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1. Introduction

In his pioneer’s work, Schur considered V®7, the r-th tensor product of the natural
module V' of the general linear group GL,(C). This is a left GL,(C)-module such that
GL,(C) acts on V®" diagonally. There is a right action of the symmetric group ¥, on
V" and two such actions commute with each other [7]. This enabled Schur to establish
a duality between the polynomial representations of GL,(C) and the representations
of symmetric groups over C. Later on, such a result was generalized by Brauer [1],
Sergeev [17], Lehrer—Zhang [12] and so on. In these cases, the r-th tensor product V& is
considered where V' is the natural module of a symplectic group or an orthogonal group or
a queer Lie superalgebra q(n) or an orthosymplectic supergroup and so on. The Brauer
algebras and the Hecke—Clifford superalgebras etc naturally appear as endomorphism
algebras of V&,

Let V* be the linear dual of the natural GL,,(C)-module V. Koike [11] considered
the mixed tensor modules V& " ®(V*)®* for various r,t € ZZ°. This led him to intro-
duce the notion of walled Brauer algebras in [11] (see also [19]). Shader and Moon [18]
set up super Schur—Weyl dualities between walled Brauer algebras and general linear
Lie superalgebras, by studying mixed tensor modules of general linear Lie superalge-

bras gl Brundan and Stroppel [4] established super Schur-Weyl dualities between

by studying tensor modules K\®V®" of Kac
This led them

to obtain various results including the celebrated one on Morita equivalences between

level two Hecke algebras HP? and gl

m|n>
modules K with the r-th power V®" of the natural module V of gl

blocks of categories of finite dimensional g -modules and categories of finite dimen-

[m n
sional left modules over some generalized Kho‘vanov’s diagram algebras [5]. By studying
tensor modules M™! := V@K, ®(V*)®" of Kac modules K, with the r-th power
of the natural module V' and the ¢-th power of the dual natural module V* of gl,,,,,
two of the authors [14,15] introduced a new class of associative algebras, referred to
as affine walled Brauer algebras, over a commutative ring containing 1.' They estab-
lished super Schur-Weyl dualities between level two walled Brauer algebras Bs,.: and
general linear Lie superalgebras, which enables them to classify highest weight vectors
of g[m|n
super Schur—Weyl duality. In order to further study representation theory of queer Lie

-modules M, and to determine decomposition numbers of By, ; arising from

superalgebras and to establish higher level mixed Schur—Weyl duality between queer Lie
superalgebras and some associative algebras, a natural question is, what kind of algebras

may come into play if one replaces general linear Lie superalgebras gl by queer Lie

m|n
superalgebras q(n). This is one of the motivations of the present paper to introduce the
notion of affine walled Brauer—Clifford superalgebras. Another motivation comes from
two of the authors’ work on the Jucys—Murphy elements of walled Brauer algebras in

[14].

! See [16] (resp., [2]) where the affine walled Brauer algebra is defined over C (resp., over R) in terms of
affine oriented Brauer category.
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In 2014, Jung and Kang [9] introduced the notion of walled Brauer superalgebras
or walled Brauer-Clifford superalgebras BC;; so as to establish the mixed Schur—
Weyl-Sergeev duality for queer Lie superalgebras q(n). The superalgebra BC,; can
be considered as a generalization of a Hecke—Clifford superalgebra and a walled Brauer
algebra. In the present paper, we construct Jucys-Murphy elements for BC) ; and study
their properties in detail. Through these elements, we can introduce the notion of affine
Brauer—Clifford superalgebras BC’?}E in a ring theoretical way. Using arguments simi-
lar to those in [14], we construct infinitely many homomorphisms between the affine
Brauer—Clifford superalgebra BC’f’ftf and walled Brauer—Clifford superalgebras, and thus
we are able to prove that the affine walled Brauer—Clifford superalgebra is free over R
with infinite rank if the defining parameter w; is zero. However, many affine walled
Brauer—Clifford superalgebras which appear in the higher level mixed Schur—Weyl—-
Sergeev duality have non-zero defining parameter w;. In order to overpass this, we
consider level two mixed Schur-Weyl-Sergeev duality for q(n) and prove that a class
of level two walled Brauer—Clifford superalgebras over C with non-zero w; have required
super-dimensions. Using these level two walled Brauer—Clifford superalgebras instead
of walled Brauer—Clifford superalgebras used before, we can establish infinitely many
superalgebra homomorphisms and hence prove the freeness of the affine walled Brauer—
Clifford superalgebra over R no matter whether w; is zero or not. This is one of the
points which is different from the work in [14].

It is a natural problem to give a classification of finite dimensional irreducible
BC’?f—modules over an algebraically closed field of characteristic not 2. By introducing
cyclotomic quotients of BCf’ftf, called cyclotomic walled Brauer—Clifford superalgebras,
we are able to prove that any finite dimensional irreducible BC;‘,;f—module factors through
a cyclotomic walled Brauer—Clifford superalgebra. We define this superalgebra over R
and prove that it is free over R with required rank if and only if it is admissible in the
sense of Definition 6.4. In a sequel, we will classify finite dimensional irreducible mod-
ules for affine and cyclotomic walled Brauer—Clifford superalgebras over an arbitrary
(algebraically closed) field with characteristic not 2.

We notice that in July, 2017 (at that time we had obtained our affine and cyclotomic
walled Brauer—Clifford algebras), Brundan, Comes and Kujawa [6] introduced the affine
oriented Brauer—Clifford supercategories AOBC and their cyclotomic quotients COBC.
They proved that any morphism space of AOBC is free over an integral domain R. In
the second version of [6], they showed that our degenerate affine walled Brauer—Clifford
algebra B C’j?f is isomorphic to certain endomorphism algebra in (specialized) AOBC. In
the third version of [6], they proved that any morphism space of COBC is free over R. As
an application, they showed that our admissible cyclotomic walled Brauer—Clifford su-
peralgebra BC}, ., (see Definition 6.4) is isomorphic to certain endomorphism algebra in
(specialized) COBC. For more details, see [6, section 7.2]. As explained in [6, section 1.4],
their basis theorems imply our basis theorems and the converse is not true. However,
our method used in this paper is quite different from that in [6].
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We organize our paper as follows. In section 2, we recall the notion of walled Brauer—
Clifford superalgebras BC,; in [9]. Several properties on the Jucys-Murphy elements of
BC,,; are given. This leads us to introduce the notion of affine walled Brauer—Clifford
superalgebras in section 3. We give infinitely many homomorphisms between BC?ﬁf and
walled Brauer—Clifford superalgebras. We also define cyclotomic walled Brauer—Clifford
superalgebras. In section 4, we use higher level mixed Schur-Weyl-Sergeev dualities to
prove that a class of level two walled Brauer—Clifford algebras with non-zero parameter
w1 have required super-dimensions over C. In section 5, we construct infinitely many ho-
momorphisms between BC’fiftf and level two walled Brauer—Clifford superalgebras which
appear in the higher level mixed Schur—Weyl-Sergeev dualities in section 4. This in turn
enables us to mimic arguments in [14] to prove the freeness of BC2 over R. In par-
ticular, BC’,“i‘ftf is of infinite super-rank. In section 6, we prove that a cyclotomic walled
Brauer—Clifford superalgebra is free over R with required super rank if and only if it is
admissible.

2. Walled Brauer—Clifford superalgebras

Throughout, we assume that R is an integral domain containing 27'. Let X, be
the symmetric group on r letters. Then X, is generated by si,...,s,—1, subject to the
relations (for all admissible ¢ and j):

s2 =1, 8i8i115;i = 8i4185i41, sisj = 8;8;, if |1 — j| > 1. (2.1)
Each s; can be identified with the simple reflection (i, + 1), where (¢,5) € X,, which
switches i, j and fixes others. In this paper, we always assume that X, acts on the right
of the set {1,2,...,r}.

The Hecke—Clifford algebra HC, was introduced by Sergeev [17] in order to study V",
where V is the natural module for the queer Lie superalgebra q(n). It is the associative
R-superalgebra generated by even elements s, ..., s,_1 and odd elements ¢y, ..., ¢, sub-
ject to (2.1) together with the following defining relations (for all admissible 4, j):

2
G

=—1, c¢ic; = —¢j¢, wtew = Cliyw, VW € By (2.2)

In this paper, we denote Z; = {0,1,...,i — 1}. We always use «; to denote the j-th
coordinate of o € ZJ for 1 < j <r. Let |a] = >°7_, a;. The Hecke-Clifford algebra HC,
is free over R with basis {c®w | w € X,,« € Z}}, where ¢* = ¢ -+ - ¢ (see [10]). Since
S1y.-+,80—1 (resp., c1,..., ¢, ) are even (resp., odd), the even (resp., odd) subspace of HC,
is spanned by {c®w | w € ¥,,a € Z}, |a| € 2Z} (resp., {c*w | w € &, € Z}, |a| & 2Z}).
In particular, the super rank of HC,. is (2"~ 1r!, 2= 1r1).

We need HC, as follows. As the R-superalgebra, it is generated by the even elements

S1,.-.,5-—1 and odd elements ¢y, . . ., ¢, subject to the relations for all admissible ¢ and j:
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—92 — _ _ — — ep s .
5; =1, 55415 = 5415541, and 5;5; =5,5;, if [i —j| > 1, (23)

e =1, ¢¢;=—¢;¢, and w 'Gw = iy, YW € ;.
In this case, we identify 5; with s;. If /—1 € R, then HC,. is HC, by setting ¢; = v/—1¢;
and S; = S;. Let

Li=0,and L; = £, +¢;Li¢c;, 2<i<r, (24)

where £; = Z;;i (j,7). These elements, which are known as Jucys—Murphy elements of

HC,, satisfy the following relations for all admissible 4, j, k:

LiL]‘ = LjLi, SiLk = Lksi, if k 7& ’L,Z + 1,

(2.5)

Sszsz = Li+1 — (1 — Cici+1)$i; CiLk = (71)5i’kLk,Ci,
where 6; ;, = 1 if i = k, and 0 otherwise. If we denote by Li,..., L, the Jucys-Murphy
elements of HC,, then L1 = 0 and L; = £, — ¢;£,¢;, where Ej = E?c:l (k,7). In this
case, we identify ¢ with ¢ for all 1 <4 < r. So, ¥, can be identified with the symmetric
group on the set {1,...,7}, and (2.5) turns out to be

fi j :z]'fi, Eifk :fkgi, ifk#£d,i+1, (2 6)
5. L% = Lit1 — (1 +ECi41)5, @@Ly = (—1)%+ Ly '
Considering —L; (resp., —L;) as abstract generators x; (resp., T;) yields the notion of
the affine Hecke—Clifford algebra HC?! (resp., HC 2) as follows.
The affine Hecke-Clifford algebra HC* is the associative R-superalgebra generated
by even elements s1,...,s.-1,21 and odd elements ¢y, ..., ¢, subject to (2.1)—(2.2), to-
gether with the following defining relations (for all admissible ¢ and j):

21T = Tow1, w16 = (—1)% ez, sjmy = w8y, if § # 1, (2.7)

——aff
where o = sj2151 — (1 — cic2)s1. Later on, we need HCi as follows. As the
R-superalgebra, it is generated by even elements 5i,...,5,-1,7; and odd elements

C1,..., ¢ subject to (2.3) together with the following defining relations (for all admissible
i and j):

T1To = ToT1, X1C; = (_1)51',152,517 5;T1 = Tlgj,ifj 7é 1, (28)

where Ty = 517151 — (1 4 €1¢2)5;1. Certainly, H—CiH is HC if /=T € R. For 1 <i <,
define

€Ty = $; - Li, and fi = f; — fi, (29)



196 M. Gao et al. / Journal of Algebra 525 (2019) 191-233

where 2, = s;_1---$12181- - 8i—1, 4 = 1 and T, = S;_1 -+ $1T181 - Si—1, Ty = T1.
Then we have the following relations for all admissible ¢ and j:

Ti4+1 = S¢S — (1 — C¢Ci+1)8i, and Tilj = Ty, (2 10)
fi—‘—l = 5,TiS; — (]. —+ 6i5i+1)§i, and Tifj = fjfi.

For all @ € N, define 2% = z7*--- 2% and % = Z7* ---Z0 . It is proven in [10] that
HC has basis {2%cPw | w € &,,a € N", 3 € Z5}. The even (resp., odd) subspace of
HC is spanned by all z%c?w such that || € 2Z (resp., | 8| ¢ 27Z). Similar results hold
for H—C’iﬂ.

We are going to recall the definition of the walled Brauer—Clifford superalgebra BC, ;.
This superalgebra was introduced by Jung and Kang in [9] so as to study the mixed
tensor product of the natural module and its linear dual for the queer Lie superalgebra
q(n). The original BC,, is defined via (r,t)-superdiagrams in [9]. In this paper, we use
its equivalent definition.

Definition 2.1. [9, Theorem 5.1] The walled Brauer—Clifford superalgebra BC, , is the
associative R-superalgebra generated by even generators ej, $1,...,8r—1, S1,---,8t—1,
and odd generators ¢y, ..., ¢, C1,. .., ¢ subject to (2.1)—(2.3) together with the following
defining relations for all admissible 4, j:

(1) ercn = e1¢a, c1€1 = Cre7, (6) s;e1 = ey, Sie1 = e15;, if 4 #£ 1,
(2) 5j¢; = ¢35, 8i¢j = ¢jsi, (7) e1s181e181 = e18151€1381,

(3) ¢it; = —¢jci, 5i5; = 5;8;, (8) sie18151€1 = S1e15151€1,

(4) €2 =0, (9) cie1 = e1¢; and Gieq = e1G;, if i # 1,
(5) er1s1e1 = e1 = e15 €1, (10) ercre; = 0 = ercreq.

Lemma 2.2. There is a unique R-linear anti-involution 7 : BC,; — BC,+, which fizes
all of its generators.

Proof. It follows from Definition 2.1, immediately. O

It is known that the subalgebra of BC, ; generated by even generators si,...,s,_1,
S1,...,8—1 and e; is isomorphic to the walled Brauer algebra B, ;(0) in [11,19]. This
enables us to freely use results on B, ;(0) in [14] so as to simplify our presentation. Write
Si5 = 8iSiy1,; if 1 < j and s;; =1 and s; ; = s; 5415, if 4 > j. Similarly, we have 3; ;’s,
etc. Following [13], define D,{c’t ={1}if f =0 and

D}, = {Sfﬂ;fgfajf 81 Sy B < SISk,

1<t <ip<...<ip Srpif0<f<min{rt}.  (211)
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Definition 2.3. Define ¢ = 1 and e/ = ejeq--- er if 0 < f < min{r,t}, where e; = €;;
and e; ; = (1,7)(1,4)e1(1,4)(1, ) for all admissible 4, j.

Theorem 2.4. [9, Theorem 5.1] The walled Brauer-Clifford superalgebra BC, ;. has
R-basis

S = {co‘dl_lefwdgﬁﬁ |10 < f<min{rthweX, _;xX—di,ds € D{t,
(o, B) € Z5 x Z;}. (2.12)
In particular, the super rank of BCyy is (2" (r + ), 271 (r + £)1).

Proof. The basis of BC,., given in (2.12) is a refinement of X given in the proof of [9,
Theorem 5.1]. We remark that each dl_lef wdy corresponds to a unique walled Brauer
diagram in [14]. O

Corollary 2.5. For any positive integer k, the subalgebra of BClyr 4+ generated by even
elements €41, Sk+1, - -+ Sktr—1s Skt1s-- -5 Sk+t—1 and odd elements ciy1,Cry1 1S isomor-

phic to BC .
Proof. Easy exercise using Theorem 2.4 and Definition 2.1. O

Lemma 2.6. Let BCy_1 ;—1 be the subalgebra of BCy ) generated by ei,si,...,Sk—2,
51,...,5k—2 and c1,¢1. Then exBCyy is a left BCr_1 p—1-module generated by all
€kCy Sk,jSk,1 such that 0 € Zy and 1 < j,1 < k.

Proof. It is enough to prove that the left BCj_; ;_1-module Vi generated by all
€rCy sk,;5k,1 is a right BC, p-module. If so, then Vi, = e, BC}, i by the fact that e;, € Vj.
We have Vis; C Vi and Vicy C V since

siekcgsk,j@k’l if 1 < j,
ekcgsk,jEkJsi = ekcgshj—l-lgk,l if i = j, and

Si—1ekCy Sk Sk if 1> 7,

. ecregcy s sk if j > 1,
ekcksk,jsk,lcl = 4
- _ o
ercy Sk sk if g =1,

where e =1 (resp., —1) if 0 = 0 (resp., 1). Similarly, V},3; C Vj, and Vi ¢; C Vj. Finally,
Vie1 C Vy since
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0 ifj=4k=1,
€y _18k—1,j€k ifl=k>j
exCy sk Brien =3 ’ ’ (2.13)
kSk,j Sk, Y = e
Cl_15k—1,1€k ifj=k>I,
€k—1Ch_18k—1,;5k—1,0€k if 7,1 < k. ]

Proposition 2.7. We have e, BCy, e, = €, BCr_1 x—1 for all k > 2 and e BCy 161 = 0.

Proof. We have ¢, BCj, ke, C €,BCr_1 k-1 by Lemma 2.6 and (2.13). When k > 2,
the inverse inclusion follows from the equations ex = exsip_1ex and exx = xey for any
S Bc’k—l,k—l- O

Definition 2.8. For all admissible i, j, let y; = Z;;ll (€i,j+€;)—Li,and y; = Z;;ll(e“ -
Ejﬂ') — Li, where E@j = Ci€; Ci. Then Yi = i + Civic; and yj = ﬁj — Ejﬁjzj7 where D
(resp., ;) is y; (resp., ¥;) in [14, (3.5)] in the case d; = 0. So,

i—1 i—1
9i= > (eiy = (,), and §; = 3 (ej: — (7,7): (2.14)
j=1 j=1

Lemma 2.9. With the notations above, the following results hold in BC, ; for all admis-

sible i, 7:
(1) sy = sy, 5,9, = Y55 if j # (7) yz‘(eri‘?i—@l: (ei +7; —Ei)yz‘;
i—1,i (8) ei¥; = ei(Li—Li), eiyi = ei(Li—Ls),
vy
() 87 = Tosyo i = uisy g #i=1, ) Gsmsi = sigsici e5T;F =
s ’ 5.7.5,€5,
(3) yici = —ciyi, ;G = —Cils, ]?{] ! f _ = ~ _
(4) UiCs = Cogs, TiT; = TG if i 2 (10) vi%i = Uiy, YiYi = YiYi»
fars JIr I 79 ’ (11) 6iyfciei = O, Vk S N,
5 Co = Cailli. U:Cq = Ci 1f 7 > 1
(5) wit; = Cyi, Yscj = ¥ if j = 4, (12) ey?me; =0, eye; =0, Vn €N,
(6) Yivit1 = Yi+1¥i, Ui¥it1 = Yis1Ysr (13) esyie; = eifzes = 0,

where §; = siyisi — (1 — ciciy1)si and §; = 57,5 — (1 + CiCiy1)5i.
Proof. We assume /—1 € R. Then BC,; = BC . It is reasonable since we can embed
R into a larger integral domain containing v/—1. The required isomorphism sends (a):
V—1¢; (resp., v/—1¢;) in BC,; to ¢; (resp., ¢;) in BCy,; (b): €1 to eq; (c): s; (resp., 5;)
in BCy; to 5, (resp., s;j) in BCy,. So, it suffices to verify one of equations in (1)-(6),
(8)—(13) except (11).

(1) If j # 4,4 — 1, then sj¢; = ¢;s; and s;9; = y;5; by (2.2) and [14, Lemma 3.3(6)].
So,

559 = 55(9i + cimici) = (i + civici)s; = yis;.
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(2) If j # i — 1, then s;5; =9;s; by [14, Lemma 3.3(7)]. By Definition 2.1(2),

(3) Since ¢f = —1, we have ¢;y; = ¢;(9; + ¢i9i¢;) = —9i¢; + Yy = —yic;.

(4) By (2.2), (2.5) and Definition 2.1(9), ¢;c; = —c¢j¢;, ¢jLi = Lic; and e; ycj = cje;
if 4 # j. By Definition 2.8, we have y;c; = c;y;.

(5) If j > k, then e; ,¢; = €je; . By Definition 2.1(2)-(3) and Definition 2.8, we have
Yi€j = CjYi- ,

(6) Since y; = Y '"i(ei; — (4,4) (see (2.14)), we have iciy1 = cip19:. By [14,
Lemma 33(9)], DiDit1 = Dit19s. Thus,

4)
YiYir1r = (D6 + CiDiCi)Yit1 = DilYir1 + CiNiYir1Ci
=9i0i+1 + Cit19iVi+1Ci+1 + CiViVit1Ci + CiCit19iDi+1Ci+1Ci-

Applying the anti-involution 7 on the above equation yields y;y;+1 = Yi+1¥:-
(7) We have

vi(ei — € +7;) = (0; + civici)(ei +0; — T8 — cieic;)
=1i(e; +1;) —@nile; +9;)C + cini(ei +9;)e; — Cieimi(er + ;) e
Applying the anti-involution 7 on the above equation and using (e; +9,)y; = 9;(e; +9;)
(see [14, Lemma 3.3(4)]) yields (7).
(8) By [14, Lemma 3.3(1)], e;n; = e;(—£; + £;). So,
eiyi = e + eicinici = eini(1 4+ ¢ici) = —e;(Li — £5)(1 +¢icy)
= —e:fi + e Li — ei(Li — £i)Eicy
= —ei(Si + Cisici) + 61(51 — EiEiEi) = —ei(Li — ZZ)

(9) By [14, Lemma 33(5)], €;8:1iS; = Si1;iS;€4. SO,
€i5iYiSi = €;SiCiY)iCiS; + €i5i0iSi = Ci4+1€;5i9iSiCit1 + SiYiSi€; = SiYiSi€;.
(10) We define m; = s;9;s; — s;. By [14, Lemma 3.3(5)]), m;n; = y,m;. So,

Vil = (i + civici) (i (i + civici)si — (1 — ciciy1)si)
=0imy; + 0;(5:¢i0iCiSi + CiCiy15:) + civici(s:(Ds + cinici)si — (1 — ciciq1)s:)
=0;m; + Cip19MCi 1 + CiNicim; + ¢i0ici(5iCiYicis; + Cicip15i) (2.15)
=0;M; + Ci+19iM;Cip1 + CiYiCiSiYiSi — CiViCiSi — CiYiCiy1S8i + CiYiCiSiCiYiCiS;
=0;m; + G 19iM;Cip1 + CiYiMGC; — CiiCiSi — CiCiy19iSiNiSiCiCit1

=9;m; + ¢;119;M;Ci1 + CY;MC; + Ci41CiH);M;CCi41.

Applying the anti-involution 7 on (2.15) yields §;y; = yi¥;.
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(11) If k is odd, then

k R N () B S ) k
€ilY; Ci€i = €iY; Ci€; = €;CiY; € = —€;Y; Ci€4,

forcing e;y¥cie; = 0. If k is even, then

k—1— k—1/— _ k—1 k—1—
ey Ui = ey (Ui +ei—€)—ey; e tey €
o _\ok—1 k-1 k—1—
=e(7;+e —&)y,  —ey e +ey &. (2.16)
k—1— _ k-1 k—1— k—1—
So, e;y; iciei = eiY;y; cie;. On the other hand, e;y;” "J;cies = —eiciy;  Ysei =
eiciyfei and eiyiyf_lciei = —eiyfciei = —eiciyfei. So, eiyfciei = 0 for even k.

(12) We have exy:"es, = 0 since

2 on—a  (B)  _ o 2 3 on 2 2
erYi ek = €Yk Crlk = €rCkYL Chek = €xCLYj Chek = €kYk CLek = —€kYi Ck-

(13) Ifj < i, then €;Ci€; jCi€; = eiEieiJEiei = €i€;,j€; = € and eici(j, z‘)cl-ei =
eiEi(j,i)Eiei =e¢;. So,

i—1
€;Y;e; = 267;‘)1'61' = 2262'(61‘,3‘ — (’L,j))@z =0. O

Jj=1

Corollary 2.10. There is a unique element wq € BCy_1 x—1 such that epyier = Wa xCk-
Similarly, there is a unique element Wy, € BCk_1 k-1 such that exy,"er = Wa ek
Moreover, wap i = Wan,k = 0.

Proof. The existence of an w, j follows from Proposition 2.7 and the uniqueness of such
an element follows from Theorem 2.4. The second statement can be verified similarly.
Finally, we have wa, = Wap r = 0 by Lemma 2.9(12). O

(2) 2 (@)

_ i+1
Lemma 2.11. For n € N, ¢;77" =301 jeiyij+ for some ay,\ ; € Rlws ...,

LUQn_Li] such that

(]‘) ag:rz+1,n =-1,
(2) a§2+1,j = aé’ﬁ_l,j_p 1<j<m,

(4) _ -1l ()
(3) Aon+1,0 = Zj:l Aop—1,;%25+1,i-

Proof. When n = 0, we have e;(y; +7;) = 0 by Lemma 2.9(8). So, a% = —1. In general,
we have

ey 'yt = ey} (@ +ei — €))7 — ey’ 'eiy; (by Lemma 2.9(11))

= el(yz +e; — Ei)yizjilyi + W25 —1,i€:Yi (by Lemma 20(7))
—e;y;"7; + waj—1,4e:y; ( by Lemma 2.9(8)).
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. . . 2% 241 2j—1-2 2j+1
Similarly, using wo;; = 0yields e;y;’y; = —e;y;” . So, e;y;” U7 = e;y;” " +waj—1.:€iY;.

By inductive assumption on n and w; ; = 0, we have the result, immediately. O

(@) (@)

Lemma 2.12. For positive integers n, e;y:" = Z?:o azn’jeiy?j for some as, ; €
Rlwsi, ... ,wan_1,] such that
(1) ag), =1,
Aon,j = Qop—2j-1, L =] =T,
(B _ -1 (i)
(3) agpo = 22721 Aoy jWajt1i-
Proof. We have eiyijf = —eiy?jﬂyi = eiyfj+2 + w;+1,:€;- By inductive assumption

on n and wy; = 0, we immediately have the result. O

We can assume k > 2 (resp., n > 2) in Lemma 2.13 since y; = 5, = 0 (resp.,
w1,k = W1,k = 0 by Lemma 2.9(13)).

Lemma 2.13. We have Way—1 € Rlwsk, ... ,wan_1k] if k,n € Z=2. Furthermore, both
Wan—1,k and Wan—1, are central in BCy_1 k1.

Proof. By Lemma 2.11 and inductive assumption on k, we have the first statement.
To prove the second, note that any h € {ey, s1,...,Sg_2,c1} commutes with e, yx. So,
ek (hwan—1k) = ex(won—1,h). By Theorem 2.4, hwap_1 = wan—1,,h. Finally, we need
to check that ey (hwan—1k) = ex(wan—1xh) for any h € {31,...,5k_2,¢}. In this case,
we use Lemma 2.11. More explicitly, we can use %, instead of yi in ekyinflek. Thus
hwan -1,k = Wan—1,kh, as required. 0O

In the following, we define
hi = yx + ex + e, and hy = 7, + e}, — €, for all admissible k. (2.17)

Lemma 2.14. For k,a € Z=', we have

a—1 a—1
a _ 1a a—1-b_b a—b a—b—1_b
SkYpr1 = hisk — E hk Y1 + E (-1 CkaHhk Yr+1s
b=0 b=0

where hy, s given in (2.17).
Proof. It is easy to verify the result by induction on a. O

Lemma 2.15. Suppose 1 < j < k — 1. Define 2z, = sjr—1hp—15k—1,5, and Z; =
§j,k—1ﬁk—1§k—17g‘7 where hy,_1 and hy_1 are given in (2.17). Then
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k—1 . k-1 .
(1) 2z =201 € — Z1§s§k—1,s¢j(37]) +¢j (Zezl €5, — Zlgsgk—l,s;éj(svj)) Cj»

— k—1 _— — k—1 — =\ =
(2) Zje =D 0"y €05 — Z1gsgk—1,s¢j(5’3) ¢ ( =1 %05 — Zlgsgk—l,s;ﬁj(svj)) Cj-

Proof. Easy exercise. 0O

Note that wor = 0 and w1 = Wik = 0 (see Lemma 2.9(13)), and exh = 0 for
h € BCk_q -1 if and only if h = 0. We will use these facts frequently in the proof
of Lemma 2.16, where we use the terminology that a monomial in z;;41’s and Z; p4+1’s
is a leading term in an expression if it has the highest degree by defining degz; ; =
degz;; = 1.

Lemma 2.16. For any positive integer n, wan+1 k41 can be written as an R-linear combi-

nation of monomials in zj41’s and Zj p4+1°s for 1 < j < k such that the summation of
. . k 2 —2

the leading terms of want1,k+1 i 2355 (—25% 11 + 25 ky1)-

Proof. By Corollary 2.10 and Lemma 2.9(8), we have

2n+1 T 2
Won+1,k+1€k+1 = €kt 1Yjy 1 k1 = €kt1(Lrt1 — Let1)Yi'fr€r1- (2.18)

Note that (j,k + 1) = sjisksk,; and s;,sk,; commute with yri1,ery1,crr1 (see
Lemma 2.9(1) and (2.2)). Considering the right-hand side of (2.18) and expressing Lj41
by (2.4), we see that a term of fek+1Lk+1y,%’}rlek+1 becomes

— 5 kCh i1 (SKYRE1 + Chi1SKCh11Yh 1) ek 18k, = —28) kehi1(SkYUit1)eh 15k,
2n—1 2n—1
= —25;j pek+t1 {hznsk - Z hi”7b71y2+1 + Z (_1)2n_bCka+1hznb1y2+1}ek+18k,j
b=0 b=0
2n—1
= 725j7khi”ek+1skek+1sk,j + 25k Z hi"_b_lek+1y2+1ek+1sk7j (by Lemma 2.9(11))
b=0
2n—1
= —25; kCk+1 (hin - Z hin_b_lwb,k+1>8k7j.
b=0

By inductive assumption, the right-hand side of the above equation can be written as an
R-linear combination of monomials with the required form such that the leading term is
—222"% . Finally, we consider terms in (2.18) concerning Ly 41, namely we need to deal
with

er1 (k)Y ert1 — er1Crorr (7, K+ D)1yt entr = 2e41 (7, k+1)yRt 1 €hpr.

Applying 7 on ek+1yi7jr1 and using Lemma_2.12 and inductive assumption on n, we can
use Yt ep41 to replace Yetiers1 in epy1(J, k+1)yp7 erqr (by forgetting lower terms).
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This enables us to consider ekﬂg, k—&—l)@%’j_lekﬂ instead. As above, this term can be
written as the required form with leading term 22?”}C +1- The proof is completed. O

Lemma 2.17. For (a,k) € Z=° x Z=1, both wq k1 and Wepr1 commute with yii1,
Yk+1-Cls Cls Il >k+1.

Proof. Since wy,1 = Wa,1 = Wik = Wik = Wagk = Waq,r = 0 for all admissible a, k, we
can assume a,k € Z22 and 2 t a. In order to verify that w, x+1 and We k41 commute
with yr11, by Lemmas 2.13, 2.15-2.16, it suffices to prove that yx1 commutes with both
Zj k41 and Zj g1 for 1 < 7 < k. By Lemma 2.15, 2j k41 = 3j.k+1 + Cj3j,k+1Cj, where

k
k1= eie— > (s,4),
(=1

1<5<k,5%]

which is z; 41 in [14, Lemma 3.9]. Obviously, ¢k+13/ k+1 = 3j,k+1Ck+1- By Lemma 2.9(4),
we have yp+1¢; = ¢jYi+y1- So,

2 1Yk 1 = 37,k +1(Cra 1Dk +1Ck+1 + Vrr1) + 535041 (Chr19k41Cka1 + Drg1)c)
= Ch 135, k+10k4+1Ck+1 T 35, k+19%+1 + Cj35 k+1Dk4+1C5 (2.19)

+ CjCk+135,k+1Dk+1Ck+1C5 -

Recall that 7 is the R-linear anti-involution in Lemma 2.2. By Definition 2.8 and
Lemma 2.15, 7 fixes both zjry1 and yri1. S0, Yrt12jk41 = T(2jkr1Yrs1). Since
Vit13j,k4+1 = 3j,k+10k+1 (see [14, Lemma 3.11]), we have 2; p41Yrt1 = Yk+12jk+1 DY
(2.19). One can check Z; g+1Yk+1 = Yr+1Zj,k+1 similarly via Definition 2.8 and the equa-
tion Zj k+1 = 3 k+1—Cj3j k+1Cj- Lhis proves that y1 commutes with wg k41 and W k41
We remark that one can check both wg 41 and We 1 commute with 7, ¢, similarly.
By Lemma 2.15, one can easily check that z; p41 and Z; 41 commute with ¢; and ¢; for
all>k+1. O

3. Affine walled Brauer—Clifford superalgebras

In this section, we assume that R is an integral domain containing w; and 27!
Motivated by Definition 2.1 and Lemma 2.9, we introduce the notion of affine walled
Brauer—Clifford superalgebra over R as follows.

Definition 3.1. The affine walled Brauer—Clifford superalgebra BC’fﬁf is the associa-
tive R-superalgebra generated by odd elements cy,...,c., ¢1,...,¢ and even elements
€1,T1,T1, S1y-++,8r—1, 51,---,5¢—1, and two families of even central elements wok 1, Wy,
k € Z=2! subject to (2.1)—(2.3), (2.7), (2.8) and Definition 2.1(1)—(10) together with the
following defining relations for all admissible i:
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(1) er(x1+T1) = (21 +T1)e; =0, (6) e1x?ke; =0, Vk € N,
(2) e1s12181 = s1x181€1, (7) e1The; = wrey, Vk € Z7°,
(3) z1(e1+T1 —cre1e1) = (e1 —crerer + (8) x1¢; = ¢ixq,
T1)x1, (9) Tic; = T,
(4) e131T151 = $1ZT151€1, (10) z18; = S;x1,
(5) elx?kﬂel = wopt1€1, Vk € N, (11) Z18; = 8;T1.

Recall we have the notations e; ; in Definition 2.3 and €; ; in Definition 2.8. In par-
ticular, € = cjejc;. For the simplification of presentation, we set wor = 0, Vk € N. The
following result follows from Definition 3.1, immediately.

Lemma 3.2. There is an R-linear anti-involution o : BC’?E — BC’ﬁ‘g, which fizes all
generators of BC?ff in Definition 3.1.

Lemmas 3.3 and 3.4 can be proven by arguments similar to those for Lemmas 2.11
and 2.12.

_ 2j+1

Lemma 3.3. For any n € N, elm%”H = Z?:o a2n+1,jelxlj+ for some asni1,; € BC,ﬁ‘ftf
such that

(1) agnt1,n = —1,

(2) a2n+41,5 = A2n—1,5—1 fO’/’ all 1 S j S n — 1,

-1
(3) a2n41,0 = Z?:o A2n—1,jW25+1-
In particular, agny1,; € Rlws, ..., wan_1], for all0 < j <n.

. . —on __ n 27 aff
Lemma 3.4. For any positive integer n, e1Ti" =} ._ azn je127” for some asy, j € BCY;
such that

(1> A2n.n = 17
(2) agn’j = agnfl’jfl fO’F all 1 S j S n — 1,

(3) 2n,0 = D7 G2n—2,w2j41-

In particular, asn; € Rlws, ... ,wan—1], for all 0 < j < n.

Corollary 3.5. If e is Rlws,ws,...,w1,We,...|-torsion-free, then wWapt1 =
Z?:o A2n+1,iW2i+1 and Wa, = 0 for all n € N. In particular, W = —w.

Proof. By Definition 3.1(1), (w1 + wi)er = 0. If ey is R[ws,ws,...,w1,ws,...|-torsion-
free, W3y = —wi. In general, by Lemma 3.3, elffnﬂel = Z?:o a2n+1’jelx?+lel. So,
Wont1 = Z?:O Aon+1,jw2j+1. Similarly, by Lemma 3.4 and Definition 3.1(6), Wa, =

n
2 j—0@2n,jw2; =0. O
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Assumption 3.6. From here onwards, we always assume that @Ws,, = 0 and Wy, 41’s are
given in Corollary 3.5. Otherwise, we would have e; = 0 provided that R is a field, in
which case, BC’fﬁf turns out to be HC? @H—Ctaﬁ, the outer tensor product of two affine
Hecke—Clifford superalgebras! We remark that

(z My)(z1 By) = (-1 )ga; Ryy,,

——=aff
for any homogenous elements z,z; € HC*® and y,y, € HC, , where [x], called the
parity of x, is 1 (resp., 0) if = is odd (resp., even).

Theorem 3.7. For any k € Z>°, there is a superalgebra homomorphism ®y, : BC;?;f —

BCyikt+k  sending  $;,5j,€1,21,T1,Cl, Cm, Was Wa 0 Sketis Sktjs €ht15 Ykt 15 Ypog 10
Ch+1s Chtm, Wa,k+1, Wa,k+1 for all admissible a,i, 7,1, m’s, respectively.

Proof. It is enough to verify the images of generators of BC’?,ff satisfy the defining re-
lations for BC2T in Definition 3.1. We say ®; satisfies the relation if the images of
generators satisfy this relation.

By Lemmas 2.15-2.17, the images of w, and &, commute with the images of other gen-
erators. By Corollary 2.5, @y, satisfies (2.1)—(2.3) and Definition 2.1(1)—(10). @}, satisfies
(2.7) and (2.8) by Lemma 2.9(1), (3), (4), (10). Further, ®;, satisfies Definition 3.1(1)—(4)
by Lemma 2.9(7)—(9). In this case, we need (yr4+1+7g1)ex+1 = 0, which can be obtained
by applying the anti-involution 7 on Lemma 2.9(8). @, satisfies Definition 3.1(5)—(7) by
Corollary 2.10 and Lemma 2.9(11)—(13). Finally, ®; satisfies Definition 3.1(8)—(11) by
Lemma 2.9(2), (5). O

In [14], two of the authors proved the freeness of the affine walled Brauer algebra
via bases of infinitely many walled Brauer algebras. The key point is the existence of
infinitely many homomorphisms between the affine walled Brauer algebra and walled
Brauer algebras [14, Theorem 3.12]. In the current case, Theorem 3.7 is the counterpart
of [14, Theorem 3.12]. Since w; ; = 0 for all k, what we can do is to use Theorem 3.7 to
prove the freeness of affine walled Brauer—Clifford superalgebras with parameter w; = 0.
However, many affine walled Brauer—Clifford algebras which appear in the higher mixed
Schur—Weyl-Sergeev dualities have non-zero parameter w;. For details, see section 4.
For this reason, we use level two walled Brauer—Clifford superalgebras (with special
parameters) instead of walled Brauer—Clifford superalgebras later on. This is one of the
points which is different from the work in [14].

In BC2Y, we define x;, 2, Z; and T as in (2.9) for all admissible i and j.

Tt

Lemma 3.8. We have the following results for all admissible i and j:

(1) Tic; = —C;x; and T;C; = —C; Ty, (3) T;Cj = Cjx; and TiCj = CjT;.

(2) TiCj = Cj%i, TiCj = CjT; ifi# 7,
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Proof. (1) and (2) follow from (2.2), (2.3), (2.7) and (2.8). (3) follows from Defini-
tion 3.1(8)—(11). O

Lemma 3.9. We have the following results for all admissible i,j:

(1) z(@;+ei;—8;) = (Tj+ei;—€5)Ti, (4) (2} +7T))ei; =0,
(2) 7 () +e”—|—ez ) = () +ei;+8;)T;, (5) eixiFeie; =0, Vk €N,
(3) eij(z), + ) =0, (6) €7, cie; =0, Vk € N.

Proof. Multiplying (1,i)(T,j) on both sides of Definition 3.1(3) yields (1). By Defini-
tion 3.1(1), (3), we know that Z1(x1 +e1 +€1) = (1 + €1 +€1)T1. So (2) can be proven
similarly. Multiplying (1,7)(T,7) on both side of Definition 3.1(1) yields (3) and (4).
We have ¢;x; = —xle; (vesp., ¢x; = zi¢;) by (2.5) and Lemma 3.8(1) (resp., Defini-
tion 3.1(8)—(11)). Also, (1) is the counterpart of Lemma 2.9(7). So, (5) and (6) can be
verified by arguments similar to those in the proof of Lemma 2.9(11). We leave the details
to the reader. O

Lemma 3.10. We have the following results for all admissible i,j, k,1:

(1) ei’ksc; = x}ei’k, ifi#j, (3) €;;(a))%;; = wqei j, Ya €N,
(2) eika; = f;€i7k, if k 7£ [ (4) em-(xj) €ij = waem-,Va € N.

Proof. We have ejz}, = xbe; by Definition 3.1(2). Multiplying (2, ;) on both sides of

J
the equation yields ejx’, = :c;el. Since i # 7, multiplying (1,7)(T,%) on both sides of
f

j
e1r; = zjey yields (1). (2) can be verified similarly. (3) and (4)

tion 3.1(5)—(7). O

ollow from Defini-

We consider BC’at as a filtrated superalgebra by setting
degs; = degs; = dege; = degc,, = degt,, = degw, = deg, = 0 and degz) = degz, = 1,
for all admissible a, i, j, k, £, m,n. Let (BC’?f)(k) be the super R-submodule spanned by

monomials with degrees less than or equal to k for k € Z=°. Then we have the following
filtration

Be 5 o (BCMHW 5 (B ©) 5 (Boaf) () <. (3.1)
Let gr(BC) = @;50(BCN, where (BCH = (BC2)®) /(BCT)(=D . Then

gr(BCﬁff) is a Z-graded superalgebra associated to BC’;‘,ff. We use the same symbols
to denote elements in gr(BCAT). Moreover, z; = x} and T = Z; in gr(BC2T).
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Definition 3.11. We say that m is a regular monomial of BC,ﬁ‘ftf if m =
2dT? [], cp0 woryy', for some d € S, asp1 € N and (o, 8) € N x N, where S is
given in (2.12), 2® = [[_, o, 7 = Hle EZ& and all but finitely many ag,41’s are

zZero.

Proposition 3.12. As an R-module, BC’fﬁf is spanned by all regular monomials in Defi-
nition 3.11.

Proof. Let M be the R-submodule of BCﬁf spanned by all regular monomials m in
Definition 3.11. We want to prove

hm € M for any generator h of BCf’ftf. (3.2)
If so, we have M = BC2 since 1 € M. In the following, we omit [], ;-0 woni' in m
since any way, 41 is central in BCff.

We prove (3.2) by induction on |af. If |a] = 0, i.e., a; = 0 for all possible i’s, then
(3.2) follows from Theorem 2.4 unless h = 7. In the later case, by (2.7), (2.8) and
Lemma 3.8, we need to compute Tref when 1 <k <tand f > 0.If k€ {1,2,..., f},
by Lemma 3.9(4), we use —xj, instead of T, since we work on the graded superalgebra
gr(BC’,"}ftf). So, hm € M. Otherwise, k > f. By Lemma 3.10(2), we can use /T, instead
of Tref. So, (3.2) follows from Lemma 3.8 and Theorem 2.4.

Suppose |a] > 0. By (2.7), (2.8), Lemma 3.8 and Theorem 2.4, we see that (3.2)
holds unless h € {Z1,e1}. Suppose h = Z;. By Lemma 3.9(1) and (2), Tix; = 2,71 in
gr(BC,"?’ftf). So, we need to deal with ZTpef when 1 < k < t. They are the cases that we
have dealt with. So, Tym € M.

Finally, we assume h = ey. If a; # 0 for some ¢ with 2 < ¢ < r, then ejz; = z;e1 in
gr(BC2T) (see Lemma 3.10(1)). By inductive assumption on |a], we have (3.2). In order
to finish the proof, it remains to consider the case that ©® = z{"* such that oy > 0. In
this case,

m = 0 dy el wdo BT’ € M, (3.3)

where dy,ds € @,{t and 8 € Nt and (v,0) € Z5 x Z4. Write dieyd; ' = e; ; for some i, 5.

By (2.7) and inductive assumption on ||, we can use dj 'z to replace z{"d; ! in (3.3).
So, we need to verify

eijrit Vel wdye®T® € M. (3.4)

By Lemma 3.9(3) and inductive assumption, it is enough to verify

ei,jfﬁlc“’efwdgééfﬁ € M. (3.5)
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If j > f+1, then (3.5) follows from Lemma 3.10(2) and Theorem 2.4. Otherwise, j < f.

If i = j, by inductive assumption, we use (Ti—i—fi)"‘l instead of Z;* in e;Z; " c7e;. If ; = 0,

then ;7" e; = Wq, €1 in gr(BCA) (see Lemma 3.10(4)). If v; # 0, then ;75" ¢;e; = 0 in

gr(BCﬁif) (see Lemma 3.9(5)). In any case, (3.5) follows from inductive assumption on

|a|. Finally, we assume i # j. If ¢ # k, then el iCk = cke€; ;. By inductive assumption, we
i

need to consider em-x tc)le; = e”x tejc l . Since

B e S N s P N N T AT D
ei s ey = eije;ayt = (i, §)xi e =, (4,5)e;

in gr(BCfftf), by inductive assumption and our previous results on h € {s1,...,8,.-1,¢1,
., Cr, T1}, we have (3.5). So (3.4) is true. This completes the proof. O

Definition 3.13. Let I be the two-sided ideal of BC’at generated by wor+1 —@ak+1, where
o1 € R for all k € Z20. Let BC’M = BC;‘,:ftf/I.

Definition 3.14. Let I be the two-sided ideal of E\ém generated by f(z1) and ¢(71),
where

flay) = 2] [@F —u?), and g(@1) = 7} H T - 5), (3.6)
i=1 7j=1
for some non-zero uy, ..., Um, Ui, ..., Uy, € R such that { =k + 2m = ky 4+ 2m; and
erf(z1) = (1) erg(1). (3.7)

The level £ or cyclotomic walled Brauer—Clifford superalgebra BCly .+ is the quotient
algebra BC,. /1.

In section 6, we will explain the reason why f(x1) and g(Z1) have to satisfy (3.6) and
(3.7).

Definition 3.15. We say that m is a regular monomial of E\C/‘m (vesp., BCy ) if it is of
form xdz”, for some d € S, and («,8) € N x Nt (resp. Zj x Z%), where S is given in
(2.12).

Corollary 3.16. As R-modules, both Eé,«,t and BCy 4 are spanned by their regular mono-
mials.

Proof. By Proposition 3.12, Eém is spanned by all its regular monomials. Let ¢, :
EE’M — BCy . be the canonical epimorphism. It is enough to verify that the image
of a regular monomial m of Eé,»,t can be expressed as a linear combination of regular
monomials of BCy,,.+. If (o, B) € Z) x Z!, then the images of m is a regular monomial of
BCy ;. Otherwise, either a; > £ or 3; > ¢ for some possible i or j. Since B/E’M inherits
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the graded structure of BC’?}?, it results in a graded structure on BCy,,+. So, either z}"

or Eﬁj can be expressed as a linear combination of elements in BCj ,; with lower degrees.

J
Using these elements to replace either z or EBJ in the image of m and considering the

inverse images of such elements in BC’M7 we see that the image of m can be expressed
as a linear combination of regular monomials of BCy ¢, as required. O

4. A basis of BC .+ with special parameters

Let g = g(n) be the queer Lie superalgebra of rank n over C. Then g has a basis
e,;j = E;j + E_; _; (even element), f; ; = E; _; + E_; ; (odd element) for i,j € I =
{1,2,...,n}, where E;; is the 2n x 2n matrix with entry 1 at (7,j) position and zero
otherwise for i,j € I = It UI~,and I~ = —IT. Let V = C"" = V5 @ V4 be the
module) with basis {v;[i € I}, where gl,,, is
the general linear Lie superalgebra with basis {E; ; | 4,5 € I}. Then v; has the parity
[vi] = [i] € Za, where [i] = 0 and [—i] = 1 for s € I'". Let V* be the linear dual space of
V with dual basis {v; | ¢ € I}. Thus V* is a left g-module with action

natural g-module (and the natural gl,,,,-

E, 7, =—(—1 )[a]([a 5 WUy for a,b,i € 1. (4.1)

Let h = by @ by be a Cartan subalgebra of g with even part by = span{e;; |i € I} and
odd part by = span{f;; [i € I'*}. Let b} be the dual space of b with {g;[7 € I} being
the dual basis of {e;; |i € I"}. Then an element A € h* (called a weight) can be written
as

A= Agi= (A1, ..., An) with ); € C. (4.2)

el

Let M be any g-module. For any r,t € ZZ°, set M™ = M@V %" ®(V*)®t. For convenience
we denote the ordered set

J={0}UJ;1 UJy, where J; ={1,...,7}, Jo ={1,...,t}, (4.3)
and0<1<...<r<1<...<% We write M"! as

M"™ = @V;, where Vo =M, V,=Vif0<i<T1, andV; =V*ifi>r, (4.4)
icJ
(hereafter all tensor products will be taken according to the order in J), which is a left
U(g)®+t+ D module (where U(g) is the universal enveloping algebra of g), with the
action given by

(®9i>(®xi) = (—1)'iEZ o ]E’ ] ® (giz;) for g; € U(g), z; € V;.

icJ icJ icJ
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In order to prove a basis theorem for level 2 walled Brauer—Clifford superalgebra,
we take n = 2m to be an even integer. We denote I = {1,..m}, I, = m + I".
Thus I+ = I;F UL . For i € I}, we denote 44 = i +m € L. For i € I, we denote
io =i—m € I. Let M = Ly be the finite dimensional simple g-module of type M with
dominant highest weight

A= (p,p—1,...,p—n+1) for some peC such that p€ C\Z or p€Z with p>n or p<0.
(4.5)

Then Endg(Ly) is one dimensional. Denote by vy a fixed highest weight vector of Ly
with even parity, and (Ly)x the highest weight space of Ly, which is 2"™-dimensional
with a basis

By = {00y |V € By} with By = { =TI

161Jr

) € zy}, (4.6)

where the products are taken in any fixed order (changing the order only changes the
vectors by a factor +1). For i € 12+7 we have

p+i—1
ﬂi = ——————T————ﬂ i . 4.7
S e LR (4.7)

Let C' be the PBW monomial basis of U(g~ @ ). We say a basis element a € C has
length {(a) := k if a contains k factors; for instance, £(b%) = |0|. For i € ZZ9, let
C;={aeC|l(a)=1i}. Set

p-{ie =Tl

2€IJr

= (01, s ) ezgl} CC and D;=DNC;.  (4.8)

Let (Ly); be the subspace of Ly spanned by cvy for ¢ € C with Z( ) <i.Set (Ly)—1 =0.
Note that elements of g™ acting on Ly send (Ly); to (Ly);—

Lemma 4.1. For i € Z2°, the set D;vy is C-linear independent under modulo (Ly);_1

Proof. Assume c := Zaezm \o|=i asu’vy € (Ly);—1 for some a, € C with at least one
ay # 0. Take a & € ZJ such that az # 0. Assume G, # 0 for some ¢ € I;". Applying
foe, € g7 to ¢, by moving f; 4, to the right until it meets vy, using the commutation
relation [fg e, ,f;, ;] = 0¢j(ere + ee, ¢,) (which is a Cartan element commuting with f;, ;
for i # (), we can easily obtain fy 4, c = ZUGZ?W#O al (2p — (L +£))u” vy € (Ly)i2,
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where a/, = tay, 1p = (01,0, ..,0m¢) € Z5'. Note that 2p — (¢ + £,) # 0 by (4.5). Now
induction on |6| gives that az = 0, a contradiction with the assumption. O

For each i = 1,2, ..., by Lemma 4.1, we can choose a maximal subset C; of C; satisfying
the following conditions (i.e., we extend D; to a basis C; of (Ly); modulo (Ly);—1, thus

#C; = dim(Ly);/(Ly)i—1):

(C1) C; D Dy;
(C2) {uvy|u e C;} is a C-linear independent subset of L.

Then we have the following basis of Lj,
B¢ := {wvy |w € O}, where C' = U o (4.9)

We say the basis element wvy has length £(wvy) := £(w). Then from our choice of C;,
we immediately have the following.

Lemma 4.2. Let o € C' be a monomial basis element of length j. Then avy is a combi-
nation of basis elements in B¢ with length < j.

Take a basis By of M™!, where

BM:{bM:b® ® vk, ® ® T, | b€ B, kiel}. (4.10)
i€Jy i€J2

Introduce the following elements,

Cj=FEij—E i fi;=FE.i;—-FEij € gl

Q=> (-VVE;;®E;, € grffn, (4.11)
i,j€1

le Z ei7j®éj7i— Z fi,j®?j,i c g®g[n|n
i,jeIt ijelt

For a,b € J with a < b, we define 7, : U(g) ® U(gl,,) = U(g) ® U(g[n|n)®(’”+t) by
Tap(z@y) = 1@ -+ 1erRle - QlEYR1I® - ®1, (4.12)

where x and y are in the a-th and b-th tensors respectively. Similarly we have 7, : U(g) —
U(g)® 11 which sends z to the a-th tensor.

Definition 4.3. We can use (4.12) to define the following elements in the endomorphism
algebra Endyg)(M"™")°P,
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S; = 7T7;’2‘+1(QO)|]\/[1‘,£ (]_ Si<'f‘), §j = Wj,m(goﬂMr,t (]. S] <t),

xp = —mo,i(Q)|are (1<i<r), T = —mp5(Q) e (1<5<0),

€i:77ri’g(Qo)‘Mr,t (1§2§m1n{r,t}), ci:m(c)(lgigr), Ei:ﬂ‘{(g)(lgigt), (413)

where ¢ : V. — V (resp., ¢ : V* — V*) is the automorphism such that c¢(vi;) = Fv;
(resp., €(V4;) = Ug4). Set 1 =z}, Ty = T,

Observe that ¢> = —1 and ¢ = 1, and ¢, ¢ correspond to maps ¢, ¢ : I — I such that
o(+i) =¢(+i) = Fi for i € I'", and c(v;) = [i|ve), ©(U;) =Tg) forie 1. (4.14)
Lemma 4.4.

(a) The minimal polynomial f(z) of x1 with respect to M™ is 2% — p(p + 1).
(b) The minimal polynomial g(x) of T1 with respect to M™ is x> — (p —n+ 1)(p — n).
(c) We have e;xie; = —n(2p —n + 1)ey with respect to M.

Proof. (a) We may assume r = 1, ¢ = 0. Note that the only possible highest weight
in the finite dimensional g-module Ly ® V is p = A\ 4 €1, which is a typical dominant
weight. Thus Ly ® V must be completely reducible, and thus a direct sum of finite copies
of L,,. Observe that the set {u’ ®vy; [u® € By}, with 2™*! elements, is a maximal set of
C-linear independent highest weight vectors of weight p. Since L, occupies 2 C-linear
independent highest weight vectors, we see that Ly @ V = Liﬂ, which as a g-module is
generated by vff = vA®u41. One can easily verify that vfxl = F(p+ 1)1}3E +f; v}, Thus
v:‘, fi1v, (resp., Uy flﬁlvl‘f) span a 2-dimensional z{-invariant subspace of Ly ® V', and
the minimal polynomial f(z) of 2; in this subspace is 22 — p(p + 1). Since x; commutes
with the g-action and L) ® V is generated by vf, we see f(x) is also the minimal
polynomial of 21 in M™t.

(b) We can assume r = 0, t = 1. Similar to the arguments in (a), we have Ly @ V* =
L®? with highest weight v = A — &,, (which is again a typical dominant weight) and two
highest weight vectors v := vy ® Uiy, In addition, vFF; = +(p — n)vE + f, ,vF. Thus
the minimal polynomial g(x) of 71 is 22 — (p —n + 1)(p — n).

(c) We can assume r =t = 1. Then for a,b € I, we have

(vx ® Ve @Tp)erzrer = (—1)140, 3 (va @ v; @ Ty)z 104
iel
= (=Dls, Y (=D ((p+1-]i)or @ v; @ V;)e1 =—n(2p—n+1)(v\ ® v, @ Tp)er.
iel

Since L) ® V ® V* is generated by vy ® v, ® U for a,b € I, and ej, 7 commute with
the g-action, we obtain (¢). O
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Lemma 4.5. For k € I't, we have

(VA @ Vk)T1 = FAUA @ Vg £ fpvn @ vpr F Zek,jv,\ ®vt; F ka,ﬂ/)\ ® vx5,
i<k j<k

(VA @ T4x)T1 = AU @ D + Fopvr @ T3 £ Zei,kv/\ ®Vt; + Zfi,kv/\ ® Vx;.
i>k i>k
Proof. The result follows from the definitions of z; and ;. O
For any a € I, we set a* = |a|] € I'T. Then (4.14) gives

(c(a))t = (¢(a))t =a™ for a € I. (4.15)

Now we assume BCj ,; is the level two walled Brauer—Clifford superalgebra such that
1,71 satisfy the degree 2 polynomials in Lemma 4.4, and parameters satisfy

wo=0, wy=—2m(2p—2m+1), w;=p(p+ 1)w;_s for i >2, (4.16)

where pe C\Z, or p € Z with p > 2m or p < 0, and m € Z>° satisfies m > 2(r +t). By
Lemma 4.4 and Definition 3.1(1)(3), we have e; f(x1) = e19(T1). We take n = 2m. Take
the weight A as in (4.5), then we can define the space M"™" as in (4.4).

Proposition 4.6. There is a superalgebra homomorphism ¢ : BCs ., — Endg(M™")°P
such that ¢ sends the generators ei, x1, T1, 'S, 5;°8, ¢m s, Cn’s to the same symbols
defined in Definition 4.5.

Proof. By Lemma 4.4(a)—(b), we need to show the images of the generators satisfy the re-
lations in Definition 3.1. First it is easy to see that (2.1)—(2.3) and Definition 2.1 (1)—(10)
are satisfied (cf. [9] or [3, Theorem 1.4]). Moreover, (2), (4), (8)—(11) in Definition 3.1
follows from Definition 4.3.

Let Qo’i = WO,i(Ql)|Mﬂt7 Si’j = ﬂi’j(Qo)|Mr,t and C; = Wi(C)‘Mr,t for 4,5 € J1 U Ja,
where C' = >, /4 f“ Then ¢; = Ci, & = C;, si = Siiv1, 5 = S;71, e = =511,
7y = —Qo and T; = —€ 1. Direct calculations as in the proof of [8, Theorem 7.4.1]
show that

(a) Qo,C; = —CiQ,, for i € J1 U Jo,

(b) Sii+190,:Sii+1 = Qoit1, for 1 <i<r—1lorl<i<t-1,

(¢) Q0,0 —Q0,;Q0, = (Qo,; —R0,4)Si; + (Qo,j +Q0,:)C;C; S, for i,j € Ja,
(d) Q0327 — 2727 = (5 — Q3)Si7 — Qo7+ Qy3)C;C5S; 5 for i, j € Ja,
(e)

2 e BV

e QO,IQO,T — QO,TQO,l = (SI,T — Clslj(;'l)Qo’l — QOJ(SI,T — ClSLTCl).

Thanks to (a)—(e), (2.7)—(2.8) and Definition 3.1(3) are satisfied. By definition of e, we
have e = 0. Moreover, from Lemma 4.4(a), (c), e;xfe; = wyaeq and (4.16) follows. So,
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Definition 3.1(5)—(6) are satisfied. Direct calculation by using Lemma 4.5 shows that
Definition 3.1(1) is satisfied. Finally, it follows from Lemma 4.4(b) and Definition 3.1(1)
that e1T{e; = Wqe; for some w, € C. So, Definition 3.1(7) is satisfied. O

By Proposition 4.6, M™! is a right BCs . ;-module. For any «, 8 € Z, @, B € Zb, we
define the following elements of BCs

t _
co‘:ﬁcﬁi, Hx’ﬁf @ =1]7". E’Bzﬂf;ﬁj, (4.17)
i=1 i=1 j=1

where the product in z’# is written in the order z} - -2}P* (thus 2, acts first on M™)
and the like for 2’7,

Theorem 4.7. The monomials
m = d; ' Pel T e wd,, (4.18)

with o, B € 75, @, € Z& and dy, el ,w,dy as in (2.12), are C-linearly independent
elements of BCY ,+.

Proof. Suppose there is a nonzero C-combination ¢ := ), rm m of monomials (4.18)
being zero. We fix a monomial m := d| *c¥a’ Bef T Pemdy in ¢ with nonzero coefficient
rmn 7 0 which satisfies the following conditions:

(i) |B\ + |E| is maximal;
(ii) f is minimal among all monomials satisfying (i).

We take the basis element v = VAQ®jcy, Uk, ® ®ics, Uk, € By (cf. (4.10)) such that
(note that here is the place where we require condition that 2(r 4+ t) < m)

(1) for 1 <i<r k;=1iif B; =0and k; = —i, if 3; = 1;
(2) for 1 <i < f, ky = i; B B
(3) for f<i<t,k;=r+iif B, =0and k; = —(r +1,) if 3, = 1.

Take

z:= (v)*dic ;1121_165 eM"™, (4.19)

HfﬁLJH r-‘rz. r+iUX € B (4.20)

V=URQ® R Uryi € By, (421)



M. Gao et al. / Journal of Algebra 525 (2019) 191-233 215

where the product in (4.20) is in the same order as in (4.8) and v; = v;, @V, ® ... @ v;,
such that

7, ifeitherf<j§rorgj:Oandjgf;
—(7 + Je), ifjgfandgjzl.

Zj—

We want to prove that when write z as a combination of basis Bj in (4.10), the coefficient
X% of ¥ is nonzero. Thus assume a monomial m in (4.18) appears in the expression of
¢ with r,, # 0 and consider the following element,

z1:= () dym dy "o 1E® = (v)etd d_lco‘x’Beff’Bandch;lﬁFlEE

)x/ Belz Béawdgciglﬁflég, (4.22)

14

- (UA@iglvaH&i(k(néldfl)®i?}2vk<i>d‘1d51
where v; = Qi)dydrt and where the last equation is understood as “equal up to a sign”
(cf. (4.14)), which follows by noting that elements in ¥, x 3; have natural right actions
on J; U Js by permutations and ¢ acts on I by (4.14). Write z; as a C-combination of
basis Bjy;. If © appears as a term with a nonzero coefficient in the combination, then we
say that z; produces 0.

Note that @ has length |3| + |3|. By Definition 4.3 and from our choice of B¢ in (4.9),
we see that factors of @ can be only contributed by the actions of x}’s and Z}’s, and each
x} or T; can at most contribute one length of @ by observing the following: if the first
factor of a term in my; () for i € J; U Jy acting on the first factor of an element in
By changes the first factor to a basis element in B¢ then this mo;(21) may contribute
one length, otherwise the first factor is changed to a combination of basis elements with
length not increasing by Lemma 4.2. We see that z; cannot produce a basis element with
degree higher than |3] + |3|. Thus & cannot be produced if |8] + || < |B| + |5|. So by

condition (i), we can assume

181 + 18] = |B] + |BI. (4.23)

Then f> f by condition (ii).
For any basis element by; written as in (4.10), we say k; the i-th label of by for
i € J1 U Ja. Note from (4.20) that all factors of @ have the following form

f,.; with i € I} (4.24)

Thus when 2 = —m;(Q4) for 1 < ¢ < r is applied to the element inside the bracket,
it can only change its i-th label, say +i,, to Fi. Since Jldl_ 1 only permutes labels and
¢t only changes labels up to a sign, in order for a term in (4.22) to contribute to
XZ', we need at least f pairs (i,j) € J; x Ja such that the i-th label k; and j-th label
k; satisfy the condition k;r = kjir or k;r = kjir 4+ m. From our choice of the vector v, we

must have f < f. Thus we can suppose f = f by the fact that f > f.



216 M. Gao et al. / Journal of Algebra 525 (2019) 191-233

Set J; = {i,i|1 <i < f=f}C JiUJy (cf. (4.3)). If dy # di, then by definition
(2.11), we have

§ = (j)did;t ¢ J; for some j € Jy. (4.25)

Say j€.J; (the proof is similar if j €.J5), then f<j <r. Condition (1) shows that kjfr =3
or k; = m+j. Then conditions (2) and (3) show that there is no ¢ € .J, with k;r = k; or
k;' = /4%F + m. Since all factors of @ have the form (4.24), we see that z; cannot produce
the basis element ¢. Thus we can suppose di = dy. Then €% (k3 ;1) = ¢ =% (k;)
(note that ¢® = id acting on I). If a;; # &; for some 1 < i < f, then ¢ ~%(k;) = —k; and
after applying 2’ # to the element inside the bracket in (4.22), we obtain an element which

satisfies the condition that either its i-th label is not i (in this case after we apply e/ we
fﬁq

obtain the zero element) or else its zero-th factor cannot contain the factor [T;_, f; .

In any case we cannot obtain the element ©. Thus we can assume «; = @; for 1 < i < f.
Similarly, we can assume «; = &; for f <i <r, ie., a=a.

By conditions (1) and (2), we see that if 8; # f; for some 4 with 1 < i < f, or
B; =1 > f3; for some i € Jy, then again z; cannot produce the basis element ©. Thus we
suppose: Bi:Bi if 1<i<f,and §; < Bl forie J;. If Bl =1 but 8; = 0 for some i € Jq,
then by (4.24), z; can only produce some basis elements which have at least a tensor
factor, say vy, with £ = (m + 1) for some 1 <4 < r, and thus ¥ cannot be produced.
Hence we can suppose 5 8. Dually, we can suppose = B

We have wdgd2 wo = d20d20 w', where dog = wdow ™!, JQO = wcﬁw‘l and w' =
ww~!. Note that w’ € &,_¢ x@t_f, which only permutes elements of (J1UJ2)\J ;. We see
that if dog # dao, then as in (4.25), there exists some j € J; with j := (j)daodogw’ & Jy,
thus 9 cannot be produced. So assume dyy = dao. Similarly we can suppose w’ = 1. Then
the same arguments after (4.25) show that we can assume @ = a.

The above has in fact proven that if the coefficient xZ' is nonzero then z; in (4.22)
must satisfy (di, o, 3, f, B, @, w,d2) = (di, &, B, f, E,E W, dy), ie., z1 = (v)rm . In this
case, one can easily verify that xz' ==1. This proves that z deﬁned in (4.19) is nonzero,
a contradiction. The theorem is proven. 0O

Corollary 4.8. BC5 ,; has a C-basis which consists of all regular monomials of it.
Proof. We have the result immediately from Corollary 3.16 and Theorem 4.7. O
5. Homomorphisms between ﬁ?’r,t and BC3 4k t+k

In this section, we generalize Theorem 3.7 so as to establish infinitely many homo-
morphisms from BC?SF to BCY y4p,+r for all positive integers k, where BCo ryf +1k
are level two walled Brauer—Clifford superalgebras which appear in the higher level
mixed Schur-Weyl-Sergeev duality in section 4. As an application, we prove that BC’fﬁf
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has R-basis which consists of all regular monomials in Definition 3.11. Recall 2,7 in
(2.9).

Lemma 5.1. For all admissible i, j, we have s;T; = Tjs;, S;a; = x}5;, xic; = ¢;z; and
/ aff
Tic; = ¢;T; in BCY|.

Proof. Easy exercises. O

Lemma 5.2. Recall y; and Y, in Definition 2.5. The following results hold in BCji‘,ftf for
all admissible i,j:

(1) 2iy; =Y, (6) (wig1 + yiv1)2 = (g + yisr), of

(2) Tiyi = yiT;, J =t

(3) x/i+1yi = yix/i+17 (7) (f;+1 +yi+1> =T ( Tiy1 +y1+1) if

(4) _;+1yi = yi_;+17 J=1,

(5) (Tig1 +Yig)2 = 25(Tipy +Tig), of (8) (@iyy +yir1)T; = Ti(wiyy +yirr), if
Jj<i, Jj <.

Proof. By symmetry, it is enough to prove (1), (3), (5) and (6).
(1) If j <4 —1, then zje;; = ez}, xi¢; = ¢z}, and 5;x; = z5; by Lemmas 3.10(1)
and 5.1. So,

i—1

Tiy; = (Z(ej,i —€ji) — Zi) =7z

j=1
One can check (3) via Definition 2.8 similarly.

(5) By Lemmas 3.9(1), 3.10(1)~(2), (i1 1 +e€jit1—€jit1) = (Tipa +€ji41—ji41)7]
and J:;-esﬂurl = es,i+1x; and a:;-Esﬂurl = Es,i_l,_lx;- whenever j # s. Since x;-LiH = Li+1x;-,
we have

— — ’ — — — ra ’
(Tip1 +Yig1)2; = (%H tejirt — Gt t+ Y (€sip1 —Cair1) — Li+1)33j
1<s<i,s%]

= ( Tipq €541 —€jit1 + g (€s,it1 — €s,it1) — Li+1>
1<s<i,s#j

=y ( 2+1 +yz+1)
(6) By (2.7), (2.10) and Lemma 3.10(1), we have
1 (T + Y1) = 21 (ﬂfi+1 + Z(ezurm‘ + Ez'+1,j)) = ($i+1 + Z(ei+l,j + €i+1,j))931
j=1 j=1
= (i1 +Yir1) 71

Applying (1, 7) on both sides of the above equation yields (6). O
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For the simplification of notation, we define
2z = x; +y; and Z; = T; + 7, for all admissible 7 and j. (5.1)

Lemma 5.3. The following results hold in BC’?’ftf for all admissible i, j:

(1) Sj%; = ZiSjy, Ejzz- = Eigj, Zf j 7é (8) €;8;2;8; = S;%;8;€;, ejEjEjEj =
7 — l,i, EjEjEjej,

(2) szi = EiS]‘, Ejzi = Zigj, ’Lf] 75 i—l, (9) Zigi = Zizi,

(3) 2iC; = —C;iZ;i, 2iC; = —CiZ;, (10) Eiii = iﬁi,

(4) ZiCj = CjZ;, Z2iCj = CjZ;, if i 7é 7, (11) €izie; = eix;ei = w164,

(5) ZiCj = CjZ;, ZiCj = CjZ;, ifi <j, (12) eizfciei =0, Vk €N,

(6) zi(ei +Z; — Ei) = (6,‘ +Z; — Ei)zi, (13) eiziQ"ei =0, ei(Ei)Q"ei =0VneN,

(7) €izZ; = —€i<.’17i + Zi>, €izi = ei(xi +
L),

where 21 = (SiZiSi — (]. — CiciJrl)si) and ENZ = (E‘Z‘gi — (1 + EiEiJrl)gi).

Proof. (1)-(5) follow from Lemma 2.9(1)—(5), Lemma 5.1, (2.7) and (2.8). (6) follows
from Lemmas 2.9(7), 3.9(1), 5.2(1)—(2). (7) follows from Lemmas 2.9(8), 3.9(3)—(4).
(8) follows from Lemmas 2.9(9), 3.10(1). Multiplying (2,7 + 1)(1,4) on both sides of
X129 = xox (see (2.7)) yields

wi(wiy g — (1= cicipr)si) = (2 — (1 = cicip1)si)z;. (5.2)

Now, (9) follows from (5.2), Lemmas 2.9(10), 5.2(3)—(4). We leave (10) to the reader
since it can be verified, similarly. (11) follows from Lemmas 2.9(13), 3.10(3). Via (6), one
can prove (12) by arguments similar to those for Lemma 2.9(11). Finally, one can verify
(13) by arguments similar to those for Lemma 2.9(12). O

From here to the end of Theorem 5.13, we assume that R = C. Also, BC5 ¢ is one of
those which appear in the higher level mixed Schur—-Weyl-Sergeev duality in section 4.

o

Lemma 5.4. The e, BCs 1, 1 is the left BCs j,—1 1—1-module generated by ekcklx;”shﬁk)l
for all 01,00 € Zy and 1 < j, I < k, where BCy ;1 -1 15 the subalgebra of BCy y i
generated by e1,c1,C1, T1,T1, S1,---,Sk—2 and S1,...,Sk_2.

Proof. This result, which is a counterpart of Lemma 2.6, can be proven similarly. O

Proposition 5.5. Recall z;; and Zy in (5.1). We have:

(1) exrBChker = exBCop1k-1,
(2) There is aium'que ok (Tesp., Eq 1) infBCzk_l,k_l such that exzfer, = €4 pex (Tesp.,
ekzzek = Ea,k:ek)‘ MOT'@OU@’I”, §2n,k = §2n,k = 07 and fl,k = Wi.
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Proof. (1) follows from Lemma 5.4 (see the proof of Proposition 2.7) and (2) follows
from (1), Corollary 4.8 for BC i, ;, and Lemma 5.3(11), (13). O

Lemmas 5.6 and 5.7 can be proven by arguments similar to those for Lem-
mas 2.11-2.12.

= i 2j+1 i
Lemma 5.6. For any n € N, ez;"tt = Z?:O a§2+17jeizij+ for some a;zﬂ,j €

R[&s.i, .. Ean—1.i] such that

(1) a‘gl’r)LJrl,n =-1,
(2) a’gin).—i-l,j = a(22—1,j—1 Joralll <j<n-1,
. o
(3) a§2+1,o = Z?:o agrz—l,j§2j+1,i-
Lemma 5.7. For any positive integer n, e;z:" = Z?:o agz’jeizfj for some aéiz,j €
R[&s., ..., &an—1.i] such that

(1) =1,
(2) aéiz,j = agﬂ,jfl foralll<j<n-—1,

[ n—1 (¢
(3) aéﬁ,o = ijo aé?’)L—Q,ngjJrl,i'

In Lemma 5.8, we can assume k > 2 and n > 1 since z = @}, + Yk, Zx = T), + Ug,
&0 = w1 and & ;, = —w; by Lemma 5.3(11).

Lemma 5.8. If (k,n) € Z=% x Z=1, then &, 1 1, € R[s ks - - - E2nt1,]. Furthermore, both
Sont1,k and &y, 41y are central in BCo g1 1.

Proof. The first statement follows from Lemma 5.6. We have s;2, = 2zs; and ¢jz, = 2ic;
for all j < k—1 by Lemma 5.3(1)—(4). Since y;, = Zi-:ll(ek,i +€ki) — Ly, 21 = T)+yr =
T + Zf:_f(ek,i + €k,;). By (2.7) and Lemma 3.10(1) and (2), z12, = zxz1 for k > 2.
Obviously, e; commutes with =) and ey ;, € i, ¢k, (k, ) whenever ¢ # 1 and k > 2. Since
erep1 = e1(k,1), we have e;z, = zpe;.

We have proven that h commutes with e, z; for any h € {61781‘70]‘71'1 |1 <i<
E—2,1 < j < k—1} So ex(héar) = er(&rh). By Corollary 4.8 and Proposi-
tion 5.5, h&ant1k = &ant1,kh. Finally, we need to check eg(h&, i) = er(&, xh) for any
hel{s.,¢,71|1<i<k—2,1<j<k—1}. In this case, we use Lemma 5.6 so as to

use zj, instead of zj in ekzinﬂek. Therefore, hfan+1.k = Ean+1,6N, as required. O

Lemma 5.9. For k,a € Z=', we have
a—1 a—1
—1-b_b —b —b—1_b
Sk = hipsk — th Zh41 + Z(—l)a ckCh1hy Zhi1s (5.3)
b=0 b=0

where hy = zp + ex + €.
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Proof. The result can be easily checked by induction on a. O

Recall #;,Z; in (5.1) for all admissible ¢ and j. For all 1 < j < k — 1, define

Pik = 8jk—1(2k—1 +€x—1 +€x—1)8k—1,5, and

Pk = Sjk—1(Fk—1+ €1 —C—1)5k—1- (5.4)

Note that £y = 0, and exh = 0 for h € BC 1 -1 if and only if A = 0. We will use this
fact freely in the proof of Lemma 5.10, where we use the terminology that a monomial
N pj k+1'S; Pjry1’Ss xj 'sand T xj 's is a leading term in an expression if it has the highest
degree by defining degp; ; = degp; ; = dega = degT) = 1.

Lemma 5.10. For any positive integer n, {ont1,6+1 can be written as an R-linear combi-
nation of monomials in pj k+1, Pj ki1, mg and f; for 1 < j <k such that the summation

, . k - _ i
of leading terms of &apt1 k41 45 —2 Z:j:l(pi’;_Irl + p?’}c_:lx; - pi’}cﬂ Py k+11x/)
Proof. We have 22 =p(p+1) and 73 = (p —n+1)(p —n) in BCs,.+ by Lemma 4.4. So,

Proposition 5.5

2n+1 2 / 2
§an+1,k+1€k+1 6k+12k11 Ck+1 = €k+1yk+1zk7fr1€k+1 + €k+1xk+1zki1€k+1
2 /N2 2n—1 / 2n—1
=eh1Yk+1%h 1€k 41 T €kt 1 (Thq1) 251 €kl + €Rr1Th 1Ykt 125 4, €1
2 oan—1 — 2n—1
=Ch 1Yk 1216kl PP+ D)ert120} ] ekt — epy1Th 1Yk r12)s1 Chil
(by Lemma 3.9(3))
_ 2n 1 2n—1 — —/ 2n—1
=€kt1Yk+12k11€k+1 + PO+ D)err12;y 7 ekt + ekt 1Vp1Thi12p1 Chtl
(Lemmas 2.9(8), 5.2(2))
T 2
=ept1(—Lit1 + Lis1)zit1ekr1 + 00 + Dé2n—1 k416841

+ ent1(Lit1 — Lig1)Th1 207 Chpt-
(5.5)

Recall hy, = 2z, +ej, + € in (5.3). Considering the right-hand side of (5.5) and expressing
Liy1 by (2.8), using (j,k + 1) = s kSksk,; and the fact that s, s commute with
Ty 1, Yk+1,€kt1, We see that a term in the linear combination of ek+1Lk+1z£ﬁlek+1
becomes

2 2
87,k€h+15kZ)o 4 1€h+15k,j T S5 k€k-+1Ch+15kCh+12)'y 1 €h+15k, - (5.6)

: / _ / _ 2 2
Since Ch1%h41 = —Thy1Cht1 and cx4+1Yk+1 = —Yk+1Ck+1, we have Ch+12%41 = 2t 1Ck+1-
Note that egi1¢k+1 = €g+1Ck+1, and Cx41 commutes with s, 37;c+1 and yx41. So



M. Gao et al. / Journal of Algebra 525 (2019) 191-233 221

2n 2n
8,k Ch-41Ch-1SkCht 120 £ 1€h+15k,; = 5j.kCh+1 (SkZhi1) Cht1Sk,

3) 2n—1 2n 1
5. on 2n—b—1_b
="8jkek+1 | hi" sk — § hy, Zh1 T E crerprhy P 2l | ensshy
b=0
2n—1
2 2n—b—1 ‘
=5, 1N} Sk, jek+1 — Sjk E hy, Sk.;& k+1€k+1 (by Lemma 5.3(12)).
b=0

(5.7)

By induction assumption, the leading terms of & ;41 are of degree b — 1. So, the leading
term of s; pep41 (skzsz_l) Ck+15k,5 s p?f}Hl and hence —€k+1Lk+1Z;%il€k+1 contributes
. . k 2n
to the leading terms —23% 77, p7} . ;.
We compute ek+1Lk+1f§€+1zzizlek+1. A term of it becomes 23j,k€k+15kj;¢+1zi1;1 X

€k+15k,j since

=/ 2n—1 . —/ 2n—1
Ck+1Ck+1SkCh+1L g 417,11 Ck+1 = Ch+15kT 12811 Ch+1-

Thus, it is enough to compute the leading terms of 5]‘7]66]{;_}'_1Skf%+1223_;16k+15k,j. Since
! : =/ =/ !

x), commutes with zx11 and egq1, and exy18kT); = €x11Tp 1Sk = —€k41T) 1Sk =

—€k+15KT),, we have

—/ 2n—1 o 2n—1 /
Sj7k6k+1skl’k+1zk+1 €k+15k,5 = 7Sj7k€k+1sk2k+1 3k+15k,jxj~

I ) — 2n—1 ) . : 2n—1
By (5.7), 85, kCh+15kTht1%h41 Ch+15k,j contributes to the leading term ;) k_Hx whose

degree is 2n. Finally, we need to compute the leading terms of ek+1L;€+1zk+1ek+1
and —€k+1Lk+1f§¢+1ziif€k+1- By Lemma 5.7, one can use 7%11 to replace ziil in
€k+1Lk+1Z;%11€k+1~ Thus, €k+1Lk+1Z;%11€k+1 contributes to the leading terms ﬁ?rfﬁ_l, 1<

j < k. Similarly, a term of ek+1rk+1f;€+12’31;16k+1 is of form f/-ekﬂ(j, k+ l)zir_ﬁlekﬂ
—/

whose leading term p> . o 1175 is of degree 2n. The proof is completed. O

Lemma 5.11. For a € Z=°, k € Z=1, both &, 1 and Ea,kﬂ commute with T3, + Yrt1
and Tj iy + Ypy1-

Proof. By Proposition 5.5, we can assume that a = 2n + 1 and n > 1. By Lemma 5.10,
&an+1,k can be written as hnear combinations of monomials in p; k41, Dj 11, xj, and T xj
for 1 < j < k. From (5.4),

/ _ — _
Pik+1 = T + Zjkt1, and Dj g = Tj + Zj k41, (5.8)

where 2j k41,%jk+1 are defined in Lemma 2.15. So, it is enough to prove that z; i1,
Zjk+1, ¥; and T; commute with T | + J 4 if 1 < j < k. By Lemma 5.2(5)-(6), both
!, and T; commute with Ty + 7. Finally, zj r41, Zj k41 commute with Zj; +7,q
since
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» both z; 41 and Z; x41 commute with yp,1 and 7, 4 (see the proof of Lemma 2.17),
e 241 and Zj 41 are linear combinations of elements which commute with both E;C 11
and z}.,,, by Lemmas 2.15, 3.10(1)~(2), and 5.1 and (2.7) and (2.8).

This proves that &, 41 commutes with m?c_H + Yr+1 and f;c+1 + 71 and so is Ea’kﬂ by
Lemma 5.6. O

Lemma 5.12. For a € Z=°, k€ Z=1, both &2441 k41 and E2a+1,k+1 commute with c; and
¢ ifj=>k+1.

Proof. We have proven that both z; ;41 and Z; 41 commute with ¢; and ¢; if j > k+1in
the proof of Lemma 2.17. If j < k, then x; and T; commute with ¢; and ¢ for I > k£ +1,
by Lemma 5.1, (2.7) and (2.8). Now, the result follows from (5.8) and Lemma 5.10,
immediately. O

In Theorem 5.13, we assume the ground field is C since we use level two walled Brauer—
Clifford superalgebras in section 4. After we have proven the freeness of cyclotomic walled
Brauer—Clifford superalgebras in section 6, we know that Theorem 5.13 is available over
an integral domain R containing 1/2.

Theorem 5.13. For any k € Z>°, there is a superalgebra homomorphism ¢y, : BC;?’ftf —

BCs itk sending woni1,Wan+1, €1, 8is 54, Cly Cmy T1,T1 10 2041 k415 E2nt1 k15 Ch+15
Sktis Sktjs Chtl» Chtms Zk+1, Zk+1 for all admissible i, j,1, m,n, respectively.

Proof. It is enough to verify the images of generators of B Cj?f;f satisfy the defining rela-
tions for BCﬁ‘ft1r in Definition 3.1. If so, then ¢ is an algebra homomorphism. Since ¢y
sends even (resp., odd) generators to even (resp., odd) elements in BC yyk t+k, ¢k IS &
superalgebra homomorphism.

By Corollary 2.5, ¢, satisfies (2.1)—(2.3) and Definition 2.1(1)—(10). By Lemma 5.3(1),
(3), (9), (10), ¢y, satisfies (2.7) and (2.8). Applying the anti-involution ¢ on Lemma 2.9(7),
we see that ¢y, satisfies the Definition 3.1(1). By Lemma 5.3(8), (6) (resp., (11)—(13)), ¢x
satisfies Definition 3.1(2)—(4) (resp., (5)—(7)). Finally, ¢}, satisfies Definition 3.1(8)—(11)
by Lemma 5.3(2), (5). O

The following result is a counterpart of [14, Theorem 4.14].

Theorem 5.14. Suppose R is a domain which contains 2~ and wy. Then BC'jfiftf is free
over R spanned by all regular monomials in Definition 3.11. In particular, BC’f}f;f is of
infinite rank.

Proof. By Proposition 3.12, it is enough to prove that M, the set of all regular mono-
mials of BC2T, is linear independent over Zlwy,27!], where w; is an indeterminate. By

fundamental theorem on algebras, it suffices to prove it for sufficiently many wy’s. This
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can be done by choosing w; as in (4.16). So, it is enough to prove that M is linear
independent over C for infinitely many w;’s in (4.16).

By Lemma 3.8(1)—(3) and Definition 3.11, we assume that a regular monomial m of
BC’fftf is of form

m = 2P d; el wdyT H waet (5.9)
nez>o0

where (v, 0) € Z5xZ4, (8,7) € N'xNt dy,ds € Df’t, w € Xy x5, 0 < f < min{r, ¢}
and all but finitely many as,41’s are zero. So, it is equivalent to prove that the above
regular monomials are linear independent. If it were false, then there is a finite subset
S C M such that ) ¢rmm =0 and 7y # 0 for all m € S. For each S, we set

k = max {18 + Z(Zn + Dagny1 | caPd el wdo @ H woet € S},
n n Z>O
€ (5.10)
ko= max {|7] + 320+ Dagns1 | 2’dy el wdom@ [ wiziy € 5}
n nez>o

If k> ]:), we define k = k and

fo=min {f | c*27d; e wdr 7 H woettt € 8, 18] + Z(Qn + 1Dagn1 =k },
nezZ>"9 n
ki = max {|7] | ¢*2”d; ' ePowd,z7e H woettt € 8,18] + 2(211 + Dagn1 =k }.

n€zZ>o

(5.11)

If k < k, we define k = k and

fo=min{f | c*z’d; e/ wd>77E H wayarht € S, |y + Z(2n + Dagns1 =k },
n€z>0 n
k1 = max {|3] | P d el wdy T H worttt €8, |y + Z(2n + Dagns1 = k}.

n€Z>0
(5.12)

Let ¢, :BCﬁ?%BCgWM,Hk(wl) be the superalgebra homomorphism in Theorem 5.13.

s — / = _ =/
Since z; = 2} — L, and T; = T; — L;,

k
O(@:) = Y (€nij + htij) + Thsi — Ligs, and
j=1

e

O(Ti) = ) _(€j ki = Ejeti) + Thyi — Lt (5.13)

<.
Il
_
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Using Lemma 5.10 to express {2p41,5+1 for n € Z=2', we see that some terms of or(m) are
of forms (we will see in the next paragraph that other terms of ¢ (m) will not contribute
to our computations)

t
HcH-k k+Z,Z1) (k+7’ Zﬂz)¢k 1 6 U)dz H 3 k—j H +k Hc2n+17
i=1 j=1

j=1 n>1

(5.14)

where c2p,41, which comes from &£, 41 k1, ranges over products of as,+1 disjoint cycles
in ¥), (or Xj) such that each cycle is of length 2n + 1.

By Theorem 4.7, BC,; is a subalgebra of BCj,; and so is the walled Brauer alge-
bra, say B, .(0) which is isomorphic to the subalgebra generated by e1, s1,...,s,—1 and
S1,...,8¢—1. Similarly, we have the subalgebra By +5(0) of BCo yyf 14k It is known
that B, .(0) can be defined by so called (r,t)-walled Brauer diagrams. Each of them is a
diagram with (r+t) vertices on the top and bottom rows, and vertices on both rows are
labeled from left to right by r,...,2,1,1,2,... . Every vertex i€ {1,2,...,r} (resp., i €
{1,2,...,}) on each row must be connected to a unique vertex j (resp., j) on the same
row or a unique vertex j (resp., j) on the other row. The pairs [i, j] and [i, j] are called
vertical edges, and the pairs [i, j] and [i,j] are called horizontal edges. By definition, a
dr(dy efwdy) in (5.14) corresponds to a unique (r + k,t + k)-walled Brauer diagram
such that [i,i] and [, j] are its vertical edges for all 1 <i,j < k (see e.g. [14]). We call
the terms of the form (5.14) the leading terms if

(i) k= 8] +3,2n + Dagyyq if k > kand k = |y] + >, @2n + Dagyyq if k < k.
(ctf. (5.10)),

(ii) the corresponding f in (5.14) is fo in (5.12),

(iii) |y| = k1 if & > k and |B| = K if k < E,

(iv) in the first case of (i), the juxtapositions of the sequences i1,1i2,...,ig, for 1<i<r
and cgp 41,7 > 1 run through all permutations of the sequencesin 1,2, ...,k and the
sequences Jji, jo,-- -, j%, 1 < j <t run through all permutations of the sequence
1,2,...,kp; while in the second case of (i), the juxtapositions of the sequences
31,32, ces s, for 1 < j <t and eany1, m > 1 run through all permutations of the
sequences in 1,2, ...,k and the sequence of i1,72,...,ig,, 1 < < run through all
permutations of sequence 1,2, ..., k1.

By Theorem 4.18, all m = c&x’gd efwdg_"yc € BCy rqk, t+k consist of a basis of

BCs 4 k,t+1 over C, where 0773 € ZTJrk, %5 € Zt ,dy,dy € DH_k ey WE XN g Fx
DDy 7 and 0 < f < min{r+Fk,t+k}. Such monomials will be called normal monomials.
Moreover, m is called an admissible monomial if

~

(a) @i =0;=0forall 1 <i<k 1<j<k ifk>korda =0 =0frall<i<k
and 1< j<kifk <k,
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(b) the corresponding walled Brauer diagram of dflef wdy satisfies (1)—(5) as follows:
(1) f = an o B R

(2) no vertical edge of form [i,i] and [j,5], 1 <i <k, 1 <j <k if k >k,

(3) no vertical edge of form [i,i] and [f,7], 1 <i< ki, 1<j<kifk <k,

(4) no horizontal edge of form [i, j], 1<i<k, at the bottom row if k> k,

(5) no horizontal edge of form [i, ], 1<j<k, at the top row if k < k,

(c) Bl:%:o, foralll<i<r+4+kand1<j<t+k.

In the following, we assume that k<k (the case k > k can be dealt with in a similar way).

A ¢ (m) contributes admissible monomials of BC5 j4r x4+ only when m € S is given in

(5.9) such that k = |y| + >, (2n + 1)azn41, f = fo and k1 = |B|. More explicitly, the

leading terms exactly appear in ¢y (m) which are admissible monomials of BC 4y g+¢-

We claim that other terms in ¢x (D, s "mm) are obtained from (5.14) by

(1) using the terms ex;,,€xyi,i; of ¢x(w;) to replace some (k + 1,1 ),

(2) using the terms e; j,€;; 1 <14,j <k (resp., €}, k+;,€j, k+; of Ox(T;)) to replace (7,7)
in copy1 (vesp., (k+7,7,)) if (1) does not occur,

(3) using the term x7_; of ¢x(x;) to replace (k +4,4;) or using the term T} ,; of ¢4 (T;)
to replace (k +1,1;), or using either z’;
that neither (1) nor (2) occurs,

(4) using some (k+7,8) or ¢ (k+7,5)C, s > k to replace (k+j,7;); or using
(i,7),¢j(i,5)c; to replace (i,]) in cop1; or using (k +4,5), cs(k +14,8)cs, s > ki, to
replace (k +1,1;), provided that (1)—(3) do not occur,

(5) using ¢;, (k + 4, ;)¢;, to replace (k + j,7,;), or using ¢, (7, j); to replace (7, ) in €yt 1
or using ¢;, (k +1,i;)cq; to replace (k +1,4;), provided that (1)—(4) do not occur.

or E; to replace some (i, j) in o, 41, provided

In the case (1), we use defining relations for BCs 4k +k to rewrite the corresponding
monomial as a linear combination of normal monomials. Each of these normal monomials
corresponds to a unique walled Brauer diagram, say D, in which there is a horizontal edge
[i,7] at the top row of D such that 1 < j < k. Such a monomial does not satisfy (b)(5).
Similarly, in case (2) (resp., (3), (4), (5)), the corresponding monomials of BC gy k1
can be written as linear combinations of normal monomials which do not satisfy (b)(1)
or (b)(3) (resp., (c) or (b)(3), (b)(3), (a)). This verifies our claim.

We assume that m;,mjy,...,m, are all monomials in S which contribute leading
terms. Write

m; = @) A g, (m;) el M)y (my;)dy (m;) 7Y (@0 (M) H wgfllﬁl(mi). (5.15)
nez>0

Then k = |*y(ml)\ + Zn(Z’I’L—F 1)a2n+1(mi), f(ml) = fo and kl = |ﬁ(mz)| Let Az be
the set of all leading terms contributed by ¢y (m;). These leading terms are admissible
monomials of BCy kv k4¢. We have proven that other terms of > ¢ rm@r(m) will not
contribute admissible monomials of BC 4y 4t. S0,
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p
> Fm, »_n=0, (5.16)
=1

ncA;

where 7, is arm and a is a power of £2, which comes from the coeflicients of leading
terms of 25,41 k+1. In the following, we explain that (5.16) does not hold. If so, then S
is linear independent and the result will follow.

Suppose g; = (k+14,1)(k+14,2) -+ (k+i,ki) and g; = (k+ j, 1)(k+j,2) -~ (k + j,k)
for 1 < ¢ < rand 1 < j < t. Note that each element in A; contains factors
(k +i,i1) - (k + i,ip,) contributed by ¢y (z;)%, such that iy, -+ ,ig,, 1 < i < 7, is
a permutation of some elements in 1,2,...,k1. So, (k + k1) - (k + i,k — B; + 1)
is one of such factors and hence g;(k + i, k1)(k +i,ky — 1)+ (k+ i,k — B; + 1) fixes
k1,...,k1—B;+1. So, there is an element in g;(A,) whose walled Brauer diagram contains
vertical edges [j, j], where j ranges 8(my); numbers in {1,2,... ki }. If g;(As) contains
an element such that the corresponding walled Brauer diagram contains vertical edges
[4,7] for B(ms); numbers in {1,2,...,k1}, then S(my); = B(ms);. So, we can assume
B(my) = B(my), 2 < j < p. Similarly, we use g; instead of g; to obtain v(m;) = v(my;),
2 < j < p. Note that co,11 is the product of as,+1 disjoint cycles with length 2n+ 1. So,
different [T, wyr}' gives product of disjoint cycles with different lengths and thus, we
can assume ag,+1(m;) is independent of m;. Since any leading term is of form in (5.14),

by Theorem 4.8 or Theorem 2.4, we can also assume that a(m;),d(m;) are independent
2

of m;. Since ¢} = —1 and ¢ = 1, we can assume a(m;) = 0" € Zj and §(m;) = 0" € Z.
Using (5.14), we see that there exists a leading term in A; N A; if and only if m; = m,.
So, m; = 0 for all 1 < ¢ < p, a contradiction. So, S is linear independent over C and
hence over Z[271, wi]. In general, using arguments on base change yields the result over

an arbitrary integral domain R containing w; and 271, 0O
The following result follows from Theorem 5.14, immediately.

Theorem 5.15. Suppose R is a domain containing 2~ and wany1, for all n € N. Then
BC,.; is free over R spanned by all of its regular monomials. In particular, BC,y is of
infinite rank.

6. A basis of the cyclotomic Brauer—Clifford superalgebra

In this section, we assume that R is a domain containing 2~! and parameters {wa, +1 €
R | n € N}. The affine walled Brauer—Clifford superalgebra EE’M with respect to the
defining parameters wa,11’s can be also defined in a simpler way as follows. As a free
R-superspace,

-/Bﬂé'rgt = R[Xr] ® BC’r‘,t ® R[it}, (61)

the tensor product of the walled Brauer—Clifford superalgebra BC:.; with two polynomial
algebras R[x,| := R[z1,%2,...,2,] and R[X:] := R[T1,Ta,...,T¢]. The multiplication of
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BE’M is defined such that R[x,]®1®1, 191®@ R[X], 1® BC,;®1, R[x,|® HC, ®1 and
1 ® HC; ® R[%X;] are subalgebras isomorphic to R[x,], R[X:|, BC,., HC* and HC
respectively, and (for simplicity, without confusion we identify elements z;®1®1, 1Qs;®1,
196,®1,1050L,10¢81,10¢1®1,1®1®T; in (6.1) with x;, s;, €;, 54, ¢, G, T,
respectively)

er(r1+71) = (x1 +T1)er =0, er1s1x181 = s1x151€1, €1517151 = 5121511, (6.2
8;T1 = T18i, SiT1 = 1155, xi(ep —cieicr +T1) = (e1 — cre1cy + 7)1, (6.3)
k —k —
ejxrie; = wrer, €1Tye1 = Wrel, (6.4)
where Wog41 determined by wy,...,wsk4+1 as in Corollary 3.5. Further, we,, = @, = 0.

We hope to classify finite dimensional simple Eé’m—modules over an algebraically
closed field F' with characteristic not 2. This leads us to introduce cyclotomic Brauer—
Clifford superalgebras as follows. Let f(x) be the minimal polynomial of z; with respect
to a finite dimensional simple B\C/'r,t—module M. Then

n

f(z) = ka(:E — ), (6.5)

where uy, ..., u, are nonzero in F. Let (f(x1)) be the two-sided ideal of BE’M generated
by f(z1). Since M is simple, (f(z1)) # BC, . Let € € {—1,1}.

Lemma 6.1. We have c¢; f(z1) = ef(x1)c1, where f(x) is given in (6.5).

Proof. We prove the result by induction on deg f(z). If deg f(x) = 1, then f(x;) =
21 — u. When u # 0, we have (z; — u) = E\ém, a contradiction, since 2u = ¢y (21 —
w)er — (x1 — uw) € (x1 — w). So, f(x1) = x1 and c1f(x1) = —f(z1)er. In general, if
f(z1)er € {erf(z1), —c1 f(z1)}, there is nothing to prove. Otherwise, by Definition 3.1(2),
f(=z1) = —c1 f(z1)er and f(—z1) # f(x1). In this case, we choose h(z1) € {f(—=z1) +
f(z1), f(—x1) — f(z1)} such that degh(z) < deg f(z). Define d(x) = g.c.d (h(z), f(x)),
the greatest common divisor of h(x) and f(z). Then (d(z1)) = (f(z1)) and hence the
irreducible E\ér,t—module M is killed by d(x1). This is a contradiction since f(z1) is the
minimal polynomial of x; with respect to M. O

Recall that f(z1) in (6.5). Since 1 f(z1)e1 = —ef (1), and ¢1 f(z1)cr = Ea§ [[1, (z1+
u;), f(z) is the minimal polynomial of 21 with respect to M if and only if 2§ [T}, (z1+u;)
is the minimal polynomial of z; with respect to M. In other words, u; and —u; appear
simultaneously if u; # 0. Thus, we can assume

fan) =t [ - ud), (6.6)
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where 0 # u; € F, 1 <1i < m. Moreover, by Lemmas 3.3-3.4, there is a monic polynomial
9(T1) with degree [ = k + 2m such that

erf(z1) = (=1)"erg(T1). (6.7)
Lemma 6.2. Let g(T1) be given such that (6.7) is satisfied. Then ¢19(T1) = eg(T1)¢1.

Proof. Since [ = k 4+ 2m, we have

(—1)k€19(§1)51 =e1f(x1)e1 = e f(x1) = erei f(x1) = eer f(z1)en

= (71)’6661_9(51)61 = (71)]{:66161_9(?1) = (71)]“561519(51).
By Theorem 5.15, ¢19(%1) = eg(T1)c1. O

In the remaining part of this paper, we assume that

mi

g@) =z [[ @ —a), (6.8)

j=1

such that k1 +2m; = k+2m and 0 # w; € F, 1 < j < my. This is reasonable by
Lemma 6.2. Since the finite dimensional simple %T7t—module M is killed by f(x1), by
(6.7), it is killed by e;¢(Z;1), too. We want to consider simple B\C/'r,t—modules M such
that e; acts on M nontrivially, it is necessary to assume that M is killed by g(Z1). That
is the reason why we introduce cyclotomic walled Brauer—Clifford superalgebras as in
the Definition 3.14.

From here to the end of this section, we assume both EE’M and BC),,.+ are defined
over a domain R containing 27! and parameters wap1 for all n € N.

Lemma 6.3. Write f(x1) = x’f+2m+zf§1 a;x¥ 2= where f(x1) is given in (6.6). Then

e1 is an R-torsion element of BCyyom rt unless
we = —(a1we—1 + ... + agmwi—om) for all £>k+ 2m. (6.9)

Proof. Let by = wy + aiwe—1 + - .. + Gamwi—am € R. By (6.4), brey = e1 f(z1)ay " Fey
in BC,+ and bge; = 0 in BC)y2m,r¢. Thus, e; is an R-torsion element if b, # 0 for some
{>k+2m. O

Definition 6.4. The superalgebras B\é’m and BCyyom,r: are called admissible (with re-
spect to f(x1)) if (6.9) holds.

Lemma 6.5. For 1 <i<r,1<j<¢, define f; = f(z}) and g; = g(T}), where f(x1) and

2

9(Z1) satisfy (6.6)—(6.8). Then the following equations hold for all admissible i,j:
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Proof. These equations can be easily verified by using Lemmas 6.1-6.2 and Defini-
tion 3.1. O

Note that the affine Hecke-Clifford superalgebra HC? (resp., HC 2f) is isomorphic to
the sub-superalgebra of BC'.; generated by x1, s1,...,s,—1 and ¢; (resp., T1,351,...,5:-1
and ¢).

Lemma 6.6. For any a € Z>°, we have

(1) (@) f(x)) — Flap)z)® € Sye S f(af) (@), )P HO,,
(2) g@)(@)* — @)*9(T,) € Xy S U HC (7)) 09 (Th,).-

Proof. We have x129 = xoxq, where 29 = xh, — s1 — c281¢2 (see (2.7)). By Lemma 6.5(1),

zhf(z1) = f(a1)(xh — s1 — casico) + f(ah)s1 + e f(xh)casicn. (6.10)

Considering s; oxh f (21)s2,; yields the result when ¢ =1 and £ = 1. If £ > 1, then

zi f(xp) = wise—1f(Ty_1)se-1 = se-12(;y5, | [(T_1)80-1

So, the result follows from inductive assumption on ¢ — 1. This is (1) when a = 1.
The general case follows from arguments on induction on a. Finally, (2) can be verified,
similarly. O

Proposition 6.7. Define J;, = 22:1 Eé,«,t g; and Jg = 22:1 fi EE‘M. Let I be the two-
sided ideal of BC; generated by f(x1) and g(T1). We have

(1) Jg is a left HO* @ HC;-module,
(2) Jp is a right HC, @ HC T -module,
(3) I=Jo+Jrif EE’M is admissible.

Proof. It is easy to see that Jg is stable under the left action of HC, ® HC,. By
Lemma 6.6(1), it is stable under the left action of HC®T. One can check (2) via
Lemma 6.6(2), similarly.

Obviously, J, + Jg C I. So, (3) follows if we can prove I C Jp + Jg. Since
f(z1),9(T1) € Ji, + Jg, it suffices to verify that Ji, + Jg is a two-sided ideal of EE’M.
We claim
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hJr C Jp + Jr, (6.11)

for any generator h of B\ém. If so, h(Jp + Jg) C Ji + Jr and hence Jy, + Jg is a left
ideal.

In fact, by (1), it is enough to verify (6.11) when h € {T1,e1}. If we have ey Jp C
Jr+Jgr, then cieiciJr C Jp+Jg. Since (fl+€1—€1)f(ml) = f(xl)(fl—i-el—él) € Jg, we
have T f(z1) € Jr+Jg. Multiplying (1,7) on both sides of Z; f(x1) yields 1 f; € Jp+ Jg.
So, we need to verify e; Jg C Jp+Jr. By (6.2), e1 f; = fieq fori > 2. S0, e1J;, C Jp+Jr
if €1 f(21)BCry C Jp, + Jg. This will be verified by checking

elf(xl)m e Jr + Jg, (6.12)

for each regular monomial m of EE’M in Definition 3.15. Using arguments on graded
structure of EE’M, we can write m = c“zfe;, j, e, 5, wze for some (a,§) € Z x 74
and (8,7) e N" x N, and w € B, x Zgand 1 <iy,...,if <rand 1 < ji,...,5p <t
such that {iy,jx} N {1, i} = 0 if k # [. In the following, we write e; > = e;,,j, - ~ €, j;-
We prove (6.12) by induction on |3|.

Case 1: |B| = 0.

If f =0, then ey f(21)cwz’e® = (—1)Fe19(T1)c*wz’e® C Jp. The last inclusion
follows from (2). Suppose 1 < f < min{r,t}. Since B\ém is admissible, e f(z1)e; = 0.
On the other hand, we have elx’fclel =0 for all k. So, e; f(x1)m = 0 if e is a factor of
e 5 If e; is not a factor of €5 there are three cases we need to discuss.

o If e, is a factor of ;5 and p # 1, then we assume that i1 = p and j; = 1
since any two factors of e; 7 commute with each other. We have ey f(z1)c%ep1 =

[Ty cier f(@1)epacst. Since
e1f(x1)eps = spoerf(x1)sie1s1p = spaersif(a)ersip = spaf(wh)ersip € Jr,

we have ey f(z1)c%e1,p, € Jr by (1). So, e1f(z1)m € Jg.
e If ey, is a factor of €7 and p # 1, we assume i; = 1 and j; = p. We have

€1f(331)€1,p = (—1)k§p,gelg(fl)§1el§17p = (—l)kgp,geﬁlg(f'?)el?l,p

= (=1)*5,2e19(Th)51,p = (—1)¥5, 26151 ,9(T1) € Jp.

So, e1f(z1)c®erp = [y ciier f(z1)ef er, = [Ty ciieyrer f(w1)ery € Jr. By (2)
and the equation g(T) H£=2 Cip jp = H£=2 €irixn9(T1), e1f(z1)m € Jp.

 Finally, suppose {4, 5;} N {1} = 0 for all possible [, then e; f(z1)m € J, follows from
(2) and the following fact

f f f
erf@)][eirs, = [ eisirerf@) = (0" Jeissre19@1) € I

=1 =1 =1
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Case 2: 18| > 0.

Suppose 3; # 0 for some 2 < ¢ < r. We have ;m’ = em by Lemma 3.8(1)—(2),
where m’ is obtained from m by removing one x; and ¢ = +1. So ey f(x1)m € J + Jr
if e1 f(x1)z;m’ € Jp + Jg. Since f(x1)z; = x;f(x1), it suffices to prove ei L; f(z1)m’ €
Jr + Jr and ey (z; — L;) f(x1)m’ € Jp, + Jg.

In the first case, since e;1(j,7) = (j,4)e1 if j # 1 and e1¢; = ¢ier and ¢; f(x1) = f(x1)cs,
by inductive assumption on |3| and (1)—(2), it is enough to prove e1(1,1) f(z1)cim’ € Jg
for | € Zs. In fact, it is the case since

e1(1,4) f(z1)cm’ = ey f(2))(1,9)cim’ = f(2})ei(1,9)clm’ € Jg.

In the second case, since ey (x; — L;) f(z1)m’ = (; — L;)e; f(21)m’, by induction on |3,
e1f(zy)m’ € J, + Jg. By (1), we have (x; — L;)ey f(z1)m’ € Jp, + Jg. So, e1 f(x1)m €
Jr + JR.

If B; = 0,2 < i < r, then 2° = mfl with 81 > 0. In this case, m = cax?leﬁwivé‘;.
We want to prove v = ey f(z1)m € J, + Jg. If j, # 1, 1 < £ < f, then by inductive
assumption,

a,.B1 —7=0

(z1)c” ’@lewwx'yc(5 = (=D*e19(T1)c 2} €7 FWT

v=-eif(x1 ¢

o, .B1

= (—1)*e;ca! g(:rl)e;jwf”E‘S

=(-1) elco‘xflea;g(fl)wfyéé € Jowz'@ C Jp + Jg,

[T—tl

where the “=" is modulo J; + Jg. Finally, if j, = 1 for some ¢, without loss of any
generality, we assume j; = 1. If 43 = 1, we have elf(xl)ca:v?el = 0 no matter whether
a1 =1 or ey = 0. In the first case, this result follows from the equation elx’fclel =0 for
all k € N. In the second case, this result follows from the fact that EE’M is admissible.

It remains to deal with the cases when i; # 1 for all [. Define ¢/ = (ia,...,if) and
j' = (jar---»js)- Then

T

v=-eyf(x1)c" xfle“,le ,wm'yc = Hc ‘e f(x1)eip 109t xflew’;,wj'yé

=2

)

Hc?ieleihlf(xl)c‘flmf‘e~,’;,wf”55 = Hciaiel(l,il)f(acl)cllel& ;,wx'ycé
i i=2

_Hc tey f(ag,)(1 z)c’flel& ~,waﬂc € HCO”JR C Jg, by (1).
=2

This completes the proof of (6.12) and hence hJr C Jr+Jg. One can similarly check
JphCJp+Jr. O

For (a,f) € N" x Nt, let f(2/)* = fo*--- fo and g(z')® = ¢g/" -+ g*. Recall that
l=k+2m.
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Lemma 6.8. The affine walled Brauer—Clifford superalgebra BE’M is a free R-module
with N as its R-basis, where

min{r,t} B -
N = fL—Jo {(f@TzVd el wdy B g(T)P | (o, B) € N™ x N,
(")/,5,’3/,8) € Z; X Zf X Zg X Zg,dl,dg € D,{t,w € Er_f X it_f}.

(6.13)

Proof. The result follows from Theorem 5.15 since the transition matrix between A and
the basis in Theorem 5.15 is upper-unitriangular. O

Lemma 6.9. Let I be the two-sided ideal of B\C/'m generated by f(x1) and g(T1) satisfying
(6.6)—(6.8). If BC, is admissible, then S is an R-basis of I, where

S = {f(a:’)o‘c:yx'ydl_lefwdgf‘sﬁsg(i')ﬁ eN|a;+ B #0 for some i,j}. (6.14)

Proof. Let M be the R-module spanned by S. Obviously, M C I. If J, C M and
Jr € M, by Lemma 6.7(3), M = I, proving the result. By symmetry, we verify Jg C M.
By Lemma 6.8, we need to verify f(a})m € M for any basis element m in (6.13). In fact,
we have

-1
F@})f(a)) € f(@)) f (@) + > f(@})BCyy, by Lemma 6.6.

Jj=1

Using induction on degrees, we have f(x})m € M. Finally, one can check J, C M,
similarly. O

Theorem 6.10. The cyclotomic walled Brauer—Clifford superalgebra BCliom r+ s free
over R with rank 2"t (k + 2m)" T (r + ¢)! if and only if BCkiom rt is admissible.

Proof. By Corollary 3.16, BCyyomr+ is spanned by all of its regular monomials.
If BCjt2m,r+ is not admissible, e; is an R-torsion element by Corollary 3.5. Since
e1 € M, either BCjiom r+ is not free or the rank of BCyyom r+ is strictly less than
27 (k+2m)" ' (r+t)!, the number of all regular monomials of BCyom rt- If BCkiam rt
is admissible, by Lemmas 6.8-6.9, all regular monomials of BC}om, r+ are R-linear in-
dependent. So BCam ¢ is free over R with rank 2"t (k 4+ 2m) ™t (r +¢)!. O
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