ) = DG

π (Σ).
(c) For each index j, let N j be the Z p j -radical of G , and put H j = P j N j . Then H j ∈ Z p j by

Lemma 3(b), and Nπ � N j � H j . Now Lemma 1(d) implies that W j � Socp j Nπ � Socp j H j , so
Socp j H j = U j by Lemma 2(b). Therefore DG

p j
(Σ) = CG(U j) (1 � j � m), from which the result fol-

lows. �
Construction. Let Σ be a Sylow basis in a finite solvable group G , and let π be a set of prime
numbers. Take D0(Σ) = G , and when i > 0, assume inductively that a subgroup Di−1(Σ) has been
constructed such that Σ ↘ Di−1(Σ). Now define

Di(Σ) = DDi−1(Σ)
π

(
Σ ∩ Di−1(Σ)

)
.

It follows from Lemma 6(b) that Σ ∩ Di−1(Σ) ↘ Di(Σ), and hence Σ ↘ Di(Σ), so the Construction
can proceed.

Theorem 2. Let G be a finite solvable group, and let π be a set of prime numbers. Choose a Sylow basis Σ in G,
take Di = Di(Σ) as in the above Construction, and let Ni be the Zπ -radical of Di . Then there is an index k
such that

G = D0 > D1 > · · · > Dk = Nk � Nk−1 � · · · � N0,

and Dk = Dk(Σ) is a Zπ -injector of G.

Proof. Let J be a Zπ -injector of G , and choose the Sylow basis Σ such that Σ ↘ J [2, I(4.16)]. We
claim that for all indices i � 0

Ni � J � Di .

Since N0 � J � D0, we can suppose i > 0 and assume inductively that Ni−1 � J � Di−1. Then
Socπ Ni−1 � J , and Σ ∩ Di−1 ↘ J , so the hypotheses of Lemma 7(b) hold in Di−1, and therefore

J � DDi−1
π (Σ ∩ Di−1) = Di . Since J is a Zπ -injector of G , it is also a Zπ -injector of Di , and hence

Ni � J � Di as required.
By definition Di � Di−1, and we have proved that Ni−1 � J � Di . Hence Ni−1 is a normal Zπ -

subgroup of Di , and therefore

Ni−1 � Ni � Di � Di−1.

Moreover the strict inclusion Ni < Di means that Di /∈Zπ , so Lemma 7(a) shows that

if Ni < Di, then Di+1 < Di .

The result follows from the above inclusions. �
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Corollary 2a. (See Blessenohl [2, IX(4.20)].) Let Nπ be theZπ -radical of a finite solvable group G. If Socπ Nπ �
H � G with H ∈Zπ , then H is contained in a Zπ -injector of G.

Proof. Choose a Sylow basis Σ such that Σ ↘ H , and using the notation of Theorem 2 put V i =
Socπ Ni . We claim that for all indices i � 0

V i � H � Di .

By hypothesis V 0 � H � D0, so we can suppose i > 0 and assume inductively that V i−1 � H � Di−1.
Then Ni−1 � Ni � Di−1 by Theorem 2, and using Lemma 1(d) we get V i � V i−1 � H . Moreover as in

Theorem 2, it follows from Lemma 7(b) that H � DDi−1
π (Σ ∩ Di−1) = Di . This proves the claim, and

therefore H � Dk = Dk(Σ), so the result follows from Theorem 2. �
Corollary 2b. With the notation of Theorem 2, suppose π = {p1, p2, . . . , pm}, and let Nπ be the Zπ -radical
of G. For each index j, take

{P j} = Σ ∩ Sylp j
G, W j = Socp j Nπ ,

Pij = P j ∩ Di, Uij = CW j (Pij), Ui = Ui1 × Ui2 × · · · × Uim.

Then Di+1 = CG(Ui), and if V i = Socπ Ni (0 � i � k) then

U0 < U1 < · · · < Uk−1 � Uk = Vk � Vk−1 � · · · � V 0 = Socπ Nπ .

Proof. Note that

Socπ Nπ = W1 × W2 × · · · × Wm, P0 j � P1 j � · · · � Pkj,

U0 j � U1 j � · · · � Ukj � W j, U0 � U1 � · · · � Uk � Socπ Nπ .

Now Nπ � Ni as in Theorem 2, so W j is an elementary abelian normal p j -subgroup of Ni . Also
Lemma 1(d) shows that W j � Socp j Ni , and moreover {Pij} = (Σ ∩ Di) ∩ Sylp j

Di . Then Lemma 7(c)
implies that

Di+1 = CDi (Ui).

In particular D1 = CD0 (U0) = CG(U0), so in proving that Di+1 = CG(Ui), we may suppose i > 0 and as-
sume inductively that Di = CG(Ui−1). Then Ui−1 � Ui , so CG(Ui) � CG(Ui−1) = Di , and it follows that
CG(Ui) = CDi (Ui) = Di+1, as required. Now the strict containment Di > Di+1 implies that Ui−1 < Ui

(1 � i < k).
Finally Nπ = N0 � Dk , so W j � Socp j Dk by Lemma 1(d). Also Dk ∈ Z p j by Theorem 2, and hence

Ukj = CW j (Pkj) = Socp j Dk by Lemma 2(b). Thus Uk = Socπ Dk = Socπ Nk = Vk , while Lemma 1(d)
implies that V i � V i−1 (1 � i � k). �

Corollary 2b gives a procedure for calculating Zπ -injectors, and we end this section by using it to
show that the chain in Theorem 2 may have length 3. As we remarked in the Introduction, we do not
know whether this length can be greater than 3, but we note that a group with this property must
have a similar chain of elementary abelian normal π -subgroups.
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Example 1. There is a finite solvable group G with a Sylow basis Σ , and a set π of prime numbers,
such that

G = D0(Σ) > D1(Σ) > D2(Σ) > D3(Σ) = D4(Σ).

Proof. We can extend an example of Blessenohl [2, §4] as follows. Take the symmetric group H = S4,
and put P1 = 〈(12)〉, P2 = 〈(12)(34), (13)(24)〉, P = P1 P2 and Q = 〈(123)〉; then P ∈ Syl2 H and Q ∈
Syl3 H . Next take N = V 2 × V 3, where V 2 = 〈u1, u2, u3, u4〉 ∼= C4

2 and V 3 = 〈v1, v2, v3, v4〉 ∼= C4
3 are

elementary abelian groups of order 24 and 34 respectively. Make H act on N by taking uσ
i = uiσ and

vσ
i = viσ (σ ∈ H), and form the corresponding semidirect product G = H N; then G can be regarded

as the natural wreath product C6 � S4. Finally put π = {2,3}, and take

Σ = {1, P V 2, Q V 3}, u0 = u1u2, v0 = v1 v2 v3, u∞ = u1u2u3u4.

Note that Σ is a Sylow basis in G .
Now N is the Zπ -radical of G , with V 2 = Soc2 N and V 3 = Soc3 N . Moreover CV 2 (P V 2) = 〈u∞〉

and CV 3 (Q V 3) = 〈v0, v4〉, and as in Corollary 2b we get

DG
2 (Σ) = CG(u∞) = G, DG

3 (Σ) = CG
(〈v0, v4〉

) = P1 Q N.

Therefore D1 = D1(Σ) = G ∩ P1 Q N = P1 Q N , and Σ ∩ D1 = {1, P1 V 2, Q V 3}. Repeating the process
we get CV 2 (P1 V 2) = 〈u0, u3, u4〉 and CV 3 (Q V 3) = 〈v0, v4〉, and hence

DD1
2 (Σ ∩ D1) = CD1

(〈u0, u3, u4〉
) = P1N, DD1

3 (Σ ∩ D1) = CD1

(〈v0, v4〉
) = D1.

Therefore D2 = D2(Σ) = P1N ∩ D1 = P1N , and Σ ∩ D2 = {1, P1 V 2, V 3}. Now CV 2 (P1 V 2) = 〈u0, u3, u4〉
and CV 3 (V 3) = V 3, and hence

DD2
2 (Σ ∩ D2) = CD2

(〈u0, u3, u4〉
) = D2, DD2

3 (Σ ∩ D2) = CD2(V 3) = N.

Therefore D3(Σ) = D2 ∩ N = N ∈Zπ , and hence D3(Σ) = D4(Σ). �
4. The subgroup MG

π (H)

This section contains the proof of Theorem 3, which follows at once from Lemmas 8 and 9; these
lemmas depend on the properties of KG

π (H) recorded in Lemma 4. We first recall the definition
of MG

π (H).

Construction. Let Nπ be the Zπ -radical of a finite solvable group G (where π is a set of prime
numbers) and suppose Nπ � H � G and H ∈ Zπ . For each prime number p ∈ π , choose a subgroup
S∗

p ∈ Sylp KG
π−p(H) such that S∗

p ∩ H ∈ Sylp H . Finally define

H∗ = 〈
H, S∗

p: p ∈ π
〉
, MG

π (H) = KG
π

(
H∗).

Remark. The above Construction may depend on the choice of the Sylow subgroups S∗
p , but we shall

see in Lemma 8(b) below that the truth or falsity of the equation H = MG
π (H) is independent of these

choices.

Lemma 8. Let Nπ be the Zπ -radical of a finite solvable group G (where π is a set of prime numbers), and
suppose Nπ � H � G with H ∈Zπ .
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(a) Then H � KG
π (H) � MG

π (H) and H∗ � MG
π (H), with H∗ ∈Zπ and MG

π (H) ∈Zπ .
(b) Moreover H = MG

π (H) if and only if H satisfies the condition (K0) below, together with the conditions
(Kp) for all prime numbers p ∈ π :

(K0) H = KG
π (H); (Kp) p �

∣∣KG
π−p(H) : H

∣∣.
(c) Suppose H � H0 � G with H0 ∈Zπ and |H0 : H| = qk (where q is a prime number). Then the Construc-

tion can be carried out so that H0 � MG
π (H).

(d) Suppose π = {p1, p2, . . . , pm}. For each index j, if P j ∈ Sylp j
H, there are p j -subgroups P∞

j � P∗
j � P j ,

which can be constructed by taking

V j = Socp j Nπ , U j = CV j (P j).

W j = U1 × · · · × U j−1 × U j+1 × · · · × Um,

P∗
j ∈ Sylp j

CG(W j), U∗
j = CV j

(
P∗

j

)
, U∗ = U∗

1 × U∗
2 × · · · × U∗

m,

P∞
j ∈ Sylp j

MG
π (H), U∞

j = CV j

(
P∞

j

)
.

These definitions imply that Socp j H = U j and Socp j MG
π (H) = U∗

j = U∞
j , with MG

π (H) = CG(U∗).

Proof. (a) Suppose p ∈ π , take H p = 〈H, S∗
p〉, and note that H p ∈ Z p by Lemma 3(a). If q ∈ π − p

then S∗
q � KG

π−q(H) � KG
p (H) by Lemma 4(a), and KG

p (H) � KG
p (H p) by Lemma 4(c). This proves

that H∗ = 〈H p, S∗
q : q ∈ π − p〉 � KG

p (H p), and it follows from Lemma 4(e) that H∗ ∈ Z p . There-

fore H∗ ∈ ⋂
p∈π Z p = Zπ . Applying Lemma 4(c) again we get KG

π (H) � KG
π (H∗) = MG

π (H), and using

Lemma 4(e), we also deduce that MG
π (H) = KG

π (H∗) ∈Zπ .
(b) Assuming that H = MG

π (H), it follows from (a) that (K0) holds. Moreover if p ∈ π then S∗
p �

MG
π (H) = H , so S∗

p ∈ Sylp H , which proves (Kp). Conversely suppose that (Kp) holds when p ∈ {0}∪π .
If p ∈ π it follows from (Kp) that S∗

p ∈ Sylp H , and hence H∗ = 〈H, S∗
p: p ∈ π〉 = H . Now (K0) implies

that H = KG
π (H) = KG

π (H∗) = MG
π (H).

(c) If q /∈ π , then Lemma 4(d) shows that H0 � KG
π (H0) = KG

π (H) � MG
π (H), as required. On the

other hand, if q ∈ π then H0 � KG
π−q(H0) = KG

π−q(H) by Lemma 4(d). Hence we can choose subgroups

Sq � S0
q � S∗

q with Sq ∈ Sylq H , S0
q ∈ Sylq H0 and S∗

q ∈ Sylq KG
π−q(H). Then S0

q � H∗ � MG
π (H), and so

H0 = H S0
q � MG

π (H).
(d) Note that V j � Socp j H by Lemma 1(d), and p j � |H : P j |, so Lemma 2(b) implies that

Socp j H = U j . Also W j = Socπ−p j H � Socπ H , so H � CG(W j). We can therefore choose a subgroup
P∗

j ∈ Sylp j
CG(W j) with P∗

j � P j . Put H∗ = 〈H, P∗
1, P∗

2, . . . , P∗
m〉 as in the Construction of MG

π (H), and

choose subgroups P 0
j ∈ Sylp j

H∗ and P∞
j ∈ Sylp j

MG
π (H) such that P∗

j � P 0
j � P∞

j . Finally put

U 0
j = CV j

(
P 0

j

)
, U 0 = U 0

1 × U 0
2 × · · · × U 0

m.

As before, Lemma 2(b) implies that Socp j H∗ = U 0
j and Socp j MG

π (H) = U∞
j . But Socp j H∗ =

Socp j MG
π (H) by Lemma 4(f), so these equations show that Socp j MG

π (H) = U 0
j = U∞

j . Also MG
π (H) =

CG(Socπ H∗) = CG(U 0), so it suffices to show that U 0
j = U∗

j .

Clearly U 0
j = CV j (P 0

j ) � CV j (P∗
j ) = U∗

j . To prove the converse, note that U∗
j = CV j (P∗

j ) � CV j (P j) =
U j = Socp j H , so U∗

j is centralized by H . Also U∗
j = CV j (P∗

j ) is centralized by P∗
j . Finally if i 
= j, then

U∗
j � U j � W i , and hence U∗

j is centralized by P∗
i . This proves that U∗

j � Socp j Z(H∗), and therefore

U∗
j � Socp j H∗ = U 0

j . �
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Lemma 9. Let Nπ be the Zπ -radical of a finite solvable group G (where π is a set of prime numbers), and
suppose Nπ � H � G with H ∈Zπ .

(a) Let G0 be a maximal normal subgroup of G, such that Nπ � G0 < G, and take H0 = H ∩ G0 . If H =
MG

π (H), then H0 = MG0

π (H0).
(b) If H = MG

π (H), then H is a Zπ -injector of G.

Proof. (a) Note that that Nπ is still the Zπ -radical of G0, so by Lemma 8(b), we must show that if
p ∈ {0} ∪ π , then (Kp) holds for H0 in G0. Now KG

π (H0) � KG
π (H) by Lemma 4(c), and by applying

Lemma 8(a) and (b), we deduce that H0 � KG0

π (H0) = G0 ∩ KG
π (H0) � G0 ∩ KG

π (H) = G0 ∩ H = H0. This
implies that (K0) still holds for H0 in G0. Next consider a prime number p ∈ π , and suppose first
that H � G0. Then KG0

π−p(H) � KG
π−p(H), so |KG0

π−p(H) : H| is a factor of |KG
π−p(H) : H|, and hence

(Kp) also continues to hold for H0 in G0. We may now assume that H � G0.

Put q = |G/G0| (where q is a prime number), and suppose first that p 
= q. Then KG0

π−p(H0) �
KG

π−p(H0) � KG
π−p(H) by Lemma 4(c), while |H| = q · |H0|. Hence |KG0

π−p(H0) : H0| is a factor of the

product q · |KG
π−p(H) : H|, which implies that H0 satisfies (Kp) in G0. We may now assume that

p = q, and it remains to verify (Kq). Now H � KG
π−q(H) = KG

π−q(H0) by Lemma 4(d), and hence

KG
π−q(H0) = H(G0 ∩ KG

π−q(H0)) = HKG0

π−q(H0). Moreover H0 � H ∩ KG0

π−q(H0) � H ∩ G0 = H0, and

hence H ∩ KG0

π−q(H0) = H0. We deduce that

∣∣KG
π−q(H) : H

∣∣ = ∣∣HKG0

π−q

(
H0) : H

∣∣
= ∣∣KG0

π−q

(
H0) : H ∩ KG0

π−q

(
H0)∣∣

= ∣∣KG0

π−q

(
H0) : H0

∣∣,
which implies that (Kq) still holds for H0 in G0.

(b) If Nπ = G then the result is clear, so we may suppose that Nπ < G and use induction on
|G/Nπ |. Choose a maximal normal subgroup G0 � G such that Nπ � G0 < G , and suppose first that
H � G0. Then (a) implies that H = MG0

π (H), so H is a Zπ -injector of G0 by the induction hypothesis,
and it suffices to show that H is a maximal Zπ -subgroup of G [2, VIII(2.10)]. But if H < H∗ � G
with H∗ ∈ Zπ , then H = H∗ ∩ G0 � H∗; it now follows from Lemma 8(c) that H∗ � MG

π (H), which
contradicts our hypothesis. We may therefore assume that H � G0, and put H0 = H ∩G0. As before we
deduce from (a) and the induction hypothesis that H0 is a Zπ -injector of G0. Since H covers G/G0,
this implies that H is a Zπ -injector of G [2, VIII(2.11)]. �
Construction. Let G be a finite solvable group, and take M0(G) = Nπ to be the Zπ -radical of G
(where π is a set of prime numbers). For each index i > 0, assume inductively that a subgroup
Mi−1(G) has been constructed such that Nπ � Mi−1(G) � G and Mi−1(G) ∈Zπ . Now define

Mi(G) = MG
π

(
Mi−1(G)

)
.

It follows from Lemma 8(a) that Nπ � Mi(G) � G and Mi(G) ∈Zπ , so the Construction can proceed.

Theorem 3. Let Nπ be the Zπ -radical of a finite solvable group G (where π is a set of prime numbers), and
take Mi(G) as in the above Construction. Then there is an index k such that

Nπ = M0(G) < M1(G) < · · · < Mk(G) = Mk+1(G),

and Mk(G) is a Zπ -injector of G.
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Proof. This follows from Lemmas 8(a) and 9(b). �
Corollary 3. With the notation of Theorem 3, suppose π = {p1, p2, . . . , pm}. For each index j, there are p j -
subgroups

P0 j � P∗
0 j � P1 j � P∗

1 j � · · · � Pk−1, j � P∗
k−1, j � Pkj,

which can be constructed by taking

Pij ∈ Sylp j
Mi(G), V j = Socp j Nπ , Uij = CV j (Pij),

W ij = Ui1 × · · · × Ui, j−1 × Ui, j+1 × · · · × Uim,

P∗
i j ∈ Sylp j

CG(W ij), U∗
i j = CV j

(
P∗

i j

)
, U∗

i = U∗
i1 × U∗

i2 × · · · × U∗
im.

Then Mi+1(G) = CG(U∗
i ) and Socp j Mi+1(G) = U∗

i j = Ui+1, j , with

Socπ Nπ � U∗
0 > U∗

1 > · · · > U∗
k−1 � U∗

k .

Proof. For each index j, arguing by induction on i, we can use Lemma 8(d) to construct the sub-
groups Pij � P∗

i j � Pi+1, j . Also Mi+1(G) = CG(U∗
i ), so the strict inclusion Mi(G) < Mi+1(G) implies

that U∗
i−1 > U∗

i (1 � i < k). �
5. The subgroup EΣ

π (H)

We now consider Theorem 4. Most of the proof is carried out in Lemma 11, but we first record
some properties of pronormality. Recall that a subgroup H � G is said to be pronormal in G if, for
every element g ∈ G , H and H g are conjugate in 〈H, H g〉; in this case we write H pr G . Moreover H
is normally embedded in G if, for every prime number p and every subgroup P ∈ Sylp H , P is also a
Sylow p-subgroup of its normal closure 〈P G〉 = 〈P g : g ∈ G〉.

Lemma 10. Let G be a finite solvable group, and suppose H � G.

(a) (Lockett [2, I(7.8)]) Suppose Σ is a Sylow basis in G. If H1, H2, . . . , Hn are normally embedded subgroups
of G with Σ ↘ Hi for all indices i, then Hi H j = H j Hi for all indices i and j, and the product H0 =∏n

i=1 Hi is normally embedded in G, with Σ ↘ H0 .
(b) (Chambers [2, I(7.2.b) and (6.14)]) If H is normally embedded in G, then H pr G.
(c) (Mann [2, I(6.6)]) Moreover H pr G if and only if the following condition holds:

(P) if Σ is a Sylow basis in G, and g ∈ G with Σ,Σ g ↘ H, then g ∈ NG(H).
(d) (Lockett [2, I(6.8)]) Let Σ be a Sylow basis in G, and suppose NG(H) � L � G. If H pr G and Σ ↘ H,

then Σ ↘ L.
(e) (P. Hall) If H pr G and H � H∗ pr NG(H), then H∗ pr G.
(f) Let Σ be a Sylow basis in G, and suppose H ∈ Zπ (where π is a set of prime numbers). If H pr G and

Σ ↘ H, then KG
π (H) pr G and Σ ↘ KG

π (H).

Proof. The statements (a), (b) and (c) are proved in the given references.
(d) By extending Σ ∩ H , we can choose a Sylow basis Σ g in G such that Σ g ∩ H = Σ ∩ H and

Σ g ↘ L [2, I(4.16)]. Then (c) implies that g ∈ NG(H) � L, and hence Σ ↘ Lg−1 = L.
(e) Suppose that g ∈ G , and that Σ,Σ g ↘ H∗; by (c) it suffices to deduce that g ∈ NG(H∗). Put

L = NG(H). Now H � H∗ , so the hypothesis implies that Σ,Σ g ↘ H [2, I(3.2.c)], and hence g ∈ L
by (c). Also Σ,Σ g ↘ L by (d), and therefore in L we have Sylow bases Σ ∩ L, (Σ ∩ L)g ↘ H∗ . But
H∗ pr L so it follows from (c) that g ∈ NL(H∗) � NG(H∗).
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(f) Suppose g ∈ G; since H pr G , there is an element x ∈ 〈H, H g〉 such that Hx = H g . But H ∈ Zπ ,
and hence x ∈ 〈H, H g〉 � 〈KG

π (H),KG
π (H)g〉 and KG

π (H)x = KG
π (Hx) = KG

π (H g) = KG
π (H)g , which proves

that KG
π (H) pr G . Note next that NG(H) � NG(Socπ H) � NG(KG

π (H)), so it follows from (d) that Σ ↘
NG(KG

π (H)). This implies that Σ ↘ KG
π (H). �

Construction. Let Σ be a Sylow basis in a finite solvable group G , and let Nπ be the Zπ -radical of G
(where π is a set of prime numbers). Suppose Nπ � H � G , with H ∈ Zπ and Σ ↘ H , such that
H pr G and H = KG

π (H). Put L = NG(H), and for each prime number p ∈ π , take {S∞
p } = Σ ∩ Sylp G ,

and put S p = S∞
p ∩ H and S0

p = S∞
p ∩ KL

π−p(H). Note that S p ∈ Sylp H and S0
p ∈ Sylp KL

π−p(H) by
Lemma 10(f) and (d), and define

H0 = 〈
H, S0

p: p ∈ π
〉
, EΣ

π (H) = KG
π

(
H0).

Lemma 11. Let Nπ be the Zπ -radical of a finite solvable group G (where π is a set of prime numbers), and let
Σ be a Sylow basis in G. Suppose Nπ � H � G, with H ∈Zπ and Σ ↘ H, such that H pr G and H = KG

π (H).
Put L = NG(H), and perform the above Construction.

(a) Then H0 = H · ∏p∈π S0
p and H0 ∈Zπ , with Σ ↘ H0 and H0 pr G.

(b) The Construction of MG
π (H) can be carried out in such a way that H � EΣ

π (H) � MG
π (H). Also EΣ

π (H) ∈
Zπ and Σ ↘ EΣ

π (H), with EΣ
π (H) pr G and EΣ

π (H) = KG
π (EΣ

π (H)).
(c) Moreover H = EΣ

π (H) if and only if the following condition holds for all prime numbers p ∈ π :

(Lp) p �
∣∣KL

π−p(H) : H
∣∣.

(d) Hence H = EΣ
π (H) if and only if H = MG

π (H).
(e) Suppose π = {p1, p2, . . . , pm}. For each index j, take

{
P∞

j

} = Σ ∩ Sylp j
G, V j = Socp j Nπ ,

P j = P∞
j ∩ H, U j = CV j (P j),

W j = U1 × · · · × U j−1 × U j+1 × · · · × Um,

P 0
j = P∞

j ∩ CL(W j), U 0
j = CV j

(
P 0

j

)
, U 0 = U 0

1 × U 0
2 × · · · × U 0

m,

P∗
j = P∞

j ∩ EΣ
π (H), U∗

j = CV j

(
P∗

j

)
.

These definitions imply that Socp j H = U j and Socp j EΣ
π (H) = U 0

j = U∗
j , with EΣ

π (H) = CG(U 0).

Proof. (a) Note that H � L and Σ ↘ H . Moreover for each prime number p ∈ π , S0
p ∈ Sylp KL

π−p(H)

with KL
π−p(H) � L, so S0

p is normally embedded in L. Also Σ ↘ S0
p , so it follows from Lemma 10(a)

that H0 = H ·∏p∈π S0
p is normally embedded in L, and that Σ ↘ H0. Hence H0 pr L by Lemma 10(b),

and therefore H0 pr G by Lemma 10(e).
Finally suppose p ∈ π , take H p = H S0

p , and note that H p ∈ Z p by Lemma 3(a). If q ∈ π − p

then S0
q � KL

π−q(H) � KL
p(H) by Lemma 4(a), and KL

p(H) � KL
p(H p) by Lemma 4(c). Thus H0 = H p ·∏

q∈π−p S0
q � KL

p(H p), and it follows from Lemma 4(e) that H0 ∈Z p . Therefore H0 ∈ ⋂
p∈π Z p =Zπ .

(b) If p ∈ π , then KL
π−p(H) � KG

π−p(H), so we can choose subgroups S0
p � S∗

p with S0
p ∈

Sylp KL
π−p(H) and S∗

p ∈ Sylp KG
π−p(H). Then H0 = H · ∏

p∈π S0
p � 〈H, S∗

p: p ∈ π〉 = H∗ , and it fol-

lows from Lemma 4(c) that EΣ
π (H) = KG

π (H0) � KG
π (H∗) = MG

π (H). Moreover EΣ
π (H) = KG

π (EΣ
π (H))

by Lemma 4(f). From (a) we get Σ ↘ H0 and H0 pr G , so Lemma 10(f) implies that Σ ↘ EΣ
π (H)
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and EΣ
π (H) pr G . Finally (a) also shows that H0 ∈ Zπ , and therefore EΣ

π (H) = KG
π (H0) ∈ Zπ by

Lemma 4(e).
(c) If H = EΣ

π (H) and p ∈ π , then S0
p � EΣ

π (H) = H , so S0
p ∈ Sylp H which proves (Lp). Conversely if

(Lp) holds for all prime numbers p ∈ π , then S p = S0
p , so H = H0 and hence H = KG

π (H) = KG
π (H0) =

EΣ
π (H).

(d) This follows from (b) and (c), together with Lemmas 8(b) and 4(g).
(e) We can copy the proof of Lemma 8(d) as follows. Note that V j � Socp j H by Lemma 1(d),

and p j � |H : P j |, so Lemma 2(b) implies that Socp j H = U j . Hence Socπ−p j H = W j , so H0 =
〈H, P 0

1, P 0
2, . . . , P 0

m〉 as in the Construction of EΣ
π (H). Now Σ ↘ H0 by (a), and we put

P∗∗
j = P∞

j ∩ H0, U∗∗
j = CV j

(
P∗∗

j

)
, U∗∗ = U∗∗

1 × U∗∗
2 × · · · × U∗∗

m .

As before, Lemma 2(b) implies that Socp j H0 = U∗∗
j and Socp j EΣ

π (H) = U∗
j . But Socp j H0 =

Socp j EΣ
π (H) by Lemma 4(f), so it follows from these equations that Socp j EΣ

π (H) = U∗∗
j = U∗

j . Also

EΣ
π (H) = CG(Socπ H0) = CG(U∗∗), so it suffices to show that U∗∗

j = U 0
j .

Clearly U∗∗
j = CV j (P∗∗

j ) � CV j (P 0
j ) = U 0

j . To prove the converse, note that U 0
j = CV j (P 0

j ) �
CV j (P j) = U j = Socp j H , so U 0

j is centralized by H . Also U 0
j = CV j (P 0

j ) is centralized by P 0
j . Finally if

i 
= j, then U 0
j � U j � W i , and hence U 0

j is centralized by P 0
i . This proves that U 0

j � Socp j Z(H0), and

therefore U 0
j � Socp j H0 = U∗

j . �
Construction. Let Σ be a Sylow basis in a finite solvable group G , and take E0(Σ) = Nπ to be the
Zπ -radical of G (where π is a set of prime numbers). For each index i > 0, assume inductively that
a Zπ -subgroup Ei−1(Σ) has been constructed, with Nπ � Ei−1(Σ) � G and Σ ↘ Ei−1(Σ), such that
Ei−1(Σ) = KG

π (Ei−1(Σ)) and Ei−1(Σ) pr G . Then we define

Ei(Σ) = EΣ
π

(
Ei−1(Σ)

)
.

It follows from Lemma 11(b) that Ei(Σ) ∈ Zπ , with Nπ � Ei(Σ) � G and Σ ↘ Ei(Σ), and that
Ei(Σ) pr G and Ei(Σ) = KG

π (Ei(Σ)), so the Construction can proceed.

Theorem 4. Let Nπ be the Zπ -radical of a finite solvable group G (where π is a set of prime numbers). Let Σ

be a Sylow basis in G, and take Ei(Σ) as in the above Construction. Then there is an index k such that

Nπ = E0(Σ) < E1(Σ) < · · · < Ek(Σ) = Ek+1(Σ),

and Ek(Σ) is a Zπ -injector of G, with Ei(Σ) pr G for all indices i.

Proof. This follows from Lemma 11(b) and (d), together with Lemma 9(b). �
Corollary 4. With the notation of Theorem 4, suppose π = {p1, p2, . . . , pm}. For each index j, take

{P j} = Σ ∩ Sylp j
G, V j = Socp j Nπ , Li = NG

(
Ei(Σ)

)
,

Pij = P j ∩ Ei(Σ), Uij = CV j (Pij),

W ij = Ui1 × · · · × Ui, j−1 × Ui, j+1 × · · · × Uim,

P 0
i j = P j ∩ CLi (W ij), U 0

i j = CV j

(
P 0

i j

)
, U 0

i = U 0
i1 × U 0

i2 × · · · × U 0
im.
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Then Ei+1(Σ) = CG(U 0
i ) and Socp j Ei+1(Σ) = U 0

i j = Ui+1, j , with

Socπ Nπ � U 0
0 > U 0

1 > · · · > U 0
k−1 � U 0

k .

Proof. It follows from Lemma 11(e) that Socp j Ei+1(Σ) = U 0
i j = Ui+1, j . Also Ei+1(Σ) = CG(U 0

i ), so the

strict inclusion Ei(Σ) < Ei+1(Σ) implies that U 0
i−1 > U 0

i (1 � i < k). �
6. Construction of Example 2

In this section, we first prove Lemma 12, which describes a way to construct a solvable group with
a unique chief series of arbitrary length. We then use these groups to obtain Example 2, in which the
chain in Theorem 4 is also arbitrarily long.

Notation. Suppose that P and Q are groups, and let Hom(P , Q ) be the set of homomorphisms
λ : P → Q . If u is an automorphism of P , we can define an action of u on Hom(P , Q ) by the equation
λu(x) = λ(xu−1

), where λ ∈ Hom(P , Q ) and x ∈ P .
Write Fpn for the field of order pn (where p is a prime number and n is a positive integer), and

let F+
pn and F×

pn be the additive and multiplicative groups respectively; then F+
pn is elementary abelian

of order pn , and F×
pn is cyclic of order pn − 1. In particular let F4 = {0,1, θ, θ2} be the field of order 4,

with θ3 = θ + θ2 = 1. Identify F+
4 with a multiplicative group 〈y, y′〉, where y and y′ correspond to θ

and θ2 respectively (and so yy′ corresponds to the element θ + θ2 = 1 ∈ F+
4 ). Make the elements of

F4 act ‘multiplicatively’ on 〈y, y′〉 by taking

y0 = 1, y1 = y, yθ = y′, yθ2 = yy′,

y′0 = 1, y′1 = y′, y′ θ = yy′, y′ θ2 = y;

then F×
4 is identified with a group of automorphisms of 〈y, y′〉.

Lemma 12. For each integer n � 0, there is a group

Kn = P1 Q 1 P2 Q 2 . . . Pn+1 Q n+1

and a subgroup Hn = P1 Q 1 P2 Q 2 . . . Pn Q n Pn+1 , with the following properties:

(a) for each r � 0, Kr = Hr Q r+1 is a semidirect product, with Q r+1 � Kr and Hr ∩ Q r+1 = 1; similarly
when r � 1, Hr = Kr−1 Pr+1 with Pr+1 � Hr and Kr−1 ∩ Pr+1 = 1;

(b) for each r � 0, Pr+1 and Q r+1 are the unique minimal normal subgroups of Hr and Kr respectively;
moreover

|Pr | =
⎧⎨
⎩

2 when r = 1,

22 when r = 2,

22|Pr−1| when r � 3,

|Q r | =
{

3 when r = 1,

3|Q r−1| when r � 2;

(c) there are generators a and b of P1 and Q 1 respectively, and a basis {c, c′} of P2 , such that ba = b−1 ,
ca = cb = c′ , c′a = c and c′b = c∗ , where c∗ = cc′; hence CP2 (H0) = CP2 (P1) = 〈c∗〉;

(d) for each n � 1, there is a basis {xu: u ∈ Q n} of Q n+1 , and a homomorphism λ ∈ Hom(Pn+1,F×
3 ), such

that when h ∈ Hn−1 , u, u′ ∈ Q n and y ∈ Pn+1 , then xh
u = xuh , xu′

u = xuu′ and xy
u = xλu(y)

u (where u
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acts on Hom(Pn+1,F×
3 ) as in the Notation above); hence CQ n+1(Kn−1) = CQ n+1(Q n) = 〈x∗〉, where x∗ =∏

u∈Q n
xu ;

(e) for each n � 2, there is a basis {yv , y′
v : v ∈ Pn} of Pn+1 , and a homomorphism μ ∈ Hom(Q n,F×

4 ),

such that when k ∈ Kn−2 , v, v ′ ∈ Pn and x ∈ Q n, then yk
v = yvk , yv ′

v = yv v ′ , yx
v = yμv (x)

v and

y′
v

k = y′
vk , y′

v
v ′ = y′

v v ′ , y′
v

x = y′
v
μv (x) (where μv(x) acts on 〈yv , y′

v〉 as in the Notation above); hence
CPn+1 (Hn−1) = CPn+1 (Pn) = 〈y∗, y′ ∗〉, where y∗ = ∏

v∈Pn
yv and y′ ∗ = ∏

v∈Pn
y′

v .

Proof. This is based on a well-known construction [2, B(9.15)]. As in (c), take H1 = P1 Q 1 P2 ∼= S4,
with P1 = 〈a〉 ∼= C2, Q 1 = 〈b〉 ∼= C3 and P2 = 〈c, c′〉 ∼= C2 × C2. Then P1, Q 1 and P2 are the unique
minimal normal subgroups of H0, K0 and H1 respectively, as in (b), and H0 ∩ Q 1 = K0 ∩ P2 = 1, as
in (a).

We next construct the group K1 = H1 Q 2, using a method which will be generalized to continue
the proof. Since F×

3 = {±1} ∼= C2, we can define a homomorphism λ ∈ Hom(P2,F×
3 ) by taking

λ
(
cαc′α′) = (−1)α+α′ (

α,α′ ∈ {0,1} = F2
)
.

Then the kernel of λ is Kerλ = 〈c∗〉 = [P2, P1], where c∗ = cc′ . Extend λ to a map λ∗ : P1 P2 → F×
3 by

defining λ∗(hy) = λ(y) (h ∈ P1, y ∈ P2). Since P1[P2, P1] � P1 P2, it follows that λ∗ ∈ Hom(P1 P2,F×
3 )

with Ker λ∗ = P1[P2, P1]. Let X = F3x be the corresponding 1-dimensional F3(P1 P2)-module, where
xg = λ∗(g)x (g ∈ P1 P2), and let Q 2 = X H1 = X ⊗F3(P1 P2) F3 H1 be the induced module [2, B(6.1)]. Now
Q 1 is a transversal to P1 P2 in H1, so the set {x ⊗ u: u ∈ Q 1} is an F3-basis of Q 2. Suppose h ∈ P1,
u, u′ ∈ Q 1 and y ∈ P2; then the action of H1 = P1 Q 1 P2 on Q 2 is determined by the equations

(x ⊗ u)h = x ⊗ huh = x ⊗ uh, (x ⊗ u)u′ = x ⊗ uu′,

(x ⊗ u)y = x ⊗ yu−1
u = λ

(
yu−1)

x ⊗ u = λu(y)x ⊗ u.

Thus P1 permutes the given basis of Q 2, Q 1 permutes it regularly, and P2 acts diagonally (with
the basis elements as eigenvectors). Now Kerλ = 〈c∗〉, Kerλb = 〈c〉 and Kerλb2 = 〈c′〉, so the lin-
ear characters λu of P2 (u ∈ Q 1) are distinct, and hence Q 2 is F3 H1-irreducible [2, B(7.8)]. Also
CP2 (Q 2) < P2, and therefore CH1 (Q 2) = 1, because P2 is the unique minimal normal subgroup of H1.
Thus Q 2 is a faithful irreducible F3 H1-module. Now write Q 2 multiplicatively, with xu = x ⊗ u, so
Q 2 = 〈xu: u ∈ Q 1〉. We form the semidirect product K1 = H1 Q 2 as in (a), and we deduce that Q 2 is
the unique minimal normal subgroup of K1, with |Q 2| = 3|Q 1| , as in (b). Moreover if h ∈ P1, u, u′ ∈ Q 1

and y ∈ P2, then the above relations show that xh
u = xuh , xu′

u = xuu′ and xy
u = xλu(y)

u , as in (d). We
now suppose that n � 2 and assume inductively the existence of the group Kn−1, and aim to con-
struct Kn .

By (d), there is a basis {xu: u ∈ Q n−1} of Q n , so we can define a homomorphism μ ∈ Hom(Q n,F×
4 )

by taking

μ

( ∏
u∈Q n−1

xγu
u

)
= θ

∑
u∈Qn−1

γu
,

where γu ∈ {0,±1} = F3 (u ∈ Q n−1). Moreover this basis of Q n is permuted transitively by Kn−2, and
therefore

Kerμ =
{ ∏

u∈Q

xγu
u :

∑
u∈Q

γu = 0

}
= [Q n, Kn−2].
n−1 n−1
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As before, we extend μ to a map μ∗ : Kn−2 Q n → F×
4 by defining μ∗(kx) = μ(x) (k ∈ Kn−2,

x ∈ Q n). Since Kn−2[Q n, Kn−2] � Kn−2 Q n , it follows that μ∗ ∈ Hom(Kn−2 Q n,F×
4 ) with Kerμ∗ =

Kn−2[Q n, Kn−2]. Let Y = F4 y∗ be the corresponding 1-dimensional F4(Kn−2 Q n)-module, where
y∗ g = μ∗(g)y∗ (g ∈ Kn−2 Q n), and put y = θ y∗ , y′ = θ2 y∗ . Then {y, y′} is an F2-basis of Y , so
that Y can also be regarded as a 2-dimensional F2(Kn−2 Q n)-module. Next form the induced mod-
ule Pn+1 = Y Kn−1 = Y ⊗F2(Kn−2 Q n) F2 Kn−1. Now Pn is a transversal to Kn−2 Q n in Kn−1, so the set
{y ⊗ v, y′ ⊗ v: v ∈ Pn} is an F2-basis of Pn+1. Suppose k ∈ Kn−2, v, v ′ ∈ Pn and x ∈ Q n; then the
action of Kn−1 = Kn−2 Pn Q n on Pn+1 is determined by the equations

(y ⊗ v)k = y ⊗ kvk = y ⊗ vk, (y ⊗ v)v ′ = y ⊗ v v ′,

(y ⊗ v)x = y ⊗ xv−1
v = μ

(
xv−1)

y ⊗ v = μv(x)y ⊗ v,(
y′ ⊗ v

)
k = y′ ⊗ vk,

(
y′ ⊗ v

)
v ′ = y′ ⊗ v v ′,

(
y′ ⊗ v

)
x = μv(x)y′ ⊗ v.

Here μv(x) ∈ F×
4 = {1, θ, θ2} ∼= C3, and its action on Y = F2 y ⊕F2 y′ is determined by the rules θ y = y′

and θ y′ = y + y′ . Thus the subspaces Y ⊗ v = F2(y ⊗ v) ⊕ F2(y′ ⊗ v) (v ∈ Pn) are permuted by Kn−2,
and permuted regularly by Pn , and stabilized by Q n .

Now suppose v ∈ Pn with v 
= 1; we claim that

Kerμv 
= Kerμ.

To prove this, note first that (b) implies that CQ n−1(Pn) = 1. Hence there is an element u′ ∈ Q n−1 such
that v−1u′ 
= u′v−1. Now (b) also implies that Hn−1 acts faithfully on Q n , and {xu: u ∈ Q n−1} is a
basis of Q n . Hence there is an element u ∈ Q n−1 such that xv−1u′

u 
= xu′v−1

u . Now (d) shows that

xv−1u′
u = xλu(v−1)u′

u = xλu(v−1)

uu′ , xu′v−1

u = xv−1

uu′ = xλuu′
(v−1)

uu′ ,

and therefore λu(v−1) 
= λuu′
(v−1). Take x = xu x−1

uu′ , and note that μ(x) = 1, using the definition of μ.

However xv−1 = xλu(v−1)
u x−λuu′

(v−1)

uu′ , and hence μv(x) = μ(xv−1
) 
= 1, which proves the claim.

The claim shows that the 2-dimensional representations μv of Q n over F2 (v ∈ Pn) are in-
equivalent, which implies that Pn+1 is F2 Kn−1-irreducible. Moreover CQ n (Pn+1) < Q n , and hence
CKn−1 (Pn+1) = 1, because Q n is the unique minimal normal subgroup of Kn−1. Thus Pn+1 is a faithful
irreducible F2 Kn−1-module. Now write Pn+1 multiplicatively, with yv = y ⊗ v and y′

v = y′ ⊗ v , so
Pn+1 = 〈yv , y′

v : v ∈ Pn〉. We form the semidirect product Hn = Kn−1 Pn+1 as in (a), and we deduce
that Pn+1 is the unique minimal normal subgroup of Hn , with |Pn+1| = 22|Pn | , as in (b). If k ∈ Kn−2,

v, v ′ ∈ Pn and x ∈ Q n , then the above relations show that yk
v = yvk , yv ′

v = yv v ′ , yx
v = yμv (x)

v and

y′
v

k = y′
vk , y′

v
v ′ = y′

v v ′ , y′
v

x = y′
v
μv (x) . This proves that (e) holds for Pn+1.

Now F4 acts on Y v = 〈yv , y′
v〉 with y0

v = 1, y1
v = yv , yθ

v = y′
v , yθ2

v = yv y′
v and y′

v
0 = 1, y′

v
1 = y′

v ,

y′
v
θ = yv y′

v , y′
v
θ2 = yv , as in the Notation above. Put y∗

v = yv y′
v , and note that yv = y∗ θ

v and y′
v =

y∗ θ2

v . Hence Y v = {y∗ δ
v : δ ∈ F4}, so the elements of Pn+1 can be written as

∏
v∈Pn

y∗ δv
v with δv ∈ F4

(v ∈ Pn). Let τ : F+
4 → F+

2 be the trace homomorphism, with τ (δ) = δ + δ2 (δ ∈ F4), and note that
τ (θ) = τ (θ2) = 1 and τ (1) = 0. Define a homomorphism ν ∈ Hom(Pn+1,F×

3 ) by taking

ν

( ∏
v∈Pn

y∗ δv
v

)
= (−1)τ (

∑
v∈Pn δv ),

where δv ∈ F4 (v ∈ Pn). Writing δv = αvθ + βvθ2 with αv , βv ∈ F2, we deduce that
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Kerν =
{ ∏

v∈Pn

y∗ δv
v : τ

( ∑
v∈Pn

δv

)
= 0

}

=
{ ∏

v∈Pn

yαv
v y′

v
βv :

∑
v∈Pn

(αv + βv) = 0

}

�
{ ∏

v∈Pn

yαv
v y′

v
βv :

∑
v∈Pn

αv =
∑
v∈Pn

βv = 0

}

= [Pn+1, Hn−1],
because the sets {yv : v ∈ Pn} and {y′

v : v ∈ Pn} are permuted transitively by Hn−1. Extend ν to a
map ν∗ : Hn−1 Pn+1 → F×

3 by defining ν∗(hy) = ν(y) (h ∈ Hn−1, y ∈ Pn+1). Then Hn−1[Pn+1, Hn−1] �
Hn−1.Kerν � Hn−1 Pn+1, with Hn−1[Pn+1, Hn−1] � Hn−1 Pn+1 and

Hn−1 Pn+1/Hn−1[Pn+1, Hn−1] ∼= F+
4

∼= C2 × C2.

Hence Hn−1.Kerν � Hn−1 Pn+1, and therefore ν∗ ∈ Hom(Hn−1 Pn+1,F×
3 ) with Kerν∗ = Hn−1.Kerν .

Let Z = F3z be the corresponding 1-dimensional F3(Hn−1 Pn+1)-module, where zg = ν∗(g)z (g ∈
Hn−1 Pn+1). Next form the induced module Q n+1 = Z Hn = Z ⊗F3(Hn−1 Pn+1) F3 Hn . Now Q n is a transver-
sal to Hn−1 Pn+1 in Hn , so the set {z ⊗ w: w ∈ Q n} is an F3-basis of Q n+1. Suppose h ∈ Hn−1,
w, w ′ ∈ Q n and y ∈ Pn+1; then the action of Hn = Hn−1 Q n Pn+1 on Q n+1 is determined by the equa-
tions

(z ⊗ w)h = z ⊗ hwh = z ⊗ wh, (z ⊗ w)w ′ = z ⊗ w w ′,

(z ⊗ w)y = z ⊗ yw−1
w = ν

(
yw−1)

z ⊗ w = νw(y)z ⊗ w.

Thus Hn−1 permutes the above basis of Q n+1, Q n permutes it regularly, and Pn+1 acts diagonally
(with the basis elements as eigenvectors).

Now suppose w ∈ Q n with w 
= 1; we claim that

Kerνw 
= Kerν.

To prove this, note first that (b) implies that CPn (Q n) = 1. Hence there is an element v ′ ∈ Pn such that
w−1 v ′ 
= v ′w−1. Now (b) also implies that Kn−1 acts faithfully on Pn+1, and Pn+1 is generated by the
subgroups Y v = 〈yv , y′

v : v ∈ Pn〉. Hence there is an element v ∈ Pn such that either yw−1 v ′
v 
= yv ′ w−1

v

or y′
v

w−1 v ′ 
= y′
v

v ′ w−1
. We deduce from (e) that

yw−1 v ′
v = yμv (w−1)v ′

v = yμv (w−1)

v v ′ , yv ′ w−1

v = yw−1

v v ′ = yμv v′
(w−1)

v v ′ ,

y′
v

w−1 v ′ = y′
v v ′

μv (w−1)
, y′

v
v ′ w−1 = y′

v v ′
μv v′

(w−1)
,

and hence μv(w−1) 
= μv v ′
(w−1). To complete the proof, suppose first that τ (μv(w−1)) 
=

τ (μv v ′
(w−1)), and take y = y∗

v y∗
v v ′ . Then

yw−1 = y∗μv (w−1)
v y∗μv v′

(w−1)

v v ′ ,

and it follows from the definition of ν that ν(y) = 1 and νw(y) = ν(yw−1
) 
= 1. This proves the

claim in this case, so we may assume that μv(w−1) 
= μv v ′
(w−1) but τ (μv(w−1)) = τ (μv v ′

(w−1)).
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It follows that either μv(w−1) = θ and μv v ′
(w−1) = θ2, or else μv(w−1) = θ2 and μv v ′

(w−1) = θ .
In both cases we can take y = yv yv v ′ = y∗ θ

v y∗ θ
v v ′ , and note that

yw−1 = y∗ θμv (w−1)
v y∗ θμv v′

(w−1)

v v ′ = y∗ θ2

v y∗
v v ′a or y∗

v y∗ θ2

v v ′ .

Again it follows from the definition of ν that ν(y) = 1 and νw(y) = ν(yw−1
) 
= 1, which completes

the proof of the claim.
The claim shows that the linear characters νw of Pn+1 (w ∈ Q n) are distinct, which implies that

Q n+1 is F3 Hn-irreducible. Also CPn+1 (Q n+1) < Pn+1, and hence CHn (Q n+1) = 1, because Pn+1 is the
unique minimal normal subgroup of Hn . Thus Q n+1 is a faithful irreducible F3 Hn-module. Now write
Q n+1 multiplicatively, with zw = z ⊗ w , so Q n+1 = 〈zw : w ∈ Q n〉. We form the semidirect product
Kn = Hn Q n+1 as in (a), and we deduce that Q n+1 is the unique minimal normal subgroup of Kn , with
|Q n+1| = 3|Q n| , as in (b). If h ∈ Hn−1, w, w ′ ∈ Q n and y ∈ Pn+1, then the above relations show that

zh
w = zwh , zw ′

w = zw w ′ and zy
w = zνw (y)

w . This proves that (d) holds for Q n+1. �
Example 2. For each integer n � 1, there is a finite solvable group G with a Sylow basis Σ , and a set
π of prime numbers, such that

E0(Σ) < E1(Σ) < E2(Σ) < · · · < E2n(Σ) = E2n+1(Σ).

Proof. Consider groups H1, K1, H2, K2, . . . , Hn, Kn which are isomorphic to the groups constructed in
Lemma 12, but are not regarded as subgroups of each other. More explicitly, take

Hr = P1r Q 1r P2r Q 2r . . . Prr Q rr Pr+1,r,

Kr = P 0
1r Q 0

1r P 0
2r Q 0

2r . . . P 0
r+1,r Q 0

r+1,r,

with isomorphisms Pi ∼= Pir ∼= P 0
ir (1 � i � r + 1), Q j ∼= Q jr ∼= Q 0

jr (1 � j � r) and Q r+1 ∼= Q 0
r+1,r .

Suppose further that if x ∈ Pi and y ∈ Q j , then xr and yr are the corresponding elements of Pir and
Q jr respectively, and similarly x′

r and y′
r are the corresponding elements of P 0

ir and Q 0
jr respectively.

Now form the direct product

G0 = H1 × K1 × H2 × K2 × · · · × Hn × Kn,

and take the ‘diagonal’ subgroups

P∗
r = {

xr x′
r xr+1x′

r+1 . . . xnx′
n: x ∈ Pr

}
� Hr × Kr × Hr+1 × Kr+1 × · · · × Hn × Kn,

Q ∗
r = {

y′
r yr+1 y′

r+1 yr+2 y′
r+2 . . . yn y′

n: y ∈ Q r
}

� Kr × Hr+1 × Kr+1 × Hr+2 × Kr+2 × · · · × Hn × Kn,

with P∗
r

∼= Pr and Q ∗
r

∼= Q r (1 � r � n). We also put

Sr = Q rr � Hr, Tr = P 0
r+1,r � Kr,

Ur = Pr+1,r � Hr, Vr = Q 0
r+1,r � Kr,

U0 = U1 × U2 × · · · × Un � H1 × H2 × · · · × Hn,

V 0 = V 1 × V 2 × · · · × Vn � K1 × K2 × · · · × Kn.
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Clearly Sr Ur, Tr Vr � G0, and P∗
r normalizes Q ∗

r (1 � r � n); moreover the subgroup P∗
r Sr Ur · Q ∗

r Tr Vr

normalizes P∗
s and Q ∗

s (1 � r < s � n), and we can define

G = P∗
1 S1U1 · Q ∗

1 T1 V 1 · P∗
2 S2U2 · Q ∗

2 T2 V 2 · . . . · P∗
n SnUn · Q ∗

n Tn Vn.

There are Sylow subgroups

T0 = P∗
1U1 · T1 · P∗

2U2 · T2 · . . . · P∗
n Un · Tn ∈ Syl2 G,

S0 = S1 · Q ∗
1 V 1 · S2 · Q ∗

2 V 2 · . . . · Sn · Q ∗
n Vn ∈ Syl3 G,

so we put π = {2,3}, and take the Sylow basis Σ = {1, T0, S0}. We also put U∗
r = CUr (Prr) = CUr (P∗

r )

and V ∗
r = CVr (Q 0

rr) = CVr (Q ∗
r ), and we note that Lemma 12(c), (e) and (d) show that

U∗
r = CUr

(
P∗

1 Q ∗
1 P∗

2 Q ∗
2 . . . P∗

n Q ∗
n

) ∼=
{

C2 when r = 1,

C2 × C2 when r � 2,

V ∗
r = CVr

(
P∗

1 Q ∗
1 P∗

2 Q ∗
2 . . . P∗

n Q ∗
n

) ∼= C3 when r � 1.

We take

E2r = P∗
n−r+1 Q ∗

n−r+1 P∗
n−r+2 Q ∗

n−r+2 . . . P∗
n Q ∗

n U0 V 0

= U1 × V 1 × · · · × Un−r × Vn−r × P∗
n−r+1Un−r+1 · Q ∗

n−r+1Vn−r+1 · . . . · P∗
n Un · Q ∗

n Vn,

and we claim that

E2r(Σ) = E2r (0 � r � n).

To prove this, note that U0 V 0 = CG0(U0 V 0) = CG(U0 V 0) is the Zπ -radical of G , and therefore E0(Σ) =
U0 V 0 = E0, with

Soc2 E0 = U0, Soc3 E0 = V 0.

Arguing by induction on r, we may now suppose that r < n, and assume that E2r(Σ) = E2r , and aim
to prove the corresponding formula for E2r+2(Σ).

We first calculate L2r = NG(E2r). Now NP∗
i Si Ui

(P∗
i U i) = P∗

i NSi (P∗
i )Ui , and

NSi

(
P∗

i

) = NQ ii (Pii) = CQ ii (Pii) = 1,

because Q ii is a faithful irreducible module over F3 for the group

P1i Q 1i P2i Q 2i . . . Pi−1,i Q i−1,i P ii .

Thus NP∗
i Si Ui

(P∗
i U i) = P∗

i U i , and similarly NQ ∗
i T i V i

(Q ∗
i V i) = Q ∗

i V i . Hence

L2r = NG(E2r)

= P∗
1 S1U1 · Q ∗

1 T1 V 1 · . . . · P∗
n−r Sn−r Un−r · Q ∗

n−r Tn−r Vn−r

· P∗
n−r+1Un−r+1 · Q ∗

n−r+1Vn−r+1 · . . . · P∗
n Un · Q ∗

n Vn.
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Using the procedure of Corollary 4, take

S0 ∩ E2r = V 1 × V 2 × · · · × Vn−r × Q ∗
n−r+1Vn−r+1 · Q ∗

n−r+2Vn−r+2 · . . . · Q ∗
n Vn

∈ Syl3 E2r,

W2r,2 = CV 0(S0 ∩ E2r)

= V 1 × V 2 × · · · × Vn−r × V ∗
n−r+1 × V ∗

n−r+2 × · · · × V ∗
n ,

CL2r (W2r,2) = S1U1 × V 1 × · · · × Sn−r Un−r × Vn−r × P∗
n−r+1Un−r+1

· Q ∗
n−r+1 Vn−r+1 · . . . · P∗

n Un · Q ∗
n Vn,

so

T0 ∩ CL2r (W2r,2) = U1 × U2 × · · · × Un−r × P∗
n−r+1Un−r+1 · P∗

n−r+2Un−r+2 · . . . · P∗
n Un,

W 0
2r,2 = CU0

(
T0 ∩ CL2r (W2r,2)

)
= U1 × U2 × · · · × Un−r × U∗

n−r+1 × U∗
n−r+2 × · · · × U∗

n .

Similarly

T0 ∩ E2r = U1 × U2 × · · · × Un−r × P∗
n−r+1Un−r+1 · P∗

n−r+2Un−r+2 · . . . · P∗
n Un

∈ Syl2 E2r,

W2r,3 = CU0(T0 ∩ E2r)

= U1 × U2 × · · · × Un−r × U∗
n−r+1 × U∗

n−r+2 × · · · × U∗
n ,

CL2r (W2r,3) = U1 × T1 V 1 × · · · × Un−r−1 × Tn−r−1 Vn−r−1 × Un−r × Q ∗
n−r Tn−r Vn−r

· P∗
n−r+1Un−r+1 · Q ∗

n−r+1Vn−r+1 · . . . · P∗
n Un · Q ∗

n Vn,

with an extra factor Q ∗
n−r , so

S0 ∩ CL2r (W2r,3) = V 1 × V 2 × · · · × Vn−r−1 × Q ∗
n−r Vn−r · Q ∗

n−r+1Vn−r+1 · . . . · Q ∗
n Vn,

W 0
2r,3 = CV 0

(
S0 ∩ CL2r (W2r,3)

)
= V 1 × V 2 × · · · × Vn−r−1 × V ∗

n−r × V ∗
n−r+1 × · · · × V ∗

n .

We therefore take

W 0
2r = W 0

2r,2 × W 0
2r,3

= U1 × V 1 × · · · × Un−r−1 × Vn−r−1 × Un−r × V ∗
n−r × U∗

n−r+1 × V ∗
n−r+1 × · · · × U∗

n × V ∗
n ,

E2r+1 = E2r+1(Σ) = CG
(
W 0

2r

)
= U1 × V 1 × · · · × Un−r−1 × Vn−r−1 × Un−r × Q ∗

n−r Vn−r

· P∗
n−r+1Un−r+1 · Q ∗

n−r+1Vn−r+1 · . . . · P∗
n Un · Q ∗

n Vn

= Q ∗
n−r E2r,
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L2r+1 = NG(E2r+1)

= P∗
1 S1U1 · Q ∗

1 T1 V 1 · . . . · P∗
n−r−1 Sn−r−1Un−r−1 · Q ∗

n−r−1Tn−r−1 Vn−r−1

· P∗
n−r Sn−r Un−r · Q ∗

n−r Vn−r · P∗
n−r+1Un−r+1 · Q ∗

n−r−1Vn−r−1 · . . . · P∗
n Un · Q ∗

n Vn.

Repeating the process, take

S0 ∩ E2r+1 = V 1 × V 2 × · · · × Vn−r−1 × Q ∗
n−r Vn−r · Q ∗

n−r+1Vn−r+1 · . . . · Q ∗
n Vn

∈ Syl3 E2r+1,

W2r+1,2 = CV 0(S0 ∩ E2r+1)

= V 1 × V 2 × · · · × Vn−r−1 × V ∗
n−r × V ∗

n−r+1 × · · · × V ∗
n ,

CL2r+1(W2r+1,2) = S1U1 × V 1 × · · · × Sn−r−1Un−r−1 × Vn−r−1 × P∗
n−r Sn−r Un−r · Q ∗

n−r Vn−r

· P∗
n−r+1Un−r+1 · Q ∗

n−r+1 Vn−r+1 . . . · P∗
n Un · Q ∗

n Vn,

with an extra factor P∗
n−r , so

T0 ∩ CL2r+1(W2r+1,2) = U1 × U2 × · · · × Un−r−1 × P∗
n−r Un−r · P∗

n−r+1Un−r+1 · . . . · P∗
n Un,

W 0
2r+1,2 = CU0

(
T0 ∩ CL2r+1(W2r+1,2)

)
= U1 × U2 × · · · × Un−r−1 × U∗

n−r × U∗
n−r+1 × · · · × U∗

n .

Similarly

T0 ∩ E2r+1 = U1 × U2 × · · · × Un−r × P∗
n−r+1Un−r+1 · P∗

n−r+2Un−r+2 · . . . · P∗
n Un

∈ Syl2 E2r+1,

W2r+1,3 = CU0(T0 ∩ E2r+1)

= U1 × U2 × · · · × Un−r × U∗
n−r+1 × U∗

n−r+2 × · · · × U∗
n ,

CL2r+1(W2r+1,3) = U1 × T1 V 1 × · · · × Un−r−1 × Tn−r−1 Vn−r−1 × Un−r · Q ∗
n−r Vn−r

· P∗
n−r+1Un−r+1 · Q ∗

n−r+1Vn−r+1 · . . . · P∗
n Un · Q ∗

n Vn,

so

S0 ∩ CL2r+1(W2r+1,3) = V 1 × V 2 × · · · × Vn−r−1 × Q ∗
n−r Vn−r · Q ∗

n−r+1Vn−r+1 · . . . · Q ∗
n Vn,

W 0
2r+1,3 = CV 0

(
S0 ∩ CL2r+1(W2r+1,3)

)
= V 1 × V 2 × · · · × Vn−r−1 × V ∗

n−r × V ∗
n−r+1 × · · · × V ∗

n .

We therefore take

W 0
2r+1 = W 0

2r+1,2 × W 0
2r+1,3

= U1 × V 1 × · · · × Un−r−1 × Vn−r−1 × U∗
n−r × V ∗

n−r × · · · × U∗
n × V ∗

n ,



R. Dark et al. / Journal of Algebra 381 (2013) 209–232 231
E2r+2(Σ) = CG
(
W 0

2r+1

)
= U1 × V 1 × · · · × Un−r−1 × Vn−r−1 × P∗

n−r Un−r · Q ∗
n−r Vn−r · . . . · P∗

n Un · Q ∗
n Vn

= P∗
n−r E2r+1 = E2r+2,

which completes the proof of the claim.
The claim shows that

E2n(Σ) = E2n = P∗
1 Q ∗

1 P∗
2 Q ∗

2 . . . P∗
n Q ∗

n U0 V 0

= P∗
1U1 · Q ∗

1 V 1 · P∗
2U2 · Q ∗

2 V 2 · . . . · P∗
n Un · Q ∗

n Vn,

and it remains to deduce that E2n+1(Σ) = E2n . By Lemma 11(c) it suffices to verify the conditions
(L2) and (L3) with H = E2n . Now

L2n = NG(E2n) = E2n,

Soc E2n = U∗
1 × V ∗

1 × U∗
2 × V ∗

2 × · · · × U∗
n × V ∗

n ,

Socπ−2 E2n = Soc3 E2n = V ∗
1 × V ∗

2 × · · · × V ∗
n ,

KL2n
π−2(E2n) = CE2n

(
V ∗

1 × V ∗
2 × · · · × V ∗

n

) = E2n,

which shows that (L2) holds. Similarly

Socπ−3 E2n = Soc2 E2n = U∗
1 × U∗

2 × · · · × U∗
n ,

KL2n
π−3(E2n) = CE2n

(
U∗

1 × U∗
2 × · · · × U∗

n

) = E2n,

which proves (L3). �
Remark. We have found it convenient to describe a group

G � G0 = H1 × K1 × H2 × K2 × · · · × Hn × Kn,

with a Sylow basis Σ such that E2n−1(Σ) < E2n(Σ) = E2n+1(Σ), where 2n is even. A similar method
can be used to construct a group

G∗ � G∗
0 = H1 × K1 × H2 × K2 × · · · × Hn−1 × Kn−1 × Hn,

with a Sylow basis Σ∗ such that E2n−2(Σ∗) < E2n−1(Σ∗) = E2n(Σ∗), where 2n − 1 is odd.

Remark. It may be checked that in Example 2, Ei(Σ) = Mi(G) for all i � 0, i.e., the chains

E0(Σ) < E1(Σ) < E2(Σ) < · · · < E2n(Σ) = E2n+1(Σ)

and

M0(G) < M1(G) < M2(G) < · · · < M2n(G) = M2n+1(G)

coincide.
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