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Let S be a p-subgroup of the K-automorphism group Aut(X )
of an algebraic curve X of genus g ≥ 2 and p-rank γ defined 
over an algebraically closed field K of characteristic p ≥ 3. 
Nakajima [27] proved that if γ ≥ 2 then |S| ≤ p

p−2 (g − 1). 
If equality holds, X is a Nakajima extremal curve. We prove 
that if

|S| > p2

p2−p−1 (g− 1)

then one of the following cases occurs.

(i) γ = 0 and the extension K(X )|K(X )S completely ramifies 
at a unique place, and does not ramify elsewhere.

(ii) |S| = p, and X is an ordinary curve of genus g = p − 1.
(iii) X is an ordinary, Nakajima extremal curve, and K(X )

is an unramified Galois extension of a function field of a 
curve given in (ii).

(iii) X is an ordinary, Nakajima extremal curve, and K(X )
is an unramified Galois extension of a function field of a 
curve given in (ii). There are exactly p − 1 subgroups M
of S such that K(X )|K(X )M is such a Galois extension. 
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Moreover, if some of them is an abelian extension then 
S has maximal nilpotency class.

The full K-automorphism group of any Nakajima extremal 
curve is determined, and several infinite families of Nakajima 
extremal curves are constructed by using their pro-p funda-
mental groups.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In the present paper, K is an algebraically closed field of characteristic p ≥ 3, X is a 
(projective, non-singular, geometrically irreducible, algebraic) curve of genus g(X ) ≥ 2, 
K(X ) is the function field of X , and Aut(X ) is the K-automorphism group of X , and S
is a (non-trivial) subgroup of Aut(X ) whose order is a power of p.

The earliest results on the maximum size of S date back to the 1970s and have played 
an important role in the study of curves with large automorphism groups exceeding the 
classical Hurwitz bound 84(g(X ) − 1). Stichtenoth proved that if S fixes a place P of 
K(X ) then

|S| ≤ p
p−1 g(X ) (1)

unless the extension K(X )|K(X )S completely ramifies at P, and does not ramify else-
where; in geometric terms, S fixes a point P of X and acts on X \ {P} as a semireg-
ular permutation group; see [34] and also [21, Theorem 11.78]. In the latter case, the 
Stichtenoth bound is

|S| ≤ 4p
p−1 g(X )2. (2)

In his paper [27] Nakajima pointed out that the maximum size of S is also related to 
the Hasse–Witt invariant γ(X ) of X . It is known that γ(X ) coincides with the p-rank 
of X defined to be the rank of the (elementary abelian) group of the p-torsion points in 
the Jacobian variety of X ; moreover, γ(X ) ≤ g(X ) and when equality holds then X is 
called an ordinary (or general) curve; see [21, Section 6.7]. If S fixes a point and (1) fails 
then γ(X ) = 0; conversely, if γ(X ) = 0, then S fixes a point, see [21, Lemma 11.129]. 
For γ(X ) > 0, Nakajima proved that |S| divides g(X ) − 1 when γ(X ) = 1, and |S| ≤
p

p−2 (γ(X ) −1) otherwise; see [27] and also [21, Theorem 11.84]. Therefore, the Nakajima 
bound [27, Theorem 1] is

|S| ≤
{

p
p−2 (g(X ) − 1) for γ(X ) ≥ 2,

g(X ) − 1 for γ(X ) = 1.
(3)

A Nakajima extremal curve is a curve X with p-rank γ(X ) ≥ 2 which attains the 
bound (3).
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In this context, a major issue is to determine the possibilities for X , g and S when 
either |S| is close to the Stichtenoth bound (2), or |S| is close to the Nakajima bound (3).

Lehr and Matignon [25] investigated the case where S fixes a point and were able to 
determine all curves X with

|S| > 4
(p−1)2 g(X )2, (4)

proving that (4) only occurs when the curve is birationally equivalent over K to an 
Artin–Schreier curve of equation Y q − Y = f(X) such that f(X) = XS(X) + cX where 
S(X) is an additive polynomial of K[X]. Later on, Matignon and Rocher [26] showed 
that the action of a p-subgroup of K-automorphisms S satisfying

|S| > 4
(p2−1)2 g(X )2,

corresponds to the étale cover of the affine line with Galois group S ∼= (Z/pZ)n for n ≤ 3. 
These results have been refined by Rocher, see [31] and [32]. The essential tools used in 
the above mentioned papers are ramification theory and some structure theorems about 
finite p-groups.

Curves close to the Nakajima bound, and in particular Nakajima extremal curves, are 
investigated in this paper. Our main results are stated in the following theorems.

Theorem 1.1. Let S be a p-subgroup of the K-automorphism group Aut(X ) of an algebraic 
curve X of genus g(X ) ≥ 2 defined over an algebraically closed field K of characteristic 
p ≥ 3. If

|S| > p2

p2−p−1 (g(X ) − 1) (5)

then one of the following cases occurs:

(i) γ = 0 and the extension K(X )|K(X )S completely ramifies at a unique place, and 
does not ramify elsewhere.

(ii) |S| = p, and X is an ordinary curve of genus g = p − 1.
(iii) X is an ordinary Nakajima extremal curve, and K(X ) is an unramified Galois 

extension of a function field of a curve given in (ii). There are exactly p −1 subgroups 
M of S such that K(X )|K(X )M is such a Galois extension.

Theorem 1.2. In case (iii) of Theorem 1.1, S is generated by two elements and if one of 
those p − 1 Galois extensions is abelian, then S has maximal nilpotency class. If there 
are more than one such abelian extensions, then one of the following two cases occurs:

(A) g = p(p − 2) + 1, |S| = p2 and S = Cp × Cp;
(B) g = p2(p − 2) + 1, |S| = p3 and S ∼= UT (3, p) where UT (3, p) is the group of all 

upper-triangular unipotent 3 × 3 matrices over the field with p elements.
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Theorem 1.3. Let X be an Nakajima extremal curve, and S a Sylow p-subgroup of 
Aut(X ). Then either S is a normal subgroup of Aut(X ) and Aut(X ) is the semidi-
rect product of S by a subgroup of a dihedral group of order 2(p − 1), or p = 3 and, for 
some subgroup M of S of index 3, M is a normal subgroup of Aut(X ) and Aut(X )/M
is isomorphic to a subgroup of GL(2, 3).

We also construct several infinite families of Nakajima extremal curves, and provide 
explicit equations, especially for p = 3 and small genera.

The analogous problem for 2-groups of automorphisms S makes sense in characteristic 
p = 2 but the investigation gave rather different results, see [12,15].

One may also ask how the above results may be refined when Aut(X ) is much larger 
than S. So far, this problem has been investigated for zero p-rank curves X such that 
Aut(X ) fixes no point of X ; see [13,14,19].

The present paper is also related with the study of automorphism groups of curves in 
terms of quotients of fundamental groups, see [9,28,29].

2. Background and preliminary results

Let X̄ be a non-singular model of K(X )S , that is, a projective non-singular geometri-
cally irreducible algebraic curve with function field K(X )S, where K(X )S consists of all 
elements of K(X ) fixed by every element in S. Usually, X̄ is called the quotient curve of 
X by S and denoted by X/S. The field extension K(X )|K(X )S is Galois of degree |S|.

Let P̄1, . . . , P̄k be the points of the quotient curve X̄ = X/S where the cover X �→ X̄
ramifies. For 1 ≤ i ≤ k, let Li denote the set of points of X which lie over P̄i. In other 
words, L1, . . . , Lk are the short orbits of S on its faithful action on X . Here the orbit of 
P ∈ X

o(P ) = {Q | Q = P g, g ∈ S}

is long if |o(P )| = |S|, otherwise o(P ) is short. It may be that S has no short orbits, in 
other words, the cover X|XS is unramified. This is the case if and only if every non-trivial 
element in S is fixed–point-free on X . On the other hand, S has a finite number of short 
orbits. Any unramified cover of an ordinary curve is also ordinary. If P is a point of X , 
the stabilizer SP of P in S is the subgroup of S consisting of all elements fixing P . For 
a non-negative integer i, the i-th ramification group of X at P is denoted by S(i)

P (or 
Si(P ) in lower numbering as in [35, Chapter IV]) and defined to be

S
(i)
P = {g | ordP (g(t) − t) ≥ i + 1, g ∈ SP },

where t is a uniformizing element (local parameter) at P . Here S(0)
P = S

(1)
P = SP .

Let ḡ be the genus of the quotient curve X̄ = X/S. The Hurwitz genus formula gives 
the following equation
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2g− 2 = |S|(2ḡ− 2) +
∑
P∈X

dP , (6)

where

dP =
∑
i≥0

(|S(i)
P | − 1). (7)

Let γ be the p-rank of X , and let γ̄ be the p-rank of the quotient curve X̄ = X/S. 
The Deuring–Shafarevich formula, see [39] or [21, Theorem 11,62], states that

γ − 1 = |S|(γ̄ − 1) +
k∑

i=1
(|S| − �i) (8)

where �1, . . . , �k are the sizes of the short orbits of S. If S has no short orbits, that is, the 
Galois extension K(X ) of K(X̄ ) is unramified, then S can be generated by γ̄ elements by 
Shafarevich’s theorem [36, Theorem 2], whereas the largest elementary abelian subgroup 
of S has rank at most γ̄ see [30, Section 4.7].

The Artin–Mumford curve Mc over a field K of characteristic p > 2 is the curve 
birationally equivalent over K to the plane curve with affine equation

(xp − x)(yp − y) = c, c ∈ K∗. (9)

Mc is an ordinary curve with genus g = (p − 1)2 and its K-automorphism group is 
isomorphic to (Cp × Cp) � Dp−1, where Cp is a cyclic group of order p and Dp−1 is a 
dihedral group of order 2(p − 1); see [40], and [21, Theorem 11.93].

Proposition 2.1. Let Y be a curve of genus p − 1 and positive p-rank such that p divides 
Aut(Y). If G is a subgroup of Aut(Y) containing a subgroup T of order p, then either 
T is a normal subgroup and G = T �H with H a subgroup of a dihedral group of order 
2(p −1), or p = 3 and Y is a non-singular model of the plane curve with affine equation

Y 3 − Y = −X + 1
X

, (10)

and Aut(Y) ∼= GL(2, 3).

Proof. Let T be a subgroup of Aut(Y) of order p. The Hurwitz genus formula applied 
to T yields that the number λ of fixed points of T on Y is positive. From the Deuring–
Shafarevich formula applied to T , p − 2 ≥ γ − 1 = p(γ̄ − 1) + λ(p − 1) whence γ̄ = 0 and 
λ = 2. Now, from the Hurwitz genus formula applied to T , 2(p −2) ≥ 2p(ḡ−1) +4(p −1)
which yields ḡ = 0. Therefore, T is a normal subgroup of G with four exceptions by 
a result of Madan and Valentini [40]; see also [21, Theorem 11.93]. One exception oc-
curs for p = 3 when Y is a non-singular model of a plane curve C of affine equation 
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X(X − 1)(Y 3 − Y ) = α with α2 = 2, equivalently (10), and G is isomorphic to a sub-
group of GL(2, 3). This shows that Proposition 2.1 holds in this case. Two of the other 
three exceptions have zero p-rank, while the fourth is the Artin–Mumford curve of genus 
(p − 1)2. Therefore, they cannot actually occur in our case.

We may assume that T is a normal subgroup of G. By the Nakajima bound (3) applied 
to Y, T is a Sylow p-subgroup of Aut(Y). Therefore, G = T �H with H of order prime 
to p. Therefore, H can be viewed as an automorphism group of the rational curve fixing 
two points. Hence, H is a subgroup of a dihedral group of order 2(p − 1). �
Remark 1. Apart from the exceptional case p = 3 and a = −1, a non-singular model of 
the plane curve Ca with affine equation

Y p − Y = aX + 1
X

, a ∈ K∗ (11)

is a general (hyperelliptic) curve of genus p −1 which provides an example for the curve Y
in Proposition 2.1 with an elementary abelian group H of order 4, so that G = 〈h〉 ×Dp

where h is the hyperelliptic involution and Dp is the dihedral group of order 2p. If K
is the algebraic closure of the finite field Fp, then G = Aut(Y) by a result due to van 
der Geer and der Vlugt [42]. As far as we know, no curve Y of genus p − 1 and positive 
p-rank with an automorphism group containing a p-element whose order is larger than 
4p is available in the literature.

Remark 2. Let p = 3. The plane curve Ca in Remark 1 has also an affine equation of 
type

Y 2 = cX6 + X4 + X2 + 1 (12)

with some c ∈ K∗, and provides a further plane model of the curve Y defined in Propo-
sition 2.1, see [23, Section 8], and [10, Section 1]; see also [37, Lemma 1], and [11]. In 
particular, Aut(Y) is a dihedral group of order 12, apart from the exceptional case (10)
occurring here for c = 1. It is an open problem to decide whether an analog result may 
hold for p ≥ 5.

From Galois theory we use results on the pro-p fundamental group πp
1(X̄ ) of an al-

gebraic curve X̄ with p-rank γ̄ greater than 1; see [30] and [36]. The (finite, Galois) 
p-extensions of K(X̄ ) are taken in a given separable algebraic closure of K(X̄ ).

Proposition 2.2. The pro-p fundamental group πp
1(X̄ ) is a free group Γ generated by 

γ̄ generators. The unramified p-extensions of K(X̄ ) are in one-to-one correspondence 
with the normal subgroups of πp

1(X̄ ) whose indices are powers of p. Moreover, if an 
unramified p-extension F corresponds to the normal subgroup N then the Galois group 
Gal(F |K(X̄ )) is isomorphic to the factor group Γ/N . If two unramified p-extensions 



M. Giulietti, G. Korchmáros / Journal of Algebra 481 (2017) 215–249 221
F and F1 correspond to N and N1, respectively, then F ⊇ F1 implies N ⊆ N1 and 
conversely.

Proposition 2.3. Let G be a group of order pn. If d(G) is the minimum size of the gener-
ator sets of G, and α(G) is the order of the automorphism group of G, then the following 
statements hold.

(i) There exists an unramified p-extension of K(X̄ ) with Galois group isomorphic to G
if and only if d(G) ≤ γ.

(ii) If d(G) = γ then the number of different unramified p-extensions of K(X̄ ) with 
Galois group isomorphic to G is equal to

pγ(n−d(G))(pγ − 1)(pγ − p) · · · (pγ − pd(G)−1)
α(G) . (13)

From group theory we use the following results; see [20, Theorem 12.2.2] and [22, 
Chapter III, 3.19 Satz].

Proposition 2.4 (Burnside–Hall bound). Let G be a p-group of order pn. If d(G) is the 
minimum size of the generator sets of G and α(G) is the order of the automorphism 
group of G, then α(G) divides

pd(G)(n−d(G)) (pd(G) − 1)(pd(G) − p) · · · (pd(G) − pd(G)−1). (14)

In particular, the order of a Sylow p-subgroup of the automorphism group of G divides

pd(G)(n−d(G))+ 1
2d(G)(d(G)−1). (15)

Comparison of the above two propositions, especially (15) with (13), gives the follow-
ing result.

Corollary 2.5. Let G be any finite p-group. If the minimum size of the generator sets of 
G is equal to the Hasse–Witt invariant of X̄ then the number of unramified p-extensions 
of K(X̄ ) with Galois group isomorphic to G is not divisible by p.

Remark 3. Well known groups G whose automorphism groups attain (14) are the direct 
product of d(G) copies of the cyclic group of order pN where N is any positive integer. 
Furthermore, the Sylow p-subgroup of the special linear group SL(p, p) is isomorphic 
to the group UT (p, p) of all non-degenerate upper unitriangular (p × p)-matrices over 
Fp and the minimum size of the generator sets of UT (p, p) is equal p − 1. Therefore, 
Corollary 2.5 applies to any curve X̄ with Hasse–Witt invariant equal to p − 1. Using 
the database of GAP, more such examples can be obtained for smaller p.
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3. Proof of Theorem 1.1

In this section, X stands for a curve which satisfies the hypotheses of Theorem 1.1.

3.1. General results on X

From [21, Lemma 11.129], we have the following result.

Lemma 3.1. If γ = 0 then (i) of Theorem 1.1 holds.

Moreover, (3) rules out the possibility that case γ = 1 occurs in Theorem 1.1. There-
fore,

γ ≥ 2. (16)

Lemma 3.2. If S fixes a point of X then (ii) of Theorem 1.1 holds.

Proof. Comparison of (5) with (1) gives

|S| < p2 + p(p−1)
p−2 .

Since the right hand side is smaller than p3, either |S| = p or |S| = p2 holds. In the 
latter case, (5) yields g < p(p − 1) but this contradicts (1). If |S| = p, then (5) reads 
(p2 − p − 1) > p(g(X ) − 1) while (1) yields g(X ) − 1 ≥ p − 2. Therefore g(X ) − 1 is an 
integer in the interval [p − 2, (p2 − p − 1)/p) whose length is smaller than 2. This is only 
possible when either g(X ) − 1 = p − 2 or g(X ) − 1 = p − 1. Comparison with (5) rules 
out the latter case. So g(X ) = p − 1. From Nakajima’s bound |S| ≤ p/(p − 2)(γ(X ) − 1), 
we have γ(X ) ≥ p − 1. Therefore γ(X ) = g(X ) = p − 1. �

From now on we assume that neither (i) or (ii) of Theorem 1.1 hold for X . In particular,

|S| ≥ p2. (17)

Proposition 3.3. X is an ordinary Nakajima extremal curve. Moreover, S has exactly two 
short orbits on X , both of length 1

p |S|, and the identity is the unique element in S fixing 
every point of the short orbits.

Proof. Let g = g(X ) and γ = γ(X ) where γ ≥ 2 by (16). Let γ̄ be the p-rank of the 
quotient curve X̄ = X/S. From (8),

γ − 1 = γ̄|S| − |S| +
k∑

i=1
(|S| − �i) = (γ̄ + k − 1)|S| −

k∑
i=1

�i ≥ (γ̄ + p−1
p k − 1)|S|, (18)

where �1, . . . , �k are the sizes of the short orbits of S.
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If no such short orbits exist, then γ−1 = |S|(γ̄−1) whence γ̄ > 1 by γ ≥ 2. Therefore, 
|S|≤γ − 1 ≤ g − 1 contradicting (5).

Hence k ≥ 1, and if γ̄ ≥ 1 then (18) yields that |S| ≤ p
p−1 (γ − 1) contradicting (5). 

So, γ̄ = 0, and (18) together with (5) implies that

k < 2p2−p−1
p2−p = 2 + 1

p

whence 1 ≤ k ≤ 2. The case k = 1 cannot actually occur by (18).
Therefore, γ̄ = 0 and k = 2. Let Ω1 and Ω2 be the short orbits of S, and let �i = |Ωi|

for i = 1, 2. Then (18) reads

γ − 1 = |S| − (�1 + �2). (19)

Also, �1 + �2 < |S|. Write |S| = ph, �1 = pm, �2 = pr with h > m ≥ r. Here r > 0 by 
Lemma 3.2. From (5) and (19),

p2

p2−p−1 (pm + pr) > ph( p2

p2−p−1 − 1),

whence p2+m−h+p2+r−h > p +1. Since m ≥ r, this yields m = h −1. Hence, p2+r−h > 1, 
and h − 1 = m ≥ r ≥ h − 1. Therefore,

�1 = �2 = |S|
p .

Let ḡ be the genus of the quotient curve X̄ = X/S. The Hurwitz genus formula applied 
to S gives

2g− 2 = |S|(2ḡ− 2) + p−1
p |S|(4 + k1 + k2) (20)

where, for a point Pi ∈ Ωi, ki is the smallest non-negative integer such that |S(2+ki)
Pi

| = 1. 
Suppose on the contrary that X is not an ordinary curve. Then k1 + k2 ≥ 1. From (20),

2g − 2 ≥ −2|S| + 5|S|p−1
p = |S|(3p−5

p ).

Comparing this with (5) yields

2p
3p− 5 ≥ |S|

g − 1 ≥ p2

p2 − p− 1 ,

a contradiction.
Assume that a non-trivial element s ∈ S of order p fixes Ω1 ∪Ω2 pointwise. From the 

Deuring–Shafarevich formula applied to 〈s〉,

p−2
p |S| ≥ −p + 2 |S|

p (p− 1),

which is only possible for |S| = p. �
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We stress that the first claim of Proposition 3.3 means that

g− 1 = γ − 1 = p−2
p |S|, (21)

and hence X is a Nakajima extremal curve.

Proposition 3.4. X is not hyperelliptic.

Proof. Since the length of any S-orbit in X is divisible by p, the number of distinct 
Weierstrass points of X is also divisible by p. On the other hand, a hyperelliptic curve of 
genus g defined over a field of zero or odd characteristic has as many as 2g +2 Weierstrass 
points, see [21, Theorem 7.103]. Therefore, if X were hyperelliptic, both numbers g + 1
and g − 1 = p−2

p |S| would be divisible by p, a contradiction with |S| ≥ p2. �
3.2. The short orbits of S

From the rest of the paper, we keep up our notation; in particular Ω1 and Ω2 denote 
the short orbits of S on X . By the second claim of Proposition 3.3, the following hold.

Lemma 3.5. For every point P ∈ Ω1 ∪ Ω2, the stabilizer SP of P has order p.

Proposition 3.6. If S is abelian then |S| = p2 and S is elementary abelian.

Proof. Choose a point P ∈ Ω1. From Lemma 3.5, |SP | = p. Since S is abelian SP fixes 
every point in Ω1. Let γ∗ be the p-rank of the quotient curve X/SP . The Deuring–
Shafarevich formula applied to SP together with (21) gives

p−2
p |S| = γ − 1 ≥ −p + p−1

p |S|

whence |S| ≤ p2. Then |S| = p2 by (17). Assume on the contrary that S is cyclic. For 
a point Q ∈ Ω2 the stabilizer SQ is a subgroup of S of order p. Since S is cyclic, it has 
only one subgroup of order p. Therefore SP = SQ, and

p−2
p |S| = γ − 1 ≥ −p + 2p−1

p |S|

which implies |S| ≤ p, a contradiction. �
Proposition 3.7. Let N be a non-trivial normal subgroup of S. Then either N is semireg-
ular on X , or N has order |S|

p and there is point P ∈ Ω1 ∪ Ω2 such that S = N � SP .

Proof. The assertion trivially holds for |S| = p2 with S = N × SP . Assume that some 
non-trivial element in N fixes point P . From the Hurwitz genus formula applied to N , 
we have p−2 |S| > |N |(ḡ − 1) where ḡ is the genus of the quotient curve X̄ = X/N . 
p
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Let S̄ be the automorphism group of X̄ induced by S. Then |S̄||N | = |S| and hence 
p−2
p |S̄| > ḡ − 1. If ḡ ≥ 2, Nakajima’s bound (3) applied to X̄ implies that γ̄ = 0. From 

[21, Lemma 11.129], S̄ fixes a point Q̄ in X̄ . Then the orbit O of N consisting of all 
points of X lying over Q̄ is also an orbit of S. Since Ω1 and Ω2 are the only short orbits 
of S, this yields that O coincides with one of them, say Ω1. Therefore, |N | = 1

p |S|. The 
stabilizer ε of a point R ∈ Ω2 on S has order p and ε /∈ N . Therefore S = N � 〈ε〉. This 
argument also works when ḡ ≤ 1 and γ̄ = 0. We are left with the case ḡ = γ̄ = 1. Let 
O1, . . . , Om be the short orbits of N . Since the stabilizer NQ of any point Q ∈ Oi has 
order p, the Deuring–Shafarevich formula applied to N together with (21) gives

p−2
p |S| = p−1

p |N |m

whence |S| = p−1
p−2 |N |m. But this is impossible as both |S| and |N | are powers of p. �

3.3. The structure of S

Proposition 3.8. The center Z(S) of S is semiregular on X .

Proof. Since Z(S) is a normal subgroup of S, Proposition 3.7 applies to Z(S). The case 
S = Z(S) � SP cannot actually occur since this semidirect product would be direct and 
S would be abelian contradicting Proposition 3.6. �
Proposition 3.9. Let N be a non-trivial normal subgroup of S such that |N | ≤ 1

p2 |S|. 
Then the quotient curve X̄ = X/N with S̄ = S/N and g(X̄ ) − 1 = (g − 1)/|N | satisfies 
the hypotheses of Theorem 1.1 but does not have the property given in either (i) or (ii) of 
Theorem 1.1. In particular, if X is a Nakajima extremal curve then X̄ is also a Nakajima 
extremal curve.

Proof. By Proposition 3.7, the extension K(X )|K(X̄ ) is an unramified p-extension with 
Galois group N . Therefore, the Hurwitz formula applied to N gives that g − 1 =
|N |(g(X̄ ) − 1). In Theorem 1.1 referred to X̄ and S̄, case (i) is impossible by γ̄ 
= 0, 
while case (ii) cannot occur since |S̄| > p. �

Since the center of any p-group is non-trivial, a straightforward inductive argument 
on |S| depending on Proposition 3.9 gives the following result.

Proposition 3.10. If there exists a curve X which satisfies the hypothesis of Theorem 1.1
for |S| = pk but does not have the properties (i) and (ii), then for any 1 < j < k the curve 
X has a quotient curve X̄ which satisfies the hypothesis of Theorem 1.1 for |S̄| = pj but 
has none of the properties (i) and (ii).
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A corollary of Propositions 3.7 and 3.9 is stated in the following proposition.

Proposition 3.11. Let N be a non-trivial normal subgroup of S. If the factor group S/N
is abelian then either |N | = 1

p |S| or |N | = 1
p2 |S|, and in the latter case, S/N is an 

elementary abelian group.

Proposition 3.11 together with classical results from Group theory gives some useful 
results on S.

Proposition 3.12. Let Φ(S) and S′ be the Frattini subgroup and the commutator subgroup 
of S, respectively. Then the following hold.

(i) Φ(S) = S′.
(ii) |Φ(S)| = 1

p2 |S|.
(iii) S contains exactly p + 1 maximal subgroups, each being a normal subgroup of S of 

index p.
(iv) Exactly two of the p + 1 maximal subgroups of S are not semiregular on X .
(v) Two elements of S of order p, one fixing a point in Ω1 and the other in Ω2, always 

generate S.

Proof. From Proposition 3.11, either |Φ(S)| = 1
p |S|, or |Φ(S)| = 1

p2 |S|. In the former 
case, S is cyclic by [22, Hilfssatz 7.1.b] but this contradicts Proposition 3.6. Therefore, 
(ii) holds. Since S/Φ(S) is (elementary) abelian, Φ(S) contains S′. Hence, Proposi-
tion 3.11 yields (i). Let ϕ be the natural homomorphism S �→ S/Φ(S). Since every 
maximal subgroup of S contains Φ(S), there is a one-to-one correspondence between the 
maximal subgroups of S and the subgroups of S/Φ(S). By (ii), S/Φ(S) is an elementary 
abelian group of order p2 which have exactly p + 1 proper subgroups. Therefore there 
are exactly p + 1 maximal subgroups in S. Also, the subgroups of S/Φ(S) are normal, 
and hence each of the p +1 maximal subgroups of S is normal, as well. Furthermore, the 
p + 1 maximal subgroups of S/Φ(S) partition the set of non-trivial elements of S/Φ(S). 
Hence every element of S \Φ(S) belongs to exactly one of the p + 1 maximal subgroups 
of S. Take a point P ∈ Ω1, and let M1 be the maximal subgroup of S containing SP . 
Since M is a normal subgroup of S and Ω1 is an S-orbit, this yields that M contains SQ

for every Q ∈ Ω1. Repeating the above argument for a point in Ω2 shows that a max-
imal normal subgroup contains the stabilizer of each point in Ω2. From the last claim 
of Proposition 3.3, these two maximal subgroups are distinct. Therefore, the remaining 
p − 1 maximal subgroups are semiregular on X .

Finally, (i) together with the Burnside fundamental theorem, [22, Chapter III, 
Satz 3.15] implies that S can be generated by two elements. Here any two non-trivial ele-
ments from different maximal subgroups of S generate S. Since some element g1 of order 
p fixes a point Ω1, and the same holds for some element g2 fixing a point of Ω2 where 
g1, g2 are in two distinct maximal subgroups of S, it turns out that S = 〈g1, g2〉. �
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3.4. Some quotient curves of X

For i = 1, 2„ let Mi be the maximal normal subgroup of S containing the stabilizer 
of a point of Ωi, while let M3, . . . , Mp+1 be the semiregular maximal subgroups of S, 
respectively.

Proposition 3.13. Every normal subgroup of S whose order is at most 1
p2 |S| is contained 

in Φ(S).

Proof. Let N be a normal subgroup of S. From [22, Chapter III, Hilfssatz 3.4.a], 
Φ(S)N/N is a subgroup of Φ(S/N). From Propositions 3.9 and Proposition 3.12 applied 
to X̄ = X/N , we have |Φ(S/N)| = 1

p2 |S|/|N |. Since Φ(S)/(Φ(S) ∩N) ∼= Φ(S)N/N , this 
yields |N | ≤ |Φ(S) ∩N |. Therefore, if |N | ≤ |Φ(S)| then N is contained in Φ(S). �
Proposition 3.14. For i = 1, 2, the quotient curve X̄ = X/Mi is rational.

Proof. Every point in Ωi is fixed by an element of Mi order p. From the Hurwitz genus 
formula applied to Mi,

p−2
p |S| ≥ |S|

p (ḡ− 1) + |S|
p (p− 1)

where ḡ is the genus of the quotient curve X̄ = X/Mi. This yields ḡ = 0. �
Proposition 3.15. For 3 ≤ i ≤ p + 1, the quotient curve X̄ = X/Mi is a curve given 
in (ii) of Theorem 1.1, and the extension K(X )|K(X̄ ) is an unramified p-extension with 
Galois group isomorphic to Mi.

Proof. Since Mi is semiregular on X , the extension K(X )|K(X̄ ) is unramified. Further-
more, since Mi is a subgroup of S of index p, (21) together with the Hurwitz and the 
Deuring–Shafarevich formulas gives ḡ− 1 = γ̄ − 1 = p − 2 where ḡ is the genus and γ̄ is 
the p-rank of X̄ . �
Remark 4. From Propositions 3.15 and 2.3(i), every minimal generator set of Mi with 
3 ≤ i ≤ p + 1 has size at most p − 1. We will show curves attaining this bound p − 1.

Theorem 1.1 follows from Lemmas 3.1 and 3.2 together with Propositions 3.3, 3.10
and 3.15. For the rest of the paper, X always denotes an extremal Nakajima curve. Also, 
we keep our notation and terminology adopted in Section 3. In particular, g = g(X ) =
(p − 2)pn−1 + 1 and S is a Sylow subgroup of Aut(X ) of order pn with its subgroups 
M1, M2, . . . , Mp+1 of index p where Mi with i = 1, 2 stands for the maximal normal 
subgroup of S containing the stabilizer of a point of Ωi.
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4. Infinite family of examples

Let X̄ be a general curve of genus p − 1 defined in Remark 1 with function field 
F = K(X̄ ) = K(x, y) where

x(yp − y) − ax2 − 1 = 0, a ∈ K∗. (22)

For a positive integer N , let FN be the largest unramified abelian extension of F of 
exponent pN ; that is, FN |F has the following three properties:

(i) FN |F is an unramified Galois extension;
(ii) FN is generated by all function fields which are cyclic unramified extensions of F

of degree pN ;
(iii) Gal(FN |F ) is abelian and upN = 1 for every element u ∈ Gal(FN |F ).

From classical results due to Schmid and Witt [33], we have that deg(FN |F ) = p(p−1)N

and that Gal(FN |F ) is the direct product of p − 1 copies of the cyclic group of order pN . 
Let X be the curve such that FN = K(X ). Since FN is an unramified extension of F , 
the Deuring–Shafarevich formula yields γ(X ) − 1 = p(p−1)N (p − 2). Our aim is to prove 
that Aut(X ) contains a p-group of order p(p−1)N+1.

Let K(x) be the rational subfield of F generated by x. Obviously, K(x) is a subfield 
of FN and we are going to consider the Galois closure M of FN |K(x). Let M = K(Y)
where Y is an algebraic curve defined over K. Take any μ ∈ Gal(M |K(x)). Then μ
is a K-automorphism of Y fixing x. Let v = μ(y). Since μ(x(yp − y) − ax2 − 1) =
x(vp − v) − ax2 − 1, from (22)

x(vp − v) − ax2 − 1 = 0.

This together with (22) yields that either v = y or v = y + s with s ∈ F∗
p. In both cases 

v ∈ F . Therefore, Gal(M |K(x)) viewed as a subgroup G of Aut(Y) preserves F . From 
the definition of FN , this implies that G also preserves FN . If L is the (normal) subgroup 
of G fixing FN elementwise, this yields that H = G/L is a subgroup of Aut(X ). Let T
be the subfield of M consisting of all elements which are fixed by L. Since FN ⊆ T ⊆ M

and M |T is a Galois extension, we have that

|G| = [M : K(x)] = [M : T ][T : FN ][FN : F ][F : K(x)] = |L|[T : FN ]p(p−1)Np,

whence |H| = |G|/|L| is divisible by p(p−1)N+1. Let S be a Sylow p-subgroup of H. 
Then S is a subgroup of Aut(X ) so that γ(X ) − 1 = (p − 2) |S|

p . In particular, S is a 
Sylow p-subgroup of Aut(X ). By construction, U = Gal(FN |F ) is an index p subgroup 
of S containing no nontrivial element fixing a point on X . From Proposition 3.3, the 
stabilizer SP for some point P ∈ X has order p. From (iii) of Proposition 3.12, U is a 
normal subgroup of S, and hence S = U�SP . Therefore, the following result is obtained.
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Theorem 4.1. For N ≥ 1, let X be the curve whose function field K(X ) is generated by all 
cyclic unramified p-extensions of degree pN of the function field of the curve X̄ with affine 
equation (22). Then X is an extremal Nakajima curve of genus g(X ) = p(p−1)N (p −2) +1
whose p-group of automorphisms S is a semidirect product U � 〈s〉 where U is the direct 
product of p − 1 cyclic groups of order pN and s has order p.

Theorem 4.1 together with Proposition 3.10 provides a curve of type (iii) in Theo-
rem 1.1, for every proper power of p. An explicit example, for p = 3 and N = 1, is given 
in Section 8.2.

In our construction, FN may be replaced by any unramified Galois extension F ′ under 
the condition that G = Gal(F ′|F ) is a finite group of order pm with d(G) = p −1, whose 
automorphism group Aut(G) attains (14). In fact, Proposition 2.3 shows that F ′ is the 
unique unramified Galois extension of F with Galois group G in the separable algebraic 
closure of F . Therefore, if X is a curve with function field F ′, the above argument shows 
that X is a Nakajima extremal curve with p-rank equal to pm+1(p − 2). This proves the 
following result.

Theorem 4.2. Let G be a finite p-group of order pn such that the minimum size of its 
generator sets equals p − 1. Assume that the automorphism group of G attains (14). 
Then, for every a ∈ K∗, there exists a unique Nakajima extremal curve X which is an 
unramified p-extension of the curve X̄ , as in Remark 1, with Gal(K(X )|K(X̄ )) ∼= G.

From Remark 3, Theorem 4.2 applies to the above considered direct product of p − 1
copies of the cyclic group of order pN , and to the group UT (r, p) for r = p. A further 
refinement of the above construction is given in the following theorem.

Theorem 4.3. Existence (but not necessarily uniqueness) of a Nakajima extremal curve 
stated in Theorem 4.2 holds true under the weaker hypothesis that a Sylow p-subgroup of 
the automorphism group of G attains (15).

Proof. Let |G| = pm. In a separable algebraic closure of F , let {F1, . . . , Fk} be the set of 
all unramified Galois extension Fi|F with G ∼= Gal(Fi|F ), and let F ′ be their composi-
tum. Obviously, the Galois closure M of F ′|K(x) contains each Fi. Since d(G) = p − 1, 
Corollary 2.5 yields that k is not divisible by p. Our arguments leading to Theorem 4.2
show that Gal(M |K(x)) preserves F , and hence leaves the set {F1, . . . , Fk} invariant. 
Since p � k, any p-subgroup of Gal(M |K(x)) preserves at least one of them, say F1. As

|Gal(M |K(x))| = [M : F ′][F ′ : F1][F1 : F ][F : K(x)] = [M : F ′][F ′ : F1]pm+1,

Gal(M |K(x)) has a subgroup of index pm+1 that preserves F1. This shows that if X is a 
curve with K(X ) = F1, then Aut(X ) has a subgroup of order pm+1. Since [F1 : F ] is an 
unramified Galois extension with Galois group of order pm and X̄ has p-rank p − 1, the 
Deuring–Shafarevich formula yields that X has p-rank pm(p − 2) + 1. Therefore, X is 
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a Nakajima extremal curve with an automorphism group of order pm+1. Our argument 
also shows that uniqueness might not hold when k 
≡ 1 (mod p). �

With some changes, the above construction also applies to the Artin–Mumford curve 
Mc = X̄ with affine equation (9). As we have already mentioned, g(X̄ ) = γ(X̄ ) = (p −1)2
and Aut(X̄ ) has an elementary abelian subgroup of order p2 generated by α = (x, y) →
(x + 1, y) and β = (x, y) → (x, y + 1). In fact, if F = K(t) is the rational field generated 
by t = xp − x, and M is the Galois closure of FN |K(t) then every μ ∈ Gal(M |K(t))
preserves the Artin–Mumford curve X̄ . Therefore, the following result holds.

Theorem 4.4. For N ≥ 1, let X be the curve whose function field K(X̄ ) is generated by 
all cyclic unramified p-extensions of degree pN of the function field of the Artin–Mumford 
curve X̄ with affine equation (9). Then X is an extremal Nakajima curve of genus g(X ) =
pN(p−1)2+1(p − 2) + 1 with a p-group of automorphisms S whose Frattini subgroup Φ(S)
of order pN(p−1)2 is the direct product of (p − 1)2 copies of the cyclic group of order pN , 
so that the factor group S/Φ(S) is elementary abelian of order p2.

5. The structure of S for |S| ≤ pp+1

Proposition 5.1. If |S| ≤ pp then S has exponent p.

Proof. From [22, Chapter III, 10.2 b) Satz], S is a regular p-group. By (v) of Proposi-
tion 3.12, S is generated by (two) elements of order p. Therefore, the subgroup Ω1(S)
generated by all elements of order p is the whole group S. From [22, Chapter III, 10.7 a) 
Satz], the subgroup of S generated by all elements which are proper p-powers of elements 
in S is trivial. Hence, every non-trivial element of S has order p. �
Proposition 5.2. If |S| = p3 then S isomorphic to UT (3, p), the unique non-abelian group 
of order p3 and exponent p. Furthermore, the non-trivial elements of S which have fixed 
points are at most 2(p2 − p).

Proof. From the classification of groups of order p3, see [22, Chapter I, 14.10 Satz], either 
S = Cp2 � Cp, or S ∼= UT (3, p). Since the group Cp2 � Cp has exponent p2, the first 
assertion follows from Proposition 5.1. The elements of S with fixed points fall into two 
subgroups, namely M1 and M2, both elementary abelian of order p2. Since Z(S) is a 
subgroup of M1 of order p, Proposition 3.8 shows that M1 (and M2) has at most as 
many as p2 − p non-trivial elements with a fixed points. �
Proposition 5.3. For c ∈ K∗, the curve Xc with function field K(x, y, z) defined by the 
equations

(i) (xp − x)(yp − y) − c = 0;
(ii) zp − z + xpy − xyp = 0
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is a Nakajima extremal curve whose automorphism group has order p3, and its 
K-automorphism group is a semidirect product of UT (p, 3) by a dihedral group of or-
der 2(p − 1).

Proof. As before, let Mc denote the Artin–Mumford curve with affine equation (9). We 
first show that K(Xc) is an unramified Artin–Schreier extension of K(Mc). This will 
imply that g(Xc) = γ(Xc) = (p − 2)p2 + 1.

Since g(Mc) = (p − 1)2 and K(Mc) = K(x, y) with x, y as in (9), there exist places 
P0, . . . , Pp−1, Q0, . . . , Qp−1 such that

(y)0 = pP0, (y)∞ = Q0 + . . . + Qp−1,

(x)0 = pQ0, (x)∞ = P0 + . . . + Pp−1,

and for each i = 1, . . . , p − 1

vPi
(y − i) = vQi

(x− i) = p.

Let u = xyp − xpy. Then u = xy
∏

a∈F
�
P
(y − ax). The pole divisor of u is

(u)∞ = p(P1 + . . . + Pp−1 + Q1 + . . . + Qp−1).

Also,

vP0(u) = 0, vQ0(u) = 0.

In order to prove that the equation z3 − z = u defines an Artin–Schreier extension of 
K(x, y), we first show that u 
= wp−w for every w ∈ K(x, y); see [38, Proposition III.7.8]. 
A canonical divisor of K(x, y) is

W = (p− 2)(P0 + . . . + Pp−1 + Q0 + . . . + Qp−1),

and a K-basis of L(W ) is

{xiyj | 0 ≤ i ≤ p− 2, 0 ≤ j ≤ p− 2}.

Assume that u = wp − w for some w ∈ K(x, y). Then

(w)∞ = P1 + . . . + Pp−1 + Q1 + . . . + Qp−1.

Therefore, w ∈ L(W ), and hence

w =
∑

xifi(y),

i=0,...,p−1
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for fi a polynomial in K[T ] of degree less than or equal to p − 2. Note that for each 
k = 1, . . . , p − 1

vPk
(xifi(y)) = −i + psi,k,

where si,k is the multiplicity of k as a root of fi. As the degree of fi is less than p − 1, 
for each i > 0 with fi(y) 
= 0 there is some k with si,k = 0. Let ki be the minimum of 
such k’s. Then

−1 = vPki
(w) = −i,

which shows that fi(y) = 0 for each i ≥ 2. Then

w = f0(y) + xf1(y).

Analogously, it can be proved that

w = g0(x) + yg1(x)

for some polynomials g0, g1 ∈ K[T ] of degree less than or equal to p − 2. The only 
possibility is that

w = α + βx + γy + δxy, for some α, β, γ, δ ∈ K.

Therefore,

u = xyp − xpy = wp − w = αp − α− βx + βpxp − γy + γpyp − δxy + δpxpyp.

If β 
= 0, then

vP0(u) = vP0(βpxp) = −p;

similarly, if γ 
= 0 then

vQ0(u) = vQ0(γpyp) = −p.

As vP0(u) = vQ0(u) = 0, we have β = γ = 0 and hence u = αp−α− δxy+ δpxpyp. From 
(xp − x)(yp − y) = c it follows xpyp = xpy + xyp − xy + c, whence u = δp(xpy + xyp −
xy + c) − δxy + α3 − α, and

(1 − δp)xyp − (1 + δp)xpy + (δp + δ)xy − (δpc + αp − α) = 0.

Valuating at P1 and Q1 gives δp = 1 and δp = −1, a contradiction.
In order to prove that the extension K(x, y, z)|K(x, y) is unramified, we need to show 

that for each i = 1, . . . , p − 1 there exist ti and vi such that
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vPi
(xyp − xpy − (tpi − ti)) ≥ 0, vQi

(xyp − xpy − (vpi − vi)) ≥ 0. (23)

Let ti = ix. Then

xyp − xpy − (tpi − ti) = xyp − xpy + ixp − ix = x(i− y)
∏
a∈F�

p

(x− a(i− y))

and hence

vPi
(xyp − xpy − (tpi − ti)) = vPi

(y − i) − p = 0.

Similarly, one can show that vQi
(xyp−xpy− ((iy)p− (iy))) = 0 for each i = 1, . . . , p −1. 

This completes the proof of the first assertion.
Both maps

g : (x, y, z) �→ (x + 1, y, z + y) h : (x, y, z) �→ (x, y − 1, z + x)

are in Aut(X ). They generate a non-abelian group S of order p3 and exponent p. There-
fore S ∼= UT (p, 3). Furthermore, Aut(X ) contains the maps r : (x, y, z) �→ (y, x, −z), and 
t := (x, y, z) �→ (ωx, ω−1y, z) where ω is primitive element of Fp. By a straightforward 
computation, 〈r, t〉 ∼= Dp−1 and

rgr = h−1, rhr = g−1, t−1gt = gω
−1
, t−1ht = hω.

Thus G = 〈g, h, r, t〉 ∼= UT (p, 3) �Dp−1. Actually G is the full K-automorphism group 
of X for p > 3. This follows from Theorem 1.3. For p = 3, a Magma computation shows 
that Aut(X ) is larger as it has order 432 and Aut(X ) ∼= UT (3, 3) � V where V is a 
semidihedral group of order 16. �
Proposition 5.4. If |S| = pp+1, then S has exponent p or p2. In the latter case, M1
and M2 have exponent p, and if Mi with 3 ≤ i ≤ p + 1 has exponent p2 then all 
elements of Mi of order p are in Φ(S). Moreover, the maximal normal subgroups Mi of 
exponent p2 are as many as k, then the number of elements of S of order p is equal to 
(p + 1 − k)(pp − pp−1) + pp−1 − 1.

Proof. The subgroup N1 generated by the elements of M1 of order p is a characteristic 
subgroup of M1. Since M1 is a normal subgroup of S, this yields that N1 is a normal 
subgroup of S. By Lemma 3.5, the stabilizer of a point P ∈ Ω1 is in N1. Hence Proposi-
tion 3.7 yields N1 = M1. Since M1 has order pp its exponent is equal to p. Therefore, [22, 
Chapter III, 10.7 a) Satz] yields no non-trivial element of M1 is a p-power of an element 
of M1, that is, M1 has exponent p. This remains true for M2. If S has exponent ph with 
h > 1 then some Mi with 3 ≤ i ≤ p + 1 contains an element u of order pi. Since Φ(S) is 
a subgroup of Mi of index p, Φ(S) contains up. On the other hand Φ(S) is a subgroup of 
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M1 and M1 has exponent p. Therefore, up2 = 1 whence h = 2. Moreover, if Mi had an 
element v of order p other than those in Φ(S), then Φ(S) together with v would generate 
Mi. Since Mi is a p-regular subgroup, this would yield Mi to have exponent p, again by 
[22, Chapter III, 10.7 a) Satz]; a contradiction. Therefore, no element of Mi \ Φ(S) has 
order p. If we have k such Mi, then S has exactly (p + 1 − k)(pp − pp−1) + pp−1 − 1
whence the last claim follows. �
6. Particular families of groups and a proof of Theorem 1.2

Metacyclic, regular p-groups and p-groups with maximal nilpotency class play an im-
portant role in Group theory; the main references are [22, Section III.14], and [5–7]. This 
gives us a motivation for the study of Nakajima extremal curves whose p-automorphism 
group S falls in one of those families, exploiting the well developed theory of finite 
p-groups. Our results provide not only the necessary technical lemmas for a proof for 
Theorem 1.2 but also useful properties of Nakajima extremal curves with small genera, 
especially those considered in Section 8.

Proposition 6.1. If |S| ≥ p4 then S is not metacyclic.

Proof. Assume on the contrary that S is metacyclic. From Proposition 3.12 and [8, 
Lemma 2.2], S′/S is cyclic. Therefore S′ contains a characteristic subgroup N of index 
p. By (i) of Proposition 3.12, N has index p3 in S. From Proposition 3.9 applied to N , 
S̄ = S/N is a subgroup of Aut(X̄ ) with X̄ = X/N such that |S̄| = p3, Proposition 5.2
implies that S̄ ∼= UT (3, p). On the other hand, as S is metacyclic, [4, Theorem 2] yields 
that S̄ = S/N is also a metacyclic group. But UT (3, p) is not a metacyclic group by 
Proposition 5.2, a contradiction. �
Proposition 6.2. S is a regular p-group if and only if S has exponent p.

Proof. The proof of Proposition 5.1 shows that if S is regular then it has exponent p. 
The converse also holds, see [22, Chapter III, 10.2 d) Satz]. �
Proposition 6.3. If |S| > p2 then none of the subgroups Mi is cyclic.

Proof. For i = 1, 2 the assertion follows from Proposition 3.7. For 3 ≤ i ≤ p +1 the proof 
is by induction on |S|. In the smallest case, |S| = p3, the assertion is a consequence of 
Proposition 5.2. Assume that M = Mi is cyclic for some 3 ≤ i ≤ p + 1. Let T be the 
unique subgroup of M of order p. Since M is a normal subgroup of S, T is a normal 
subgroup of S, as well. As T is semiregular, the quotient curve X̄ = X/T is a Nakajima 
extremal curve with Sylow p-subgroup S/T . Since |S/T | = 1

p |S| and |M/T | = 1
p |M |, the 

inductive hypothesis yields that M/T is not cyclic. But then M itself is not cyclic. �
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Proposition 6.4. If at least two of the p +1 maximal normal subgroups Mi of S are abelian 
then |S| = p2 or |S| = p3.

Proof. Assume that |S| 
= p2. From [22, Chapter I, Aufgabe 21)], every p-group with at 
least two abelian maximal normal subgroup has class at most 2. On the other hand, if 
a non-abelian group G of order pn has an abelian maximal normal subgroup and the 
commutator subgroup of G has index p2 then G has (maximal) class n − 1; see [43, 
Theorem 2.5]. This applies to S in our case by (i) and (ii) of Proposition 3.12. Therefore, 
n − 1 = 2. �

The result on G quoted in the proof of Proposition 6.4 together with (i) and (ii) of 
Proposition 3.12 also gives the following result.

Proposition 6.5. If Mi is abelian for some 3 ≤ i ≤ p + 1, then S has maximal nilpotency 
class.

The subgroup U in Theorem 4.1 is an abelian subgroup of S of index p. Therefore, 
the proof of Proposition 6.4 can be used to prove the first assertion.

Proposition 6.6. The p-automorphism group S of the Nakajima extremal curve given in 
Theorem 4.1 has maximal nilpotency class.

Proof. The subgroup U in Theorem 4.1 is an abelian subgroup of S of index p. Therefore, 
the proof of Proposition 6.4 can be used to prove the assertion. �
Remark 5. According to Proposition 3.10, the quotient curves of the curve given in 
Theorem 4.1 are also Nakajima extremal curves. Their p-automorphism groups have 
maximal nilpotency class, as well, by [22, Section III, 14.2 Hilfssatz].

Proposition 6.7. The p-automorphism group S of the Nakajima extremal curve given in 
Theorem 4.4 has no maximal nilpotency class.

Proof. From Theorem 4.4, the minimum size of a generator set of Φ(S) is (p −1)2. Since 
(p −1)2 > p −1, Φ(S) cannot be generated by p −1 elements. If S has maximal nilpotency 
class, this implies that S must be of order pp+1 and isomorphic to the Sylow p-subgroup 
of the symmetric group of degree p2, see [3, Theorem 5.2]. Since |S| = pN(p−1)2+2, this 
yields N(p − 1)2 + 2 = p + 1, a contradiction which proves the assertion. �

By [22, Chapter III, 14.22 Satz], any p-group of maximal nilpotency class and order 
bigger than pp+1 has exactly one maximal subgroup M which is a regular p-group, 
namely M = CS(K2(S)/K4(S)), see [22, Chapter III, 14.3 Definition]. This subgroup, 
called the fundamental subgroup, plays a relevant role in the study of p-groups.
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Proposition 6.8. Let S be the p-automorphism group of a Nakajima extremal curve such 
that S has maximal nilpotency class and order bigger than pp+1. If s ∈ S is an element 
of order p then number of fixed points of s is either zero, or p. Accordingly, the relative 
quotient curve Z = X/〈s〉 of X has genus

g(Z) =
{

(p− 2)pn−2 + 1,
(p− 2)pn−2 − (p− 1) + 1.

(24)

Proof. If s has no fixed point in Ω, then the Hurwitz genus formula together with Propo-
sition 3.3 yields g(Z) = (p − 2)pn−2 + 1. Therefore, we focus on an element s ∈ S which 
fixes a point in Ω. Then s ∈ M1 or s ∈ M2, according as the set Ωs of the fixed points of 
s is contained in Ω1 or in Ω2. Assume that Ωs ⊂ Ω1, and let P1, P2 be any two distinct 
points in Ωs. Since Ω1 is an S-orbit, there exists h ∈ S that takes P1 to P2. Then hsh−1

fixes P1, and Lemma 3.5 implies that either hsh−1 = s or hsh−1 = s−1. The latter case 
cannot actually occur as in a p-group a non-trivial element and its inverse are in different 
conjugacy classes. Therefore, h is in the centralizer CS(s) of s. The converse also holds. 
Thus p|Ωs| = |CS(s)|.

We show that the fundamental subgroup of S is neither M1 nor M2. Assume on the 
contrary that it is M1. The argument at the beginning of the proof of Proposition 5.4
shows that M1 is generated by its elements of order p. Since M1 is a regular p-group, 
[22, Chapter III, 10.7 a) Satz] applied to M1 and k = 1, shows that M1 has exponent p. 
Now, the last claim of [22, Chapter III, 14.16 Satz] yields |M1| = pp−1, a contradiction. 
Therefore, one of the other maximal normal subgroups, say M3, is the fundamental 
subgroup of S, and s ∈ S \M3.

From [22, Chapter III, 14.6 a) Satz], M3 = CS(Si/Si+2) for 2 ≤ i ≤ n − 3. Here 
|S| = pn, Si = Ki(S) for i = 2, . . . n, in particular, |Sn−2| = p2, Sn−1 = Z(S), Sn = {1}, 
see [22, Chapter III, 14.3 Definition]. If s /∈ CS(Sn−2), [22, Chapter III, 14.13 Hilfssatz b)]
yields |CS(s)| = p2. Otherwise, s ∈ CS(Sn−2), and since CS(Sn−2) is a normal subgroup 
of S, Proposition 3.7 implies M1 = CS(Sn−2). Take a maximal normal subgroup of S, 
say M4, other than M1, M3. From [22, Chapter III, 14.3 Hilfssatz, Bemerkung] applied 
to U = M4, the hypothesis on s in [22, Chapter III, 14.3 Hilfssatz] is fulfilled. Hence 
|CS(s)| = p2 by [22, Chapter III, 14.13 Hilfssatz b)]. Therefore, |Ωs| = p.

Finally, the Hurwitz genus formula together with Proposition 3.3 yields g(Z) = (p −
2)pn−2 − (p − 1) + 1. �

The converse of Proposition 6.8 also holds.

Proposition 6.9. Let S be the p-automorphism group of a Nakajima extremal curve with 
|S| = pn, n ≥ 3. If some element s ∈ S has exactly p fixed points, then S has maximal 
nilpotency class.

Proof. The first part of the proof of Proposition 6.8 also shows that if an element s ∈
S has exactly p fixed points then |CS(s)| = p2. The latter condition means that the 
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conjugacy class of s in S has size pn−2. Therefore, the claim follows from [22, Chapter III, 
14.23 Satz]. �

Theorem 1.2 is corollary of (v) of Proposition 3.12 and Propositions 6.5 and 6.4
together with Propositions 3.6 and 5.2

7. Proof of Theorem 1.3

Lemma 7.1. Let N be a normal subgroup of Aut(X ) such that the quotient curve X̄ =
X/N is neither rational nor elliptic. Then the order of N is a power of p. Furthermore, 
X̄ is an extremal Nakajima curve provided that its genus is bigger than p − 1.

Proof. Let |N | = apb with a prime to p. We may assume that S∩N is a Sylow subgroup 
of N . From the Hurwitz genus formula applied to N , g − 1 = pn−1(p − 2) ≥ apb(ḡ− 1). 
On the other hand, since SN/N ∼= S/S ∩N is a K-automorphism group of the quotient 
curve X̄ = X/N whose order is pn−b, the Nakajima bound gives pn−b−1(p − 2) ≤ ḡ− 1. 
Then,

p−2
a pn−1−b ≥ ḡ− 1 ≥ pn−1−b(p− 2).

Therefore a = 1 and this proves the assertion. �
Lemma 7.2. Let N be a normal subgroup of Aut(X ) such that the quotient curve X̄ =
X/N is rational. Then the order of N is a divisible by pn−1.

Proof. By Proposition 3.3 S has two short orbits, Ω1 and Ω2, both of size pn−1. Since 
S normalizes N , the Hurwitz genus formula applied to N gives

2g− 2 = 2(p− 2)pn−1 = −2|N | + pn−1(dP + dQ) + κpn

with P ∈ Ω1, Q ∈ Ω2 and κ non-negative integer. From this the assertion follows. �
To obtain a similar result for the case where X̄ is elliptic, we need some technical 

results.

Lemma 7.3. Assume that S is not a normal subgroup of Aut(X ) and that T is a Sylow 
p-subgroup of Aut(X ) other than S. If there exists a point P ∈ Ω1 fixed by a non-trivial 
element of T then no point in Ω2 is fixed by a non-trivial element of T .

Proof. Let G = Aut(X ). In GP , all K-automorphisms of order a power of p lie in the first 
ramification group G(1)

P . Obviously, G(1)
P contains both SP and TP . Actually SP = TP

must hold by virtue of Lemma 3.5 applied to a Sylow p-subgroup of Aut(X ) containing 
G

(1)
P . Assume on the contrary the existence of a point Q ∈ Ω2 fixed by a non-trivial 
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element of T . As before this yields SQ = TQ. Hence 〈SP , SQ〉 = 〈TP , TQ〉. By (v) of 
Proposition 3.12, S = 〈SP , SQ〉. Therefore, S ≤ T . Since S and T are Sylow p-subgroups 
of Aut(X ), this yields S = T . �
Lemma 7.4. If a Sylow p-subgroup T of Aut(X ) preserves Ω1 ∪ Ω2 then it does both Ω1
and Ω2.

Proof. We may assume that T 
= S. The assertion follows from Lemma 7.3. �
Lemma 7.5. Assume that S is not a normal subgroup of Aut(X ). If Ω1 is preserved by 
all Sylow p-subgroups of Aut(X ) then M1 is a normal subgroup of Aut(X ).

Proof. Let T be any Sylow p-subgroup of Aut(X ) other than S. From the proof of 
Lemma 7.3, SP = TP for every point P ∈ Ω1. Since M1 is generated by all stabilizers SP

with P ranging over Ω1, this shows that M1 is a subgroup of T . Therefore, all the Sylow 
p-subgroups share M1. Since M1 has index p in S, M1 is their complete intersection. 
From this the assertion follows. �
Lemma 7.6. Let N be a normal subgroup of Aut(X ). Let Π be the set of all points of 
X which are fixed by some non-trivial element of N . Assume that S is not a normal 
subgroup of Aut(X ). If 0 < |Π| < pn then Π = Ω1 (or Π = Ω2) and M1 (or M2) is a 
normal subgroup of Aut(X ).

Proof. Since N is normal, Π is partitioned in orbits of Aut(X ). In particular, the orbit 
of P ∈ Π under the action of any Sylow p-subgroup of Aut(X ) is contained in Π. If 
|Π| ≤ pn−1 then Π = Ω1 (or Π = Ω2), and all Sylow p-subgroup of Aut(X ) preserve 
Ω1 (or Ω2). Therefore, the assertion follows from Lemma 7.5. If pn−1 < |Π| < pn, then 
Π = Ω1 ∪ Ω2, and both M1 and M2 are normal subgroups of Aut(X ) by Lemmas 7.4
and 7.5. But then S = 〈M1, M2〉 would be normal in Aut(X ), a contradiction. �
Lemma 7.7. Let N be a normal subgroup of Aut(X ) such that the quotient curve X̄ =
X/N is elliptic. Assume that S is not a normal subgroup of Aut(X ). If the order of N
is prime to p then M1 (or M2) is a normal subgroup of Aut(X ).

Proof. Since |N | is prime to p, S can be regarded as a K-automorphism group of X̄ . For 
P ∈ Ω1 ∪ Ω2, let P̄ be the point of the quotient curve X̄ = X/N lying under P . Since 
SP has order p by Lemma 3.5, the point P̄ is fixed by a K-automorphism of order p. As 
p is odd and X̄ is elliptic, we have p = 3; see [21, Theorem 11.84]. From the Hurwitz 
genus formula applied to N ,

g− 1 = 3n−1 = 3n−1 1
2 (dP + dQ) + τ

2 3n

with P ∈ Ω1, Q ∈ Ω2 and τ a non-negative integer. This is only possible when τ = 0 and 
dP + dQ = 2. Therefore, either Ω1, or Ω2, or Ω1 ∪ Ω2 coincide with the set of all points 
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of X which are fixed by some non-trivial element of N . Now, the assertion follows from 
Lemma 7.6. �
Lemma 7.8. For an odd prime d other than p, let U be a d-subgroup of Aut(X ) of order 
du and exponent de. Then du−e divides p − 2.

Proof. If U has no short orbit, then du divides g − 1 by the Hurwitz genus formula 
applied to U , and the assertion follows. We may assume that U has m ≥ 1 short orbits 
and let �1, . . . , �m be their lengths. From the Hurwitz genus formula applied to U ,

2g− 2 = 2(p− 2)pn−1 = du(2ḡ− 2) +
m∑
i=1

(du − �i) (25)

where ḡ is the genus of the quotient curve X̄ = X/U . Let P be a point from a short 
orbit of length �i. Then du = |UP |�i. Since UP is a cyclic subgroup of U , we also have 
that |UP | = pui ≤ pe. Therefore, �i = du−ui with ui ≤ e. From (25),

2(p− 2)pn−1 = du−e(de(2ḡ− 2) +
m∑
i=1

(de − de−ui))

whence the assertion follows. �
Lemma 7.9. For |S| = p2, one of the following cases occurs.

(i) X is an Artin–Mumford curve with affine equation (9), and Aut(X ) is the semidirect 
product of S by a dihedral group of order 2(p − 1).

(ii) M1 (and M2) is a normal subgroup of Aut(X ), and Aut(X ) is the semidirect product 
of S by a subgroup of a cyclic group of order p − 1.

Proof. Let X̄ = X/M1. By Proposition 3.14, K(X )|K(X̄ ) is an Artin–Schreier extension. 
Therefore, since |M1| = p, M1 is a normal subgroup Aut(X ) with four exceptions by a 
result of Madan and Valentini [40]; see also [21, Theorem 11.93]. One exception is given in 
case (i). Two of the other three exceptions have zero p-rank, while the forth has genus 2, 
and hence they cannot actually occur in our case.

The above argument holds true for M2, and hence we may assume that both M1
and M2 are normal subgroups of Aut(X ). Since S is generated by M1 and M2, it turns 
out that S is also a normal subgroup of Aut(X ). By Proposition 3.14, the quotient 
curve X̄ = X/M1 is rational. Therefore Aut(X )/M1 is isomorphic to a subgroup Λ of 
PGL(2, K). Furthermore, S/M1 is isomorphic to a normal subgroup of Λ of order p. Also, 
p2 � |Λ|, since S is a Sylow p-subgroup of Aut(X ). From the classification of subgroups 
of PGL(2, K), see [22, Chapter II. Hauptsatz 8.27] and [40], |Λ| = pm with m|(p − 1)
and hence Λ is a semidirect product of S/M1 by a cyclic group L of order m. Therefore, 
Aut(X )/S is isomorphic to L and the assertion is proven. �
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Remark 6. The property of Aut(X ) given in (i) of Lemma 7.9 characterizes the Artin–
Mumford curve; see [1].

Lemma 7.10. Any 2-subgroup of Aut(X ) has a cyclic subgroup of index 2.

Proof. Let U be a subgroup of Aut(X ) of order d = 2u ≥ 2. From the Hurwitz genus 
formula applied to U ,

2g− 2 = 2(p− 2)pn−1 = 2u(2ḡ− 2) +
m∑
i=1

(2u − �i)

where ḡ is the genus of the quotient curve X̄ = X/U and �1, . . . , �m are the short orbits 
of U on X . Since 2(p − 2)pn−1 ≡ 2 (mod 4) while 2u(2ḡ − 2) ≡ 0 (mod 4), some �i
(1 ≤ i ≤ m) must be either 1 or 2. Therefore, U or a subgroup of U of index 2 fixes a 
point of X and hence is cyclic. �
Remark 7. From Lemma 7.10 and [22, Chapter I, Satz 14.9], any 2-subgroup of Aut(X )
is either cyclic, or abelian with a cyclic subgroup of index 2, or generalized quaternion, 
or dihedral, or semidihedral, or type (3) with Huppert’s notation [22]. This together with 
deep results from Group theory, see [2,17,18,41] yields that if G is a non-abelian simple 
subgroup of Aut(X ), then a Sylow 2-subgroup of G is either dihedral, or semidihedral. 
In the former case, G ∼= PSL(2, q), with q ≥ 5 or G ∼= Alt7 (the Gorenstein–Walter 
theorem); in the latter case, G ∼= PSL(3, q) with q ≡ 3 (mod 4), or G ∼= PSU(3, q)
with q ≡ 1 (mod 4), or G = M11, where q is an odd prime power (the Alperin–Brauer–
Gorenstein theorem).

We are going to investigate the possibilities of the existence of a simple normal sub-
group N in Aut(X ), as described in Remark 7. For our purpose, it will be sufficient to 
consider the cases when the quotient curve X/N is rational. Under this hypothesis, p
divides |N |. In fact, otherwise S is an abelian p-subgroup of PGL(2, K), and hence n = 2
by Proposition 3.6, while Aut(X ) is solvable for n = 2 by Lemma 7.9.

Lemma 7.11. Let N be a normal subgroup of Aut(X ) such that the quotient curve X̄ =
X/N is rational. Then N is not isomorphic to PSU(3, q) with q ≡ 1 (mod 4).

Proof. Let μ = 3 or μ = 1 according as 3 divides q + 1 or does not, and factorize the 
order of PSU(3, q) as q3(q2 − q + 1)(q − 1)(q + 1)2/μ.

Assume first that p is prime to q. Since a Sylow subgroup M of PSU(3, q) of order q3

has exponent at most q, Lemma 7.8 applied to M yields q2 | (p − 2). On the other hand, 
as p divides one of the integers q2 − q+1, q−1, q+1, we have p < q2. This contradiction 
proves the claim for (p, q) = 1.

Assume that q = pm for some m ≥ 1. Take a subgroup in PSU(3, q) that is the 
direct product of two cyclic groups C and C1 both of odd order 1 (q + 1)/μ. Write 
2
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|C| = pu1
1 · · · put

t with p1, . . . , pt pairwise distinct prime numbers. Obviously, the subgroup 
Gi of G of order p2ui

i has exponent pui . Since p � (q+1)/μ, Lemma 7.8 applied to Gi yields 
that pui

i divides p −2. Therefore, |C| itself divides p −2 showing that (1
2 (q+1)/μ) | (p −2). 

From this, λ(pm + 1) = 2μ(p − 2) for a positive integer λ, whence pm ∈ {5, 17} follows. 
We may assume that S contains M .

We show that S = M . For q ∈ {5, 17}, |Aut(PSU(3, q))| = 6|PSU(3, q)| holds, and 
hence no element in S \M is in Aut(PSU(3, q)). Therefore, if we suppose S to be larger 
than M , the elements of S not in M commute with M . According to (v) of Lemma 3.12, 
take a pair {s1, s2} of generators of S, both of order p. Obviously, one of them, say s1, 
is not in M . Then s2 is not M as well, otherwise |S| = p2 < p3 = |M |. Therefore, 
every element in M is falls in Z(S) as both s1 and s2 commute with M . But then M is 
contained in Z(S) which is impossible since M is not abelian.

It remains to rule out the possibility that either |S| = |M | = 53 or |S| = |M | = 173. 
Assume first that |S| = 53. From Propositions 3.8 and 3.9, the quotient curve X̄ =
X/Z(S) is a Nakajima extremal curve of genus ḡ = (p − 2)p = 15. By Lemma 7.9, a 
Sylow 2-subgroup of Aut(X ) is a subgroup of a dihedral group of order 2(p − 1) = 8. 
On the other hand, the normalizer T of Z(S) in PSU(3, 5) has order 1000 = 8 · 125 and 
its factor group T̄ = T/Z(S) has a cyclic group of order 8. Since T̄ is a subgroup of 
Aut(X̄ ), this is impossible. The proof for |S| = 173 is analogous. In fact, the normalizer 
T of Z(S) in PSU(3, 17) has order 32 · 3 · 173 and the factor group T̄ = T/Z(S) has a 
cyclic group of order 32. �
Lemma 7.12. Let N be a normal subgroup of Aut(X ) such that the quotient curve X̄ =
X/N is rational. Then N is not isomorphic to PSL(3, q) with q ≡ 3 (mod 4).

Proof. We argue as in the proof of Lemma 7.11. Let μ = 3 or μ = 1 according as 3 divides 
q− 1 or does not, and factorize the order of PSL(3, q) as q3(q2 + q+1)(q+1)(q− 1)2/μ.

Assume first that p is prime to q. Since a Sylow subgroup M of PSL(3, q) of order 
q3 has exponent at most q, Lemma 7.8 applied to M yields q2 | (p − 2). On the other 
hand, as p divides one of the integers q2 + q + 1, q − 1, q + 1, we have either p < q2, or 
p = q2 + q + 1. Both cases are inconsistent with q2 | (p − 2). This contradiction proves 
the claim for (p, q) = 1.

Assume that q = pm for some m ≥ 1. Then p ≡ 3 (mod 4). Take a subgroup in 
PSL(3, q) that is the direct product of two cyclic groups C and C1 both of odd order 
1
2(q − 1)/μ. Write |C| = pu1

1 · · · put
t with p1, . . . , pt pairwise distinct prime numbers. 

Obviously, the subgroup Gi of G of order p2ui
i has exponent pui . Since p � (q − 1)/μ, 

Lemma 7.8 applied to Gi yields that pui
i divides p − 2. Therefore, |C| itself divides p − 2

showing that (1
2 (q − 1)/μ) | (p − 2). From this, λ(pm − 1) = 2μ(p − 2) for a positive 

integer λ, whence either pm = 3, or pm = 7 follow. We may assume that S contains M . As 
in the proof of Lemma 7.11, this implies S = M since |Aut(PSL(3, 3))| = 2|PSL(3, 3)|
and |Aut(PSL(3, 7))| = 6|PSL(3, 7)|.
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Assume that pm = 7. Then N ∼= PSL(3, 7), and S ∼= UT (3, 7) whose center Z(S) has 
order 7. The normalizer L of Z(S) in N has order 4116 = 73 · 12, and the factor group 
L/Z(S) is the semidirect product of a normal subgroup S/Z(S) of order 72 by an abelian 
subgroup of order 12. Such a group L/Z(S) is a subgroup of the K-automorphism group 
of the Nakajima extremal curve X/Z(S) of genus 15 = 7 · (7 − 5) + 1. Since a dihedral 
group of order bigger than 4 is not abelian, this contradicts Lemma 7.9.

Assume that pm = 3. Take a subgroup C of PSL(3, 3) of order 13. The Hurwitz 
formula applied to C yields that 9 = 13(ḡ− 1) + 6λ where ḡ is the genus of the quotient 
curve X̄ = X/C and λ is an integer. Therefore, ḡ = 0 and hence 22 = 6λ which is 
impossible. �
Lemma 7.13. Let N be a normal subgroup of Aut(X ) such that the quotient curve X̄ =
X/N is rational. Then N is not isomorphic to PSL(2, q) with q ≥ 5.

Proof. Assume on the contrary that N ∼= PSL(2, q) with q ≥ 5, and choose a Sylow 
p-subgroup T of N . By Lemma 7.2, T is a subgroup of S of index at most p. By Propo-
sition 6.3, T is a non-cyclic group. From the classification of subgroups of PSL(2, q), 
see [22, Chapter II. Hauptsatz 8.27] and [40], T is an elementary abelian group of order 
q where q is a power of p. If S = T then S is elementary abelian as well, and hence 
|S| = p2, by Proposition 3.6. But then, by Lemma 7.9, Aut(X ) is solvable and hence 
contains no subgroup isomorphic to PSL(2, q) with q ≥ 5.

Therefore, [S : T ] = p. We show that q = pr with r divisible by p. Take an element 
s ∈ S not in T . Since s normalizes N , either s induces an automorphism of N , or central-
izes N . The latter case cannot actually occur as S is not abelian by Proposition 3.6. Thus 
s ∈ Aut(N). From [22, Chapter II, Aufgabe 15], the automorphism group of PSL(2, pr)
is PΓL(2, pr). Since PΓL(2, pr) only contains p-elements other than those in PSL(2, pr)
when p | r, we have that r = λp for an integer λ.

The normalizer of T in N is a semidirect product T � C with a cyclic group C of 
order 1

2 (q − 1). Since T is a normal subgroup of S, the normalizer of T in Aut(X ) also 
contains S. Actually, S also normalizes T�C. In fact, since S normalizes T , any subgroup 
s−1(T �C)s with s ∈ S is a subgroup of N containing T . Since p ≥ 5, the classification 
of subgroups of PSL(2, q), see [22, Chapter II. Hauptsatz 8.27] and [40], yields that N
has a unique subgroup of order 1

2q(q−1) containing T . Therefore, s−1(T �C)s = T �C. 
It turns out that S(T �C) is a subgroup of the normalizer of T in Aut(X ) whose order 
is 1

2 (q − 1)|S|. Therefore, since [S : T ] = p, the factor group S(T � C)/T has order 
1
2p(q − 1), and it may be regarded as a K-automorphism group of the quotient curve 
Y = X/T . Observe that 1

2p(q − 1) ≥ 1
25(55 − 1) > 60.

Two cases arise according as Y is rational or not.
In the former case, S(T �C)/T is isomorphic to a subgroup of PGL(2, K). From the 

classification of subgroups of PSL(2, K), see [22, Chapter II. Hauptsatz 8.27] and [40], 
q = p must hold. But we have already shown that r > 1, a contradiction.
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In the latter case, Proposition 3.14 yields that T is one of the subgroups Mi with 
3 ≤ i ≤ p + 1, and hence by Proposition 3.15 the curve Y satisfies the hypotheses of 
Proposition 2.1. For p > 3, Proposition 2.1 yields that C is isomorphic to a subgroup 
of a dihedral group of order 2(p − 1). Therefore 1

2 (q − 1) divides p − 1. Since q = pr

with r > 1 is this is impossible. For p = 3, Proposition 2.1 gives some more possibilities 
namely that C is isomorphic to a cyclic subgroup of GL(2, 3). Then |C| ∈ {2, 3, 4, 6, 8}, 
but none of these number is equal to 1

2(q − 1) for q = 3r with r divisible by 3. �
Lemma 7.14. Let N be a normal subgroup of Aut(X ) such that the quotient curve X̄ =
X/N is rational. Then N is not isomorphic to N ∼= Alt7 or N ∼= M11.

Proof. Since both Alt7 and M11 have subgroups of odd non-prime order d only for d = 9, 
Lemma 7.2 yields p = 3 and n = 3. Since the quotient curve X̄ = X/N is rational, and 
neither Alt7 nor M11 has an outer automorphism of order 3, the case n = 3 can only 
occur if each element of S \N centralizes N . But then S would be abelian contradicting 
Proposition 3.6. �
Proposition 7.15. Let N be a minimal normal subgroup of Aut(X ) such that the quotient 
curve X̄ = X/N is rational. Then N is an elementary abelian group.

Proof. Assume on the contrary that N is isomorphic to the direct product R1× . . .×Rk

of pairwise isomorphic non-abelian simple groups. Let Ui be a Sylow 2-subgroup of Ri

for i = 1, . . . k. By Remark 7, Ui is either dihedral or semidihedral. Therefore N contains 
a 2-subgroup which is the direct product of k dihedral, or semidihedral groups. This 
implies for k > 1 that N contains an elementary abelian subgroup of order 8, but this 
contradicts Lemma 7.10. Therefore k = 1. Now, the assertion follows from Remark 7
together with Lemmas 7.11, 7.12, 7.13, and 7.14. �
Lemma 7.16. Let U be a 2-subgroup of Aut(X ). If U normalizes M1 (or M2) then U is 
cyclic.

Proof. By Proposition 3.14, M1 has p orbits on Ω1 each of length pn−2. Since Ω1 is the 
set of points which are fixed by some non-trivial elements of M1, U preserves Ω1, and 
induces a permutation group on the set of the pn−2 M1-orbits. As U has order a power of 
2, it preserves some of these M1-orbits. Since the length of such a U -invariant M1-orbit 
is odd, some point of it must be fixed by U . Therefore, U fixes a point of X , and hence 
U is cyclic. �

We are in a position to prove Theorem 1.3.
Our proof is by induction on the order of S. The assertion holds for |S| = p2 by 

Lemma 7.9. Assume that it holds for all extremal Nakajima curves with Sylow p-subgroup 
of order pk with 2 ≤ k ≤ n − 1. Take a minimal normal subgroup N of Aut(X ). If 
the quotient curve X̄ = X/N is not elliptic then Lemmas 7.1 and 7.2 together with 
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Proposition 7.15 show that N is a p-group and hence it is a subgroup of S. If X̄ = X/N

is elliptic and N is not a p-group, replace N with Φ(S) when S is a normal subgroup of 
Aut(X ), otherwise replace N with or M1 (or M2) according to Lemma 7.7. Therefore, 
N may be assumed to be a p-group.

If N is semiregular on X , then the quotient curve X̄ = X/N has positive p-rank, and 
one of the cases (ii) or (iii) of Theorem 1.1 occurs. Therefore, X̄ is either an extremal 
Nakajima curve, or a curve of genus p − 1 given in Proposition 2.1, where S/N is a 
Sylow p-subgroup of Aut(X̄ ). In case (iii), Theorem 1.3 holds for X̄ by induction, and 
accordingly let L̄ = S̄ when S̄ is a normal subgroup of Aut(X̄ ), but let L̄ = M̄ when the 
sporadic case p = 3 with GL(2, 3) occurs. In case (ii), Proposition 2.1 holds for X̄ , and 
let L̄ = S̄ when S̄ is a normal subgroup of Aut(X̄ ), but let L̄ be the identity subgroup 
when the sporadic case p = 3 with GL(2, 3) occurs. Since L̄ is contained in S/N , there 
exists a normal subgroup L of Aut(X ) containing N such that L/N = L̄. Then L is a 
p-group and

Aut(X )
L

∼= Aut(X )/N
L/N

∼= Ḡ

L̄

where Ḡ is a subgroup of Aut(X̄ ). If S̄ = L̄ then S = L and hence Ḡ has order prime 
to p. By induction, Ḡ is a subgroup of a dihedral group of order 2(p − 1), and hence 
Theorem 1.3 holds. If [S̄ : L̄] = p then p = 3, and 3 | |G|. By induction, Ḡ is isomorphic 
to a subgroup of GL(2, 3), and hence Theorem 1.3 holds.

If N is not semiregular on X , Proposition 3.7 shows that N = M1 (or N = M2). 
From Proposition 3.14, the quotient curve X̄ = X/N is rational. Therefore, Aut(X )/N
is isomorphic to a subgroup Γ of PGL(2, K). As S is a Sylow p-subgroup of Aut(X )
containing M1 and [S : M1] = p, the order of Γ is divisible by p but not by p2. Also, 
a Sylow 2-subgroup of Γ is cyclic, by Lemma 7.16. In particular, Γ is not isomorphic 
to Alt4, or Sym4, or Alt5, or PSL(2, q), or PGL(2, q) with a power q of p. From the 
classification of finite subgroups of PGL(2, K), see [40] or [21, Theorem A.8], we are left 
with only one possibility for Γ, namely a subgroup of the semidirect product of S/M1
by a cyclic group whose order divides p − 1. Hence Theorem 1.3 holds.

Our proof of Theorem 1.3 also shows that if K(X ) is not an unramified Galois extension 
of the Artin–Mumford function field then the dihedral subgroup of order 2(p − 1) may 
be weakened to the cyclic group of order p − 1.

8. Nakajima extremal curves with small genera for p = 3

Proposition 8.1. Let p = 3. If S has maximal class then Φ(S) is an abelian metacyclic 
group.

Proof. We may assume that |Φ(S)| = 3m with m ≥ 3. From (ii) of Proposition 3.12, 
|S| = 3m+2 ≥ 35. From [3, Theorem 5.2], every subgroup of S can be generated by 
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two elements. Therefore, d(Φ(S)) = 2. Assume on the contrary that Φ(S) is not abelian. 
From [24, Theorem 3], Φ(S) is metacyclic. Since Φ(S) is supposed to be non-abelian, [24, 
Theorem 1] shows the existence of a metacyclic subgroup B of S such that Φ(B) = Φ(S). 
By Proposition 6.1, B is a proper subgroup of S containing Φ(S). Since B is finite, B 
=
Φ(B) and hence [B : Φ(S)] = p. The Burnside fundamental theorem, [22, Chapter III, 
Satz 3.15] yields that B and hence Φ(S) is cyclic, a contradiction. �
8.1. Cases |S| = 3, 9

We prove that if X satisfies the hypotheses of Theorem 1.1 for |S| = 3 then (ii) holds. 
For this case, our hypothesis (5) yields g = 2. From (8), every automorphism of Aut(X )
of order 3 has two fixed points on X . Therefore, (i) of Theorem 1.1 cannot occur, and 
the assertion follows from Proposition 2.1.

From now on, |S| = 9 and X is a curve satisfying the hypotheses of Theorem 1.1 but 
does not have the property given in (i) of Theorem 1.1.

Proposition 8.2. Let p = 3. Up to isomorphisms, the Artin–Mumford curve with affine 
equation (9) is the unique extremal Nakajima curve of genus 4.

Proof. See the preliminary version of the paper [16]. �
8.2. Case |S| = 27

In this case, the maximal subgroups of S are elementary abelian groups of order 9
and Theorem 4.2 applies. Therefore, the Nakajima extremal curves of genus 10 are the 
curves Xc as given in Proposition 5.3. A different presentation of the function field K(Xc)
of Xc is K(Xc) = K(u, v, y, x) where

(i) u(v3 − v) + u2 − c = 0;
(ii) y3 − y − u = 0;
(iii) (z3 − z)(v3 + 1) + v3 − v2 − u = 0.

Here, both K(u, v, y) and K(u, v, z) are unramified degree p Galois-extensions of K(u, v), 
and K(Xc) can be obtained as the special case p = 3, N = 1 of the construction given in 
Section 4.

8.3. Case |S| = 81

Lemma 8.3. For |S| = 81 there are only two possibilities for S, namely

(a) S ∼= S(81, 7) where S(81, 7) = C3 �C3 is the Sylow 3-subgroup of the symmetric group 
of degree 9, moreover M1 ∼= C3 × C3 × C3, M2 ∼= UT (3, 3), M3 ∼= M4 ∼= C9 � C3.

(b) S ∼= S(81, 9) = 〈a, b, c|a9 = b3 = c3 = 1, ab = ba, cac−1 = ab−1, cbc−1 = a3b〉 with 
exactly 62 elements of order 3; moreover M1 ∼= M2 ∼= M3 ∼= UT (3, 3), M4 ∼= C9×C3.
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Proof. There exist exactly seven groups of order 81 generated by two elements, namely 
S(81, i) with i = 1, . . . , 7, and each of them has an abelian normal subgroup of index 3. 
By Proposition 6.5, S is of maximal class. There are four pairwise non-isomorphic groups 
of order 81 and maximal class, namely (a), (b) and

(c) S(81, 8) ∼= 〈a, b, c|a9 = b3 = c3 = 1, ab = ba, cac−1 = ab, cbc−1 = a3b〉 with 26
elements of order 3;

(d) S(81, 10) ∼= (C9 � C3) � C3 with 8 elements of order 3.

One of the four maximal normal subgroups of S(81, 8) is isomorphic to UT (3, 3) and 
hence it contains all elements of order 3. On the other hand, (iv) of Proposition 3.12 yields 
that two of the maximal normal subgroups of S, namely M1 and M2, have non-trivial 
1-point stabilizer in Ω1 and Ω2, respectively. Hence, both must have an element of order 
3 not contained in Φ(S). Since M1 ∩ M2 = Φ(S), these elements are not in the same 
maximal normal subgroup. This contradiction shows that (c) cannot actually occur in 
our situation. Regarding S(81, 10), all elements of order 3 lie in Φ(S) as Φ(S) is an 
elementary abelian group of order 9. But this is impossible in our situation since M1

must have an element of order 3 not in Φ(S) by Propositions 3.12 and 3.13. �
We point out that both cases in Lemma 8.3 occur. The curve X with function field 

K(x, y, u, s, w) defined by the equations

(i) x(y3 − y) − x2 − 1 = 0;
(ii) u3 − u − x = 0;
(iii) (u − y)(w3 − w) − 1 = 0;
(iv) (u − (y + 1))(s3 − s) − 1 = 0

has genus g(X ) = 28 and it has a K-automorphism group S ∼= S(81, 7) generated by 
g1, g2, g3, g4, g5 where

g1 : (x, y, u, w, s) �→ (x, y + 1, u, s, u− w − s),
g2 : (x, y, u, w, s) �→ (x, y + 1, u, s, u− w − s),
g3 : (x, y, u, w, s) �→ (x, y + 1, u + 1, w, s),
g4 : (x, y, u, w, s) �→ (x, y, u, w + 1, s),
g5 : (x, y, u, w, s) �→ (x, y, u, w, s + 1).

To show an example for the other case, we apply Theorem 4.1 for N = 2 and obtain a
Nakajima extremal curve of genus 82 with a K-automorphism group S such that

(i) S is isomorphic to the unique group S(243, 26) of order 243 with 170 elements of 
order 3, moreover M2 ∼= M3 ∼= M4 ∼= S(81, 9), and M1 ∼= C9 × C9.
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Since |Z(S)| = 3, Proposition 3.9 applied to N = Z(S) yields the existence of a Nakajima 
extremal curve of genus 28 with a K-automorphism group isomorphic to S/Z(S). Here 
S/Z(S) ∼= S(81, 10) and therefore this curve provides an example for Case (b).

8.4. Case |S| = 243, 729

Proposition 8.4. If |S| = 243 and S has a maximal abelian subgroup, then there are only 
two possibilities for S, namely (i) and

(ii) S is isomorphic to the unique group S(243, 28) of order 243 with 116 elements of 
order 3, moreover M1 ∼= M2 ∼= S(81, 9) while M3 ∼= S(81, 4), and M4 ∼= S(81, 10).

Proof. There exist exactly six pairwise non-isomorphic groups of order 81 and maximal 
class, namely (i), (ii) and S(243, 25) with 62 elements of order 3; S(243, 27) with 8 ele-
ments of order 3; S(243, 29) with 8 elements of order 3; S(243, 30) with 62 elements of 
order 3.

One of the four maximal normal subgroups of S(243, 28) (and of S(243, 30)) is isomor-
phic to S(81, 8) and hence it contains all elements of order 3. The argument in the proof 
of Proposition 8.3 ruling out possibility (c) also works in this case. Therefore, neither 
S ∼= S(243, 25) nor S ∼= S(243, 28) is possible. Regarding S(243, 27) and S(243, 29), we 
may use the argument from the proof of Proposition 8.3 that ruled out possibility (d). 
Therefore, S ∼= S(243, 25) and S ∼= S(243, 28) cannot occur in our situation. �

Theorem 4.4 applied to p = 3, N = 1 provides a Nakajima extremal curve X of 
genus g = 244 and |S| = 729 so that Φ(S) is the direct product of two cyclic groups 
of order 9. Using this and some other properties of S established before and relying 
on the database of GAP, it is possible to prove that S = S(729, 34). Therefore, S has 
nilpotency class 4 and |Z(S)| = 3. Moreover, |Aut(Φ(S))| = 29 · 35 · 5 · 11 which is equal 
to (34 − 1)(34 − 3)(34 − 32)(34 − 33). Since d(Φ(S)) = 4, this shows that Φ(S) hits 
the Burnside–Hall bound (14) and hence X is the unique Nakajima extremal curve of 
genus g = 244 with S = S(729, 34). The quotient curve X̄ = X/Z(S) is a Nakajima 
extremal curve of genus g = 82 and its K-automorphism group S̄ = S/Z(S) is S(243, 3). 
In particular, S̄ has nilpotency class 3 and Z(S̄) = 9. Moreover, Z(S̄) contains two 
subgroups, say T̄1 and T̄2, of order 3 so that the arising quotient curves X̄/T̄1 and X̄/T̄2
are non-isomorphic Nakajima extremal curves of genus 28. Therefore, they are the curves 
given in Lemma 8.3.
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