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In this paper we investigate the Lie structure of the derived 
Lie superalgebra [K, K], with K the set of skew elements of 
a semiprime associative superalgebra A with superinvolution. 
We show that if U is a Lie ideal of [K, K], then either there 
exists an ideal J of A such that the Lie ideal [J ∩ K, K]
is nonzero and contained in U , or A is a subdirect sum of 
A′, A′′, where the image of U in A′ is central, and A′′ is a 
subdirect product of orders in simple superalgebras, each at 
most 16-dimensional over its center.
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1. Introduction

Let A be an algebra over φ, an associative commutative unital ring of scalars with 
1/2 ∈ φ. A is said to be a superalgebra if it is a Z2-graded algebra, that is, A = A0⊕A1, 
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with AiAj ⊆ Ai+j , i, j ∈ Z2. A0 is said to be the even part and A1 is said to be the odd 
part. Elements in A0 and A1 are said to be homogeneous elements.

A Lie superalgebra is a superalgebra with an operation [ , ] satisfying the following 
axioms for every a, b, c homogeneous elements in A (where ā denotes the degree of a, 
that is a ∈ Aā)

[a, b] = −(−1)āb̄[b, a][
a, [b, c]

]
=

[
[a, b], c

]
+ (−1)āb̄

[
b, [a, c]

]

Superalgebras have proved to be very useful in mathematics, and, in particular, in al-
gebra. For example in the theory of varieties of algebras, in questions concerning the 
structure of T -ideals, their nilpotency or solvability [9,21,20]; and also to construct 
some counterexamples, for instance, of solvable but not nilpotent Jordan, alternative 
and (−1, −1)-algebras, or to construct prime algebras with nonzero absolute zero divi-
sors [18].

In the last two decades, the different kinds of superalgebras have been profusely inves-
tigated, and also the relationships among them. In this paper we study some relationships 
among associative and Lie superalgebras. More specifically we are interested in the de-
scription of the Lie structure of the derived superalgebra [K, K], with K the set of 
skewsymmetric elements of a semiprime superalgebra with superinvolution.

An associative superalgebra is just a superalgebra that is associative as an ordinary 
algebra.

It is known that, if we take an associative superalgebra, A, and we change the product 
in A by the superbracket product [a, b] = ab − (−1)āb̄ba, where ā, b̄ denote the degrees of 
a and b, homogeneous elements in A = A0 ⊕A1, we obtain a Lie superalgebra, denoted 
by A−. Also if A is an associative superalgebra and has a superinvolution, that is, a 
graded linear map ∗ : A −→ A such that a∗∗ = a and (ab)∗ = (−1)āb̄b∗a∗, for a, b ∈ A

homogeneous elements, the set of skewsymmetric elements, K = {x ∈ A : x∗ = −x}, 
is a subalgebra of the Lie superalgebra A−. In fact, in the classification of the finite 
dimensional simple Lie superalgebras given by V. Kac in [8], several types are of this 
kind.

This important fact made that, in [3], C. Gómez-Ambrosi and I. Shestakov investi-
gated the Lie structure of the set of skew elements, K, and also of [K, K], of a simple 
associative superalgebra with superinvolution over a field of characteristic not 2. More 
specifically they described the ideals of these Lie superalgebras K and [K, K], also called 
Lie ideals of K and [K, K]. Those results were extended in [4] to prime associative super-
algebras with superinvolution for the Lie superalgebras K and [K, K], and later, in [11], 
to semiprime superalgebras with superinvolution, but only for the Lie superalgebra K.

For the case of associative superalgebras without superinvolution, F. Montaner in [16]
and S. Montgomery in [17] studied the Lie ideals of a prime associative superalgebra.

In the nongraded case, there is a parallel situation for associative algebras with involu-
tion and Lie algebras. I.N. Herstein [5–7] and W.E. Baxter [1] first studied in associative 
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algebras with involution the Lie structure of K and [K, K], and after several authors 
contributed to this subject: T.E. Erickson [2], C. Lanski [13], W.S. Martindale III and 
C.R. Miers [15], etc.

The basis on associative superalgebras can be found in [3] and [16].
In the paper we always deal with nontrivial superalgebras, that is, superalgebras with 

nonzero odd part. Also, A will denote an associative superalgebra with superinvolution 
over a ring of scalars φ. It is known that the center of A, Z(A), as an associative algebra, 
is graded, that is, it is a subalgebra of A as graded algebra. We denote by Z = Z(A)0. If 
Z �= 0 we can construct the superalgebra Z−1A = {z−1a : 0 �= z ∈ Z, a ∈ A}. When A is 
prime, Z−1A is a central prime associative superalgebra over the field Z−1Z. Throughout 
the paper we will say that A is a central order in Z−1A, although we are conscious that 
usually this term is used when we consider the extended centroid instead of Z.

As A is a superalgebra with superinvolution, we can consider in A the set of symmetric 
elements, denoted by H, and the set of skewsymmetric elements, denoted by K. If 
we define the following product in A: a ◦ b = ab + (−1)āb̄ba, it is easy to check that 
H ◦H ⊆ H, H ◦K ⊆ K, K ◦K ⊆ H, [H, H] ⊆ H, [H, K] ⊆ H and [K, K] ⊆ K. These 
relations will be used very often during the paper.

If we denote ZH = Z ∩H, we recall that a superinvolution ∗ in A is said to be of the 
first kind if ZH = Z, and of the second kind if ZH �= Z. To extend the superinvolution ∗
on A to a localization of A, we consider V = ZH . If A is prime, then V −{0} consists of 
regular symmetric elements and if Z �= 0 then V = ZH �= 0. Now V −1A = {v−1a : v ∈
V − {0}, a ∈ A} is a superalgebra in which we can define the following superinvolution, 
extension of the superinvolution on A, (v−1a)∗ = v−1a∗. Although Z−1A = V −1A, 
because for all 0 �= z ∈ Z, a ∈ A we have z−1a = (zz∗)−1(z∗a), considering V ?1A is 
easier to check that (v−1a)∗ = v−1a∗ define a superinvolution on V ?1A, and also that 
H(V −1A, ∗) = V −1H and K(V −1A, ∗) = V −1K. Moreover we have Z(V −1A)0 = V −1Z

and V −1Z ∩ V −1H = V −1ZH .
We notice that in every semiprime superalgebra A, the intersection of all the prime 

ideals P of A is zero. Consequently A is a subdirect product of its prime images. If each 
prime image of A is a central order in a simple superalgebra at most n2 dimensional over 
its center, we say that A verifies S(n). With this definition we try to describe semiprime 
algebras whose prime images are in some way of a bounded size. We use this term in our 
final result for n = 4. We recall that finite dimensional simple associative superalgebras 
were classified in [19]. They are either simple as nongraded algebras, or A0 is simple and 
then A1 = uA0 with u ∈ Z(A)1 and u2 = 1.

Let V be a vector space over a field F and q be a quadratic form on V . The tensor 
algebra of V is an associative superalgebra T (V ) = T (V )0 ⊕ T (V )1, where T (V )0 =
F + V ⊗ V + . . . and T (V )1 = V + V ⊗ V ⊗ V + . . . . If we denote by I(q) the ideal 
of T (V ) generated in T (V ) by the elements v ⊗ v − q(v) for v ∈ V , we can define the 
Clifford superalgebra of the quadratic space (V, q) as C(V, q) = T (V )/I(q). We recall 
that if dimF (V ) = n then dimF (C(V, q)) = 2n.



68 J. Laliena / Journal of Algebra 420 (2014) 65–85
The aim of this paper is to describe Lie ideals of the derived subalgebra [K, K] of 
A−, when A is a semiprime associative superalgebra with superinvolution. This paper 
completes [11], where Lie ideals of K for a superalgebra of the same type were studied. 
In fact, the scheme of the paper is the same, and the final result also. But the work 
needed to prove it has been much more complicated. We have had to prove more results, 
and to use powerful theorems about PI-algebras obtained by V. Kharchenko in [10] and 
F. Montaner in [16]. Specifically the two sections of paper [11] become in this paper five 
sections. Only the case in which we study the prime image of a Lie ideal when P ∗ = P

is more or less similar to that of the K. The rest has been more laborious, especially the 
study of the prime image of the Lie ideal when P ∗ �= P .

In the end we prove that if U is a Lie ideal of [K, K] then one of the following 
alternatives must hold: either U must contain a nonzero Lie ideal [J ∩K, K], for J an 
ideal of A, or A is a subdirect sum of A′, A′′, where the image of U in A′ is central and 
A′′ satisfies S(4).

The study of Lie ideals in the derived superalgebra [K, K] is interesting because it is 
known that, if A is simple, then [K, K]/(Z ∩ [K, K]) is simple if the dimension of A is 
greater than 16 (see [3]). So the description of the Lie ideals when A is prime (made in 
[4]) or semiprime is a natural question. The corresponding results in the nongraded case 
(see for instance [14,6,7]) have been very useful for several investigations.

If A is an associative superalgebra and M is a φ-submodule of A and we denote by M̄
the subalgebra generated by M , we say that M is dense in A if M̄ contains a nonzero 
ideal of A.

In the following lemma the bracket product is the usual one in nongraded algebras: 
[a, b] = ab − ba.

Lemma 1.1. (See [7, Theorem 1].) Let A be a semiprime algebra and let L be a Lie ideal 
of A. If [a, [a, L]] = 0, then [a, L] = 0.

But from now on the bracket product [ , ] will always denote the superbracket one, 
that is, [a, b] = ab − (−1)āb̄ba.

Lemma 1.2. (See [16, Lemmata 1.2, 1.3].) If A = A0 ⊕A1 is a semiprime superalgebra, 
then A0 is a semiprime algebra. Moreover, if A is prime, then either A is prime or A0
is prime (as algebras).

Lemma 1.3. (See [16, Lemma 1.8].) Let A = A0 ⊕A1 be a prime superalgebra. Then

(i) If x1 ∈ A1 centralizes a nonzero ideal I of A0, then x1 ∈ Z(A).
(ii) If x2

1 belongs to the center of a nonzero ideal I of A0, then x2
1 ∈ Z(A).

Lemma 1.4. (See [4, Corollary 2].) Let A be a semiprime superalgebra and L a Lie ideal 
of A. Then either [L, L] = 0, or L is dense in A.
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Lemma 1.5. (See [4, Theorem 2.1].) Let A be a prime nontrivial associative superalgebra. 
If L is a Lie ideal of A, then either L ⊆ Z or L is dense in A, except if A is a central 
order in a 4-dimensional Clifford superalgebra.

During the paper we will use very often the following identities in a superalgebra A, 
for a, b, c homogeneous elements in A:

[a, bc] = [a, b]c + (−1)āb̄b[a, c], (1)

[ab, c] = a[b, c] + (−1)b̄c̄[a, c]b, (2)

[a, b ◦ c] = [a, b] ◦ c + (−1)āb̄b ◦ [a, c], (3)

[a ◦ b, c] = a ◦ [b, c] + (−1)b̄c̄[a, c] ◦ b. (4)

2. Lie structure of [K, K]

Let A be an associative superalgebra and M, S be φ-submodules of A. Define
(M : S) = {a ∈ A : aS ⊆ M}.

Let U be a Lie ideal of [K, K]. We recall (see Lemma 4.1 in [3]) that K2 is a Lie ideal 
of A. So K2 is also a Lie ideal of A, because for every k, l homogeneous elements in K2

and for every a homogeneous element in A we have [kl, a] = k[l, a] + (−1)l̄ā[k, a]l ∈ K2.

Lemma 2.1. If A is semiprime, then either U is dense in A or [u ◦ v, w] = 0 for every 
homogeneous elements u, v ∈ [U, U ], w ∈ U .

Proof. We present the proof of this in six steps. Let u, v ∈ [U, U ], w ∈ U .
1. [u ◦ v, w] ∈ (U : A). We have

[u ◦ v, k] = u ◦ [v, k] + (−1)k̄v̄[u, k] ◦ v ∈ U

for every homogeneous elements u, v ∈ [U, U ] and k ∈ K, because

[
[U,U ],K

]
⊆

[
U, [U,K]

]
⊆

[
U, [K,K]

]
⊆ U.

And also for every homogeneous elements u, v ∈ [U, U ] and h ∈ H we get

[u ◦ v, h] = [u, v ◦ h] + (−1)ūv̄[v, u ◦ h] ∈ U,

because K◦H ⊆ K. Since A = H⊕K it follows that [u ◦v, A] ⊆ U for every homogeneous 
elements u, v ∈ [U, U ]. But for every homogeneous elements a ∈ A, w ∈ U

[u ◦ v, wa] = [u ◦ v, w]a + (−1)(ū+v̄)w̄w[u ◦ v, a]

and so [u ◦ v, w]A ⊆ Ū , that is, [u ◦ v, w] ∈ (Ū : A).
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2. [u ◦ v, A] ⊆ K2, [K,K] and [u ◦ v, w] ∈ (K2 : A), ([K,K] : A). We notice that from 
the above equations we can also deduce that [u ◦ v, A] ⊆ [K,K] and that [u ◦ v, w] ∈
([K,K] : A).

3. A[u ◦ v, w]A ⊆ K2. We claim that A[u ◦ v, w] ⊆ (K2 : A). Let a, b ∈ A be homoge-
neous elements, then

a[u ◦ v, w]b =
[
a, [u ◦ v, w]b

]
+ (−1)(ū+v̄+w̄)ā+b̄ā[u ◦ v, w]ba ⊆ K2,

because of step 2 and because K2 is a Lie ideal of A.
4. K.([K,K] : A) ⊆ ([K,K] : A). Let k ∈ K, x ∈ ([K,K] : A), a ∈ A be homogeneous

elements, then

(kx)a = [k, xa] + (−1)(x̄+ā)k̄(xa)k ∈ [K,K],

because x ∈ ([K,K] : A) and because if l, m ∈ [K, K] are homogeneous elements then 
from (1)

[k, lm] = [k, l]m + (−1)k̄l̄l[k,m] ∈ [K,K].

5. [K,K].(Ū : A) ⊆ (Ū : A). It is the same proof as in step 4. Let k ∈ [K, K], 
x ∈ (Ū : A), a ∈ A be homogeneous elements, then

(kx)a = [k, xa] + (−1)(x̄+ā)k̄(xa)k ∈ Ū ,

because x ∈ (Ū : A) and because if l, m ∈ U are homogeneous elements then

[k, lm] = [k, l]m + (−1)k̄l̄l[k,m] ∈ U,

since U is a Lie ideal of [K, K].
6. A[u ◦ v, w]A[u ◦ v, w]A[u ◦ v, w]A ⊆ Ū . From steps 1–5 we deduce that

A[u ◦ v, w]A[u ◦ v, w]A[u ◦ v, w]A ⊆ K2
(
[K,K] : A

)
A(Ū : A)A ⊆ [K,K](U : A)A ⊆ U.

So, if [u ◦ v, w] �= 0, since A is semiprime, 0 �= J = A[u ◦ v, w]A[u ◦ v, w]A[u ◦ v, w]A ⊆ Ū , 
and then U is dense in A. �

We note that the ideal contained in Ū in the above lemma, J = A[u ◦ v, w]A[u ◦
v, w]A[u ◦ v, w]A, is also a ∗-ideal, that is, J∗ ⊆ J .

Theorem 2.2. Let A be a semiprime superalgebra with superinvolution, then either K is 
dense or A satisfies S(2).
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Proof. Consider the Lie ideal of A, K2. From Lemma 1.4, either K2 is dense in A, or 
[K2, K2] = 0. In the first case, K is dense in A, clearly. In the second case, by Theorem 1.1 
in [12], A satisfies S(2). �
Lemma 2.3. Let A be semiprime, and let U be a Lie ideal of [K, K] such that [u ◦v, w] = 0
for every u, v ∈ [U, U ], w ∈ U . Then

(i) u ◦ v ∈ Z for every u, v ∈ [U, U ]i.
(ii) (u ◦ v)2 = 0 for every u ∈ [U, U ]0, v ∈ [U, U ]1.
(iii) u ◦ v = 0 for every u, v ∈ [U, U ]1.

Proof. From step 1 and its proof in Lemma 2.1, we know that [u ◦v, h] ∈ U and [u ◦v, k] ∈
Ū for every homogeneous elements u, v ∈ [U, U ], h ∈ H, k ∈ K. Therefore [u ◦ v, a] ∈ U

for every a ∈ A. So, from (1), [u ◦ v, [u ◦ v, a]] = 0. Now, if u ◦ v is even, we obtain from 
Lemma 1.1 that u ◦ v ∈ Z and we have (i). And if u ◦ v is odd, then, from (4),

[u ◦ v, u ◦ v] = (−1)ūū+ūv̄u ◦ [u ◦ v, v] + [u ◦ v, u] ◦ v = 0,

that is, (u ◦ v)2 = 0, and we have (ii).
Now, suppose that γ = u ◦ v with u, v ∈ [U, U ]1. Then

γ
(
u2 ◦ v

)
= u2 ◦ γv = 1

2
(
u2 ◦

(
(u ◦ v) ◦ v

))
= −1

2
(
u2 ◦

[
v2, u

])

= −1
2
([
u2 ◦ v2, u

])
= −1

2
([

[u, u] ◦ [v, v], u
])

= 0,

because γ ∈ Z, because of the hypothesis and from (3). A similar argument shows that 
γ(v2 ◦ u) = 0. Notice that 0 = [u ◦ v, u] = [uv − vu, u] = uvu − vu2 − u2v + uvu, and so 
2uvu = u2 ◦ v. Therefore γ(uvu) = 0. And since we can also prove that 2vuv = v2 ◦ u, 
it is deduced that γ(vuv) = 0. Now we observe that

2γu3 = γu ◦ u2 = 1
2
(
(u ◦ v) ◦ u

)
◦ u2 = 1

2
[
u2, v

]
◦ u2 = 1

2
[
u2, v ◦ u2] = 0

because of the hypothesis and from (4). And the same γv3 = 0. Notice that

γ2 = (u ◦ v)(u ◦ v) = (γu ◦ v) = 1/2(γ ◦ u) ◦ v = 1/2
(
(u ◦ v) ◦ u

)
◦ v

= 1/2
([
u2, v

]
◦ v

)
= 1/2

(
−
[
u2 ◦ v, v

]
+ u2 ◦ [v, v]

)
= 1/2

(
u2 ◦ v2),

and so finally

γ4 = γγγ2 = 1
2γ(u ◦ v)

(
u2 ◦ v2) = 1

2γ(uv − vu)
(
u2v2 + v2u2)

= 1
γ
(
uvu2v2 + uv3u2 − vu3v2 − vuv2u2) = 0,
2
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because γuvu = γvuv = γu3 = γv3 = 0. So, since A is semiprime, we obtain that γ = 0
and we get (iii). �

In the following two sections we deal with the second case of Lemma 2.1, that is, when 
[u ◦ v, w] = 0 for every u, v ∈ [U, U ], w ∈ U , and we will study the prime images of A. If 
P is a prime ideal of A we have two possible situations: either P ∗ �= P or P ∗ = P .

3. Prime images of Lie ideals when P ∗ �= P

Let P be a prime ideal of A. We will suppose first that P ∗ �= P . In this case (P ∗+P )/P
is a nonzero proper ideal of A/P and we claim that (P ∗ + P )/P ⊆ (K + P )/P . Indeed, 
if y ∈ P ∗ then y+P = (y− y∗) + y∗ +P ∈ (K +P )/P . Also if U is a Lie ideal of [K, K]
we have that (U + P )/P is a φ-submodule of A/P and satisfies

[
(U + P )/P,

[(
P ∗ + P

)/
P,

(
P ∗ + P

)/
P
]]

⊆
([
U, [K,K]

]
+ P

)
/P ⊆ (U + P )/P.

Of course if u ◦ v ∈ Z for every u, v ∈ [U, U ]0, u ◦ v = 0 for every u, v ∈ [U, U ]1, and 
(u ◦ v)2 = 0 for every u ∈ [U, U ]0, v ∈ [U, U ]1, then the same property is satisfied in 
A/P , that is, (u + P ) ◦ (v + P ) ∈ Z0(A/P ) for every u + P, v + P ∈ ([U, U ]0 + P )/P , 
(u +P ) ◦(v+P ) = 0 for every u +P, v+P ∈ ([U, U ]1+P )/P , and ((u +P ) ◦(v+P ))2 = 0
for every u +P ∈ ([U, U ]0 +P )/P, v+P ∈ ([U, U ]1 +P )/P . Let us analyze this situation. 
We notice that the assumption that A/P has a superinvolution is not required. We state 
first some useful lemmata.

Lemma 3.1. Let A be a prime superalgebra, I a nonzero ideal of A, then either [I, I] is 
dense in A, or A is a central order in a 4-dimensional Clifford superalgebra, or A is 
commutative.

Proof. We notice that [I, I] is a Lie ideal of A, and from Lemma 1.5 it follows that either 
[I, I] is dense in A, or A is a central order in a 4-dimensional Clifford superalgebra, or 
[I, I] ⊆ Z. Suppose that [I, I] ⊆ Z, then [I0, I1] = 0. But then, from Lemma 1.3(i) we 
deduce that I1 ⊆ Z1(A). We observe that I1 �= 0 because if I = I0 then I.(A1 +A2

1) = 0, 
a contradiction with the primeness of A. Therefore I = I0 + I1 with I1 �= 0, and this 
is satisfied for every nonzero ideal of A. Let J = I0I1 + I2

1 . Since I1 ⊆ Z1(A), J is 
an ideal of A. Also J �= 0, because if J = 0, then 0 �= I2 = I2

0 by primeness, and 
(I2)1 = 0, a contradiction. Since I1 ⊆ Z1(A), we get [x, J ] = 0 for every x ∈ I0, because 
of (1). Therefore for every a ∈ A and y ∈ J we have (xa)y = (ay)x = (ax)y, that is, 
(xa −ax)J = 0, and since A is prime we deduce that xa = ax for every a ∈ A, so I0 ⊆ Z, 
and then I ⊆ Z(A). Now is easy to prove that A is commutative. For every homogeneous 
elements a, b ∈ A and y ∈ I it follows that

(ab)y = (by)a = (yb)a = (ba)y,

and by the primeness of A, ab = ba for every homogeneous elements a, b ∈ A. �
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Lemma 3.2. Let A be a prime superalgebra, L a Lie ideal of A such that L is dense in A, 
and v ∈ Ai such that vLv = 0, then v = 0.

Proof. Let u ∈ Li and a ∈ A. Then v[u, a]v = 0. Considering now v[u, u′va]v with 
u′ ∈ L, homogeneous, we have vuu′vav = 0. Therefore vuu′vA is a right ideal with 
square zero, that is a contradiction with the primeness of A, so vuu′v = 0. In the same 
way considering v[u, u′u′′va]v we obtain that vuu′u′′v = 0. So, if J is a nonzero ideal 
such that J ⊆ L̄, we deduce that vJv = 0 and, because of A is prime, v = 0. �
Lemma 3.3. Let A be a prime superalgebra, L a Lie ideal of A such that L is dense in A, 
and V a Lie subalgebra of A such that [V, L] ⊆ V . If v2 = 0 for every v ∈ Vi, then Vi = 0.

Proof. Consider l0 ∈ L0 and a0 ∈ A0, then [l0, a0] ∈ L and [v, [l0, a0]]2 = 0 for every 
v ∈ Vi, that is

(vl0a0 − va0l0 − l0a0v + a0l0v)2v = 0.

Expanding yields

vl0a0vl0a0v − vl0a0va0l0v − va0l0vl0a0v + va0l0va0l0v = 0.

Replacing a0 by a0v gives va0vl0va0vl0v = 0, and so, (vl0va0)3 = 0. Since A0 is semiprime 
by Lemma 1.2, it follows from Lemma 1.1 in [5] that vl0v = 0. Now let l1 ∈ L1, we can 
prove in a similar way that vl1v = 0. Indeed, let a1 ∈ A1 and notice that [v, [l1, a1]]2 = 0
and so

(vl1a1 + va1l1 − l1a1v − a1l1v)2v = 0.

Expanding and replacing a1 by a1v give va1vl1va1vl1v = 0, and so (vl1va1)3 = 0. 
Therefore vl1vA1 is a right ideal of A0. But A0 is semiprime, by Lemma 1.2. So from 
Lemma 1.1 in [5] vl1vA1 = 0 and also (vl1v)(A1 + A2

1) = 0. Since A is prime we have 
vl1v = 0, and so vLv = 0. Now, by Lemma 3.9, Vi = 0. �

Then, from now on, and until the end of this section, we will suppose that A is a 
prime superalgebra, I is a nonzero ideal of A and U is a subalgebra of A− (that is, U is 
a φ-submodule of A and [U, U ] ⊆ U) such that [U, [I, I]] ⊆ U . Moreover U satisfies the 
following conditions: u ◦ v ∈ Z for every u, v ∈ [U, U ]0, u ◦ v = 0 for every u, v ∈ [U, U ]1
and (u ◦ v)2 = 0 for every u ∈ [U, U ]0, v ∈ [U, U ]1.

Our aim in this section is to prove the following theorem:

Theorem 3.4. Let A be a prime superalgebra and let I be a nonzero proper ideal of A. 
Suppose that U is a subalgebra of A− such that [U, [I, I]] ⊆ U , u ◦ v ∈ Z for every 
u, v ∈ [U, U ]0, u ◦ v = 0 for every u, v ∈ [U, U ]1 and (u ◦ v)2 = 0 for every u ∈ [U, U ]0, 



74 J. Laliena / Journal of Algebra 420 (2014) 65–85
v ∈ [U, U ]1. Then either A is commutative, or A is a central order in a 4-dimensional 
simple superalgebra, or A is a central order in an 8-dimensional simple superalgebra, or 
U ⊆ Z.

Let us outline the plan to prove it, because the proof is obtained after several results. 
First we introduce the tool to get our purpose. We will consider the following set:

T =
{
x ∈ A : [x,A] ⊆ U

}
.

We will prove that T is a subring, and we will define the subring of T , denoted T ′

generated by [[U, [I, I]], [U, [I, I]]]. We will distinguish to cases: when [T ′, [I, I]] = 0 and 
when [T ′, [I, I]] �= 0. In the first case we will prove that U ⊆ Z, and in the second 
case that either A is commutative, or A is a central order in a 4-dimensional simple 
superalgebra, or A is a central order in an 8-dimensional simple superalgebra. So, in 
proving this, we will have the theorem.

Let us start from the very beginning, showing that [[U, [I, I]], [U, [I, I]]] ⊆ T , and that 
T is a subring.

Since

[[[
U, [I, I]

]
,
[
U, [I, I]

]]
, A

]
⊆

[[
U, [I, I]

]
,
[[
U, [I, I]

]
, A

]]
⊆

[[
U, [I, I]

]
, [I, I]

]
⊆ U,

we have [[U, [I, I]], [U, [I, I]]] ⊆ T . We notice that T is a subring of A because for every 
homogeneous elements t, s ∈ T , from (2)

[ts, a] = [t, sa] + (−1)t̄s̄+āt̄[s, at] ∈ U.

Let T ′ be the subring generated by [[U, [I, I]], [U, [I, I]]]. Since

[[[
U, [I, I]

]
,
[
U, [I, I]

]]
, [I, I]

]
⊆

[[
U, [I, I]

]
,
[[
U, [I, I]

]
, [I, I]

]]
⊆

[[
U, [I, I]

]
,
[
U, [I, I]

]]

it follows that [T ′, [I, I]] ⊆ T ′. Now we consider two cases:

(a) [T ′, [I, I]] = 0,
(b) [T ′, [I, I]] �= 0.

We will suppose until the end of the section that A is neither commutative, nor a cen-
tral order in a 4-dimensional simple superalgebra, nor a central order in an 8-dimensional 
simple superalgebra. Hence, from Lemma 3.1, we can also suppose that there exists a 
nonzero ideal of A, J , such that J ⊆ [I, I].

Let’s go to consider the first case.

Case (a): [T ′, [I, I]] = 0.

Lemma 3.5. In the above situation, if [T ′, [I, I]] = 0, then U ⊆ Z.
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Proof. If [T ′, [I, I]] = 0, it follows from (1) that [T ′, J ] = 0, and from Lemma 2.3 in [11], 
we deduce that T ′ ⊆ Z. Therefore

[[
U, [I, I]

]
i
,
[
U, [I, I]

]
i

]
⊆ Z, (5)[[

U, [I, I]
]
0,
[
U, [I, I]

]
1

]
= 0 (6)

We will prove that, with the above supposition of being A neither commutative, 
nor a central order in a 4-dimensional simple superalgebra, nor a central order in an
8-dimensional simple superalgebra, then U ⊆ Z. We present the proof in 7 steps.

1. [[U, U ], [I, I]]0 ⊆ Z(A0). From Lemma 1.2, A0 is semiprime, and [I, I]0 is a 
Lie ideal of A0, [[U, U ], [I, I]]0 ⊆ [I, I]0, [[[U, U ], [I, I]]0, [I, I]0] ⊆ [[U, U ], [I, I]]0 and 
[[U, U ], [I, I]0, [[U, U ], [I, I]]0] ⊆ Z(A0) because of (5). So we have the conditions of 
Lemma 1.1 in [14] and therefore we can conclude by this lemma that [[U, U ], [I, I]]0 ⊆
Z(A0).

2. [[U, U ]0, [I, I]0] = 0. We notice that A0 is semiprime by Lemma 1.2, [I, I]0 is a Lie 
ideal of A0 and [[U, U ]0, [[U, U ]0, [I, I]0]] = 0 by step 1. So we can apply Lemma 1.1 and 
we obtain that [[U, U ]0, [I, I]0] = 0.

3. Either [[U, U ], [I, I]]0 = 0 or [[U, U ], [I, I]]1 = 0. Let u ∈ [[U, U ], [I, I]]0 and v ∈
[[U, U ], [I, I]]1. By (6) we have uv = vu. But, from the hypothesis, (u ◦ v)2 = 0, hence 
4u2v2 = 0. So, since u ∈ [[U, U ], [I, I]]0 ⊆ Z and A is prime, either [[U, U ], [I, I]]0 = 0
or v2 = 0 for every v ∈ [[U, U ], [I, I]]1. If v2 = 0 for every v ∈ [[U, U ], [I, I]]1, from 
Lemma 3.3, taking L = [I, I], V = [[U, U ], [I, I]], we deduce that [[U, U ], [I, I]]1 = 0.

4. If [[U, U ], [I, I]]0 = 0 we claim that [U, U ] ⊆ Z. We notice that

[U,U ]1[I, I]0 ⊆
[
[U,U ]1, [I, I]0

]
+ [I, I]0[U,U ]1 ⊆ [U,U ]1 + [I, I]0[U,U ]1,

[U,U ]1[I, I]1 ⊆
[
[U,U ]1, [I, I]1

]
+ [I, I]1[U,U ]1 ⊆ [I, I]1[U,U ]1,

because of the hypothesis of this step. Therefore [U, U ]1[I, I] ⊆ [U, U ]1 + [I, I][U, U ]1. In 
general, we can prove by induction on m that

[U,U ]1[I, I]m ⊆ [U,U ]1 +
∑
i

[I, I]i[U,U ]1,

and so [U, U ]1J ⊆ [U, U ]1 +
∑

i[I, I]i[U, U ]1. Now since

[
[U,U ]1,

[
[U,U ], [I, I]

]
1

]
⊆

[
[U,U ]1, [I, I]1

]
⊆

[
[U,U ], [I, I]

]
0 = 0

because of the hypothesis of this step, and [U, U ]1 ◦ [[U, U ], [I, I]]1 = 0 because of our 
hypothesis, it follows that [U, U ]1[[U, U ], [I, I]]1 = 0, and therefore

[U,U ]1J
[
[U,U ], [I, I]

]
= 0.
1
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But A is prime, so either [U, U ]1 = 0 or [[U, U ], [I, I]]1 = 0. If [U, U ]1 = 0, then 
[[U, U ]0, [I, I]1] = 0, and from the hypothesis of this step [[U, U ]0, [I, I]] = 0. But then, 
from (2), [[U, U ]0, J ] = 0 and so, by Lemma 2.3 in [11], [U, U ]0 ⊆ Z and [U, U ] ⊆ Z. If 
[[U, U ], [I, I]]1 = 0, since [[U, U ]0, [I, I]0] = [[U, U ]1, [I, I]1] = 0 by the hypothesis of this 
step, we get [[U, U ], [I, I]] = 0 and so [[U, U ], J ] = 0, from (2), and as above [U, U ] ⊆ Z.

5. If [[U, U ], [I, I]]0 �= 0, then by step 3 [[U, U ], [I, I]]1 = 0 and also we claim that 
[U, U ] ⊆ Z. We have [[U, U ]0, [I, I]1] = 0, and by step 2 [[U, U ]0, [I, I]0] = 0. Therefore, 
from (2), [[U, U ]0, J ] = 0, and, by Lemma 2.3 in [11], [U, U ]0 ⊆ Z. From the hypothesis
about U , for every u ∈ [U, U ]0, v ∈ [U, U ]1 we have (u ◦ v)2 = 0. So, since (u ◦ v)2 =
4u2v2 = 0, we obtain from the primeness of A that either [U, U ]0 = 0 or v2 = 0 for every 
v ∈ [U, U ]1. If [U, U ]0 = 0, then [[U, U ], [I, I]]0 ⊆ [U, U ]0 = 0, a contradiction with our 
assumption. If v2 = 0 for every v ∈ [U, U ]1, from Lemma 3.3 applied to [I, I] and [U, U ]
we obtain that [U, U ]1 = 0 and so [U, U ] ⊆ Z.

6. If I∩Z �= 0, then U ⊆ Z. Indeed, if I∩Z �= 0, we can consider Z−1A, which is a prime 
superalgebra over the field Z−1Z. Since Z−1I∩Z−1Z �= 0 it holds that Z−1I = Z−1A and 
so Z−1ZU is a Lie ideal of [Z−1A, Z−1A]. From Theorem 3.3 in [16], and since A is a cen-
tral order neither in a commutative algebra, nor a 4-dimensional simple superalgebra, nor 
an 8-dimensional superalgebra, we deduce that either Z−1ZU ⊆ Z−1Z or there exists a 
nonzero ideal of Z−1A, Z−1N , such that [Z−1N, Z−1A] ⊆ Z−1ZU . In the last case, since, 
by steps 4 and 5, [U, U ] ⊆ Z, we have that [[Z−1N, Z−1A], [Z−1N, Z−1A]] ⊆ Z−1Z. We 
notice that if [[Z−1N, Z−1A], [Z−1N, Z−1A]] = 0, from Lemma 1.5 and its proof and 
our hypothesis, [Z−1N, Z−1A] ⊆ Z−1Z, and then Z−1N = Z−1A if [Z−1N, Z−1A] �= 0. 
And if [Z−1N, Z−1A] = 0, by Lemma 2.3 in [11], Z−1N ⊆ Z−1Z and (Z−1N)1 = 0, a 
contradiction with the primeness of Z−1A. If [[Z−1N, Z−1A], [Z−1N, Z−1A]] �= 0, then 
also Z−1N = Z−1A. So [[Z−1A, Z−1A], [Z−1A, Z−1A]] ⊆ Z−1Z and then the super-
algebra Z−1A verifies the identity [Z−1A, [[Z−1A, Z−1A], [Z−1A, Z−1A]]] = 0. Now by 
Lemma 2.6 in [16] we have a contradiction with our supposition of A not being a central 
order neither in a commutative algebra, nor a 4-dimensional simple superalgebra, nor an
8-dimensional superalgebra (notice that the product ◦ in [16] is our product [ , ] in the 
odd part). So Z−1ZU ⊆ Z−1Z and then U ⊆ Z.

7. If I ∩ Z = 0, then U ⊆ Z. We consider [U, [I, I]] and we notice that 
[[U, [I, I]], [U, [I, I]]] ⊆ [U, U ] ∩ I ⊆ Z ∩ I = 0. Therefore for every v ∈ [U, [I, I]]1, 
v2 = [v, v] ∈ [[U, [I, I]], [U, [I, I]]] = 0. From Lemma 3.1 applied to [U, [I, I]] and [I, I] it 
follows that [U, [I, I]]1 = 0. Now let u ∈ U0, then [u, [u, [I, I]0]] ⊆ [U, U ] ∩ I ⊆ Z ∩ I = 0. 
By Lemmata 1.1 and 1.2 it is deduced that [u, [I, I]0] = 0, that is, [U0, [I, I]0] = 0. Now 
we have [U0, [I, I]] = 0, and therefore, from (2), [U0, J ] = 0. So U0 ⊆ Z because of 
Lemma 2.3 in [11]. But we have proved that [U1, [I, I]0] ⊆ [U, [I, I]]1 = 0, and now we 
have [U1, [I, I]1] ⊆ U0 ∩ I ⊆ Z ∩ I = 0, therefore [U1, [I, I]] = 0, and then, from (2), 
[U1, J ] = 0. Again, by Lemma 2.3 in [11], U1 ⊆ Z and U ⊆ Z. �

Now we consider the second case.
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Case (b): [T ′, [I, I]] �= 0.

We recall that [T ′, [I, I]] ⊆ T ′.

Lemma 3.6. If [T ′, [I, I]] �= 0, then either T ′ is dense or [t, u][u, s] = 0 for every u ∈
[T ′, [I, I]]i, such that [u, u] = 0, and t, s ∈ T ′, homogeneous.

Proof. We notice that if u ∈ [T ′, [I, I]]0, then [u, u] = 0, and if u ∈ [T ′, [I, I]]1, then 
[u, u] = 0 is equivalent to u2 = 0. We will prove that if there exist t, s ∈ T ′, homogeneous, 
and u ∈ [T ′, [I, I]]i, with [u, u] = 0, such that [t, u][u, s] �= 0, then T ′ is dense. First we 
see that [t, u][u, s]A ⊆ T ′. We have [u, s]a = [u, sa] − (−1)s̄ūs[u, a], from (2), for every 
homogeneous element a ∈ A, therefore [t, u][u, s]a = [t, u][u, sa] − (−1)ūs̄[t, u]s[u, a]. But

[t, u][u, sa] =
[
t, u[u, sa]

]
− (−1)t̄ūu

[
t, [u, sa]

]
= (−1)ū

[
t, [u, usa]

]
− (−1)t̄ūu

[
t, [u, sa]

]
∈ T ′,

because T ′ is a subring and [I, I] is a Lie ideal of A. And also

[t, u]s[u, a] = [t, u]
[
s, [u, a]

]
+ (−1)s̄(ū+ā)[t, u][u, a]s ∈ T ′,

because

[t, u][u, a] =
[
t, u[u, a]

]
− u

[
t, [u, a]

]
=

[
t, [u, ua]

]
− u

[
t, [u, a]

]
∈ T ′.

Therefore [t, u]s[u, a] ∈ T ′, and also [t, u][u, s]a ∈ T ′ for every a ∈ A, u ∈ [T ′, [I, I]]i, t, s
homogeneous elements in T ′.

Next we will show that [I, I][t, u][u, s]A ⊆ T ′. Since [T ′, [I, I]] ⊆ T ′ it follows 
that [I, I][t, u][u, s]A ⊆ [[I, I], [t, u][u, s]A] + [t, u][u, s]A[I, I] ⊆ T ′. Notice that also 
[I, I]2[t, u][u, s]A ⊆ [[I, I], T ′] + [t, u], [u, s]A ⊆ T ′. Using induction over n it is easy 
to prove that [I, I]n[t, u][u, s]A ⊆ T ′, and so that J [t, u][u, s]A ⊆ T ′. Therefore either 
T ′ is dense in A or, because of the primeness of A, [t, u][u, s] = 0 for every t, s ∈ T ′, 
u ∈ [T ′, [I, I]]i. �
Lemma 3.7. If T ′ is dense, then A is a central order in a superalgebra B satisfying the 
condition [[B, B], [B, B]]1 ◦ [[B, B], [B, B]]1 = 0.

Proof. Let N = J [t, u][u, s]A �= 0, since [T ′, A] ⊆ U and N ⊆ T ′, we have [N, A] ⊆ U . 
From the hypothesis about U u ◦ v ∈ Z for every u, v ∈ [U, U ]0, therefore u ◦ v ∈ Z for 
every u, v ∈ [[N, A], [N, A]]0.

We suppose first that u ◦ v = 0 for every u, v ∈ [[N, A], [N, A]]0. Then 1/2(u ◦
u) = u2 = 0 for every u ∈ [[N, A], [N, A]]0, and since A0 is semiprime because of 
Lemma 1.2, then it follows from Lemma 1 in [14] that [[N, A], [N, A]]0 = 0. Therefore 
L = [[N, A], [N, A]] is a Lie ideal of A such that [L, L] = 0 and from Theorem 3.2 in [16]
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we get that [[N, A], [N, A]] ⊆ Z (because A in neither commutative, nor a central order 
in a 4-dimensional simple superalgebra, nor a central order in an 8-dimensional simple 
superalgebra). But then [[N, A], [N, A]] = 0, and again from Theorem 3.2 in [16], [N, A]
is a Lie ideal of A such that [N, A] ⊆ Z, and so [N, A]1 = 0. Hence [N1, A2

1] = 0 and since 
A2

1 �= 0 because A is prime we obtain that N1 ⊆ Z(A) because of Lemma 1.3. Besides 
also [N0, A1] = 0 and so [N0, A2

1] = 0, from (2), what means that [N, A1 + A2
1] = 0 and 

from Lemma 2.3 in [11] it follows that N0 ⊆ Z. So we have a nonzero ideal, N , of A
such that N ⊆ Z(A), with A prime, and we can deduce that A is commutative like in 
the proof of Lemma 3.1, that is a contradiction with our hypothesis.

Therefore there exist u, v ∈ [[N, A], [N, A]]0 such that 0 �= u ◦ v ∈ Z. Then we may 
form the localization Z−1A. Since [N, A] ⊆ U we have

[[
Z−1N,Z−1A

]
,
[
Z−1N,Z−1A

]]
⊆

[
Z−1ZU,Z−1ZU

]
,

and so from the hypothesis about U , for every u, v ∈ [[Z−1N, Z−1A], [Z−1N, Z−1A]]0
we get u ◦ v ∈ Z−1Z ∩ Z−1N . But Z−1Z is a field and so Z−1N has some invertible 
element forcing Z−1N = Z−1A. Therefore [Z−1N, Z−1A] = [Z−1A, Z−1A] ⊆ Z−1(ZU)
and again, by the hypothesis about U , it follows that [[Z−1A, Z−1A], [Z−1A, Z−1A]]1 ◦
[[Z−1A, Z−1A], [Z−1A, Z−1A]]1 = 0. �

Now we will study superalgebras B satisfying the condition [[B, B], [B, B]]1 ◦
[[B, B], [B, B]]1 = 0. We notice that the Z2-grading is given by the automorphism σ

of the algebra defined by xσ
i = (−1)ixi, on homogeneous elements xi. Then, we have the 

group of automorphisms G = {1, σ} acting on A. Superidentities in B are then special 
types of G-identities, as defined in [10], that is identities involving elements and images 
of elements under the action of G, a group of automorphisms. Therefore we can apply 
results about G-identities, in particular the following one due to V.K. Kharchenko. We 
denote by RG the set of elements fixed under every automorphism of G.

Proposition 3.8. (See [10, Theorem 1].) Suppose G is a finite commutative group of 
automorphisms of a semiprime algebra R over a commutative domain K containing a 
primitive root of degree n = |G|, and suppose that RG is prime. If R satisfies a nontrivial 
G-identity, then R is a PI-algebra.

In our case, the group G has two elements, and here the conditions on K always 
hold because we can consider our algebras as Z-algebras, and every automorphism is 
Z-automorphism. Then, an algebra satisfying [[B, B], [B, B]]1 ◦ [[B, B], [B, B]]1 = 0 is in 
fact a PI-algebra, if BG = B0 is a prime algebra. We consider next the case when B0 is 
not prime.

Lemma 3.9. If B is a prime superalgebra and satisfies the condition [[B, B], [B, B]]1 ◦
[[B, B], [B, B]]1 = 0, and B0 is not prime, then B0 is commutative and B is a PI-algebra.
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Proof. By Lemma 1.5 in [16], B has an ideal I which is a Morita superalgebra. This 
means that we have a Morita context (R, S, M, N, μ, τ), where R and S are associative 
φ-algebras, M is an R–S-bimodule, N is an S–R-bimodule and μ: M ⊗R N → R, τ :
N ⊗R M → S are bimodule homomorphisms, such that I is the set of matrices

I =
(
R M

N S

)
,

with the known algebra structure given by the Morita context, and the following grading 
as superalgebra

I0 =
(
R 0
0 S

)
, I1 =

(
0 M

N 0

)
.

Moreover, Lemma 1.5 in [16] and its proof say that R and S are prime algebras and 
orthogonal ideals of B0, and also that I0 intersects nontrivially every nonzero ideal of 
B0.

We have that I satisfies [[I, I], [I, I]]1 ◦ [[I, I], [I, I]]1 = 0, hence

[[(
R 0
0 0

)
,

(
R 0
0 0

)]
,

[(
R 0
0 0

)
,

(
0 M

0 0

)]]

◦
[[(

R 0
0 0

)
,

(
R 0
0 0

)]
,

[(
R 0
0 0

)
,

(
0 0
N 0

)]]
= 0.

So [R, R]RMNR[R, R] = 0, but since R is prime either [R, R] = 0 or RMNR = 0. If 
RMNR = 0, then MN = 0 because R is prime, and so NM is a trivial ideal (that is, 
with (NM)2 = 0) of S, which is also prime, therefore NM = 0 and I1 is a trivial ideal 
of I. But then II1I is also a trivial ideal of B, and because B is prime and I �= 0 we have 
I1 = 0, and as a consequence R and S are orthogonal ideals of A, a contradiction with 
the primeness of B. Thus [R, R] = 0. Similarly we can prove that [S, S] = 0, and so I0
is commutative. But then for every y, z ∈ I0 and a, b ∈ B0 it follows, from (2) and (1), 
that

y[a, b]z = y[a, bz] − yb[a, z] = [ya, bz] − [y, bz]a− [yba, z] + [yb, z]a = 0,

and so [([B0, B0], B0 + [B0, B0])I0]2 ⊆ I0[B0, B0]I0 = 0. But B0 is semiprime because of 
Lemma 1.2, and [B0, B0]I0 is an ideal of B0, therefore ([B0, B0]B0+[B0, B0])I0 = 0. Since 
I0 intersects nontrivially every nonzero ideal of B0 we have ([B0, B0]B0 +[B0, B0]) ∩I0 =
N �= 0 satisfies that N2 = 0. So [B0, B0]B0 + [B0, B0] = 0, and B0 is commutative. �
Lemma 3.10. If B is a prime superalgebra satisfying the condition [[B, B], [B, B]]1 ◦
[[B, B], [B, B]]1 = 0, then B is a central order in Ω ⊕ Ω.v with v2 ∈ Ω (where Ω is the 
field of fractions of Z).
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Proof. By Proposition 3.8 and Lemma 3.9, B is a PI-algebra. Then by Lemma 1.7 in [16]
B is a central order in a simple superalgebra which is finite dimensional over Ω, that is, 
C = Z−1B is simple and finite dimensional over Ω = Z−1Z. Take Ω̄ an algebraic closure 
of Ω. Then C̄ = Z−1B ⊗ Ω̄ is a simple superalgebra, finite dimensional over Ω̄ and 
satisfies [[C̄, C̄], [C̄, C̄]]1 ◦ [[C̄, C̄], [C̄, C̄]]1 = 0. But finite dimensional simple associative 
superalgebras were classified in [19] and over an algebraically closed field we obtain that 
C̄ = Ω̄ ⊕ Ω̄.u with u2 = 1, so C = Ω ⊕Ω.v with v2 ∈ Ω. �

So, from Lemmata 3.7 and 3.10 we can deduce:

Corollary 3.11. If T ′ is dense in A, then A is either commutative, or a central order 
in a 4-dimensional simple superalgebra, or a central order in an 8-dimensional simple 
superalgebra.

So, because of our assumption of [T ′, [I, I]] �= 0 and of A being neither commuta-
tive, nor a central order in a 4-dimensional simple superalgebra, nor a central order in 
an 8-dimensional simple superalgebra, T ′ is not dense in A, and then by Lemma 3.6
[t, u][u, s] = 0 for every u ∈ [T ′, [I, I]]i such that [u, u] = 0, and for every t, s ∈ T ′, 
homogeneous. We will prove that this cannot occur either, because we arrive to a con-
tradiction.

Lemma 3.12. If [t, u][u, s] = 0 for every u ∈ [T ′, [I, I]]i such that [u, u] = 0, and for every 
t, s ∈ T ′, then [T ′, [I, I]] = 0.

Proof. We prove the result in 4 steps.
1. [X, X] = [X1, X1] with X = [T ′, [I, I]]. Indeed, we have [t, u]2 = 0 for every t ∈

T ′, u ∈ X0. Let x, y ∈ X, homogeneous, and u ∈ Xi such that u2 = 0. From our assump-
tion [u, x][u, y] = 0, and expanding this gives uxuy− (−1)ȳūuxyu +(−1)x̄ū+ȳūxuyu = 0. 
Right multiplication by u gives uxuyu = 0. Since [y, l] ∈ X for every l ∈ [I, I]i, we obtain 
that [y, [l, u]] ∈ X. So uxu[y, [l, u]]u = 0. Expanding this expression yields uxuluyu = 0. 
From Lemma 3.2 we deduce that uXu = 0. If u, u′ ∈ X are homogeneous elements with 
u2 = (u′)2 = 0, we conclude that

(
uu′)2 = uu′uu′ ∈ uXuu′ = 0.

If l ∈ [I, I]i we have

0 = u
[
u′, l

]
uu′ = uu′luu′,

so uu′[I, I]uu′ = 0 and from Lemma 3.2,

uu′ = 0 for every u, u′ ∈ X, homogeneous, with u2 =
(
u′)2 = 0. (∗)
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Now consider x, y ∈ X1, u, v ∈ X0. We have [x, u]2 = 0 = [y, v]2, and so [x, u][y, v] = 0, 
because of (∗). Since [X0, X1] is additively generated by the elements [x, u] with x ∈ X1, 
u ∈ X0, we have v2 = 0 for every v ∈ [X0, X1]. From Lemma 3.3, [X0, X1] = 0, 
and [X, X] = [X0, X0] + [X1, X1]. Now consider K = [X0, X0]. We notice that K is a 
subalgebra of A− and [K, [I, I]] ⊆ K. From our assumption for every x, y, u, v ∈ X0 we 
have [x, u]2 = [y, v]2 = 0, and so, by (∗) we obtain that [x, u][y, v] = 0. Again, since 
[X0, X0] is additively generated by the elements [x, u] with x, u ∈ X0, we deduce that 
for every v ∈ K = K0, v2 = 0. From Lemma 3.3, K = 0. Therefore [X, X] = [X1, X1].

2. [W0, [I, I]0] = 0, and B1 = 0 with B = [W, [I, I]], W = [S, S] and S = [U, [I, I]]. 
We have B ⊆ [U, U ]. Since W ⊆ T ′, B = [W, [I, I]] ⊆ [T ′, [I, I]] = X. So, from step 
1, for every b0, b′0 ∈ B0, [b0, b′0] = 0. But B ⊆ [U, U ], and then b0 ◦ b′0 ∈ Z for ev-
ery b0 ∈ B0. Therefore B2

0 ⊆ Z. Now Lemma 4 in [7] yields [B0, [I, I]0] = 0. Hence 
[[W0, [I, I]0], [I, I]0] = 0, and by Theorem 1 in [7] [W0, [I, I]0] = 0. Also, since B ⊆ [U, U ], 
we have (b0 ◦ b1)2 = 0 for every b0 ∈ B0, b1 ∈ B1. But B ⊆ X, and so [b0, b1] = 0. Now 
applying that B2

0 ⊆ Z, we obtain that b20b21 = 0 for every b0 ∈ B0, b1 ∈ B1. Now we 
consider the ideal of A, b20A and then b21(b20A) = 0. Hence, from the primeness of A, 
either b20 = 0 or b21 = 0. From Lemma 3.3, if b20 = 0, B0 = 0 and then [B1, B1] = 0 and 
therefore [b1, b1] = b21 = 0. So in any case b21 = 0 for every b1 ∈ B1, and again from 
Lemma 3.3 B1 = 0.

3. W1 = 0 with W = [S, S], S = [U, [I, I]]. Since W ⊆ [U, U ], w0 ◦ w′
0 ∈ Z for every 

w0, w′
0 ∈ W0. But W0 ⊆ [I, I]0, and then by step 2 [w0, w′

0] = 0. Therefore W 2
0 ⊆ Z. 

Moreover, since W ⊆ [U, U ], we have also (w0 ◦ w1)2 = 0, and because of step 2 also 
[w0, w1] ∈ B1 = 0, for every w0 ∈ W0, w1 ∈ W1. So w2

0w
2
1 = 0. Hence w2

0A is an ideal 
of A such that w2

0Aw2
1 = 0, and then either w2

0 = 0 or w2
1 = 0. Now, as in the proof of 

step 2, we can deduce that W1 = 0.
4. B = 0 and then [T ′, [I, I]] = 0, a contradiction. Indeed, from step 2, B1 = 0. 

And since B = [W, [I, I]], from steps 2 and 3, B = B0 = [W0, [I, I]0] + [W1, [I, I]1] =
0. But T ′ is the subring of T generated by W = [S, S] = [[U, [I, I]], [U, [I, I]]]. So if 
[w, y] = 0 for every w ∈ W, y ∈ [I, I], homogeneous, then, since [w′w, y] = w′[w, y] +
(−1)w̄ȳ[w′, y]w = 0, we deduce that [T ′, [I, I]] = 0. �

So, in the last lemma we have arrived to a contradiction with our assumption in 
case (b): [T ′, [I, I]] = 0. This case is only possible if A is either commutative, or a cen-
tral order in a 4-dimensional simple superalgebra, or a central order in an 8-dimensional 
simple superalgebra, as we have seen in Corollary 3.11. Hence, now we can deduce The-
orem 3.4.

So the prime images of Lie ideals U of [K, K] satisfying [u ◦ v, w] = 0 for every 
u, v ∈ [U, U ], w ∈ U when the prime ideal P satisfies P ∗ �= P are like this.

Corollary 3.13. Let A be semiprime, and let U be a Lie ideal of [K, K] such that [u ◦
v, w] = 0 for every u, v ∈ [U, U ], w ∈ U . If P is a prime ideal of A such that P ∗ �= P

then either the projection of U in A/P is central, or A/P is commutative, or A/P is 
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a central order in a 4-dimensional simple superalgebra or in an 8-dimensional simple 
superalgebra.

4. Prime images of Lie ideals when P ∗ = P

Next we consider the cases when P ∗ = P , for P a prime ideal of A. So we have a 
superinvolution on A/P induced by the superinvolution on A. Recall that a superinvo-
lution on A is said to be of the first kind if ZH = Z, and it is said to be of the second 
kind if ZH �= Z.

Lemma 4.1. Let A be a prime superalgebra with a superinvolution ∗ of the second kind. 
Let U be a Lie ideal of [K, K] such that u ◦ v ∈ Z for every u, v ∈ [U, U ]0, u ◦ v = 0
for every u, v ∈ [U, U ]1 and (u ◦ v)2 = 0 for every u ∈ [U, U ]0, v ∈ [U, U ]1. Then either 
U ⊆ Z or A satisfies S(3).

Proof. If ∗ is of the second kind we know that ZH = {x ∈ Z : x∗ = x} �= Z. We 
may localize A by V = ZH − {0} and replace U by V −1(ZHU) and A by V −1A. The 
hypothesis remains unchanged, so we keep for this superalgebra the same notation A, 
and now Z is a field. Let 0 �= t ∈ ZK . Then H = tK and A = tK + K. It follows that 
[ZU, [A, A]] ⊆ ZU , u ◦ v ∈ Z for every u, v ∈ Z[U, U ]0, u ◦ v = 0 for every u, v ∈ Z[U, U ]1
and (u ◦ v)2 = 0 for every u ∈ [U, U ]0, v ∈ [U, U ]1. By Corollary 3.11, either ZU ⊆ Z, 
which implies that U ⊆ Z, or A satisfies S(3). �
Lemma 4.2. Let A be a prime superalgebra with a superinvolution ∗ of the first kind. Let 
U be a Lie ideal of [K, K] such that u ◦ v ∈ Z for every u, v ∈ [U, U ]0, u ◦ v = 0 for every 
u, v ∈ [U, U ]1 and (u ◦ v)2 = 0 for every u ∈ [U, U ]0, v ∈ [U, U ]1. Then either U = 0 or 
A satisfies S(4).

Proof. Since ∗ is of the first kind, ZK = K∩Z = 0. So, from Theorem 4.1 and Lemma 4.1 
in [4], either [K, K] is dense in A or A satisfies S(2). If u2 = 0 for every u ∈ [U, U ]0, 
applying Theorem 3.3 in [4] we obtain that [U, U ] = 0. But then by Lemma 4.5 in [4]
we obtain that either U = 0 or A satisfies S(2). Suppose then that u2 �= 0 for some 
u ∈ [U, U ]0. By Theorem 3.4 in [4] we get that either [U, U ] ⊆ Z or A satisfies S(4). 
But if [U, U ] ⊆ Z then [[U, U ], [U, U ]] = 0 and applying twice Lemma 4.5 in [4] yields 
U = 0. �
5. The proof of the main result

Combining the above results of Sections 3 and 4 we obtain

Theorem 5.1. Let A be a semiprime superalgebra and U a Lie ideal of [K, K] with u ◦v ∈ Z

for every u, v ∈ [U, U ]0, u ◦ v = 0 for every u, v ∈ [U, U ]1 and (u ◦ v)2 = 0 for every 
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u ∈ [U, U ]0, v ∈ [U, U ]1. Then A is the subdirect sum of two semiprime homomorphic 
images A′, A′′, such that the image of U in A′ is central and A′′ satisfies S(4).

Proof. Let T ′ = {P : P is a prime ideal of A such that the image of U in A/P is
central} and let T ′′ = {P : P is a prime ideal of A such that A/P satisfies S(4)}.

If we consider P , a prime ideal of A such that P ∗ �= P , we know from Corollary 3.13
that either A/P is a central order in a simple superalgebra at most 8-dimensional over its 
center, or (U +P )/P is central. If we consider P a prime ideal of A such that P ∗ = P , it 
follows from Lemmata 4.1, 4.2 that either A/P is a central order in a simple superalgebra 
at most 16-dimensional over its center, or the image of U in A/P is central.

So every prime ideal of A belongs either T ′ or T ′′. Then A′ is obtained by taking the 
quotient of A by the intersection of all the prime ideals in T ′, and A′′ is obtained by 
taking the quotient of A by the intersection of all the prime ideals in T ′′. This proves 
the theorem. �

We finally arrive at the main theorem on the Lie structure of [K, K].

Theorem 5.2. Let A be a semiprime superalgebra with superinvolution ∗, and let U be 
a Lie ideal of [K, K]. Then either A is a subdirect sum of two semiprime homomorphic 
images A′, A′′, with the image of U in A′ being central and A′′ satisfying S(4), or 
U ⊇ [J ∩K, K] �= 0 for some ideal J of A.

Proof. We consider V = [U, U ], which is also a Lie ideal of [K, K]. From Lemmata 2.1
and 2.3 we know that either V is dense in A, and so there exists a nonzero ideal J such 
that J ⊆ V̄ , or the conditions (i), (ii) and (iii) in Lemma 2.3 are satisfied by V .

In the second case we obtain by Theorem 5.1 the first part of the theorem for V . We 
claim that we obtain also this for U. Indeed, if (V +P )/P is central in A/P for some P
prime ideal of A, we notice that then the conditions (i), (ii) and (iii) in Lemma 2.3 are 
also satisfied by (U + P )/P in A/P . So from Corollary 3.13 and Lemmata 4.1 and 4.2
we have that either (U + P )/P is central or A/P verifies S(4). So, like in Theorem 5.1, 
we have the first part of the theorem for U .

In the first case, that is, if J ⊆ V̄ , we will show that [J ∩K, K] ⊆ U .
The identity

[xy, z] = [x, yz] + (−1)x̄ȳ+x̄z̄[y, zx]

can be used to show that [V̄ , A] = [V, A]. Hence [J ∩K, K] ⊆ [V̄ , A] = [V, A] = [V, H] +
[V, K]. But [V, H] ⊆ H, and [V, K] ⊆ K, so [J ∩K, K] ⊆ [[U, U ], K] ⊆ U .

Finally, we prove that if [J ∩ K, K] = 0 we would be in the situation of the first 
part of the theorem, that is, that either (U + P )/P is central or A/P satisfies S(4) for 
every prime ideal P of A. Suppose that [J ∩ K, K] = 0, then [u ◦ v, w] = 0 for every 
u, v ∈ [J ∩ K, J ∩ K], w ∈ J ∩ K because [uv, w] = u[v, w] + (−1)v̄w̄[u, w]v = 0. So 
by Lemmata 4.1, 4.2 and Corollary 3.13 it follows that for each prime image, A/P , of 
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A either its center contains ((J ∩ K) + P )/P , or A/P is a central order in a simple 
superalgebra at most 16-dimensional over its center.

We claim that if the image of J ∩K in A/P for some prime ideal P of A is central, 
then either (U + P )/P is central or A/P satisfies S(4).

Let P be a prime ideal such that P ∗ �= P . If (J + P )/P �= 0, then since A/P is a 
prime superalgebra we get ((J ∩ P ∗) + P )/P �= 0, and so we have ((J ∩ P ∗) + P )/P ⊆
((J ∩ K) + P )/P ⊆ Z0(A/P ), that is, A/P is commutative. So A/P is commutative 
unless J ⊆ P . And if J ⊆ P , then by the proof of Lemma 2.1 we know that A[u ◦
v, w]A[u ◦v, w]A[u ◦v, w]A ⊆ P for every u, v ∈ [V, V ], w ∈ V . Because P is a prime ideal 
we deduce that [u ◦ v, w] ∈ P for every u, v ∈ [V, V ], w ∈ V . But now, by Lemma 2.3, 
(V + P )/P satisfies the conditions (i), (ii) and (iii) in this lemma. So by Corollary 3.13
we obtain that either (V + P )/P ⊆ Z0(A/P ), or A/P satisfies S(4). Applying the same 
to (U + P )/P , which satisfies also that [u ◦ v, w] = 0 for every u, v ∈ ([U, U ] + P )/P , 
w ∈ (U + P )/P , we obtain that either (U + P )/P ⊆ Z0(A/P ) or A/P satisfies S(4).

And, if P is a prime ideal such that P ∗ = P , then A/P has a superinvolution induced 
by * and K(A/P ) = (K+P )/P . In this case, if ((J∩K) +P )/P = 0, we get (J+P )/P ⊆
(H+P )/P = H(A/P ), and therefore (J+P )/P is supercommutative. But then for every 
a, b ∈ A/P and y, z ∈ (J + P )/P it follows that

yabz = (−1)(b̄+z̄)(ȳ+ā)(bz)(ya) = (−1)b̄(ȳ+ā)b(ya)z

= (−1)b̄ȳ+b̄ā+(ā+z̄)ȳb(az)y = (−1)b̄āybaz.

Since A/P is prime, ab = (−1)āb̄ba, that is, A/P is supercommutative. Now, from 
Lemma 1.9 in [16], A/P is a central order in a simple superalgebra at most 4-dimensional 
over its center. And, if ((J ∩ K) + P )/P �= 0, then Z0(A/P ) �= 0. So by localizing at 
V = (Z0(A/P ) ∩ H(A/P )) − {0} we can suppose that Z0(A/P ) is a field, which we 
denote by Z. We will replace V −1(A/P ) by A/P and V −1((J + P )/P ) by (J + P )/P . 
Then, if 0 �= t ∈ ((J ∩K) + P )/P , we have tH = K with H = H(A/P ), K = K(A/P ). 
So K = tH ⊆ ((K ∩ J) + P )/P ⊆ Z(A/P ), and H ⊆ t−1Z(A/P ) ⊆ Z(A/P ). Therefore 
A/P is a field. �

Let AnnT = {x ∈ A : xT = Tx = 0}. Finally we have

Corollary 5.3. Let A be a semiprime superalgebra with superinvolution ∗, and let U be 
a Lie ideal of [K, K]. Then either [J ∩ K, K] ⊆ U where J is a nonzero ideal of A or 
there exists a semiprime ideal T of A such that A/AnnT satisfies S(4) and (U +T )/T ⊆
Z0(A/T ).

Proof. By Theorem 4.4 we have that either the first conclusion holds, or, for each prime 
ideal P of A, either A/P satisfies S(4) or (U+P )/P ⊆ Z0(A/P ). Let T be the intersection 
of the prime ideals P of A such that (U + P )/P ⊆ Z0(A/P ). Then AnnT contains the 
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intersection of those prime ideals P such that A/P satisfies S(4). So we get that A/AnnT
satisfies S(4), and this proves the result. �
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