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1. Introduction

This paper may be regarded as a supplementary note to the articles [4,5,11,15]. Let R
be a Noetherian ring of (Krull) dimension n. Our purpose is to understand the relation 
between the following groups:

(1) Umn+1(R)/En+1(R): the orbit space of unimodular rows of length n + 1 under the 
natural action of elementary (n + 1) × (n + 1) matrices. This space is equipped with 
a group structure, introduced by van der Kallen [14].

(2) En(R): the n-th Euler class group of R defined by Bhatwadekar and Sridharan 
[2,4] which detects the obstruction for a projective R-module of rank n (with trivial 
determinant) to split off a free summand of rank one.

(3) En
0 (R): the n-th weak Euler class group of R defined by Bhatwadekar and Sridharan 

[3,4] which is a certain quotient of En(R) and is an analogue of the Chow group 
CH0(R) for regular R.

When n is even and Q ⊂ R, Bhatwadekar and Sridharan established a wonderful 
relation between these groups in [4, 7.6] by showing that there is an exact sequence:

(∗) Umn+1(R)/En+1(R) −→ En(R) −→ En
0 (R) −→ 0

Let [a1, · · · , an+1] ∈ Umn+1(R)/En+1(R). The first map in the above exact sequence 
is given by the Euler class of the stably free R-module P associated to the unimodular 
row [a1, · · · , an+1] (we shall freely use the same notation for a unimodular row and the 
elementary orbit represented by it). We may loosely call it the Euler class of [a1, · · · , an+1]
and denote it by e[a1, · · · , an+1]. Thus, e[a1, · · · , an+1] = 0 if and only if P � Q ⊕R for 
some R-module Q, and equivalently, [a1, · · · , an+1] is the first row of a right-invertible 
2 ×(n +1) matrix. If X = Spec(R) is a smooth affine variety of dimension n (n even) over 
R such that X(R), the smooth real manifold consisting of all real points of X, is orientable 
and every complex maximal ideal of R is a complete intersection, a remarkable result of 
Fasel [11, 5.9] essentially asserts that e[a1, · · · , an+1] = 0 if and only if [a1, · · · , an+1] is 
the first row of an (n + 1) × (n + 1) elementary matrix.

All the results mentioned above are heavily dependent on the fact that n is even. 
Whereas, if n is odd, the Euler class e[a1, · · · , an+1] is always trivial (note that if n is odd, 
[a1, · · · , an+1] is the first row of a right-invertible 2 ×(n +1) matrix). It is therefore natural 
to ask whether for odd n one can define a morphism φ : Umn+1(R)/En+1(R) −→ En(R)
which is non-trivial for some important class of rings and further, we have an exact 
sequence as above. In this article, we answer this question affirmatively in 3.4, 3.6, 3.8, 
when R is a commutative Noetherian ring (unlike [4] we do not assume that Q ⊂ R). 
We call the element φ[a1, · · · , an+1] ∈ En(R) the “strong” Euler class of [a1, · · · , an+1]. 
The definition of φ is for general n and it coincides with e[a1, · · · , an+1] when n is even 
and Q ⊂ R (see 3.10).
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If X = Spec(R) is a smooth affine variety of dimension n over R such that X(R) is 
orientable and every complex maximal ideal of R is a complete intersection, we crucially 
use a structure theorem of Fasel [11, 4.9, 5.7] to show that in this setup the following 
sequence of groups is exact (Fasel did it for even n in [11, 5.9]):

0 −→ Umn+1(R)/En+1(R) φ−→ En(R) −→ En
0 (R) −→ 0

As a consequence, it follows that if a unimodular row [a1, · · · , an+1] has trivial strong 
Euler class (i.e., φ[a1, · · · , an+1] = 0 in En(R)), then it is the first row of an (n +1) ×(n +1)
elementary matrix. This justifies the adjective “strong” as there are interesting cases 
to show that when n is odd, φ[a1, · · · , an+1] could be non-zero while e[a1, · · · , an+1] is 
always zero. For example, the unimodular row associated to the tangent bundle of the 
real 3-sphere has trivial Euler class but its strong Euler class is non-zero.

This note grew out of a remark made by Jean Fasel to us (through personal communi-
cation) on our article [10]. In [10] we proved that if R ↪→ S is a subintegral extension of 
Noetherian rings of dimension n, then: (1) En(R) � En(S); (2) Umn+1(R)/En+1(R) �
Umn+1(S)/En+1(S) (see also [12]); and (3) En

0 (R) � En
0 (S) (provided n is even and 

Q ⊂ R). To prove (3) for general n, Fasel suggested that we should try to show that 
there is a similar exact sequence (as (∗) above) when n is odd (so that we can use the 
isomorphisms of (1) and (2) to conclude our result). The suggestion of the map φ is also 
due to Fasel. Thus, Question 3.29 (1) of [10] is now completely settled (see 3.12 below). 
Further, we do not need the assumption that Q ⊂ R.

In an earlier version of this article we could only prove the main results (see 3.4, 
3.6, 3.8) in the case when R is a smooth affine domain over an infinite field (see Section 4). 
The referee showed us how to generalize our results to Noetherian domains. In this 
current version these results are finally proved for an arbitrary Noetherian ring.

2. Some preliminaries

All the rings considered in this paper are commutative Noetherian. The modules are 
assumed to be finitely generated.

Unless specified otherwise, R will stand for a ring of dimension n ≥ 3.

2.1. The Euler class group

We recall the definition of the n-th Euler class group En(R).

Definition 2.1. Consider all ideals n of R such that n is an m-primary ideal for some 
maximal ideal m of height n and μ(n/n2) = n (where μ(−) stands for minimal number 
of generators). Let G be the free abelian group on the set of pairs (n, ωn), where n is as 
above and ωn : (R/n)n � n/n2 is a surjection. Let J be an ideal of height n such that 
μ(J/J2) = n and let ωJ : (R/J)n � J/J2 be a surjection. Let J = n1 ∩ · · · ∩ nr be the 
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(irredundant) primary decomposition of J . Then ni is mi-primary for some maximal ideal 
mi of height n for 1 ≤ i ≤ r. Note that ωJ naturally induces surjections ωni

: (R/ni)n �
ni/n

2
i for 1 ≤ i ≤ r. The pair (J, ωJ) is associated to the element (n1, ωn1) +· · ·+(nr, ωnr

)
of G. By a slight abuse of notations, (n1, ωn1) + · · ·+ (nr, ωnr

) is denoted by (J, ωJ). Let 
H be the subgroup of G generated by the set of pairs (J, ωJ) where J is an ideal of height 
n and the surjection ωJ : (R/J)n � J/J2 has a surjective lift θ : Rn � J (in other 
words, ωJ is induced by a set of n generators of J). The n-th Euler class group of R is 
defined as En(R) := G/H.

The above definition is, a priori, slightly different from the one given in [4]. We give 
a quick proof to show their equivalence.

Proposition 2.2. The Euler class group defined above is equivalent to the Euler class 
group defined in [4].

Proof. In [4] two pairs (J, ωJ) and (J, ωJσ) are identified, where σ ∈ SLn(R/J). There-
fore, we are required to prove that (J, ωJ) − (J, ωJσ) ∈ H, where H is as in the above 
definition. Using the moving lemma [4, 2.14] it follows that there is an ideal J ′ and a sur-
jection β : Rn � J ∩J ′ such that: (1) J +J ′ = R, (2) ht(J ′) ≥ n, and (3) β⊗R/J = ωJ .

If J ′ = R, then β is a surjective lift of ωJ and therefore (J, ωJ) ∈ H. It is then enough 
to prove that ωJσ also has a surjective lift.

If ht(J ′) = n, then β induces a surjection, say, ωJ ′ : (R/J ′)n � J ′/J ′ 2 and we have

(J ∩ J ′, β) = (J, ωJ) + (J ′, ωJ ′)

in G, where β = β ⊗R/(J ∩ J ′) : (R/J ∩ J ′)n � (J ∩ J ′)/(J ∩ J ′)2. Using the Chinese 
Remainder Theorem we can find σ̃ ∈ SLn(R/J ∩ J ′) such that σ̃ = σ modulo J and σ̃ is 
the identity matrix modulo J ′. Therefore, we have

(J ∩ J ′, βσ̃) = (J, ωJσ) + (J ′, ωJ ′)

in G. Note that, as (J ∩ J ′, β) ∈ H, proving (J ∩ J ′, βσ̃) ∈ H will suffice.
Therefore, we are finally reduced to prove that if I is an ideal of height n and α :

Rn � I is a surjection, then the surjection α̃τ : (R/I)n � I/I2 has a surjective lift 
θ : Rn � I, where τ is any matrix in SLn(R/I) and α̃ = α ⊗ R/I. Now note that 
dim(R/I) = 0 and therefore SLn(R/I) = En(R/I). Since elementary matrices can be 
lifted off a surjection, it is easy to see that α̃τ has the desired lift. �
Remark 2.3. For the convenience of the reader we remind that by applying the moving 
lemma [4, 2.14] and addition principle [4, 3.2], an element of En(R) can be represented 
by a pair (J, ωJ), where J ⊂ R is an ideal of height n and ωJ : (R/J)n � J/J2 is a 
surjection. We shall call these representatives of elements of En(R) as Euler cycles.
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We now quote one crucial result from [4].

Theorem 2.4. (See [4, 4.2].) Let R be a ring of dimension n and J be an ideal of height n
such that μ(J/J2) = n. Let ωJ : (R/J)n � J/J2 be a surjection. Suppose that the image 
of (J, ωJ) is zero in En(R). Then ωJ has a surjective lift θ : Rn � J .

Remark 2.5. Given a projective R-module P of rank n with trivial determinant and an 
isomorphism χ : R ∼→ ∧n(P ), Bhatwadekar and Sridharan associate the Euler class of 
(P, χ), denoted e(P, χ), in the group En(R) and prove [4, 4.4] that e(P, χ) = 0 in En(R)
if and only if P � Q ⊕R for some R-module Q. To define the Euler class of (P, χ) they 
need the additional assumption that Q ⊂ R.

2.2. Segre class of ideals

We also need to recall the Segre class of an ideal as defined in [9]. Let J ⊂ R be 
an ideal of height at least n − 1 with μ(J/J2) = n, and ωJ : (R/J)n � J/J2 be a 
surjection. With this data, the Segre class 

〈
J, ωJ

〉
has been defined in [9], which takes 

values in En(R). Note that we are using a notation different from the one in [9].

Definition 2.6. Let R be a ring of dimension n. Let J ⊂ R be an ideal of height ≥ n − 1
such that J/J2 is generated by n elements. Let ωJ : (R/J)n � J/J2 be a surjection 
induced by J = (a1, · · · , an) + J2. Applying a “moving lemma” [9, 2.7] we can find 
c1, · · · , cn ∈ J such that (c1, · · · , cn) = J ∩ J1 where ht(J1) ≥ n, J1 + J = R and ci = ai
modulo J2. If J1 is a proper ideal then J1 = (c1, · · · , cn) +J2

1 and it induces a surjection 
ωJ1 : (R/J1)n � J1/J

2
1 . The Segre class of the pair {J, ωJ} is defined as

〈
J, ωJ

〉
:= −(J1, ωJ1)

in En(R). If J1 = R then J = (c1, · · · , cn), and in that case the Segre class 
〈
J, ωJ

〉
is 

defined to be trivial in En(R).
It has been proved in [9, 3.2] that 

〈
J, ωJ

〉
is well-defined. The Segre classes behave 

very much like the Euler cycles. First of all, if in the above definition we have ht(J) = n, 
then 

〈
J, ωJ

〉
is precisely (J, ωJ) in En(R). Further, the following result has been proved 

in [9].

Theorem 2.7. (See [9, 3.3].) Let R be a ring of dimension n. Let J ⊂ R be an ideal of 
height ≥ n − 1 and ωJ : (R/J)n � J/J2 be a surjection. Then, 

〈
J, ωJ

〉
= 0 in En(R) if 

and only if ωJ can be lifted to a surjection θ : Rn � J .

The Segre class is additive in the following sense.
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Theorem 2.8. (See [9, 3.4].) Let R be a ring of dimension n. Let J1, J2 ⊂ R be 
two comaximal ideals, each of height ≥ n − 1. Suppose that there are surjections 
ωJ1 : (R/J1)n � J1/J

2
1 and ωJ2 : (R/J2)n � J2/J

2
2 . Then

〈
J1 ∩ J2, ωJ1∩J2

〉
=

〈
J1, ωJ1

〉
+
〈
J2, ωJ2

〉

in En(R), where ωJ1∩J2 : (R/(J1 ∩J2))n � J1 ∩J2/(J1 ∩J2)2 is the surjection naturally 
induced by ωJ1 and ωJ2 .

The following proposition will be crucially used in the next section. We prove this one 
and 2.10 from first principle.

Proposition 2.9. Let R be a ring of dimension n. Let J ⊂ R be an ideal of height ≥ n −1
and ωJ : (R/J)n � J/J2 be a surjection. Let σ ∈ En(R/J). Then 

〈
J, ωJ

〉
=

〈
J, ωJσ

〉
in En(R).

Proof. Let σ ∈ En(R) be a lift of σ.
Let us first assume that 

〈
J, ωJ

〉
= 0. Then by 2.7, there is a surjection θ : Rn � J

such that θ lifts ωJ . It is easy to see that θσ : Rn � J is a surjective lift of ωJσ and 
therefore 

〈
J, ωJσ

〉
= 0 in En(R).

Next we assume that 
〈
J, ωJ

〉

= 0. Write J = J/J2. Now ωJ is given by a set of 

generators (a1, · · · , an) of J . By [9, 2.7] we can find c1, · · · , cn ∈ J such that (c1, · · · , cn) =
J ∩ J1 where ht(J1) ≥ n, J1 + J = R and ci = ai modulo J2. As 

〈
J, ωJ

〉

= 0, J1 is a 

proper ideal of height n. Let us write J̃1 = J1/J
2
1 . Then J̃1 is generated by (c̃1, · · · , ̃cn)

and if ωJ1 : (R/J1)n � J1/J
2
1 denotes the corresponding surjection, from the definition 

of the Segre class above we have 
〈
J, ωJ

〉
= −(J1, ωJ1) in En(R). We need to prove that 〈

J, ωJσ
〉

= −(J1, ωJ1), where σ ∈ En(R/J).
Let (a1, · · · , an)σ = (b1, · · · , bn). Then J = (b1, · · · , bn). Let us write σ̃ for the image 

of σ in En(R/J1).
Let (c1, · · · , cn)σ = (d1, · · · , dn). Then J ∩J1 = (d1, · · · , dn). As ci−ai ∈ J2, it follows 

that di − bi ∈ J2. Now note that J1 = (d1, · · · , dn) + J2
1 and the corresponding Euler 

cycle is (J1, ωJ1 σ̃). From the definition of the Segre class it follows that the Segre class 
of the pair {J, ωJσ} is 

〈
J, ωJσ

〉
= −(J1, ωJ1 σ̃).

As σ̃ ∈ En(R/J1), from the proof of 2.2 above it is easy to see that (J1, ωJ1) =
(J1, ωJ1 σ̃). Therefore, 

〈
J, ωJ

〉
=

〈
J, ωJσ

〉
in En(R). �

Notation. Let J ⊂ R be an ideal of height ≥ n −1 and ωJ : (R/J)n � J/J2 be a surjec-
tion. Let u ∈ (R/J)∗ and σ be any diagonal matrix in GLn(R/J) with determinant u. 
We shall denote the composite surjection (to be consistent with such notations for Euler 
cycles)

(R/J)n
σ
∼→ (R/J)n

ωJ� J/J2
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by uωJ . It is easy to check that the element 
〈
J, uωJ

〉
∈ En(R) is independent of σ (one 

has to use the fact that a diagonal matrix with determinant 1 is elementary).

Proposition 2.10. Let J ⊂ R be an ideal of height ≥ n − 1 and ωJ : (R/J)n � J/J2 be 
a surjection. Let u ∈ (R/J)∗. Then 

〈
J, u2ωJ

〉
=

〈
J, ωJ

〉
in En(R).

Proof. We first assume that 
〈
J, ωJ

〉
= 0 in En(R). We then have J = (a1, · · · , an) and 

ωJ is induced by (a1, · · · , an). From the above discussion it is clear that without loss of 
generality we may assume that u2ωJ is induced by J = (a1, · · · , u2an) + J2. By [1, 3.4], 
u2ωJ can be lifted to a surjection θ : Rn � J and therefore 

〈
J, u2ωJ

〉
= 0.

Next let 
〈
J, ωJ

〉

= 0. Let ωJ be induced by J = (a1, · · · , an) + J2. Applying [9, 2.7]

we can find c1, · · · , cn ∈ J such that (c1, · · · , cn) = J ∩ J1 where ht(J1) ≥ n, J1 + J = R

and ci = ai modulo J2. In this case J1 is a proper ideal. Then J1 = (c1, · · · , cn) + J2
1

and it induces a surjection ωJ1 : (R/J1)n � J1/J
2
1 . By definition of the Segre class, 〈

J, ωJ

〉
= −(J1, ωJ1) in En(R).

Using the Chinese Remainder Theorem choose v ∈ R such that v ≡ u modulo 
J and v ≡ 1 modulo J1. Then v is a unit modulo J ∩ J1 and we have, J ∩ J1 =
(c1, · · · , v2cn) + (J ∩ J1)2. Again applying [1, 3.4] it follows that J ∩ J1 = (d1, · · · , dn)
with di − ci ∈ (J ∩ J1)2 for i = 1, · · · , n − 1 and dn − v2cn ∈ (J ∩ J1)2. Then, clearly 
di − ai ∈ J2 for i = 1, · · · , n − 1 and dn − u2an ∈ J2. Further note that di − ci ∈ J2

1
for i = 1, · · · , n and therefore d1, · · · , dn will still induce ωJ1 : (R/J1)n � J1/J

2
1 . From 

the definition of the Segre class we have 
〈
J, u2ωJ

〉
= −(J1, ωJ1) in En(R) and we are 

done. �
Remark 2.11. Let ht(J) = n and ω1, ω2 be two surjections from (R/J)n to J/J2. It then 
follows from [4, 2.2, 5.0] that (J, ω2) = (J, uω1) in En(R) for some u ∈ (R/J)∗.

2.3. Weak Euler class group

We recall the definition of the n-th weak Euler class group of R from [4].

Definition 2.12. Let R be a ring of dimension n. Let S be the set of ideals n ⊂ R such that 
μ(n/n2) = n and n is m-primary for some maximal ideal m of height n. Let G0 be the 
free abelian group on the set S. Let J be an ideal of height n such that μ(J/J2) = n. Let 
J = n1 · · · nr be the (irredundant) primary decomposition of J , where ni is mi-primary 
for some maximal ideal mi of height n (1 ≤ i ≤ r). The element 

∑r
i=1 ni in G is associated 

to J and is denoted as (J). Let H0 be the subgroup of G0 generated by all elements (J)
where J is an ideal of height n such that μ(J) = n. The n-th weak Euler class group 
of R is defined as En

0 (R) := G0/H0.



192 M.K. Das, Md. Ali Zinna / Journal of Algebra 432 (2015) 185–204
Remark 2.13. There is an obvious canonical surjective group homomorphism ψ :
En(R) � En

0 (R) (under which an element (J, ωJ) is mapped to (J)).

The following proposition will be useful in the next section. It can be proved following 
the proof of [3, 3.3].

Proposition 2.14. Let H ′ be the subgroup of En(R) generated by all (J, ωJ) where J is 
an ideal of height n which is generated by n elements and ωJ : (R/J)n � J/J2 is a 
surjection. Then Ker(ψ) = H ′.

2.4. The map of Bhatwadekar and Sridharan through Euler class

Let R be a commutative Noetherian ring of dimension n ≥ 3 and let Q ⊂ R. Let 
us now briefly indicate how the group homomorphism from van der Kallen’s group 
Umn+1(R)/En+1(R) to the Euler class group En(R) is defined in [4].

Let [a0, a1, · · · , an] ∈ Umn+1(R). Let b0, · · · , bn ∈ Rn+1 be such that 
∑n

i=0 aibi = 1. 
Let P be the kernel of the surjection θ : Rn+1 � R which sends ei to ai, i = 0, · · · , n, 
where {e0, · · · , en} is the standard basis of Rn. Write pi = ai

∑n
i=0 biei − ei. Then 

p0, · · · , pn generate P and 
∑n

i=0 bipi = 0. It can be checked that

χ :=
n∑

i=0
(−1)iaip0 ∧ · · · ∧ pi−1 ∧ pi+1 ∧ · · · ∧ pn

defines an isomorphism χ : R � ∧n(P ), and χ does not depend on the choice of bi. 
In this setup, Bhatwadekar and Sridharan define a map from Umn+1(R)/En+1(R) to 
En(R) which sends the orbit of [a0, a1, · · · , an] to e(P, χ). As their definition is through 
the Euler class of a projective module, they need the assumption that Q ⊂ R.

We shall loosely call this map as e : Umn+1(R)/En+1(R) → En(R) and denote the 
image of [a0, a1, · · · , an] as e[a0, a1, · · · , an]. It is proved in [4] that e turns out to be a 
group homomorphism.

In [4], they also give an explicit description of this map. Let [a0, a1, · · · , an] ∈
Umn+1(R)/En+1(R). Performing elementary transformations we may assume that the 
ideal J = (a1, · · · , an) has height n. Note that there is a surjective map β : P � J

defined by β(p0) = b0a0 − 1 and β(pi) = b0ai for i ≥ 1. Let ωJ : Rn � J be the 
surjection induced by a1, · · · , an. They show that the pair (β, χ) induces the Euler class 
e(P, χ) = (J, bn−1

0 ωJ), where bar denotes reduction modulo J . Note that a0b0 ≡ 1 mod-
ulo J .

If n is odd then we know that P has a unimodular element. We also observe that in 
this case, e(P, χ) = (J, bn−1

0 ωJ) = (J, ωJ) = 0 (using [4, 5.4] or 2.10 above).
If n is even, then using [4, 5.4] or 2.10 and a0b0 ≡ 1 modulo J we have

e(P, χ) = (J, bn−1
0 ωJ) = (J, b0ωJ) = (J, a2

0b0ωJ) = (J, a0ωJ)
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3. A group homomorphism and an exact sequence

Let R be a commutative Noetherian ring of dimension n ≥ 3. Our aim in this section 
is to define a group homomorphism φ : Umn+1(R)/En+1(R) → En(R) so that we have 
an exact sequence

Umn+1(R)/En+1(R) φ−→ En(R) ψ−→ En
0 (R) −→ 0

We first state a couple of lemmas. The following lemma is standard. For a proof, see 
[13, 7.1.3].

Lemma 3.1. Let B be a ring and [a1, · · · , ar, s] ∈ Umr+1(B). Then there exists 
λ1, · · · , λr ∈ B such that ht(a1 + λ1s, · · · , ar + λrs) ≥ r.

In this section we shall frequently use the following easy derivative of the preceding 
lemma.

Lemma 3.2. Let B be a ring and [a1, · · · , ar, s] ∈ Umr+1(B). Then there exists 
λ1, · · · , λr−1 ∈ B such that ht(a1 + λ1s, · · · , ar−1 + λr−1s, ar) ≥ r − 1.

Proof. Let ‘bar’ denote reduction modulo (ar). Apply the above lemma to the unimod-
ular row [a1, · · · , ar−1, s] ∈ Umr(B). �

Let us now fix some notations. Let J ⊂ R be an ideal of height ≥ n − 1 such 
that μ(J/J2) = n. Let J = (a1, · · · , an) + J2 and ωJ : (R/J)n � J/J2 be the cor-
responding surjection. We shall denote the Segre class of the pair {J, ωJ} in En(R)
by 

〈
J, (a1, · · · , an)

〉
. If J is n-generated, say, J = (b1, · · · , bn), then in our notation, 〈

(b1, · · · , bn), (b1, · · · , bn)
〉

= 0. Also, we shall put 
〈
R, (a1, · · · , an)

〉
= 0 for any a1, · · · , an.

We now prove a proposition which will be very useful for subsequent discussions.

Proposition 3.3. Let J ⊂ R be an ideal of height ≥ n − 1. Assume that J = (a1, · · · , an)
and u be a unit modulo J . Let λ1, · · · , λn−1 ∈ R. Then in En(R), we have

〈
J, (a1 + λ1an, · · · , an−1 + λn−1an, uan)

〉
=

〈
J, (a1, · · · , uan)

〉

Proof. Note that we have J = (a1, · · · , an) = (a1 + λ1an, · · · , an−1 + λn−1an, an) and

(1) J = (a1, · · · , uan) + J2

(2) J = (a1 + λ1an, · · · , an−1 + λn−1an, uan) + J2

Let ω1 : (R/J)n � J/J2 be the surjection corresponding to (1) above and ω2 be the 
same for (2). We are required to prove that 

〈
J, ω1

〉
=

〈
J, ω2

〉
in En(R).
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Let v ∈ R be such that uv = 1 modulo J . Writing J = J/J2, from (2) we have

J = (a1 + λ1an, · · · , an−1 + λn−1an, uan)

Let σ ∈ En(R/J) correspond to the elementary transformation which adds −(vλi)(uan)
to the i-th generator of J above for i = 1, · · · , n − 1. As uv = 1, this transformation 
results in J = (a1, · · · , an−1,uan). In other words, 

〈
J, ω1

〉
=

〈
J, ω2σ

〉
. As σ ∈ En(R/J), 

applying 2.9 we have the result. �
Definition of a map: We do not assume n to be odd or even. Further, unlike [4] we do 

not need the assumption that Q ⊂ R. We first define a map ϕ : Umn+1(R) → En(R). Let 
[a1, · · · , an+1] ∈ Umn+1(R). If either an or an+1 is zero, we define ϕ[a1, · · · , an+1] = 0. 
So let us assume that an 
= 0, an+1 
= 0. Using 3.2 we can choose λ1, · · · , λn−1 ∈ R such 
that the ideal J1 = (a1 + λ1an, · · · , an−1 + λn−1an, an+1) has height ≥ n − 1. Similarly, 
choose μ1, · · · , μn−1 ∈ R so that the ideal J2 = (a1 + μ1an+1, · · · , an−1 + μn−1an+1, an)
has height ≥ n − 1. Note that J1 + (an) = R = J2 + (an+1) and we have

(1) J1 = (a1 + λ1an, · · · , an−1 + λn−1an, anan+1) + J2
1

(2) J2 = (a1 + μ1an+1, · · · , an−1 + μn−1an+1, anan+1) + J2
2

For i = 1, · · · , n − 1 write bi = ai + λian + μian+1. With our notations fixed above, 
applying 3.3 we have,

(3)
〈
J1, (a1 + λ1an, · · · , an−1 + λn−1an, anan+1)

〉
=

〈
J1, (b1, · · · , bn−1, anan+1)

〉
(4)

〈
J2, (a1 + μ1an+1, · · · , an−1 + μn−1an+1, anan+1)

〉
=

〈
J2, (b1, · · · , bn−1, anan+1)

〉

Let ‘bar’ denote reduction modulo (b1, · · · , bn−1). We then have

J1 = (anan+1) + J2
1, J2 = (anan+1) + J2

2 and J1 ∩ J2 = (anan+1)

Therefore, it follows that in En(R) we have

(5)
〈
J1, (b1, · · · , bn−1, anan+1)

〉
+

〈
J2, (b1, · · · , bn−1, anan+1)

〉
= 0

We now define ϕ : Umn+1(R) → En(R), as follows:

ϕ[a1, · · · , an+1] =
〈
J2, (a1 + μ1an+1, · · · , an−1 + μn−1an+1, anan+1)

〉

Note that from (3), (4) and (5) we have

〈
J2, (a1 + μ1an+1, · · · , an−1 + μn−1an+1, anan+1)

〉
= −

〈
J1, (a1 + λ1an, · · · , an−1 + λn−1an, anan+1)

〉
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in En(R). As one expression is independent of λ1, · · · , λn−1 and the other is of μ1, · · · ,
μn−1, it follows that ϕ is well-defined. We thus get a set-theoretic map ϕ : Umn+1(R) →
En(R).

Proposition 3.4. The map ϕ : Umn+1(R) → En(R), defined above, induces a set-theoretic 
map φ : Umn+1(R)/En+1(R) → En(R).

Proof. It is enough to check that ϕ is invariant under the action of En(R). We first 
record two immediate observations from the definition of ϕ which are going to be useful.

(a) If [a1, · · · , an] is unimodular, then ϕ[a1, · · · , an+1] = 0.
(b) ϕ[a1, · · · , an+1] = −ϕ[a1, · · · , an−1, an+1, an].

Our aim is to show that ϕ is invariant under the action of elementary generators 
of En(R). This is indeed sufficient.

Claim 1. ϕ[a1, · · · , an+1] = ϕ[a1, · · · , an, an+1 + τan] for any τ ∈ R.

Proof. If an = 0, the result is obvious. On the other hand if either an+1 or an+1 + τan is 
zero, then [a1, · · · , an] is unimodular. Therefore, we may assume that an 
= 0, an+1 
= 0
and an+1 + τan 
= 0.

As before applying 3.2 we can choose μ1, · · · , μn−1 ∈ R so that the ideal

J = (a1 + μ1(an+1 + τan), · · · , an−1 + μn−1(an+1 + τan), an)

has height at least n − 1. Applying 3.3 we then have the following equalities

ϕ[a1, · · · , an, an+1 + τan]

=
〈
J, (a1 + μ1(an+1 + τan), · · · , an−1 + μn−1(an+1 + τan), an(an+1 + τan))

〉
=

〈
J, (a1 + μ1an+1, · · · , an−1 + μn−1an+1, an(an+1 + τan))

〉
=

〈
J, (a1 + μ1an+1, · · · , an−1 + μn−1an+1, anan+1)

〉
(as τa2

n ∈ J2),

and this is independent of τ . This proves the claim. �
From observation (b) above and Claim 1 it then follows that

(c) ϕ[a1, · · · , an+1] = ϕ[a1, · · · , an + τan+1, an+1] for any τ ∈ R.

It is easy to see that ϕ is also invariant under elementary operations on (a1, · · · , an−1). 
Further, ϕ does not change if we add a multiple of an to an−1. Therefore it does not 
change if we add multiples of an, an+1 to a1, · · · , an−1. Finally, we will be done if we 
prove the following claim.
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Claim 2. ϕ[a1, · · · , an+1] = ϕ[a1, · · · , an, an+1 + τa1].

Proof. Arguing as before, we can assume that each of a1, an, an+1, an+1 + τa1 is not 
zero. We choose μ2, · · · , μn ∈ R so that the ideal

K = (a1, a2 + μ2(an+1 + τa1), · · · , an + μn(an+1 + τa1))

has height at least n − 1. We can also assume that an + μn(an+1 + τa1) 
= 0 and 
an + μnan+1 
= 0. We have the following equations in En(R):

ϕ[a1, · · · , an, an+1 + τa1]

= ϕ[a1, · · · , an−1, an + μn(an+1 + τa1), an+1 + τa1] (by (c) above)

=
〈
K, (a1, a2 + μ2(an+1 + τa1), · · · , an−1 + μn−1(an+1 + τa1),

(an + μn(an+1 + τa1))(an+1 + τa1))
〉

(from the definition of ϕ)

=
〈
K, (a1, a2 + μ2an+1, · · · , an−1 + μn−1an+1, (an + μnan+1)an+1)

〉
(by 2.9)

= ϕ[a1, a2, · · · , an + μnan+1, an+1] (from definition of ϕ)

= ϕ[a1, · · · , an+1] (by (c) above) �
Remark 3.5. From now on we shall freely use the same symbol for a unimodular row 
[a1, · · · , an+1] and the elementary orbit it represents.

Theorem 3.6. The map φ : Umn+1(R)/En+1(R) → En(R) is a group homomorphism.

Proof. By [15, 3.3], it is enough to prove that if [x, a1, · · · , an] and [y, a1, · · · , an] are 
unimodular with x + y = 1, then

φ[x, a1, · · · , an] + φ[y, a1, · · · , an] = φ[xy, a1, · · · , an].

If any of x, y or xy is zero, then [a1, · · · , an] is unimodular and therefore the above 
equation is trivial. So, assume them to be non-zero. Let bar denote reduction modulo xy. 
Adding suitable multiples of an to a1, · · · , an−1 we may assume that ht(a1, · · · , an−1) ≥
n − 1. It then follows that ht(xy, a1, · · · , an−1) ≥ n − 1, ht(x, a1, · · · , an−1) ≥ n − 1 and 
ht(y, a1, · · · , an−1) ≥ n − 1.

Let J1 = (x, a1, · · · , an−1) and J2 = (y, a1, · · · , an−1). Then J1 +J2 = R and J1∩J2 =
(xy, a1, · · · , an−1). By the definition of φ we have

(1) φ[x, a1, · · · , an] =
〈
J1, (x, a1, · · · , an−2, an−1an)

〉
(2) φ[y, a1, · · · , an] =

〈
J2, (y, a1, · · · , an−2, an−1an)

〉
(3) φ[xy, a1, · · · , an] =

〈
J1 ∩ J2, (xy, a1, · · · , an−2, an−1an)

〉
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It is now easy to see that

φ[xy, a1, · · · , an] =
〈
J1 ∩ J2, (xy, a1, · · · , an−2, an−1an)

〉
=

〈
J1, (x, a1, · · · , an−2, an−1an)

〉
+

〈
J2, (y, a1, · · · , an−2, an−1an)

〉
= φ[x, a1, · · · , an] + φ[y, a1, · · · , an] �

Remark 3.7. The upshot of the above theorem and the proposition is that now we 
have a map from the orbit space Umn+1(R)/En+1(R) and therefore if we pick a 
representative [a1, · · · , an+1] (a unimodular row), we are free to apply elementary 
transformations on [a1, · · · , an+1]. Therefore, we may use 3.1 and perform elementary 
transformations if necessary, to ensure that ht(a1, · · · , an) ≥ n. If [a1, · · · , an] is uni-
modular, then φ[a1, · · · , an+1] = 0. Otherwise, J = (a1, · · · , an) is a proper ideal of 
height n. Let ωJ : Rn � J be the surjection induced by a1, · · · , an. We then have 
φ[a1, · · · , an+1] = (J, an+1ωJ) in En(R). In what follows, we shall use this description 
of φ.

Theorem 3.8. The following sequence of groups is exact

Umn+1(R)/En+1(R) φ−→ En(R) ψ−→ En
0 (R) −→ 0

Proof. Clearly, the sequence is a complex and we only need to prove exactness at the 
middle. Note that if (J, ωJ) ∈ En(R) is such that (J) = 0 in En

0 (R), then by 2.14,

p∑
i=1

(Ji, ωi) + (J, ωJ) =
q∑

k=p+1

(Jk, ωk),

where J1, · · · , Jq are ideals of height n such that each of them is generated by n ele-
ments. Take one of them, say, J1. Let J1 = (α1, · · · , αn). If ω′

1 : Rn � J1 denotes the 
surjection induced by α1, · · · , αn, then by 2.11, (J1, ω1) = (J1, uω

′
1) for some u which is 

unit modulo J1. Then (J1, ω1) is the image of the unimodular row [α1, · · · , αn, u] under 
the map φ. Since this is true for each of 1, · · · , q and since φ is a morphism, it follows 
that (J, ωJ) is image of a unimodular row under φ. �
Remark 3.9. Here are some easy consequences of 3.8. Let (I, ωI) be an element of En(R)
such that its image in En

0 (R) is zero. From the exact sequence it is almost immediate that 
then (I, ωI) = (J, ωJ) in En(R) for some ideal J of height n and ωJ : (R/J)n � J/J2

such that J is generated by n elements.
Next, let P be a projective R-module of rank n with trivial determinant, such that 

its weak Euler class e(P ) is trivial in En
0 (R). Then P maps onto an ideal J of height n

which is generated by n elements. To see this, fix χ : R ∼→ ∧n(P ) and choose a surjection 
α : P � I where I is an ideal of height n. Then (α, χ) will induce the Euler class 
e(P, χ) = (I, ωI) (see [4] for definitions of the Euler class and the weak Euler class of 
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a projective module). As e(P ) = 0, it follows that (I) = 0 in En
0 (R). By the above 

paragraph, (I, ωI) = (J, ωJ) in En(R) for some ideal J of height n and ωJ : (R/J)n �
J/J2 such that J is generated by n elements. Then e(P, χ) = (J, ωJ) in En(R) and by 
[4, 4.3] there is a surjection β : P � J . These results are new for odd n. For even n there 
are stronger results (see [4, Section 6]).

In Section 2, we have recalled the definition of the map e : Umn+1(R)/En+1(R) −→
En(R) given by Bhatwadekar and Sridharan in [4] (with the assumption Q ⊂ R) and 
remarked that for odd n this is the zero map. We prove below that if n is even and 
Q ⊂ R, the maps φ and e are the same.

Proposition 3.10. When n is even, the map φ coincides with the map given by e.

Proof. Let n be even and let [u, a1, · · · , an] ∈ Umn+1(R). We may as before assume that 
ht(a1, · · · , an) = n. Write J = (a1, · · · , an) and let ωJ : Rn � J be induced by a1, · · · , an. 
By [4, Page 214] (see also Section 2 above), e[u, a1, · · · , an] = (J, uωJ).

By elementary transformations [u, a1, · · · , an] can be changed to [a1, −u, a2, · · · , an]. 
Doing it successively we observe that as n is even, [u, a1, · · · , an] and [a1, · · · , an, u] are 
in the same elementary orbit. Therefore, φ[u, a1, · · · , an] = φ[a1, · · · , an, u] := (J, uωJ) =
e[u, a1, · · · , an]. This completes the proof. �
Remark 3.11. Let R be a ring of dimension d and n be an integer such that n ≤ d ≤ 2n −3. 
Suitably modifying the definitions of the Euler class group and the weak Euler class 
group from Section 2, one can also define the n-th Euler class group En(R) (see [5]) and 
the n-th weak Euler class group En

0 (R). Also note that, in this range, van der Kallen 
[15] showed that Umn+1(R)/En+1(R) carries a group structure, extending his results 
from [14]. Emulating the process of defining the morphism from van der Kallen’s group 
to the Euler class group as done in this section, one can also define a group morphism 
φ : Umn+1(R)/En+1(R) −→ En(R) (it has been done in [5] when R is a regular domain 
containing an infinite field and n is even). In order to carry this out one has to extend 
the definition of the Segre class and establish analogues of 2.7, 2.9, 2.10, 2.14, which is 
not difficult to do. The resulting sequence Umn+1(R)/En+1(R) → En(R) → En

0 (R) → 0
becomes a complex. However, we are not sure of its exactness at the middle if n < d. 
On a related note, we would like to mention that if R contains an infinite field then van 
der Kallen [16] has recently proved that φ : Umn+1(R)/En+1(R) −→ En(R) is a group 
homomorphism using a different method.

Applying the main theorem (3.8 above) we now settle Question 3.29 (1) of [10] af-
firmatively and improve [10, 3.25]. Let R ↪→ S be a subintegral ring extension with 
dim(R) = n = dim(S). If Q ⊂ R and n is even, we proved [10, 3.25] that the weak Euler 
class groups E0(R) and E0(S) are isomorphic. We then asked [10, 3.29 (1)] whether the 
result is true if n is odd. We now remove the condition Q ⊂ R and prove the desired 
isomorphism for all n.
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Theorem 3.12. Let R ↪→ S be a subintegral ring extension with dim(R) = n = dim(S). 
Then the weak Euler class groups En

0 (R) and En
0 (S) are isomorphic.

Proof. By 3.8 we have the following commutative diagram with exact rows:

Umn+1(R)
En+1(R)

ϕ

En(R)

Φ

En
0 (R)

Φ0

0

Umn+1(S)
En+1(S) En(S) En

0 (S) 0

By [10, 6.1], the map ϕ is an isomorphism. By [10, 3.11], the map Φ is an isomorphism. 
As a consequence, Φ0 is an isomorphism. �
4. The smooth case: homotopy invariance

Let R be a smooth affine domain of dimension n ≥ 3 over an infinite field. The 
purpose of this short section is to show that for such a ring it is easy to define a map 
φ : Umn+1(R)/En+1(R) → En(R) which coincides with the one defined in the previous 
section. Before getting into the explicit construction, a remark is in order.

Let u ∈ Umn+1(R) and let uσ = v, where σ ∈ En+1(R). As σ is elementary, there 
is a τ ∈ En+1(R[T ]) such that τ(0) = id and τ(1) = σ. If we write uτ = w(T ), then 
w(T ) ∈ Umn+1(R[T ]) and one has w(0) = u, w(1) = v. Following Fasel’s terminology, 
u and v are ‘naively homotopic’. On the other hand, as R is a smooth affine domain 
over an infinite field, the Euler class group is (naive) homotopy invariant in the following 
sense (see [2, 4.6]. The main ingredient to prove [2, 4.6] is [2, 3.8] where the field k is 
assumed to be perfect. In [7, 4.12] it has been shown that we do not need to assume that 
k is perfect).

Theorem 4.1. Let R be a smooth affine domain of dimension n ≥ 3 over an infinite field k. 
Let I ⊂ R[T ] be an ideal of height n such that I/I2 is generated by n elements and let 
ω : (R[T ]/I)n � I/I2 be a surjection. Assume further that both I(0) and I(1) are proper 
ideals of R of height n. Let ω(0) : (R/I(0))n � I(0)/I(0)2 and ω(1) : (R/I(1))n �
I(1)/I(1)2 be the surjections induced by ω. Then (I(0), ω(0)) = (I(1), ω(1)) in En(R).

We exploit the above homotopy invariance to define the desired map, as follows.
Let [a1, · · · , an, an+1] ∈ Umn+1(R)/En+1(R). We can perform elementary operations 

and assume that ht(a1, · · · , an) = n. Let J0 be the ideal (a1, · · · , an) and ω0 : Rn � J0
be surjection induced by (a1, · · · , an). As an+1 is a unit modulo J0, we have an Euler 
cycle (J0, an+1ω0) ∈ En(R) (where “bar” means reduction modulo J0). We associate to 
[a1, · · · , an, an+1] the element (J0, an+1ω0) ∈ En(R). We show below that this association 
is invariant under elementary action and thus defines a map φ : Umn+1(R)/En+1(R) →
En(R).
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Let [a1, · · · , an, an+1], [b1, · · · , bn, bn+1] ∈ Umn+1(R) be such that ht(a1, · · · , an) =
n = ht(b1, · · · , bn) and there is σ ∈ En+1(R) such that

[a1, · · · , an, an+1]σ = [b1, · · · , bn, bn+1]

Let J1 = (b1, · · · , bn) and ω1 : Rn � J1 be the surjection induced by (b1, · · · , bn). 
It is enough to prove that (J0, an+1ω0) = (J1, b̃n+1ω1) in En(R), where “tilde” means 
reduction modulo J1.

As σ is elementary, there is a τ ∈ En+1(R[T ]) such that τ(0) = id and τ(1) = σ. Let

[a1, · · · , an, an+1]τ = [f1(T ), · · · , fn(T ), fn+1(T )].

Then [f1(T ), · · · , fn(T ), fn+1(T )] ∈ Umn+1(R[T ]). As J0 and J1 are both of height n, it 
is easy to see that the ideal (f1(T ), · · · , fn(T ), T 2 − T ) ⊂ R[T ] has height n + 1. Since 
[f1(T ), · · · , fn(T ), fn+1(T )] is a unimodular row, we have

ht(f1(T ), · · · , fn(T ), (T 2 − T )fn+1(T )) = n + 1.

Adding suitable multiples of (T 2 − T )fn+1(T ) to f1(T ), · · · , fn(T ) if necessary, we can 
assume that ht(f1(T ), · · · , fn(T )) = n. Write I = (f1(T ), · · · , fn(T )). Then we have 
I(0) = J0 and I(1) = J1. Let ω′ : R[T ]n � I denote the surjection induced by 

f1(T ), · · · , fn(T ). If we denote the surjection ̂fn+1(T )ω′ by ω (“hat” means reduc-
tion modulo I), then we have an element (I, ω) ∈ En(R[T ]) such that (I(0), ω(0)) =
(J0, an+1ω0) and (I(1), ω(1)) = (J1, b̃n+1ω1) in En(R). As R is a smooth affine domain 
over an infinite field, by 4.1 we obtain that (J0, an+1ω0) = (J1, b̃n+1ω1).

Remark 4.2. If R is not smooth, then 4.1 is no longer true. An example based on [2, 6.4]
has been given in [8, 5.21]. Therefore, the above line of argument does not work if R is 
not smooth.

5. On real varieties

We shall be working with the following setup: X = Spec(R) is a smooth affine variety 
of dimension n ≥ 3 over R such that

(1) The complex points of X are complete intersections.
(2) The set X(R) of real points is non-empty and therefore it is a (smooth) real manifold 

equipped with Euclidean topology.
(3) X(R) is orientable (in other words, the canonical module KR is trivial).

We first recall some structure theorems. The reader may note that due to the as-
sumption (1) above, the Euler class groups En(R) and En(R(X)) are isomorphic, where 



M.K. Das, Md. Ali Zinna / Journal of Algebra 432 (2015) 185–204 201
R(X) is the ring obtained from R by inverting all the functions which do not have any 
real zeros. For the same reason, En

0 (R) � En
0 (R(X)).

Theorem 5.1. Let X = Spec(R) be as above. Let C1, · · · , Ct be the compact connected 
components of X(R) in the Euclidean topology. Then,

(1) En(R) �
⊕t

i=1 Z (see [3]);
(2) En

0 (R) �
⊕t

i=1 Z/2Z (see [3]);
(3) Umn+1(R)/En+1(R) �

⊕t
i=1 Z (see [11, 4.9, 5.7]).

We now give a precise description of the map φ : Umn+1(R)/En+1(R) → En(R). For 
simplicity, we assume that X(R) is compact and connected. The reader can easily figure 
out the general case from the structure theorem given above.

Proposition 5.2. Let X = Spec(R) be as above and assume that X(R) is compact and 
connected. Then Im(φ) = 2Z ⊂ En(R).

Proof. Let [a1, · · · , an+1] ∈ Umn+1(R)/En+1(R). Applying Swan’s Bertini theorem as 
stated in [3, 2.11] we may actually assume that the ideal J = (a1, · · · , an) is a reduced 
ideal of height n. Then it follows from [3, 4.2] that J is supported on an even number 
of real maximal ideals, say, J = m1 · · ·m2r. Then a1, · · · , an induces surjection ωi :
(R/mi)n � mi/m

2
i for each i. Let ωJ : Rn � J denote the surjection induced by 

a1, · · · , an. Then, we have

0 = (J, ωJ) = (m1, ω1) + · · · + (m2r, ω2r)

We know that for a real maximal ideal m and a surjection ωm : (R/m)n � m/m2, 
the Euler cycle (m, ωm) is 1 or −1 in En(R) (see [3]). It is also known that (m, ωm) +
(m, −ωm) = 0.

Therefore, it follows that exactly half of the cycles on the right hand side of the above 
equation are 1 and the rest are −1. Now

(J, an+1ωJ) = (m1, an+1ω1) + · · · + (m2r, an+1ω2r)

(with a slight abuse of notations, we are no longer putting “bar” on an+1). If the sign 
of an+1 modulo mi is positive, then (mi, an+1ωi) = (mi, ωi) and if an+1 modulo mi is 
negative, then (mi, an+1ωi) = (mi, −ωi). It is now easy to see that φ[a1, · · · , an+1] =
(J, an+1ωJ) is an even integer. Therefore, Im(φ) ⊆ 2Z ⊂ En(R).

Conversely, we show that 2 has a preimage in Umn+1(R)/En+1(R). Take any two 
real maximal ideals m and m′ and choose surjections ωm : (R/m)n � m/m2 and 
ωm′ : (R/m′)n � m′/m′2 so that (m, ωm) = (m′, ωm′) = 1. By [3, 4.8], the ideal 
I = m ∩ m′ is a complete intersection. Let I = (a1, · · · , an) and let ωI : Rn � I
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denote the corresponding surjection. On the other hand, ωm and ωm′ together will in-
duce a surjection ω̃I : (R/I)n � I/I2. There is a λ ∈ R such that λ is a unit modulo I
and (I, ̃ωI) = (I, λωI). As λ ∈ (R/I)∗, it follows that [a1, · · · , an, λ] ∈ Umn+1(R). It is 
now easy to see that

φ([a1, · · · , an, λ]) = (I, ω̃I) = (m, ωm) + (m′, ωm′) = 2. �
The following corollary is now obvious. Fasel proved essentially the same result in 

[11, 5.9] for even n.

Corollary 5.3. With X = Spec(R) as in the above proposition, we have the following 
exact sequence of groups:

0 −→ Umn+1(R)/En+1(R) −→ En(R) −→ E0(R) −→ 0

And, as a consequence we finally have:

Corollary 5.4. Let X = Spec(R) be as in the above proposition. Let [a1, · · · , an+1] ∈
Umn+1(R)/En+1(R). The strong Euler class φ([a1, · · · , an+1]) is trivial in En(R) if and 
only if [a1, · · · , an+1] is the first row of an elementary matrix σ ∈ En+1(R).

Proof. Follows from the injectivity of φ. �
Remark 5.5. Let R = R[X1, · · · , Xn+1]

(X2
1 + · · · + X2

n+1 − 1) be the coordinate ring of the real n-sphere. 

Let x1, · · · , xn+1 be the images of X1, · · · , Xn+1 in R. Then R = R[x1, · · · , xn+1] with 
x2

1 + · · · + x2
n+1 = 1. The stably free R-module associated to the unimodular row 

(x1, · · · , xn+1) ∈ Umn+1(R) is the tangent bundle. Fasel [11] proves that the group 
Umn+1(R)/En+1(R) is generated by the orbit of [x1, · · · , xn+1]. We can explicitly com-
pute the strong Euler class of [x1, · · · , xn+1] as follows. Let J = (x1, · · · , xn). We observe 
that J = m1 ∩m2 where m1 = (x1, · · · , xn, 1 +xn+1) and m2 = (x1, · · · , xn, 1 −xn+1) are 
both real maximal ideals. The elements x1, · · · , xn will induce surjections ωJ : Rn � J , 
ω1 : (R/m1)n � m1/m

2
1, and ω2 : (R/m2)n � m2/m

2
2. Therefore we have 0 = (J, ωJ) =

(m1, ω1) + (m2, ω2). The strong Euler class of the tangent bundle is

φ[x1, · · · , xn+1] = (J, xn+1ωJ) = (m1, xn+1ω1) + (m2, xn+1ω2) = (m1,−ω1) + (m2, ω2)

(note that xn+1 is −1 modulo m1 and 1 modulo m2). Therefore, up to a sign, the strong 
Euler class is 2. Consequently, for any n, the unimodular row [x1, · · · , xn+1] cannot be 
completed to an elementarily matrix. Whereas, it is well known that for even n, it cannot 
be completed to an invertible matrix. For S3(R) and S7(R) the row can be completed 
to an invertible matrix but as we have seen, not to an elementarily matrix.



M.K. Das, Md. Ali Zinna / Journal of Algebra 432 (2015) 185–204 203
Remark 5.6. Let R be an Archimedean real closed field and X = Spec(A) be a smooth 
affine variety over R of dimension n ≥ 3 such that: (1) the canonical module ∧n(Ω∗

A/R)
is free, and (2) every maximal ideal m of R such that R/m � R is complete intersection 
(where R is the algebraic closure of R). Let B = A ⊗R R and write Y = Spec(B). 
Then, it follows from a (much more general) result of Bhatwadekar and Sane [6] that 
En(A) � En(B) and En

0 (A) � En
0 (B). It can be easily deduced using a direct limit 

argument and the exact sequence in 5.3 that Umn+1(A)/En+1(A) is also isomorphic to 
Umn+1(B)/En+1(B) and the sequence for the ring A is also exact at left as in 5.3. From 
this one can also deduce the structure of isomorphic classes of stably free A-modules of 
rank n for n even in exactly the same way it has been done in [11]. However, at this 
point we do not know how to extend these results to an arbitrary real closed field.

Remark 5.7. It will be interesting if one can prove 5.3 without using Fasel’s structure 
theorem for Umn+1(R)/En+1(R) (which will then yield Fasel’s structure theorem). In 
other words, we are asking whether the structure theorem for Umn+1(R)/En+1(R) can 
be deduced from the same for En(R) and En

0 (R).
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