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1. Introduction

In his pioneer’s work, Schur considered V ⊗r, the r-th tensor product of the natural 
module V of the general linear group GLn(C). This is a left GLn(C)-module such that 
GLn(C) acts on V ⊗r diagonally. There is a right action of the symmetric group Σr on 
V ⊗r, and two such actions commute with each other [7]. This enabled Schur to establish 
a duality between the polynomial representations of GLn(C) and the representations 
of symmetric groups over C. Later on, such a result was generalized by Brauer [1], 
Sergeev [17], Lehrer–Zhang [12] and so on. In these cases, the r-th tensor product V ⊗r is 
considered where V is the natural module of a symplectic group or an orthogonal group or 
a queer Lie superalgebra q(n) or an orthosymplectic supergroup and so on. The Brauer 
algebras and the Hecke–Clifford superalgebras etc naturally appear as endomorphism 
algebras of V ⊗r.

Let V ∗ be the linear dual of the natural GLn(C)-module V . Koike [11] considered 
the mixed tensor modules V ⊗r⊗(V ∗)⊗t for various r, t ∈ Z≥0. This led him to intro-
duce the notion of walled Brauer algebras in [11] (see also [19]). Shader and Moon [18]
set up super Schur–Weyl dualities between walled Brauer algebras and general linear 
Lie superalgebras, by studying mixed tensor modules of general linear Lie superalge-
bras glm|n. Brundan and Stroppel [4] established super Schur–Weyl dualities between 
level two Hecke algebras Hp,q

r and glm|n, by studying tensor modules Kλ⊗V ⊗r of Kac 
modules Kλ with the r-th power V ⊗r of the natural module V of glm|n. This led them 
to obtain various results including the celebrated one on Morita equivalences between 
blocks of categories of finite dimensional glm|n-modules and categories of finite dimen-
sional left modules over some generalized Khovanov’s diagram algebras [5]. By studying 
tensor modules Mr,t := V ⊗r⊗Kλ⊗(V ∗)⊗t of Kac modules Kλ with the r-th power 
of the natural module V and the t-th power of the dual natural module V ∗ of glm|n, 
two of the authors [14,15] introduced a new class of associative algebras, referred to 
as affine walled Brauer algebras, over a commutative ring containing 1.1 They estab-
lished super Schur–Weyl dualities between level two walled Brauer algebras B2,r,t and 
general linear Lie superalgebras, which enables them to classify highest weight vectors 
of glm|n-modules Mr,t, and to determine decomposition numbers of B2,r,t arising from 
super Schur–Weyl duality. In order to further study representation theory of queer Lie 
superalgebras and to establish higher level mixed Schur–Weyl duality between queer Lie 
superalgebras and some associative algebras, a natural question is, what kind of algebras 
may come into play if one replaces general linear Lie superalgebras glm|n by queer Lie 
superalgebras q(n). This is one of the motivations of the present paper to introduce the 
notion of affine walled Brauer–Clifford superalgebras. Another motivation comes from 
two of the authors’ work on the Jucys–Murphy elements of walled Brauer algebras in 
[14].

1 See [16] (resp., [2]) where the affine walled Brauer algebra is defined over C (resp., over R) in terms of 
affine oriented Brauer category.
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In 2014, Jung and Kang [9] introduced the notion of walled Brauer superalgebras 
or walled Brauer–Clifford superalgebras BCr,t so as to establish the mixed Schur–
Weyl–Sergeev duality for queer Lie superalgebras q(n). The superalgebra BCr,t can 
be considered as a generalization of a Hecke–Clifford superalgebra and a walled Brauer 
algebra. In the present paper, we construct Jucys–Murphy elements for BCr,t and study 
their properties in detail. Through these elements, we can introduce the notion of affine 
Brauer–Clifford superalgebras BCaff

r,t in a ring theoretical way. Using arguments simi-
lar to those in [14], we construct infinitely many homomorphisms between the affine 
Brauer–Clifford superalgebra BCaff

r,t and walled Brauer–Clifford superalgebras, and thus 
we are able to prove that the affine walled Brauer–Clifford superalgebra is free over R
with infinite rank if the defining parameter ω1 is zero. However, many affine walled 
Brauer–Clifford superalgebras which appear in the higher level mixed Schur–Weyl–
Sergeev duality have non-zero defining parameter ω1. In order to overpass this, we 
consider level two mixed Schur–Weyl–Sergeev duality for q(n) and prove that a class 
of level two walled Brauer–Clifford superalgebras over C with non-zero ω1 have required 
super-dimensions. Using these level two walled Brauer–Clifford superalgebras instead 
of walled Brauer–Clifford superalgebras used before, we can establish infinitely many 
superalgebra homomorphisms and hence prove the freeness of the affine walled Brauer–
Clifford superalgebra over R no matter whether ω1 is zero or not. This is one of the 
points which is different from the work in [14].

It is a natural problem to give a classification of finite dimensional irreducible 
BCaff

r,t -modules over an algebraically closed field of characteristic not 2. By introducing 
cyclotomic quotients of BCaff

r,t , called cyclotomic walled Brauer–Clifford superalgebras, 
we are able to prove that any finite dimensional irreducible BCaff

r,t -module factors through 
a cyclotomic walled Brauer–Clifford superalgebra. We define this superalgebra over R
and prove that it is free over R with required rank if and only if it is admissible in the 
sense of Definition 6.4. In a sequel, we will classify finite dimensional irreducible mod-
ules for affine and cyclotomic walled Brauer–Clifford superalgebras over an arbitrary 
(algebraically closed) field with characteristic not 2.

We notice that in July, 2017 (at that time we had obtained our affine and cyclotomic 
walled Brauer–Clifford algebras), Brundan, Comes and Kujawa [6] introduced the affine 
oriented Brauer–Clifford supercategories AOBC and their cyclotomic quotients COBC. 
They proved that any morphism space of AOBC is free over an integral domain R. In 
the second version of [6], they showed that our degenerate affine walled Brauer–Clifford 
algebra BCaff

r,t is isomorphic to certain endomorphism algebra in (specialized) AOBC. In 
the third version of [6], they proved that any morphism space of COBC is free over R. As 
an application, they showed that our admissible cyclotomic walled Brauer–Clifford su-
peralgebra BCk,r,t (see Definition 6.4) is isomorphic to certain endomorphism algebra in 
(specialized) COBC. For more details, see [6, section 7.2]. As explained in [6, section 1.4], 
their basis theorems imply our basis theorems and the converse is not true. However, 
our method used in this paper is quite different from that in [6].
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We organize our paper as follows. In section 2, we recall the notion of walled Brauer–
Clifford superalgebras BCr,t in [9]. Several properties on the Jucys–Murphy elements of 
BCr,t are given. This leads us to introduce the notion of affine walled Brauer–Clifford 
superalgebras in section 3. We give infinitely many homomorphisms between BCaff

r,t and 
walled Brauer–Clifford superalgebras. We also define cyclotomic walled Brauer–Clifford 
superalgebras. In section 4, we use higher level mixed Schur–Weyl–Sergeev dualities to 
prove that a class of level two walled Brauer–Clifford algebras with non-zero parameter 
ω1 have required super-dimensions over C. In section 5, we construct infinitely many ho-
momorphisms between BCaff

r,t and level two walled Brauer–Clifford superalgebras which 
appear in the higher level mixed Schur–Weyl–Sergeev dualities in section 4. This in turn 
enables us to mimic arguments in [14] to prove the freeness of BCaff

r,t over R. In par-
ticular, BCaff

r,t is of infinite super-rank. In section 6, we prove that a cyclotomic walled 
Brauer–Clifford superalgebra is free over R with required super rank if and only if it is 
admissible.

2. Walled Brauer–Clifford superalgebras

Throughout, we assume that R is an integral domain containing 2−1. Let Σr be 
the symmetric group on r letters. Then Σr is generated by s1, . . . , sr−1, subject to the 
relations (for all admissible i and j):

s2
i = 1, sisi+1si = si+1sisi+1, sisj = sjsi, if |i− j| > 1. (2.1)

Each si can be identified with the simple reflection (i, i + 1), where (i, j) ∈ Σr, which 
switches i, j and fixes others. In this paper, we always assume that Σr acts on the right 
of the set {1, 2, . . . , r}.

The Hecke–Clifford algebra HCr was introduced by Sergeev [17] in order to study V ⊗r, 
where V is the natural module for the queer Lie superalgebra q(n). It is the associative 
R-superalgebra generated by even elements s1, . . . , sr−1 and odd elements c1, . . . , cr sub-
ject to (2.1) together with the following defining relations (for all admissible i, j):

c2i = −1, cicj = −cjci, w−1ciw = c(i)w, ∀w ∈ Σr. (2.2)

In this paper, we denote Zi = {0, 1, . . . , i − 1}. We always use αj to denote the j-th 
coordinate of α ∈ Zr

i for 1 ≤ j ≤ r. Let |α| =
∑r

j=1 αj . The Hecke–Clifford algebra HCr

is free over R with basis {cαw | w ∈ Σr, α ∈ Zr
2}, where cα = cα1

1 · · · cαr
r (see [10]). Since 

s1, . . . , sr−1 (resp., c1, . . . , cr) are even (resp., odd), the even (resp., odd) subspace of HCr

is spanned by {cαw | w ∈ Σr, α ∈ Zr
2, |α| ∈ 2Z} (resp., {cαw | w ∈ Σr, α ∈ Zr

2, |α| /∈ 2Z}). 
In particular, the super rank of HCr is (2r−1r!, 2r−1r!).

We need HCr as follows. As the R-superalgebra, it is generated by the even elements 
s1, . . . , sr−1 and odd elements c1, . . . , cr subject to the relations for all admissible i and j:
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s2
i = 1, sisi+1si = si+1sisi+1, and sisj = sjsi, if |i− j| > 1,

c2i = 1, cicj = −cjci, and w−1ciw = c(i)w, ∀w ∈ Σr.
(2.3)

In this case, we identify si with si. If 
√
−1 ∈ R, then HCr is HCr by setting ci =

√
−1ci

and si = si. Let

L1 = 0, and Li = Li + ciLici, 2 ≤ i ≤ r, (2.4)

where Li =
∑i−1

j=1(j, i). These elements, which are known as Jucys–Murphy elements of 
HCr, satisfy the following relations for all admissible i, j, k:

LiLj = LjLi, siLk = Lksi, if k �= i, i + 1,

siLisi = Li+1 − (1 − cici+1)si, ciLk = (−1)δi,kLkci,
(2.5)

where δi,k = 1 if i = k, and 0 otherwise. If we denote by L1, . . . , Lr the Jucys–Murphy 
elements of HCr, then L1 = 0 and Li = Li − ciLici, where Lj =

∑j−1
k=1(k, j). In this 

case, we identify i with i for all 1 ≤ i ≤ r. So, Σr can be identified with the symmetric 
group on the set {1, . . . , r}, and (2.5) turns out to be

LiLj = LjLi, siLk = Lksi, if k �= i, i + 1,

siLisi = Li+1 − (1 + cici+1)si, ciLk = (−1)δi,kLkci.
(2.6)

Considering −Li (resp., −Li) as abstract generators xi (resp., xi) yields the notion of 
the affine Hecke–Clifford algebra HCaff

r (resp., HC aff
r ) as follows.

The affine Hecke–Clifford algebra HCaff
r is the associative R-superalgebra generated 

by even elements s1, . . . , sr−1, x1 and odd elements c1, . . . , cr subject to (2.1)–(2.2), to-
gether with the following defining relations (for all admissible i and j):

x1x2 = x2x1, x1ci = (−1)δi,1cix1, sjx1 = x1sj , if j �= 1, (2.7)

where x2 = s1x1s1 − (1 − c1c2)s1. Later on, we need HC
aff
r as follows. As the 

R-superalgebra, it is generated by even elements s1, . . . , sr−1, x1 and odd elements 
c1, . . . , cr subject to (2.3) together with the following defining relations (for all admissible 
i and j):

x1x2 = x2x1, x1ci = (−1)δi,1cix1, sjx1 = x1sj , if j �= 1, (2.8)

where x2 = s1x1s1 − (1 + c1c2)s1. Certainly, HC
aff
r is HCaff

r if 
√
−1 ∈ R. For 1 ≤ i ≤ r, 

define

xi = x′
i − Li, and xi = x′

i − Li, (2.9)
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where x′
i = si−1 · · · s1x1s1 · · · si−1, x′

1 = x1 and x′
i = si−1 · · · s1x1s1 · · · si−1, x′

1 = x1. 
Then we have the following relations for all admissible i and j:

xi+1 = sixisi − (1 − cici+1)si, and xixj = xjxi,

xi+1 = sixisi − (1 + cici+1)si, and xixj = xjxi.
(2.10)

For all α ∈ Nr, define xα = xα1
1 · · ·xαr

r and xα = xα1
1 · · ·xαr

r . It is proven in [10] that 
HCaff

r has basis {xαcβw | w ∈ Sr, α ∈ Nr, β ∈ Zr
2}. The even (resp., odd) subspace of 

HCaff
r is spanned by all xαcβw such that |β| ∈ 2Z (resp., |β| /∈ 2Z). Similar results hold 

for HC
aff
r .

We are going to recall the definition of the walled Brauer–Clifford superalgebra BCr,t. 
This superalgebra was introduced by Jung and Kang in [9] so as to study the mixed 
tensor product of the natural module and its linear dual for the queer Lie superalgebra 
q(n). The original BCr,t is defined via (r, t)-superdiagrams in [9]. In this paper, we use 
its equivalent definition.

Definition 2.1. [9, Theorem 5.1] The walled Brauer–Clifford superalgebra BCr,t is the 
associative R-superalgebra generated by even generators e1, s1, . . . , sr−1, s1, . . . , st−1, 
and odd generators c1, . . . , cr, c1, . . . , ct subject to (2.1)–(2.3) together with the following 
defining relations for all admissible i, j:

(1) e1c1 = e1c1, c1e1 = c1e1,
(2) sjci = cisj , sicj = cjsi,
(3) cicj = −cjci, sisj = sjsi,
(4) e2

1 = 0,
(5) e1s1e1 = e1 = e1s1e1,

(6) sie1 = e1si, sie1 = e1si, if i �= 1,
(7) e1s1s1e1s1 = e1s1s1e1s1,
(8) s1e1s1s1e1 = s1e1s1s1e1,
(9) cie1 = e1ci and cie1 = e1ci, if i �= 1,

(10) e1c1e1 = 0 = e1c1e1.

Lemma 2.2. There is a unique R-linear anti-involution τ : BCr,t → BCr,t, which fixes 
all of its generators.

Proof. It follows from Definition 2.1, immediately. �
It is known that the subalgebra of BCr,t generated by even generators s1, . . . , sr−1, 

s1, . . . , st−1 and e1 is isomorphic to the walled Brauer algebra Br,t(0) in [11,19]. This 
enables us to freely use results on Br,t(0) in [14] so as to simplify our presentation. Write 
si,j = sisi+1,j if i < j and si,i = 1 and si,j = si,j+1sj if i > j. Similarly, we have si,j ’s, 
etc. Following [13], define Df

r,t = {1} if f = 0 and

Df
r,t =

{
sf,if sf,jf · · · s1,i1s1,j1

∣∣∣k ≤ jk ≤ t, 1 ≤ k ≤ f,

1 ≤ i1 < i2 < . . . < if ≤ r
}

if 0<f ≤ min{r, t}. (2.11)
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Definition 2.3. Define e0 = 1 and ef = e1e2 · · · ef if 0 < f ≤ min{r, t}, where ei = ei,i
and ei,j = (1, j)(1, i)e1(1, i)(1, j) for all admissible i, j.

Theorem 2.4. [9, Theorem 5.1] The walled Brauer–Clifford superalgebra BCr,t has 
R-basis

S =
{
cαd−1

1 efwd2c
β | 0 ≤ f ≤ min{r, t}, w ∈ Σr−f × Σt−f , d1, d2 ∈ Df

r,t,

(α, β) ∈ Zr
2 × Zt

2

}
. (2.12)

In particular, the super rank of BCr,t is (2r+t−1(r + t)!, 2r+t−1(r + t)!).

Proof. The basis of BCr,t given in (2.12) is a refinement of X given in the proof of [9, 
Theorem 5.1]. We remark that each d−1

1 efwd2 corresponds to a unique walled Brauer 
diagram in [14]. �
Corollary 2.5. For any positive integer k, the subalgebra of BCk+r,k+t generated by even 
elements ek+1, sk+1, . . ., sk+r−1, sk+1, . . . , sk+t−1 and odd elements ck+1, ck+1 is isomor-
phic to BCr,t.

Proof. Easy exercise using Theorem 2.4 and Definition 2.1. �
Lemma 2.6. Let BCk−1,k−1 be the subalgebra of BCk,k generated by e1, s1, . . . , sk−2, 
s1, . . . , sk−2 and c1, c1. Then ekBCk,k is a left BCk−1,k−1-module generated by all 
ekc

σ
ksk,jsk,l such that σ ∈ Z2 and 1 ≤ j, l ≤ k.

Proof. It is enough to prove that the left BCk−1,k−1-module Vk generated by all 
ekc

σ
ksk,jsk,l is a right BCk,k-module. If so, then Vk = ekBCk,k by the fact that ek ∈ Vk. 

We have Vksi ⊂ Vk and Vkc1 ⊂ Vk since

ekc
σ
ksk,jsk,lsi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
siekc

σ
ksk,jsk,l if i < j,

ekc
σ
ksk,j+1sk,l if i = j,

si−1ekc
σ
ksk,jsk,l if i > j,

and

ekc
σ
ksk,jsk,lc1 =

⎧⎨⎩εc1ekc
σ
ksk,jsk,l if j > 1,

ekc
σ+1
k sk,jsk,l if j = 1,

where ε = 1 (resp., −1) if σ = 0 (resp., 1). Similarly, Vksi ⊂ Vk and Vkc1 ⊂ Vk. Finally, 
Vke1 ⊂ Vk since
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ekc
σ
ksk,jsk,lek =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if j = k = l,
cσk−1sk−1,jek if l = k > j,
cσk−1sk−1,lek if j = k > l,
ek−1c

σ
k−1sk−1,jsk−1,lek if j, l < k. �

(2.13)

Proposition 2.7. We have ekBCk,kek = ekBCk−1,k−1 for all k ≥ 2 and e1BC1,1e1 = 0.

Proof. We have ekBCk,kek ⊆ ekBCk−1,k−1 by Lemma 2.6 and (2.13). When k ≥ 2, 
the inverse inclusion follows from the equations ek = eksk−1ek and ekx = xek for any 
x ∈ BCk−1,k−1. �
Definition 2.8. For all admissible i, j, let yi =

∑i−1
j=1(ei,j+ei,j) −Li, and yi =

∑i−1
j=1(ej,i−

ej,i) − Li, where ei,j = ciei,jci. Then yi = yi + ciyici and yj = yj − cjyjcj , where yi
(resp., yj) is yi (resp., yj) in [14, (3.5)] in the case δ1 = 0. So,

yi =
i−1∑
j=1

(ei,j − (j, i)), and yi =
i−1∑
j=1

(ej,i − (j, i)). (2.14)

Lemma 2.9. With the notations above, the following results hold in BCr,t for all admis-
sible i, j:

(1) sjyi = yisj, sjyi = yisj if j �=
i − 1, i,

(2) sjyi = yisj, sjyi = yisj if j �= i − 1,
(3) yici = −ciyi, yici = −ciyi,
(4) yicj = cjyi, yicj = cjyi if i �= j,
(5) yicj = cjyi, yicj = cjyi if j ≥ i,
(6) yiyi+1 = yi+1yi, yiyi+1 = yi+1yi,

(7) yi(ei + yi − ei) = (ei + yi − ei)yi,
(8) eiyi = ei(Li−Li), eiyi = ei(Li−Li),
(9) eisiyisi = siyisiei, ejsjyjsj =

sjyjsjej,
(10) yiỹi = ỹiyi, yiỹi = ỹiyi,
(11) eiy

k
i ciei = 0, ∀k ∈ N,

(12) eiy
2n
i ei = 0, eiy2n

i ei = 0, ∀n ∈ N,
(13) eiyiei = eiyiei = 0,

where ỹi = siyisi − (1 − cici+1)si and ỹi = siyisi − (1 + cici+1)si.

Proof. We assume 
√
−1 ∈ R. Then BCr,t

∼= BCt,r. It is reasonable since we can embed 
R into a larger integral domain containing 

√
−1. The required isomorphism sends (a): √

−1ci (resp., 
√
−1cj) in BCr,t to ci (resp., cj) in BCt,r; (b): e1 to e1; (c): si (resp., sj) 

in BCr,t to si (resp., sj) in BCt,r. So, it suffices to verify one of equations in (1)–(6), 
(8)–(13) except (11).

(1) If j �= i, i − 1, then sjci = cisj and sjyi = yisj by (2.2) and [14, Lemma 3.3(6)]. 
So,

sjyi = sj(yi + ciyici) = (yi + ciyici)sj = yisj .
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(2) If j �= i − 1, then sjyi = yisj by [14, Lemma 3.3(7)]. By Definition 2.1(2),

sjyi = sj(yi − ciyici) = sjyi.

(3) Since c2i = −1, we have ciyi = ci(yi + ciyici) = −yici + ciyi = −yici.
(4) By (2.2), (2.5) and Definition 2.1(9), cicj = −cjci, cjLi = Licj and ei,kcj = cjei,k

if i �= j. By Definition 2.8, we have yicj = cjyi.
(5) If j > k, then ei,kcj = cjei,k. By Definition 2.1(2)–(3) and Definition 2.8, we have 

yicj = cjyi.
(6) Since yi =

∑i−1
j=1(ei,j − (j, i)) (see (2.14)), we have yici+1 = ci+1yi. By [14, 

Lemma 3.3(9)], yiyi+1 = yi+1yi. Thus,

yiyi+1 = (yi + ciyici)yi+1
(4)= yiyi+1 + ciyiyi+1ci

= yiyi+1 + ci+1yiyi+1ci+1 + ciyiyi+1ci + cici+1yiyi+1ci+1ci.

Applying the anti-involution τ on the above equation yields yiyi+1 = yi+1yi.
(7) We have

yi(ei − ei + yi) = (yi + ciyici)(ei + yi − ciyici − cieici)
= yi(ei + yi) − ciyi(ei + yi)ci + ciyi(ei + yi)ci − ciciyi(ei + yi)cici.

Applying the anti-involution τ on the above equation and using (ei + yi)yi = yi(ei + yi)
(see [14, Lemma 3.3(4)]) yields (7).

(8) By [14, Lemma 3.3(1)], eiyi = ei(−Li + Li). So,

eiyi = eiyi + eiciyici = eiyi(1 + cici) = −ei(Li − Li)(1 + cici)
= −eiLi + eiLi − ei(Li − Li)cici
= −ei(Li + ciLici) + ei(Li − ciLici) = −ei(Li − Li).

(9) By [14, Lemma 3.3(5)], eisiyisi = siyisiei. So,

eisiyisi = eisiciyicisi + eisiyisi = ci+1eisiyisici+1 + siyisiei = siyisiei.

(10) We define mi = siyisi − si. By [14, Lemma 3.3(5)]), miyi = yimi. So,

yiỹi = (yi + ciyici)(si(yi + ciyici)si − (1 − cici+1)si)
=yimi + yi(siciyicisi + cici+1si) + ciyici(si(yi + ciyici)si − (1 − cici+1)si)
=yimi + ci+1yimici+1 + ciyicimi + ciyici(siciyicisi + cici+1si) (2.15)
=yimi + ci+1yimici+1 + ciyicisiyisi − ciyicisi − ciyici+1si + ciyicisiciyicisi

=yimi + ci+1yimici+1 + ciyimici − ciyicisi − cici+1yisiyisicici+1

=yimi + ci+1yimici+1 + ciyimici + ci+1ciyimicici+1.

Applying the anti-involution τ on (2.15) yields ỹiyi = yiỹi.
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(11) If k is odd, then

eiy
k
i ciei = eiy

k
i ciei

(5)= eiciy
k
i ei

(3)= −eiy
k
i ciei,

forcing eiyki ciei = 0. If k is even, then

eiy
k−1
i yi = eiy

k−1
i (yi + ei − ei) − eiy

k−1
i ei + eiy

k−1
i ei

(7)= ei(yi + ei − ei)yk−1
i − eiy

k−1
i ei + eiy

k−1
i ei. (2.16)

So, eiyk−1
i yiciei = eiyiy

k−1
i ciei. On the other hand, eiyk−1

i yiciei = −eiciy
k−1
i yiei =

eiciy
k
i ei and eiyiy

k−1
i ciei = −eiy

k
i ciei = −eiciy

k
i ei. So, eiyki ciei = 0 for even k.

(12) We have eky2n
k ek = 0 since

eky
2n
k ek = eky

2n
k c2kek

(5)= ekcky
2n
k ckek = ekcky

2n
k ckek

(3)= eky
2n
k c2kek = −eky

2n
k ek.

(13) If j < i, then eiciei,jciei = eiciei,jciei = eiei,jei = ei and eici(j, i)ciei =
eici(j, i)ciei = ei. So,

eiyiei = 2eiyiei = 2
i−1∑
j=1

ei(ei,j − (i, j))ei = 0. �

Corollary 2.10. There is a unique element ωa,k ∈ BCk−1,k−1 such that ekyakek = ωa,kek. 
Similarly, there is a unique element ωa,k ∈ BCk−1,k−1 such that ekykaek = ωa,kek. 
Moreover, ω2n,k = ω2n,k = 0.

Proof. The existence of an ωa,k follows from Proposition 2.7 and the uniqueness of such 
an element follows from Theorem 2.4. The second statement can be verified similarly. 
Finally, we have ω2n,k = ω2n,k = 0 by Lemma 2.9(12). �
Lemma 2.11. For n ∈ N, eiy2n+1

i =
∑n

j=0 a
(i)
2n+1,jeiy

2j+1
i for some a(i)

2n+1,j ∈ R[ω3,i, . . . ,
ω2n−1,i] such that

(1) a
(i)
2n+1,n = −1,

(2) a
(i)
2n+1,j = a

(i)
2n−1,j−1, 1 ≤ j ≤ n,

(3) a
(i)
2n+1,0 =

∑n−1
j=1 a

(i)
2n−1,jω2j+1,i.

Proof. When n = 0, we have ei(yi +yi) = 0 by Lemma 2.9(8). So, a(i)
1,0 = −1. In general, 

we have

eiy
2j−1
i y2

i = eiy
2j−1
i (yi + ei − ei)yi − eiy

2j−1
i eiyi (by Lemma 2.9(11))

= ei(yi + ei − ei)y2j−1
i yi + ω2j−1,ieiyi (by Lemma 2.9(7))

= −e y2jy + ω e y ( by Lemma 2.9(8)).
i i i 2j−1,i i i



M. Gao et al. / Journal of Algebra 525 (2019) 191–233 201
Similarly, using ω2j,i = 0 yields eiy2j
i yi = −eiy

2j+1
i . So, eiy2j−1

i y2
i = eiy

2j+1
i +w2j−1,ieiyi. 

By inductive assumption on n and ω1,i = 0, we have the result, immediately. �
Lemma 2.12. For positive integers n, eiy2n

i =
∑n

j=0 a
(i)
2n,jeiy

2j
i for some a(i)

2n,j ∈
R[ω3,i, . . . , ω2n−1,i] such that

(1) a
(i)
2n,n = 1,

(2) a
(i)
2n,j = a

(i)
2n−2,j−1, 1 ≤ j ≤ n,

(3) a
(i)
2n,0 =

∑n−1
j=1 a

(i)
2n−2,jω2j+1,i.

Proof. We have eiy
2j
i y2

i = −eiy
2j+1
i yi = eiy

2j+2
i + ω2j+1,iei. By inductive assumption 

on n and ω1,i = 0, we immediately have the result. �
We can assume k ≥ 2 (resp., n ≥ 2) in Lemma 2.13 since y1 = y1 = 0 (resp., 

ω1,k = ω1,k = 0 by Lemma 2.9(13)).

Lemma 2.13. We have ω2n−1,k ∈ R[ω3,k, . . . , ω2n−1,k] if k, n ∈ Z≥2. Furthermore, both 
ω2n−1,k and ω2n−1,k are central in BCk−1,k−1.

Proof. By Lemma 2.11 and inductive assumption on k, we have the first statement. 
To prove the second, note that any h ∈ {e1, s1, . . . , sk−2, c1} commutes with ek, yk. So, 
ek(hω2n−1,k) = ek(ω2n−1,kh). By Theorem 2.4, hω2n−1,k = ω2n−1,kh. Finally, we need 
to check that ek(hω2n−1,k) = ek(ω2n−1,kh) for any h ∈ {s1, . . . , sk−2, c1}. In this case, 
we use Lemma 2.11. More explicitly, we can use yk instead of yk in eky

2n−1
k ek. Thus 

hω2n−1,k = ω2n−1,kh, as required. �
In the following, we define

hk = yk + ek + ek, and hk = yk + ek − ek, for all admissible k. (2.17)

Lemma 2.14. For k, a ∈ Z≥1, we have

sky
a
k+1 = ha

ksk −
a−1∑
b=0

ha−1−b
k ybk+1 +

a−1∑
b=0

(−1)a−bckck+1h
a−b−1
k ybk+1,

where hk is given in (2.17).

Proof. It is easy to verify the result by induction on a. �
Lemma 2.15. Suppose 1 ≤ j ≤ k − 1. Define zj,k = sj,k−1hk−1sk−1,j , and zj,k =
sj,k−1hk−1sk−1,j , where hk−1 and hk−1 are given in (2.17). Then
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(1) zj,k =
∑k−1

�=1 ej,� −
∑

1≤s≤k−1,s �=j(s, j) + cj

(∑k−1
�=1 ej,� −

∑
1≤s≤k−1,s �=j(s, j)

)
cj,

(2) zj,k =
∑k−1

�=1 e�,j −
∑

1≤s≤k−1,s �=j(s, j) − cj

(∑k−1
�=1 e�,j −

∑
1≤s≤k−1,s �=j(s, j)

)
cj.

Proof. Easy exercise. �
Note that ω0,k = 0 and ω1,k = ω1,k = 0 (see Lemma 2.9(13)), and ekh = 0 for 

h ∈ BCk−1,k−1 if and only if h = 0. We will use these facts frequently in the proof 
of Lemma 2.16, where we use the terminology that a monomial in zj,k+1’s and zj,k+1’s 
is a leading term in an expression if it has the highest degree by defining deg zi,j =
deg zi,j = 1.

Lemma 2.16. For any positive integer n, ω2n+1,k+1 can be written as an R-linear combi-
nation of monomials in zj,k+1’s and zj,k+1’s for 1 ≤ j ≤ k such that the summation of 
the leading terms of ω2n+1,k+1 is 2 

∑k
j=1(−z2n

j,k+1 + z2n
j,k+1).

Proof. By Corollary 2.10 and Lemma 2.9(8), we have

ω2n+1,k+1ek+1 = ek+1y
2n+1
k+1 ek+1 = ek+1(Lk+1 − Lk+1)y2n

k+1ek+1. (2.18)

Note that (j, k + 1) = sj,ksksk,j and sj,k, sk,j commute with yk+1, ek+1, ck+1 (see 
Lemma 2.9(1) and (2.2)). Considering the right-hand side of (2.18) and expressing Lk+1
by (2.4), we see that a term of −ek+1Lk+1y

2n
k+1ek+1 becomes

− sj,kek+1(sky2n
k+1+ ck+1skck+1y

2n
k+1)ek+1sk,j = −2sj,kek+1(sky2n

k+1)ek+1sk,j

= −2sj,kek+1

{
h2n
k sk −

2n−1∑
b=0

h2n−b−1
k ybk+1 +

2n−1∑
b=0

(−1)2n−bckck+1h
2n−b−1
k ybk+1

}
ek+1sk,j

= −2sj,kh2n
k ek+1skek+1sk,j + 2sj,k

2n−1∑
b=0

h2n−b−1
k ek+1y

b
k+1ek+1sk,j (by Lemma 2.9(11))

= −2sj,kek+1

(
h2n
k −

2n−1∑
b=0

h2n−b−1
k ωb,k+1

)
sk,j .

By inductive assumption, the right-hand side of the above equation can be written as an 
R-linear combination of monomials with the required form such that the leading term is 
−2z2n

j,k+1. Finally, we consider terms in (2.18) concerning Lk+1, namely we need to deal 
with

ek+1(j, k+1)y2n
k+1ek+1 − ek+1ck+1(j, k+1)ck+1y

2n
k+1ek+1 = 2ek+1(j, k+1)y2n

k+1ek+1.

Applying τ on ek+1y
2n
k+1 and using Lemma 2.12 and inductive assumption on n, we can 

use y2n
k+1ek+1 to replace y2n

k+1ek+1 in ek+1(j, k+1)y2n
k+1ek+1 (by forgetting lower terms). 
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This enables us to consider ek+1(j, k+1)y2n
k+1ek+1 instead. As above, this term can be 

written as the required form with leading term 2z2n
j,k+1. The proof is completed. �

Lemma 2.17. For (a, k) ∈ Z≥0 × Z≥1, both ωa,k+1 and ωa,k+1 commute with yk+1, 
yk+1, cl, cl, l ≥ k + 1.

Proof. Since ωa,1 = ωa,1 = ω1,k = ω1,k = ω2a,k = ω2a,k = 0 for all admissible a, k, we 
can assume a, k ∈ Z≥2 and 2 � a. In order to verify that ωa,k+1 and ωa,k+1 commute 
with yk+1, by Lemmas 2.13, 2.15–2.16, it suffices to prove that yk+1 commutes with both 
zj,k+1 and zj,k+1 for 1 ≤ j ≤ k. By Lemma 2.15, zj,k+1 = zj,k+1 + cjzj,k+1cj , where

zj,k+1 =
k∑

�=1

ej,� −
∑

1≤s≤k,s �=j

(s, j),

which is zj,k+1 in [14, Lemma 3.9]. Obviously, ck+1zj,k+1 = zj,k+1ck+1. By Lemma 2.9(4), 
we have yk+1cj = cjyk+1. So,

zj,k+1yk+1 = zj,k+1(ck+1yk+1ck+1 + yk+1) + cjzj,k+1(ck+1yk+1ck+1 + yk+1)cj
= ck+1zj,k+1yk+1ck+1 + zj,k+1yk+1 + cjzj,k+1yk+1cj

+ cjck+1zj,k+1yk+1ck+1cj .

(2.19)

Recall that τ is the R-linear anti-involution in Lemma 2.2. By Definition 2.8 and 
Lemma 2.15, τ fixes both zj,k+1 and yk+1. So, yk+1zj,k+1 = τ(zj,k+1yk+1). Since 
yk+1zj,k+1 = zj,k+1yk+1 (see [14, Lemma 3.11]), we have zj,k+1yk+1 = yk+1zj,k+1 by 
(2.19). One can check zj,k+1yk+1 = yk+1zj,k+1 similarly via Definition 2.8 and the equa-
tion zj,k+1 = zj,k+1−cjzj,k+1cj . This proves that yk+1 commutes with ωa,k+1 and ωa,k+1. 
We remark that one can check both ωa,k+1 and ωa,k+1 commute with yk+1, similarly. 
By Lemma 2.15, one can easily check that zj,k+1 and zj,k+1 commute with cl and cl for 
all l ≥ k + 1. �
3. Affine walled Brauer–Clifford superalgebras

In this section, we assume that R is an integral domain containing ω1 and 2−1. 
Motivated by Definition 2.1 and Lemma 2.9, we introduce the notion of affine walled 
Brauer–Clifford superalgebra over R as follows.

Definition 3.1. The affine walled Brauer–Clifford superalgebra BCaff
r,t is the associa-

tive R-superalgebra generated by odd elements c1, . . . , cr, c1, . . . , ct and even elements 
e1, x1, x1, s1, . . . , sr−1, s1, . . . , st−1, and two families of even central elements ω2k+1, ωk, 
k ∈ Z≥1 subject to (2.1)–(2.3), (2.7), (2.8) and Definition 2.1(1)–(10) together with the 
following defining relations for all admissible i:
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(1) e1(x1 + x1) = (x1 + x1)e1 = 0,
(2) e1s1x1s1 = s1x1s1e1,
(3) x1(e1 +x1−c1e1c1) = (e1−c1e1c1 +

x1)x1,
(4) e1s1x1s1 = s1x1s1e1,
(5) e1x

2k+1
1 e1 = ω2k+1e1, ∀k ∈ N,

(6) e1x
2k
1 e1 = 0, ∀k ∈ N,

(7) e1x
k
1e1 = ωke1, ∀k ∈ Z>0,

(8) x1ci = cix1,
(9) x1ci = cix1,

(10) x1si = six1,
(11) x1si = six1.

Recall we have the notations ei,j in Definition 2.3 and ei,j in Definition 2.8. In par-
ticular, e1 = c1e1c1. For the simplification of presentation, we set ω2k = 0, ∀k ∈ N. The 
following result follows from Definition 3.1, immediately.

Lemma 3.2. There is an R-linear anti-involution σ : BCaff
r,t → BCaff

r,t , which fixes all 
generators of BCaff

r,t in Definition 3.1.

Lemmas 3.3 and 3.4 can be proven by arguments similar to those for Lemmas 2.11
and 2.12.

Lemma 3.3. For any n ∈ N, e1x
2n+1
1 =

∑n
j=0 a2n+1,je1x

2j+1
1 for some a2n+1,j ∈ BCaff

r,t

such that

(1) a2n+1,n = −1,
(2) a2n+1,j = a2n−1,j−1 for all 1 ≤ j ≤ n − 1,
(3) a2n+1,0 =

∑n−1
j=0 a2n−1,jω2j+1.

In particular, a2n+1,j ∈ R[ω3, . . . , ω2n−1], for all 0 ≤ j ≤ n.

Lemma 3.4. For any positive integer n, e1x
2n
1 =

∑n
j=0 a2n,je1x

2j
1 for some a2n,j ∈ BCaff

r,t

such that

(1) a2n,n = 1,
(2) a2n,j = a2n−1,j−1 for all 1 ≤ j ≤ n − 1,
(3) a2n,0 =

∑n−1
j=0 a2n−2,jω2j+1.

In particular, a2n,j ∈ R[ω3, . . . , ω2n−1], for all 0 ≤ j ≤ n.

Corollary 3.5. If e1 is R[ω3, ω5, . . . , ω1, ω2, . . .]-torsion-free, then ω2n+1 =∑n
i=0 a2n+1,iω2i+1 and ω2n = 0 for all n ∈ N. In particular, ω1 = −ω1.

Proof. By Definition 3.1(1), (ω1 + ω1)e1 = 0. If e1 is R[ω3, ω5, . . . , ω1, ω2, . . .]-torsion-
free, ω1 = −ω1. In general, by Lemma 3.3, e1x

2n+1
1 e1 =

∑n
j=0 a2n+1,je1x

2j+1
1 e1. So, 

ω2n+1 =
∑n

j=0 a2n+1,jω2j+1. Similarly, by Lemma 3.4 and Definition 3.1(6), ω2n =∑n
j=0 a2n,jω2j = 0. �
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Assumption 3.6. From here onwards, we always assume that ω2n = 0 and ω2n+1’s are 
given in Corollary 3.5. Otherwise, we would have e1 = 0 provided that R is a field, in 
which case, BCaff

r,t turns out to be HCaff
r �HCt

aff , the outer tensor product of two affine 
Hecke–Clifford superalgebras! We remark that

(x � y)(x1 � y1) = (−1)[y][x1]xx1 � yy1,

for any homogenous elements x, x1 ∈ HCaff
r and y, y1 ∈ HC

aff
t , where [x], called the 

parity of x, is 1 (resp., 0) if x is odd (resp., even).

Theorem 3.7. For any k ∈ Z>0, there is a superalgebra homomorphism Φk : BCaff
r,t →

BCr+k,t+k sending si, sj , e1, x1, x1, cl, cm, ωa, ωa to sk+i, sk+j , ek+1, yk+1, yk+1,

ck+l, ck+m, ωa,k+1, ωa,k+1 for all admissible a, i, j, l, m’s, respectively.

Proof. It is enough to verify the images of generators of BCaff
r,t satisfy the defining re-

lations for BCaff
r,t in Definition 3.1. We say Φk satisfies the relation if the images of 

generators satisfy this relation.
By Lemmas 2.15–2.17, the images of ωa and ωa commute with the images of other gen-

erators. By Corollary 2.5, Φk satisfies (2.1)–(2.3) and Definition 2.1(1)–(10). Φk satisfies 
(2.7) and (2.8) by Lemma 2.9(1), (3), (4), (10). Further, Φk satisfies Definition 3.1(1)–(4) 
by Lemma 2.9(7)–(9). In this case, we need (yk+1+yk+1)ek+1 = 0, which can be obtained 
by applying the anti-involution τ on Lemma 2.9(8). Φk satisfies Definition 3.1(5)–(7) by 
Corollary 2.10 and Lemma 2.9(11)–(13). Finally, Φk satisfies Definition 3.1(8)–(11) by 
Lemma 2.9(2), (5). �

In [14], two of the authors proved the freeness of the affine walled Brauer algebra 
via bases of infinitely many walled Brauer algebras. The key point is the existence of 
infinitely many homomorphisms between the affine walled Brauer algebra and walled 
Brauer algebras [14, Theorem 3.12]. In the current case, Theorem 3.7 is the counterpart 
of [14, Theorem 3.12]. Since ω1,k = 0 for all k, what we can do is to use Theorem 3.7 to 
prove the freeness of affine walled Brauer–Clifford superalgebras with parameter ω1 = 0. 
However, many affine walled Brauer–Clifford algebras which appear in the higher mixed 
Schur–Weyl–Sergeev dualities have non-zero parameter ω1. For details, see section 4. 
For this reason, we use level two walled Brauer–Clifford superalgebras (with special 
parameters) instead of walled Brauer–Clifford superalgebras later on. This is one of the 
points which is different from the work in [14].

In BCaff
r,t , we define xi, x′

i, xj and x′
j as in (2.9) for all admissible i and j.

Lemma 3.8. We have the following results for all admissible i and j:

(1) xici = −cixi and xici = −cixi, (3) xicj = cjxi and xicj = cjxi.
(2) xicj = cjxi, xicj = cjxi if i �= j,
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Proof. (1) and (2) follow from (2.2), (2.3), (2.7) and (2.8). (3) follows from Defini-
tion 3.1(8)–(11). �
Lemma 3.9. We have the following results for all admissible i, j:

(1) x′
i(x′

j+ei,j−ei,j) = (x′
j+ei,j−ei,j)x′

i,
(2) x′

j(x′
i+ei,j+ei,j) = (x′

i+ei,j+ei,j)x′
j,

(3) ei,j(x′
i + x′

j) = 0,

(4) (x′
i + x′

j)ei,j = 0,
(5) eix

′
i
k
ciei = 0, ∀k ∈ N,

(6) eix
′
i
k
ciei = 0, ∀k ∈ N.

Proof. Multiplying (1, i)(1, j) on both sides of Definition 3.1(3) yields (1). By Defini-
tion 3.1(1), (3), we know that x1(x1 + e1 + e1) = (x1 + e1 + e1)x1. So (2) can be proven 
similarly. Multiplying (1, i)(1, j) on both side of Definition 3.1(1) yields (3) and (4). 
We have cix′

i = −x′
ici (resp., cix′

i = x′
ici) by (2.5) and Lemma 3.8(1) (resp., Defini-

tion 3.1(8)–(11)). Also, (1) is the counterpart of Lemma 2.9(7). So, (5) and (6) can be 
verified by arguments similar to those in the proof of Lemma 2.9(11). We leave the details 
to the reader. �
Lemma 3.10. We have the following results for all admissible i, j, k, l:

(1) ei,kx
′
j = x′

jei,k, if i �= j,
(2) ei,kx

′
l = x′

lei,k, if k �= l,
(3) ei,j(x′

i)aei,j = ωaei,j, ∀a ∈ N,
(4) ei,j(x′

j)aei,j = ωaei,j , ∀a ∈ N.

Proof. We have e1x
′
2 = x′

2e1 by Definition 3.1(2). Multiplying (2, j) on both sides of 
the equation yields e1x

′
j = x′

je1. Since i �= j, multiplying (1, i)(1, k) on both sides of 
e1x

′
j = x′

je1 yields (1). (2) can be verified similarly. (3) and (4) follow from Defini-
tion 3.1(5)–(7). �

We consider BCaff
r,t as a filtrated superalgebra by setting

degsi = degsj = dege1 = degcn = degcm = degωa = degωa = 0 and degxk = degx� = 1,

for all admissible a, i, j, k, 	, m, n. Let (BCaff
r,t )(k) be the super R-submodule spanned by 

monomials with degrees less than or equal to k for k ∈ Z≥0. Then we have the following 
filtration

BCaff
r,t ⊃ . . . ⊃ (BCaff

r,t )(1) ⊃ (BCaff
r,t )(0) ⊃ (BCaff

r,t )(−1) = 0. (3.1)

Let gr(BCaff
r,t ) = ⊕i≥0(BCaff

r,t )[i], where (BCaff
r,t )[i] = (BCaff

r,t )(i)/(BCaff
r,t )(i−1). Then 

gr(BCaff
r,t ) is a Z-graded superalgebra associated to BCaff

r,t . We use the same symbols 
to denote elements in gr(BCaff

r,t ). Moreover, xi = x′
i and x′

j = xj in gr(BCaff
r,t ).
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Definition 3.11. We say that m is a regular monomial of BCaff
r,t if m =

xαdxβ
∏

n∈Z>0 ω
a2n+1
2n+1 , for some d ∈ S, a2n+1 ∈ N and (α, β) ∈ Nr × Nt, where S is 

given in (2.12), xα =
∏r

i=1 x
αi
i , xβ =

∏t
i=1 x

βi

i and all but finitely many a2n+1’s are 
zero.

Proposition 3.12. As an R-module, BCaff
r,t is spanned by all regular monomials in Defi-

nition 3.11.

Proof. Let M be the R-submodule of BCaff
r,t spanned by all regular monomials m in 

Definition 3.11. We want to prove

hm ∈ M for any generator h of BCaff
r,t . (3.2)

If so, we have M = BCaff
r,t since 1 ∈ M . In the following, we omit 

∏
n∈Z>0 ω

a2n+1
2n+1 in m

since any ω2n+1 is central in BCaff
r,t .

We prove (3.2) by induction on |α|. If |α| = 0, i.e., αi = 0 for all possible i’s, then 
(3.2) follows from Theorem 2.4 unless h = x1. In the later case, by (2.7), (2.8) and 
Lemma 3.8, we need to compute xke

f when 1 ≤ k ≤ t and f > 0. If k ∈ {1, 2, . . . , f}, 
by Lemma 3.9(4), we use −xk instead of xk since we work on the graded superalgebra 
gr(BCaff

r,t ). So, hm ∈ M . Otherwise, k > f . By Lemma 3.10(2), we can use efxk instead 
of xke

f . So, (3.2) follows from Lemma 3.8 and Theorem 2.4.
Suppose |α| > 0. By (2.7), (2.8), Lemma 3.8 and Theorem 2.4, we see that (3.2)

holds unless h ∈ {x1, e1}. Suppose h = x1. By Lemma 3.9(1) and (2), x1xi = xix1 in 
gr(BCaff

r,t ). So, we need to deal with xke
f when 1 ≤ k ≤ t. They are the cases that we 

have dealt with. So, x1m ∈ M .
Finally, we assume h = e1. If αi �= 0 for some i with 2 ≤ i ≤ r, then e1xi = xie1 in 

gr(BCaff
r,t ) (see Lemma 3.10(1)). By inductive assumption on |α|, we have (3.2). In order 

to finish the proof, it remains to consider the case that xα = xα1
1 such that α1 > 0. In 

this case,

m = xα1
1 cγd−1

1 efwd2c
δxβ ∈ M, (3.3)

where d1, d2 ∈ Df
r,t and β ∈ Nt and (γ, δ) ∈ Zr

2 × Zt
2. Write d1e1d

−1
1 = ei,j for some i, j. 

By (2.7) and inductive assumption on |α|, we can use d−1
1 xα1

i to replace xα1
1 d−1

1 in (3.3). 
So, we need to verify

ei,jx
α1
i cγefwd2c

δxβ ∈ M. (3.4)

By Lemma 3.9(3) and inductive assumption, it is enough to verify

ei,jx
α1
j cγefwd2c

δxβ ∈ M. (3.5)
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If j ≥ f +1, then (3.5) follows from Lemma 3.10(2) and Theorem 2.4. Otherwise, j ≤ f . 
If i = j, by inductive assumption, we use (xi+Li)α1 instead of xα1

i in eix
α1
i cγei. If γi = 0, 

then eix
α1
i ei = ωα1e1 in gr(BCaff

r,t ) (see Lemma 3.10(4)). If γi �= 0, then eix
α1
i ciei = 0 in 

gr(BCaff
r,t ) (see Lemma 3.9(5)). In any case, (3.5) follows from inductive assumption on 

|α|. Finally, we assume i �= j. If i �= k, then ei,jck = ckei,j . By inductive assumption, we 
need to consider ei,jxα1

i cγi

i ej = ei,jx
α1
i ejc

γi

i . Since

ei,jx
α1
i ej = ei,jejx

α1
i = (i, j)xα1

i ej = xα1
j (i, j)ej

in gr(BCaff
r,t ), by inductive assumption and our previous results on h ∈ {s1, . . . , sr−1, c1,

. . . , cr, x1}, we have (3.5). So (3.4) is true. This completes the proof. �
Definition 3.13. Let I be the two-sided ideal of BCaff

r,t generated by ω2k+1− ω̃2k+1, where 

ω̃2k+1 ∈ R for all k ∈ Z>0. Let B̃Cr,t = BCaff
r,t /I.

Definition 3.14. Let I be the two-sided ideal of B̃Cr,t generated by f(x1) and g(x1), 
where

f(x1) = xk
1

m∏
i=1

(x2
1 − u2

i ), and g(x1) = xk1
1

m1∏
j=1

(x2
1 − u2

j ), (3.6)

for some non-zero u1, . . . , um, u1, . . . , um1 ∈ R such that 	 = k + 2m = k1 + 2m1 and

e1f(x1) = (−1)ke1g(x1). (3.7)

The level 	 or cyclotomic walled Brauer–Clifford superalgebra BC�,r,t is the quotient 
algebra B̃Cr,t/I.

In section 6, we will explain the reason why f(x1) and g(x1) have to satisfy (3.6) and 
(3.7).

Definition 3.15. We say that m is a regular monomial of B̃Cr,t (resp., BC�,r,t) if it is of 
form xαdxβ , for some d ∈ S, and (α, β) ∈ Nr × Nt (resp. Zr

� × Zt
�), where S is given in 

(2.12).

Corollary 3.16. As R-modules, both B̃Cr,t and BC�,r,t are spanned by their regular mono-
mials.

Proof. By Proposition 3.12, B̃Cr,t is spanned by all its regular monomials. Let φ� :
B̃Cr,t � BC�,r,t be the canonical epimorphism. It is enough to verify that the image 
of a regular monomial m of B̃Cr,t can be expressed as a linear combination of regular 
monomials of BC�,r,t. If (α, β) ∈ Zr

� ×Zt
�, then the images of m is a regular monomial of 

BC�,r,t. Otherwise, either αi ≥ 	 or βj ≥ 	 for some possible i or j. Since B̃Cr,t inherits 
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the graded structure of BCaff
r,t , it results in a graded structure on BC�,r,t. So, either xαi

i

or xβj

j can be expressed as a linear combination of elements in BC�,r,t with lower degrees. 
Using these elements to replace either xαi

i or xβj

j in the image of m and considering the 

inverse images of such elements in B̃Cr,t, we see that the image of m can be expressed 
as a linear combination of regular monomials of BC�,r,t, as required. �
4. A basis of BC2,r,t with special parameters

Let g = q(n) be the queer Lie superalgebra of rank n over C. Then g has a basis 
ei,j = Ei,j + E−i,−j (even element), fi,j = Ei,−j + E−i,j (odd element) for i, j ∈ I+ =
{1, 2, ..., n}, where Ei,j is the 2n × 2n matrix with entry 1 at (i, j) position and zero 
otherwise for i, j ∈ I = I+ ∪ I−, and I− = −I+. Let V = Cn|n = V0 ⊕ V1 be the 
natural g-module (and the natural gln|n-module) with basis {vi | i ∈ I}, where gln|n is 
the general linear Lie superalgebra with basis {Ei,j | i, j ∈ I}. Then vi has the parity 
[vi] = [i] ∈ Z2, where [i] = 0 and [−i] = 1 for i ∈ I+. Let V ∗ be the linear dual space of 
V with dual basis {vi | i ∈ I}. Thus V ∗ is a left g-module with action

Ea,bvi = −(−1)[a]([a]+[b])δi,avb for a, b, i ∈ I. (4.1)

Let h = h0 ⊕ h1 be a Cartan subalgebra of g with even part h0 = span{ei,i | i ∈ I+} and 
odd part h1 = span{fi,i | i ∈ I+}. Let h∗0 be the dual space of h0 with {εi | i ∈ I+} being 
the dual basis of {ei,i | i ∈ I+}. Then an element λ ∈ h∗ (called a weight) can be written 
as

λ =
∑
i∈I+

λiεi = (λ1, ..., λn) with λi ∈ C. (4.2)

Let M be any g-module. For any r, t ∈Z≥0, set Mr,t = M⊗V ⊗r⊗(V ∗)⊗t. For convenience 
we denote the ordered set

J = {0} ∪ J1 ∪ J2, where J1 = {1, ..., r}, J2 = {1, ..., t}, (4.3)

and 0 ≺ 1 ≺ . . . ≺ r ≺ 1 ≺ . . . ≺ t. We write Mr,t as

Mr,t = ⊗
i∈J

Vi, where V0 = M , Vi = V if 0 ≺ i ≺ 1, and Vi = V ∗ if i � r, (4.4)

(hereafter all tensor products will be taken according to the order in J), which is a left 
U(g)⊗(r+t+1)-module (where U(g) is the universal enveloping algebra of g), with the 
action given by

(
⊗ gi

)(
⊗ xi

)
= (−1)

∑
i∈J

[gi]
∑
j≺i

[xj ]
⊗ (gixi) for gi ∈ U(g), xi ∈ Vi.
i∈J i∈J i∈J



210 M. Gao et al. / Journal of Algebra 525 (2019) 191–233
In order to prove a basis theorem for level 2 walled Brauer–Clifford superalgebra, 
we take n = 2m to be an even integer. We denote I+

1 = {1, ..., m}, I+
2 = m + I+

1 . 
Thus I+ = I+

1 ∪ I+
2 . For i ∈ I+

1 , we denote i• = i + m ∈ I+
2 . For i ∈ I+

2 , we denote 
i◦ = i −m ∈ I+

1 . Let M = Lλ be the finite dimensional simple g-module of type M with 
dominant highest weight

λ = (p, p−1, ..., p−n+1) for some p∈C such that p∈C\Z or p∈Z with p>n or p<0.

(4.5)

Then Endg(Lλ) is one dimensional. Denote by vλ a fixed highest weight vector of Lλ

with even parity, and (Lλ)λ the highest weight space of Lλ, which is 2m-dimensional 
with a basis

B1 = {bθvλ | bθ ∈ B0} with B0 =
{
bθ :=

∏
i∈I+

1

fθii,i
∣∣∣ θ = (θ1, ..., θm) ∈ Zm

2

}
, (4.6)

where the products are taken in any fixed order (changing the order only changes the 
vectors by a factor ±1). For i ∈ I+

2 , we have

fi,ivλ =

√
− p + i− 1
p + i◦ − 1 fi◦,i◦vλ. (4.7)

Let C be the PBW monomial basis of U(g− ⊕ h). We say a basis element a ∈ C has 
length 	(a) := k if a contains k factors; for instance, 	(bθ) = |θ|. For i ∈ Z≥0, let 
Ci = {a ∈ C | 	(a) = i}. Set

D =
{
uσ :=

∏
i∈I+

1

fσi
i•,i

∣∣∣σ=(σ1, ..., σm)∈Zm
2

}
⊂ C, and Di = D ∩ Ci. (4.8)

Let (Lλ)i be the subspace of Lλ spanned by cvλ for c ∈ C with 	(c) ≤ i. Set (Lλ)−1 = 0. 
Note that elements of g+ acting on Lλ send (Lλ)i to (Lλ)i−1.

Lemma 4.1. For i ∈ Z≥0, the set Divλ is C-linear independent under modulo (Lλ)i−1.

Proof. Assume c :=
∑

σ∈Zm
2 :|σ|=i aσu

σvλ ∈ (Lλ)i−1 for some aσ ∈ C with at least one 

aσ �= 0. Take a σ̃ ∈ Zm
2 such that aσ̃ �= 0. Assume σ̃� �= 0 for some 	 ∈ I+

1 . Applying 
f�,�• ∈ g+ to c, by moving f�,�• to the right until it meets vλ, using the commutation 
relation [f�,�• , fj•,j ] = δ� j(e�,� + e�•,�•) (which is a Cartan element commuting with fi•,i
for i �= 	), we can easily obtain f�,�•c =

∑
σ∈Zm:σ �=0 a

′
σ(2p − (	 + 	•))uσ−1�vλ ∈ (Lλ)i−2, 
2 �
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where a′σ = ±aσ, 1� = (δ1,�, ..., δm,�) ∈ Zm
2 . Note that 2p − (	 + 	•) �= 0 by (4.5). Now 

induction on |θ| gives that aσ̃ = 0, a contradiction with the assumption. �
For each i = 1, 2, ..., by Lemma 4.1, we can choose a maximal subset Ĉi of Ci satisfying 

the following conditions (i.e., we extend Di to a basis Ĉi of (Lλ)i modulo (Lλ)i−1, thus 
#Ĉi = dim(Lλ)i/(Lλ)i−1):

(C1) Ĉi ⊃ Di;
(C2) {uvλ | u ∈ Ĉi} is a C-linear independent subset of Lλ.

Then we have the following basis of Lλ,

Be := {wvλ |w ∈ Ĉ}, where Ĉ =
∞⋃
i=0

Ĉi. (4.9)

We say the basis element wvλ has length 	(wvλ) := 	(w). Then from our choice of Ĉi, 
we immediately have the following.

Lemma 4.2. Let α ∈ C be a monomial basis element of length j. Then αvλ is a combi-
nation of basis elements in Be with length ≤ j.

Take a basis BM of Mr,t, where

BM =
{
bM = b⊗ ⊗

i∈J1

vki
⊗ ⊗

i∈J2

vki

∣∣∣ b ∈ Be, ki ∈ I
}
. (4.10)

Introduce the following elements,

ei,j = Ei,j − E−i,−j , fi,j = E−i,j −Ei,−j ∈ gln|n,

Ω0 =
∑
i,j∈I

(−1)[j]Ei,j⊗Ej,i ∈ gl
⊗2
n|n, (4.11)

Ω1 =
∑

i,j∈I+

ei,j⊗ej,i−
∑

i,j∈I+

fi,j⊗fj,i ∈ g⊗gln|n.

For a, b ∈ J with a ≺ b, we define πa,b : U(g) ⊗ U(gln|n) → U(g) ⊗ U(gln|n)⊗(r+t) by

πa,b(x⊗y) = 1⊗ · · · ⊗1⊗x⊗1⊗ · · · ⊗1⊗y⊗1⊗ · · · ⊗1, (4.12)

where x and y are in the a-th and b-th tensors respectively. Similarly we have πa : U(g) →
U(g)⊗(r+t+1) which sends x to the a-th tensor.

Definition 4.3. We can use (4.12) to define the following elements in the endomorphism 
algebra EndU(g)(Mr,t)op,
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si = πi,i+1(Ω0)|Mr,t (1≤ i<r), sj = πj,j+1(Ω0)|Mr,t (1≤j<t),

x′
i = −π0,i(Ω1)|Mr,t (1≤ i≤r), x′

j = −π0,j(Ω1)|Mr,t (1≤j≤ t),

ei=−πi,i(Ω0)|Mr,t (1≤ i≤min{r, t}), ci=πi(c) (1≤ i≤r), ci=πi(c) (1≤ i≤ t), (4.13)

where c : V → V (resp., c : V ∗ → V ∗) is the automorphism such that c(v±i) = ±v∓i

(resp., c(v±i) = v∓i). Set x1 = x′
1, x1 = x′

1.

Observe that c2 = −1 and c2 = 1, and c, c correspond to maps c, c : I → I such that

c(±i) = c(±i) = ∓i for i ∈ I+, and c(vi) = [i]vc(i), c(vi) = vc(i) for i ∈ I. (4.14)

Lemma 4.4.

(a) The minimal polynomial f(x) of x1 with respect to Mr,t is x2 − p(p + 1).
(b) The minimal polynomial g(x) of x1 with respect to Mr,t is x2 − (p − n + 1)(p − n).
(c) We have e1x1e1 = −n(2p − n + 1)e1 with respect to Mr,t.

Proof. (a) We may assume r = 1, t = 0. Note that the only possible highest weight 
in the finite dimensional g-module Lλ ⊗ V is μ = λ + ε1, which is a typical dominant 
weight. Thus Lλ⊗V must be completely reducible, and thus a direct sum of finite copies 
of Lμ. Observe that the set {uθ⊗v±1 | uθ ∈ B1}, with 2m+1 elements, is a maximal set of 
C-linear independent highest weight vectors of weight μ. Since Lμ occupies 2m C-linear 
independent highest weight vectors, we see that Lλ ⊗ V = L⊕2

μ , which as a g-module is 
generated by v±μ := vλ⊗v±1. One can easily verify that v±μ x1 = ∓(p +1)v±μ ±f1,1v∓μ . Thus 
v+
μ , f1,1v−μ (resp., v−μ , f1,1v+

μ ) span a 2-dimensional x1-invariant subspace of Lλ ⊗ V , and 
the minimal polynomial f(x) of x1 in this subspace is x2 − p(p + 1). Since x1 commutes 
with the g-action and Lλ ⊗ V is generated by v±μ , we see f(x) is also the minimal 
polynomial of x1 in Mr,t.

(b) We can assume r = 0, t = 1. Similar to the arguments in (a), we have Lλ ⊗ V ∗ =
L⊕2
ν with highest weight ν = λ − εn (which is again a typical dominant weight) and two 

highest weight vectors v±ν := vλ ⊗ v±n. In addition, v±ν x1 = ±(p − n)v±ν + fn,nv∓ν . Thus 
the minimal polynomial g(x) of x1 is x2 − (p − n + 1)(p − n).

(c) We can assume r = t = 1. Then for a, b ∈ I, we have

(vλ ⊗ va ⊗ vb)e1x1e1 = (−1)[a]δab
∑
i∈I

(vλ ⊗ vi ⊗ vi)x1e1

= (−1)[a]δab
∑
i∈I

(−1)[i]+1((p+1−|i|)vλ ⊗ vi ⊗ vi
)
e1 =−n(2p−n+1)(vλ ⊗ va ⊗ vb)e1.

Since Lλ ⊗ V ⊗ V ∗ is generated by vλ ⊗ va ⊗ vb for a, b ∈ I, and e1, x1 commute with 
the g-action, we obtain (c). �
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Lemma 4.5. For k ∈ I+, we have

(vλ ⊗ v±k)x1 = ∓λkvλ ⊗ v±k ± fk,kvλ ⊗ v∓k ∓
∑
j<k

ek,jvλ ⊗ v±j ∓
∑
j<k

fk,jvλ ⊗ v∓j ,

(vλ ⊗ v±k)x1 = ±λkvλ ⊗ v±k + fk,kvλ ⊗ v∓k ±
∑
i>k

ei,kvλ ⊗ v±i +
∑
i>k

fi,kvλ ⊗ v∓i.

Proof. The result follows from the definitions of x1 and x1. �
For any a ∈ I, we set a+ = |a| ∈ I+. Then (4.14) gives

(c(a))+ = (c(a))+ = a+ for a ∈ I. (4.15)

Now we assume BC2,r,t is the level two walled Brauer–Clifford superalgebra such that 
x1, x1 satisfy the degree 2 polynomials in Lemma 4.4, and parameters satisfy

ω0 =0, ω1 =−2m(2p− 2m + 1), ωi=p(p + 1)ωi−2 for i≥2, (4.16)

where p ∈C\Z, or p ∈ Z with p > 2m or p < 0, and m ∈ Z>0 satisfies m ≥ 2(r + t). By 
Lemma 4.4 and Definition 3.1(1)(3), we have e1f(x1) = e1g(x1). We take n = 2m. Take 
the weight λ as in (4.5), then we can define the space Mr,t as in (4.4).

Proposition 4.6. There is a superalgebra homomorphism ϕ : BC2,r,t → Endg(Mr,t)op
such that ϕ sends the generators e1, x1, x1, si’s, sj’s, cm’s, cn’s to the same symbols 
defined in Definition 4.3.

Proof. By Lemma 4.4(a)–(b), we need to show the images of the generators satisfy the re-
lations in Definition 3.1. First it is easy to see that (2.1)–(2.3) and Definition 2.1 (1)–(10) 
are satisfied (cf. [9] or [3, Theorem 1.4]). Moreover, (2), (4), (8)–(11) in Definition 3.1
follows from Definition 4.3.

Let Ω0,i = π0,i(Ω1)|Mr,t , Si,j = πi,j(Ω0)|Mr,t and Ci = πi(C)|Mr,t for i, j ∈ J1 ∪ J2, 
where C =

∑
i∈I+ f i,i. Then ci = Ci, ci = Ci, si = Si,i+1, si = Si,i+1, e1 = −S1,1, 

x1 = −Ω0,1 and x1 = −Ω0,1. Direct calculations as in the proof of [8, Theorem 7.4.1]
show that

(a) Ω0,iCi = −CiΩ0,i, for i ∈ J1 ∪ J2,
(b) Si,i+1Ω0,iSi,i+1 = Ω0,i+1, for 1 ≤ i ≤ r − 1 or 1 ≤ i ≤ t− 1,
(c) Ω0,iΩ0,j − Ω0,jΩ0,i = (Ω0,j − Ω0,i)Si,j + (Ω0,j + Ω0,i)CiCjSi,j for i, j ∈ J1,
(d) Ω0,iΩ0,j − Ω0,jΩ0,i = (Ω0,j − Ω0,i)Si,j − (Ω0,j + Ω0,i)CiCjSi,j for i, j ∈ J2,
(e) Ω0,1Ω0,1 − Ω0,1Ω0,1 = (S1,1 − C1S1,1C1)Ω0,1 − Ω0,1(S1,1 − C1S1,1C1).

Thanks to (a)–(e), (2.7)–(2.8) and Definition 3.1(3) are satisfied. By definition of e1, we 
have e2

1 = 0. Moreover, from Lemma 4.4(a), (c), e1x
a
1e1 = ωae1 and (4.16) follows. So, 
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Definition 3.1(5)–(6) are satisfied. Direct calculation by using Lemma 4.5 shows that 
Definition 3.1(1) is satisfied. Finally, it follows from Lemma 4.4(b) and Definition 3.1(1) 
that e1x

a
1e1 = ωae1 for some ωa ∈ C. So, Definition 3.1(7) is satisfied. �

By Proposition 4.6, Mr,t is a right BC2,r,t-module. For any α, β ∈ Zr
2, α, β ∈ Zt

2, we 
define the following elements of BC2,r,t:

cα =
r∏

i=1
cαi
i , x′ β =

r∏
j=1

x
′ βj

j , cα =
t∏

i=1
cαi
i , x′ β =

t∏
j=1

x
′ βj

j , (4.17)

where the product in x′ β is written in the order x′ βr
r · · ·x′ β1

1 (thus x′
1 acts first on Mr,t) 

and the like for x′ β .

Theorem 4.7. The monomials

m := d−1
1 cαx′ βefx′ βcαwd2, (4.18)

with α, β ∈ Zr
2, α, β ∈ Zt

2 and d1, ef , w, d2 as in (2.12), are C-linearly independent 
elements of BC2,r,t.

Proof. Suppose there is a nonzero C-combination c :=
∑

m rm m of monomials (4.18)
being zero. We fix a monomial m̃ := d̃−1

1 cα̃x′ β̃ef̃x′ β̃cα̃w̃d̃2 in c with nonzero coefficient 
rm̃ �= 0 which satisfies the following conditions:

(i) |β̃| + |β̃| is maximal;
(ii) f̃ is minimal among all monomials satisfying (i).

We take the basis element v = vλ⊗⊗i∈J1vki
⊗⊗i∈J2vki

∈ BM (cf. (4.10)) such that 
(note that here is the place where we require condition that 2(r + t) ≤ m)

(1) for 1 ≤ i ≤ r, ki = i if β̃i = 0 and ki = −i• if β̃i = 1;
(2) for 1 ≤ i ≤ f̃ , ki = i;
(3) for f̃ < i ≤ t, ki = r + i if β̃i = 0 and ki = −(r + i•) if β̃i = 1.

Take

z := (v)cα̃d̃1c d̃
−1
2 w̃−1cα̃ ∈ Mr,t, (4.19)

ũ =
r∏

i=1
f β̃i

i•,i

t∏
i=1

f β̃i
r+i•,r+ivλ ∈ Be, (4.20)

ṽ = ũ⊗ vi⊗ ⊗ vr+i ∈ BM , (4.21)

i∈J2



M. Gao et al. / Journal of Algebra 525 (2019) 191–233 215
where the product in (4.20) is in the same order as in (4.8) and vi = vi1 ⊗ vi2 ⊗ . . .⊗ vir
such that

ij =

⎧⎨⎩ j, if either f̃ < j ≤ r or β̃j = 0 and j ≤ f̃ ;

−(r + j•), if j ≤ f̃ and β̃j = 1.

We want to prove that when write z as a combination of basis BM in (4.10), the coefficient 
χz
ṽ of ṽ is nonzero. Thus assume a monomial m in (4.18) appears in the expression of 

c with rm �= 0 and consider the following element,

z1 :=(v)cα̃d̃1m d̃−1
2 w̃−1cα̃ = (v)cα̃d̃1d

−1
1 cαx′ βefx′ βcαwd2d̃

−1
2 w̃−1cα̃

=
(
vλ⊗ ⊗

i∈J1

vcγi+α̃i (k
(i)d̃1d

−1
1

)⊗ ⊗
i∈J2

vk
(i)d̃1d

−1
1

)
x′ βefx′ βcαwd2d̃

−1
2 w̃−1cα̃, (4.22)

where γi = α(i)d̃1d
−1
1

, and where the last equation is understood as “equal up to a sign” 

(cf. (4.14)), which follows by noting that elements in Σr ×Σt have natural right actions 
on J1 ∪ J2 by permutations and c acts on I by (4.14). Write z1 as a C-combination of 
basis BM . If ṽ appears as a term with a nonzero coefficient in the combination, then we 
say that z1 produces ṽ.

Note that ũ has length |β| + |β|. By Definition 4.3 and from our choice of Be in (4.9), 
we see that factors of ũ can be only contributed by the actions of x′

i’s and x′
i’s, and each 

x′
i or x′

i can at most contribute one length of ũ by observing the following: if the first 
factor of a term in π0i(Ω1) for i ∈ J1 ∪ J2 acting on the first factor of an element in 
BM changes the first factor to a basis element in Be then this π0i(Ω1) may contribute 
one length, otherwise the first factor is changed to a combination of basis elements with 
length not increasing by Lemma 4.2. We see that z1 cannot produce a basis element with 
degree higher than |β| + |β|. Thus ṽ cannot be produced if |β| + |β| < |β̃| + |β̃|. So by 
condition (i), we can assume

|β| + |β| = |β̃| + |β̃|. (4.23)

Then f≥ f̃ by condition (ii).
For any basis element bM written as in (4.10), we say ki the i-th label of bM for 

i ∈ J1 ∪ J2. Note from (4.20) that all factors of ũ have the following form

fi•,i with i ∈ I+
1 . (4.24)

Thus when x′
i = −π0i(Ω1) for 1 ≤ i ≤ r is applied to the element inside the bracket, 

it can only change its i-th label, say ±i•, to ∓i. Since d̃1d
−1
1 only permutes labels and 

cγi+α̃i only changes labels up to a sign, in order for a term in (4.22) to contribute to 
χz1
ṽ , we need at least f pairs (i, j) ∈ J1 × J2 such that the i-th label ki and j-th label 

kj satisfy the condition k+
i = k+

j
or k+

i = k+
j

+ m. From our choice of the vector v, we 

must have f ≤ f̃ . Thus we can suppose f̃ = f by the fact that f ≥ f̃ .
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Set Jf = {i, i | 1 ≤ i ≤ f̃ = f} ⊂ J1 ∪ J2 (cf. (4.3)). If d1 �= d̃1, then by definition 
(2.11), we have

j̃ := (j)d̃1d
−1
1 /∈ Jf for some j ∈ Jf . (4.25)

Say j̃∈J1 (the proof is similar if j̃∈J2), then f <j̃≤r. Condition (1) shows that k+
j̃

= j̃

or k+
j̃

= m + j̃. Then conditions (2) and (3) show that there is no 	 ∈ J2 with k+
j̃

= k+
�

or 
k+
j̃

= k+
�

+m. Since all factors of ũ have the form (4.24), we see that z1 cannot produce 

the basis element ṽ. Thus we can suppose d̃1 = d1. Then cγi+α̃i(k(i)d̃1d
−1
1

) = cαi−α̃i(ki)
(note that c2 = id acting on I). If αi �= α̃i for some 1 ≤ i ≤ f , then cαi−α̃i(ki) = −ki and 
after applying x′ β to the element inside the bracket in (4.22), we obtain an element which 
satisfies the condition that either its i-th label is not i (in this case after we apply ef we 

obtain the zero element) or else its zero-th factor cannot contain the factor 
∏r

i=1 f β̃i

i•,i
. 

In any case we cannot obtain the element ṽ. Thus we can assume αi = α̃i for 1 ≤ i ≤ f . 
Similarly, we can assume αi = α̃i for f < i ≤ r, i.e., α = α̃.

By conditions (1) and (2), we see that if βi �= β̃i for some i with 1 ≤ i ≤ f , or 
βi = 1 > β̃i for some i ∈ J1, then again z1 cannot produce the basis element ṽ. Thus we 
suppose: βi = β̃i if 1 ≤ i ≤f , and βi ≤ β̃i for i ∈J1. If β̃i = 1 but βi = 0 for some i ∈ J1, 
then by (4.24), z1 can only produce some basis elements which have at least a tensor 
factor, say v�, with 	 = −(m + i) for some 1 ≤ i ≤ r, and thus ṽ cannot be produced. 
Hence we can suppose β = β̃. Dually, we can suppose β= β̃.

We have wd2d̃
−1
2 w̃−1 = d20d̃

−1
20 w

′, where d20 = wd2w
−1, d̃20 = wd̃2w

−1 and w′ =
ww̃−1. Note that w′ ∈ Sr−f×St−f , which only permutes elements of (J1∪J2)\Jf . We see 
that if d20 �= d̃20, then as in (4.25), there exists some j ∈ Jf with j̃ := (j)d20d̃

−1
20 w

′ /∈ Jf , 
thus ṽ cannot be produced. So assume d20 = d̃20. Similarly we can suppose w′ = 1. Then 
the same arguments after (4.25) show that we can assume α = α̃.

The above has in fact proven that if the coefficient χz1
ṽ is nonzero then z1 in (4.22)

must satisfy (d1, α, β, f, β, α, w, d2) = (d̃1, α̃, β̃, f̃ , β̃, α̃, w̃, d̃2), i.e., z1 = (v)m̃ . In this 
case, one can easily verify that χz1

ṽ =±1. This proves that z defined in (4.19) is nonzero, 
a contradiction. The theorem is proven. �
Corollary 4.8. BC2,r,t has a C-basis which consists of all regular monomials of it.

Proof. We have the result immediately from Corollary 3.16 and Theorem 4.7. �
5. Homomorphisms between B̃Cr,t and BC2,r+k,t+k

In this section, we generalize Theorem 3.7 so as to establish infinitely many homo-
morphisms from BCaff

r,t to BC2,r+k,t+k for all positive integers k, where BC2,r+k,t+k

are level two walled Brauer–Clifford superalgebras which appear in the higher level 
mixed Schur–Weyl–Sergeev duality in section 4. As an application, we prove that BCaff

r,t
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has R-basis which consists of all regular monomials in Definition 3.11. Recall x′
i, x

′
j in 

(2.9).

Lemma 5.1. For all admissible i, j, we have sjx′
i = x′

isj, sjx′
i = x′

isj, x′
icj = cjx

′
i and 

x′
icj = cjx

′
i in BCaff

r,t .

Proof. Easy exercises. �
Lemma 5.2. Recall yi and yj in Definition 2.8. The following results hold in BCaff

r,t for 
all admissible i, j:

(1) x′
iyi = yix

′
i,

(2) x′
iyi = yix

′
i,

(3) x′
i+1yi = yix

′
i+1,

(4) x′
i+1yi = yix

′
i+1,

(5) (x′
i+1 + yi+1)x′

j = x′
j(x′

i+1 + yi+1), if 
j ≤ i,

(6) (x′
i+1 + yi+1)x′

j = x′
j(x′

i+1 + yi+1), if 
j ≤ i,

(7) (x′
i+1 + yi+1)x′

j = x′
j(x′

i+1 + yi+1), if 
j ≤ i,

(8) (x′
i+1 + yi+1)x′

j = x′
j(x′

i+1 + yi+1), if 
j ≤ i.

Proof. By symmetry, it is enough to prove (1), (3), (5) and (6).
(1) If j ≤ i − 1, then x′

iej,i = ej,ix
′
i, x′

icj = cjx
′
i, and sjx′

i = x′
isj by Lemmas 3.10(1) 

and 5.1. So,

x′
iyi = x′

i

(i−1∑
j=1

(ej,i − ej,i) − Li

)
= yix

′
i.

One can check (3) via Definition 2.8 similarly.
(5) By Lemmas 3.9(1), 3.10(1)–(2), x′

j(x′
i+1+ej,i+1−ej,i+1) = (x′

i+1+ej,i+1−ej,i+1)x′
j

and x′
jes,i+1 = es,i+1x

′
j and x′

jes,i+1 = es,i+1x
′
j whenever j �= s. Since x′

jLi+1 = Li+1x
′
j , 

we have

(x′
i+1 + yi+1)x′

j =
(
x′
i+1 + ej,i+1 − ej,i+1 +

∑
1≤s≤i,s �=j

(es,i+1 − es,i+1) − Li+1

)
x′
j

= x′
j

(
x′
i+1 + ej,i+1 − ej,i+1 +

∑
1≤s≤i,s �=j

(es,i+1 − es,i+1) − Li+1

)
= x′

j(x′
i+1 + yi+1).

(6) By (2.7), (2.10) and Lemma 3.10(1), we have

x1(x′
i+1 + yi+1) = x1

(
xi+1 +

i∑
j=1

(ei+1,j + ei+1,j)
)

=
(
xi+1 +

i∑
j=1

(ei+1,j + ei+1,j)
)
x1

= (x′
i+1 + yi+1)x1.

Applying (1, j) on both sides of the above equation yields (6). �
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For the simplification of notation, we define

zi = x′
i + yi and zj = x′

j + yj for all admissible i and j. (5.1)

Lemma 5.3. The following results hold in BCaff
r,t for all admissible i, j:

(1) sjzi = zisj, sjzi = zisj, if j �=
i − 1, i,

(2) sjzi = zisj, sjzi = zisj, if j �= i −1,
(3) zici = −cizi, zici = −cizi,
(4) zicj = cjzi, zicj = cjzi, if i �= j,
(5) zicj = cjzi, zicj = cjzi, if i ≤ j,
(6) zi(ei + zi − ei) = (ei + zi − ei)zi,
(7) eizi = −ei(xi + Li), eizi = ei(xi +

Li),

(8) eisizisi = sizisiei, ejsjzjsj =
sjzjsjej,

(9) ziz̃i = z̃izi,
(10) ziz̃i = z̃izi,
(11) eiziei = eix

′
iei = ω1ei,

(12) eiz
k
i ciei = 0, ∀k ∈ N,

(13) eiz
2n
i ei = 0, ei(zi)2nei = 0 ∀n ∈ N,

where z̃i = (sizisi − (1 − cici+1)si) and z̃i = (sizisi − (1 + cici+1)si).

Proof. (1)–(5) follow from Lemma 2.9(1)–(5), Lemma 5.1, (2.7) and (2.8). (6) follows 
from Lemmas 2.9(7), 3.9(1), 5.2(1)–(2). (7) follows from Lemmas 2.9(8), 3.9(3)–(4). 
(8) follows from Lemmas 2.9(9), 3.10(1). Multiplying (2, i + 1)(1, i) on both sides of 
x1x2 = x2x1 (see (2.7)) yields

x′
i(x′

i+1 − (1 − cici+1)si) = (x′
i+1 − (1 − cici+1)si)x′

i. (5.2)

Now, (9) follows from (5.2), Lemmas 2.9(10), 5.2(3)–(4). We leave (10) to the reader 
since it can be verified, similarly. (11) follows from Lemmas 2.9(13), 3.10(3). Via (6), one 
can prove (12) by arguments similar to those for Lemma 2.9(11). Finally, one can verify 
(13) by arguments similar to those for Lemma 2.9(12). �

From here to the end of Theorem 5.13, we assume that R = C. Also, BC2,r,t is one of 
those which appear in the higher level mixed Schur–Weyl–Sergeev duality in section 4.

Lemma 5.4. The ekBC2,k,k is the left BC2,k−1,k−1-module generated by ekc
σ1
k x′ σ2

k sk,jsk,l
for all σ1, σ2 ∈ Z2 and 1 ≤ j, l ≤ k, where BC2,k−1,k−1 is the subalgebra of BC2,k,k
generated by e1, c1, c1, x1, x1, s1, . . . , sk−2 and s1, . . . , sk−2.

Proof. This result, which is a counterpart of Lemma 2.6, can be proven similarly. �
Proposition 5.5. Recall zk and zk in (5.1). We have:

(1) ekBC2,k,kek = ekBC2,k−1,k−1,
(2) There is a unique ξa,k (resp., ξa,k) in BC2,k−1,k−1 such that ekzakek = ξa,kek (resp., 

ekz
a
kek = ξa,kek). Moreover, ξ2n,k = ξ2n,k = 0, and ξ1,k = ω1.
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Proof. (1) follows from Lemma 5.4 (see the proof of Proposition 2.7) and (2) follows 
from (1), Corollary 4.8 for BC2,k,k and Lemma 5.3(11), (13). �

Lemmas 5.6 and 5.7 can be proven by arguments similar to those for Lem-
mas 2.11–2.12.

Lemma 5.6. For any n ∈ N, eiz2n+1
i =

∑n
j=0 a

(i)
2n+1,jeiz

2j+1
i for some a(i)

2n+1,j ∈
R[ξ3,i, . . . , ξ2n−1,i] such that

(1) a
(i)
2n+1,n = −1,

(2) a
(i)
2n+1,j = a

(i)
2n−1,j−1 for all 1 ≤ j ≤ n − 1,

(3) a
(i)
2n+1,0 =

∑n−1
j=0 a

(i)
2n−1,jξ2j+1,i.

Lemma 5.7. For any positive integer n, eiz2n
i =

∑n
j=0 a

(i)
2n,jeiz

2j
i for some a(i)

2n,j ∈
R[ξ3,i, . . . , ξ2n−1,i] such that

(1) a
(i)
2n,n = 1,

(2) a
(i)
2n,j = a

(i)
2n−1,j−1 for all 1 ≤ j ≤ n − 1,

(3) a
(i)
2n,0 =

∑n−1
j=0 a

(i)
2n−2,jξ2j+1,i.

In Lemma 5.8, we can assume k ≥ 2 and n ≥ 1 since zk = x′
k + yk, zk = x′

k + yk, 
ξ1,k = ω1 and ξ1,k = −ω1 by Lemma 5.3(11).

Lemma 5.8. If (k, n) ∈ Z≥2×Z≥1, then ξ2n+1,k ∈ R[ξ3,k, . . . , ξ2n+1,k]. Furthermore, both 
ξ2n+1,k and ξ2n+1,k are central in BC2,k−1,k−1.

Proof. The first statement follows from Lemma 5.6. We have sjzk = zksj and cjzk = zkcj
for all j ≤ k−1 by Lemma 5.3(1)–(4). Since yk =

∑k−1
i=1 (ek,i +ek,i) −Lk, zk = x′

k +yk =
xk +

∑k−1
i=1 (ek,i + ek,i). By (2.7) and Lemma 3.10(1) and (2), x1zk = zkx1 for k ≥ 2. 

Obviously, e1 commutes with x′
k and ek,i, ek,i, ck, (k, i) whenever i �= 1 and k ≥ 2. Since 

e1ek,1 = e1(k, 1), we have e1zk = zke1.
We have proven that h commutes with ek, zk for any h ∈ {e1, si, cj , x1 | 1 ≤ i ≤

k − 2 , 1 ≤ j ≤ k − 1}. So ek(hξa,k) = ek(ξa,kh). By Corollary 4.8 and Proposi-
tion 5.5, hξ2n+1,k = ξ2n+1,kh. Finally, we need to check ek(hξa,k) = ek(ξa,kh) for any 
h ∈ {si, cj , x1 | 1 ≤ i ≤ k − 2 , 1 ≤ j ≤ k − 1}. In this case, we use Lemma 5.6 so as to 
use zk instead of zk in ekz

2n+1
k ek. Therefore, hξ2n+1,k = ξ2n+1,kh, as required. �

Lemma 5.9. For k, a ∈ Z≥1, we have

skz
a
k+1 = ha

ksk −
a−1∑
b=0

ha−1−b
k zbk+1 +

a−1∑
b=0

(−1)a−bckck+1h
a−b−1
k zbk+1, (5.3)

where hk = zk + ek + ek.
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Proof. The result can be easily checked by induction on a. �
Recall zi, zj in (5.1) for all admissible i and j. For all 1 ≤ j ≤ k − 1, define

pj,k = sj,k−1(zk−1 + ek−1 + ek−1)sk−1,j , and

pj,k = sj,k−1(zk−1 + ek−1 − ek−1)sk−1,j . (5.4)

Note that ξ0,k = 0, and ekh = 0 for h ∈ BC2,k−1,k−1 if and only if h = 0. We will use this 
fact freely in the proof of Lemma 5.10, where we use the terminology that a monomial 
in pj,k+1’s, pj,k+1’s, x′

j ’s and x′
j ’s is a leading term in an expression if it has the highest 

degree by defining deg pi,j = deg pi,j = deg x′
j = deg x′

j = 1.

Lemma 5.10. For any positive integer n, ξ2n+1,k+1 can be written as an R-linear combi-
nation of monomials in pj,k+1, pj,k+1, x′

j and x′
j for 1 ≤ j ≤ k such that the summation 

of leading terms of ξ2n+1,k+1 is −2 
∑k

j=1(p2n
j,k+1 + p2n−1

j,k+1x
′
j − p2n

j,k+1 − p2n−1
j,k+1x

′
j).

Proof. We have x2
1 = p(p + 1) and x2

1 = (p −n + 1)(p − n) in BC2,r,t by Lemma 4.4. So,

ξ2n+1,k+1ek+1
Proposition 5.5= ek+1z

2n+1
k+1 ek+1 = ek+1yk+1z

2n
k+1ek+1 + ek+1x

′
k+1z

2n
k+1ek+1

=ek+1yk+1z
2n
k+1ek+1 + ek+1(x′

k+1)2z2n−1
k+1 ek+1 + ek+1x

′
k+1yk+1z

2n−1
k+1 ek+1

=ek+1yk+1z
2n
k+1ek+1 + p(p + 1)ek+1z

2n−1
k+1 ek+1 − ek+1x

′
k+1yk+1z

2n−1
k+1 ek+1

(by Lemma 3.9(3))

=ek+1yk+1z
2n
k+1ek+1 + p(p + 1)ek+1z

2n−1
k+1 ek+1 + ek+1yk+1x

′
k+1z

2n−1
k+1 ek+1

(Lemmas 2.9(8), 5.2(2))

=ek+1(−Lk+1 + Lk+1)z2n
k+1ek+1 + p(p + 1)ξ2n−1,k+1ek+1

+ ek+1(Lk+1 − Lk+1)x′
k+1z

2n−1
k+1 ek+1.

(5.5)

Recall hk = zk + ek + ek in (5.3). Considering the right-hand side of (5.5) and expressing 
Lk+1 by (2.8), using (j, k + 1) = sj,ksksk,j and the fact that sj,k, sk,j commute with 
x′
k+1, yk+1, ek+1, we see that a term in the linear combination of ek+1Lk+1z

2n
k+1ek+1

becomes

sj,kek+1skz
2n
k+1ek+1sk,j+ sj,kek+1ck+1skck+1z

2n
k+1ek+1sk,j . (5.6)

Since ck+1x
′
k+1 = −x′

k+1ck+1 and ck+1yk+1 = −yk+1ck+1, we have ck+1z
2n
k+1 = z2n

k+1ck+1. 
Note that ek+1ck+1 = ek+1ck+1, and ck+1 commutes with sk, x′

k+1 and yk+1. So
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sj,kek+1ck+1skck+1z
2n
k+1ek+1sk,j = sj,kek+1

(
skz

2n
k+1

)
ek+1sk,j

(5.3)= sj,kek+1

(
h2n
k sk −

2n−1∑
b=0

h2n−b−1
k zbk+1 + (−1)b

2n−1∑
b=0

ckck+1h
2n−b−1
k zbk+1

)
ek+1sk,j

=sj,kh
2n
k sk,jek+1 − sj,k

2n−1∑
b=0

h2n−b−1
k sk,jξb,k+1ek+1 (by Lemma 5.3(12)).

(5.7)

By induction assumption, the leading terms of ξb,k+1 are of degree b − 1. So, the leading 
term of sj,kek+1

(
skz

2n
k+1

)
ek+1sk,j is p2n

j,k+1 and hence −ek+1Lk+1z
2n
k+1ek+1 contributes 

to the leading terms −2 
∑k

j=1 p
2n
j,k+1.

We compute ek+1Lk+1x
′
k+1z

2n−1
k+1 ek+1. A term of it becomes 2sj,kek+1skx

′
k+1z

2n−1
k+1 ×

ek+1sk,j since

ek+1ck+1skck+1x
′
k+1z

2n−1
k+1 ek+1 = ek+1skx

′
k+1z

2n−1
k+1 ek+1.

Thus, it is enough to compute the leading terms of sj,kek+1skx
′
k+1z

2n−1
k+1 ek+1sk,j . Since 

x′
k commutes with zk+1 and ek+1, and ek+1skx

′
k+1 = ek+1x

′
k+1sk = −ek+1x

′
k+1sk =

−ek+1skx
′
k, we have

sj,kek+1skx
′
k+1z

2n−1
k+1 ek+1sk,j = −sj,kek+1skz

2n−1
k+1 ek+1sk,jx

′
j .

By (5.7), sj,kek+1skx
′
k+1z

2n−1
k+1 ek+1sk,j contributes to the leading term p2n−1

j,k+1x
′
j whose 

degree is 2n. Finally, we need to compute the leading terms of ek+1Lk+1z
2n
k+1ek+1

and −ek+1Lk+1x
′
k+1z

2n−1
k+1 ek+1. By Lemma 5.7, one can use z2n

k+1 to replace z2n
k+1 in 

ek+1Lk+1z
2n
k+1ek+1. Thus, ek+1Lk+1z

2n
k+1ek+1 contributes to the leading terms p2n

j,k+1, 1 ≤
j ≤ k. Similarly, a term of ek+1Lk+1x

′
k+1z

2n−1
k+1 ek+1 is of form x′

jek+1(j, k + 1)z2n−1
k+1 ek+1

whose leading term p2n−1
j,k+1x

′
j is of degree 2n. The proof is completed. �

Lemma 5.11. For a ∈ Z≥0, k ∈ Z≥1, both ξa,k+1 and ξa,k+1 commute with x′
k+1 + yk+1

and x′
k+1 + yk+1.

Proof. By Proposition 5.5, we can assume that a = 2n + 1 and n ≥ 1. By Lemma 5.10, 
ξ2n+1,k can be written as linear combinations of monomials in pj,k+1, pj,k+1, x′

j , and x′
j

for 1 ≤ j ≤ k. From (5.4),

pj,k+1 = x′
j + zj,k+1, and pj,k+1 = x′

j + zj,k+1, (5.8)

where zj,k+1, zj,k+1 are defined in Lemma 2.15. So, it is enough to prove that zj,k+1, 
zj,k+1, x′

j and x′
j commute with x′

k+1 + yk+1 if 1 ≤ j ≤ k. By Lemma 5.2(5)–(6), both 
x′
j and x′

j commute with x′
k+1 + yk+1. Finally, zj,k+1, zj,k+1 commute with x′

k+1 + yk+1
since
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• both zj,k+1 and zj,k+1 commute with yk+1 and yk+1 (see the proof of Lemma 2.17),
• zj,k+1 and zj,k+1 are linear combinations of elements which commute with both x′k+1

and x′
k+1, by Lemmas 2.15, 3.10(1)–(2), and 5.1 and (2.7) and (2.8).

This proves that ξa,k+1 commutes with x′
k+1 + yk+1 and x′

k+1 + yk+1 and so is ξa,k+1 by 
Lemma 5.6. �
Lemma 5.12. For a ∈Z≥0, k ∈Z≥1, both ξ2a+1,k+1 and ξ2a+1,k+1 commute with cj and 
cj if j ≥ k + 1.

Proof. We have proven that both zj,k+1 and zj,k+1 commute with cj and cj if j ≥ k+1 in 
the proof of Lemma 2.17. If j ≤ k, then x′

j and xj commute with cl and cl for l ≥ k + 1, 
by Lemma 5.1, (2.7) and (2.8). Now, the result follows from (5.8) and Lemma 5.10, 
immediately. �

In Theorem 5.13, we assume the ground field is C since we use level two walled Brauer–
Clifford superalgebras in section 4. After we have proven the freeness of cyclotomic walled 
Brauer–Clifford superalgebras in section 6, we know that Theorem 5.13 is available over 
an integral domain R containing 1/2.

Theorem 5.13. For any k ∈ Z>0, there is a superalgebra homomorphism φk : BCaff
r,t →

BC2,r+k,t+k sending ω2n+1, ω2n+1, e1, si, sj , cl, cm, x1, x1 to ξ2n+1,k+1, ξ2n+1,k+1, ek+1,

sk+i, sk+j , ck+l, ck+m, zk+1, zk+1 for all admissible i, j, l, m, n, respectively.

Proof. It is enough to verify the images of generators of BCaff
r,t satisfy the defining rela-

tions for BCaff
r,t in Definition 3.1. If so, then φk is an algebra homomorphism. Since φk

sends even (resp., odd) generators to even (resp., odd) elements in BC2,r+k,t+k, φk is a 
superalgebra homomorphism.

By Corollary 2.5, φk satisfies (2.1)–(2.3) and Definition 2.1(1)–(10). By Lemma 5.3(1), 
(3), (9), (10), φk satisfies (2.7) and (2.8). Applying the anti-involution σ on Lemma 2.9(7), 
we see that φk satisfies the Definition 3.1(1). By Lemma 5.3(8), (6) (resp., (11)–(13)), φk

satisfies Definition 3.1(2)–(4) (resp., (5)–(7)). Finally, φk satisfies Definition 3.1(8)–(11) 
by Lemma 5.3(2), (5). �

The following result is a counterpart of [14, Theorem 4.14].

Theorem 5.14. Suppose R is a domain which contains 2−1 and ω1. Then BCaff
r,t is free 

over R spanned by all regular monomials in Definition 3.11. In particular, BCaff
r,t is of 

infinite rank.

Proof. By Proposition 3.12, it is enough to prove that M , the set of all regular mono-
mials of BCaff

r,t , is linear independent over Z[ω1, 2−1], where ω1 is an indeterminate. By 
fundamental theorem on algebras, it suffices to prove it for sufficiently many ω1’s. This 
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can be done by choosing ω1 as in (4.16). So, it is enough to prove that M is linear 
independent over C for infinitely many ω1’s in (4.16).

By Lemma 3.8(1)–(3) and Definition 3.11, we assume that a regular monomial m of 
BCaff

r,t is of form

m = cαxβd−1
1 efwd2x

γcδ
∏

n∈Z>0

ω
a2n+1
2n+1 , (5.9)

where (α, δ) ∈ Zr
2×Zt

2, (β, γ) ∈ Nr×Nt, d1, d2 ∈ Df
r,t, w ∈ Σr−f×Σt−f , 0 ≤ f ≤ min{r, t}

and all but finitely many a2n+1’s are zero. So, it is equivalent to prove that the above 
regular monomials are linear independent. If it were false, then there is a finite subset 
S ⊂ M such that 

∑
m∈S rmm = 0 and rm �= 0 for all m ∈ S. For each S, we set

k̃ = max
{
|β| +

∑
n

(2n + 1)a2n+1 | cαxβd−1
1 efwd2x

γcδ
∏

n∈Z>0

ω
a2n+1
2n+1 ∈ S

}
,

k̂ = max
{
|γ| +

∑
n

(2n + 1)a2n+1 | cαxβd−1
1 efwd2x

γcδ
∏

n∈Z>0

ω
a2n+1
2n+1 ∈ S

}
.

(5.10)

If k̃ ≥ k̂, we define k = k̃ and

f0 = min
{
f | cαxβd−1

1 efwd2x
γcδ

∏
n∈Z>0

ω
a2n+1
2n+1 ∈ S, |β| +

∑
n

(2n + 1)a2n+1 = k
}
,

k1 = max
{
|γ| | cαxβd−1

1 ef0wd2x
γcδ

∏
n∈Z>0

ω
a2n+1
2n+1 ∈ S, |β| +

∑
n

(2n + 1)a2n+1 = k
}
.

(5.11)

If k̃ < k̂, we define k = k̂ and

f0 = min
{
f | cαxβd−1

1 efwd2x
γcδ

∏
n∈Z>0

ω
a2n+1
2n+1 ∈ S, |γ| +

∑
n

(2n + 1)a2n+1 = k
}
,

k1 = max
{
|β| | cαxβd−1

1 ef0wd2x
γcδ

∏
n∈Z>0

ω
a2n+1
2n+1 ∈ S, |γ| +

∑
n

(2n + 1)a2n+1 = k
}
.

(5.12)

Let φk :BCaff
r,t→BC2,r+k,t+k(ω1) be the superalgebra homomorphism in Theorem 5.13. 

Since xi = x′
i − Li and xi = x′

i − Li,

φk(xi) =
k∑

j=1
(ek+i,j + ek+i,j) + x′

k+i − Lk+i, and

φk(xi) =
k∑

j=1
(ej,k+i − ej,k+i) + x′

k+i − Lk+i. (5.13)
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Using Lemma 5.10 to express ξ2n+1,k+1 for n ∈ Z≥1, we see that some terms of φk(m) are 
of forms (we will see in the next paragraph that other terms of φk(m) will not contribute 
to our computations)

r∏
i=1

cαi

i+k

r∏
i=1

(k+i, i1) · · · (k+i, iβi
)φk(d−1

1 efwd2)
t∏

j=1
(k+j, j1) · · · (k+j, jγj

)
t∏

j=1
c
δj
j+k

∏
n≥1

c2n+1,

(5.14)

where c2n+1, which comes from ξ2n+1,k+1, ranges over products of a2n+1 disjoint cycles 
in Σk (or Σk) such that each cycle is of length 2n + 1.

By Theorem 4.7, BCr,t is a subalgebra of BC2,r,t and so is the walled Brauer alge-
bra, say Br,t(0) which is isomorphic to the subalgebra generated by e1, s1, . . . , sr−1 and 
s1, . . . , st−1. Similarly, we have the subalgebra Br+k,t+k(0) of BC2,r+k,t+k. It is known 
that Br,t(0) can be defined by so called (r, t)-walled Brauer diagrams. Each of them is a 
diagram with (r+t) vertices on the top and bottom rows, and vertices on both rows are 
labeled from left to right by r, . . . , 2, 1, 1, 2, . . . , t. Every vertex i ∈{1, 2, . . . , r} (resp., i∈
{1, 2, . . . , t}) on each row must be connected to a unique vertex j (resp., j) on the same 
row or a unique vertex j (resp., j) on the other row. The pairs [i, j] and [i, j] are called 
vertical edges, and the pairs [i, j] and [i, j] are called horizontal edges. By definition, a 
φk(d−1

1 efwd2) in (5.14) corresponds to a unique (r + k, t + k)-walled Brauer diagram 
such that [i, i] and [j, j] are its vertical edges for all 1 ≤ i, j ≤ k (see e.g. [14]). We call 
the terms of the form (5.14) the leading terms if

(i) k = |β| +
∑

n(2n + 1)a2n+1 if k̃ ≥ k̂ and k = |γ| +
∑

n(2n + 1)a2n+1 if k̃ < k̂. 
(cf. (5.10)),

(ii) the corresponding f in (5.14) is f0 in (5.12),
(iii) |γ| = k1 if k̃ ≥ k̂ and |β| = k1 if k̃ < k̂,
(iv) in the first case of (i), the juxtapositions of the sequences i1, i2, . . . , iβi

for 1 ≤ i ≤r

and c2n+1, n ≥ 1 run through all permutations of the sequences in 1, 2, . . . , k and the 
sequences j1, j2, . . . , jγj

, 1 ≤ j ≤ t run through all permutations of the sequence 
1, 2, . . . , k1; while in the second case of (i), the juxtapositions of the sequences 
j1, j2, . . . , jγj

for 1 ≤ j ≤ t and c2n+1, n ≥ 1 run through all permutations of the 
sequences in 1, 2, . . . , k and the sequence of i1, i2, . . . , iβi

, 1 ≤ i ≤ r run through all 
permutations of sequence 1, 2, . . . , k1.

By Theorem 4.18, all m̃ = cα̃x′ β̃ d̃−1
1 ef̃ w̃d̃2x

′γ̃cδ̃ ∈ BC2,r+k,t+k consist of a basis of 
BC2,r+k,t+k over C, where α̃, β̃ ∈ Zr+k

2 , γ̃, ̃δ ∈ Zt+k
2 , d̃1, d̃2 ∈ Df̃

r+k,t+k, w̃ ∈ Σr+k−f̃ ×
Σ

t+k−f̃
and 0 ≤ f̃ ≤ min{r+k, t +k}. Such monomials will be called normal monomials. 

Moreover, m̃ is called an admissible monomial if

(a) α̃i = δ̃j = 0 for all 1 ≤ i ≤ k, 1 ≤ j ≤ k1 if k̃ ≥ k̂; or α̃i = δ̃j = 0 for all 1 ≤ i ≤ k1
and 1 ≤ j ≤ k if k̃ < k̂,
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(b) the corresponding walled Brauer diagram of d̃−1
1 ef̃ w̃d̃2 satisfies (1)–(5) as follows:

(1) f̃ = f0,
(2) no vertical edge of form [i, i] and [j, j], 1 ≤ i ≤ k, 1 ≤ j ≤ k1 if k̃ ≥ k̂,
(3) no vertical edge of form [i, i] and [j, j], 1 ≤ i ≤ k1, 1 ≤ j ≤ k if k̃ < k̂,
(4) no horizontal edge of form [i, j], 1 ≤ i ≤k, at the bottom row if k̃ ≥ k̂,
(5) no horizontal edge of form [i, j], 1 ≤j≤k, at the top row if k̃ < k̂,

(c) β̃i = γ̃j = 0, for all 1 ≤ i ≤ r + k and 1 ≤ j ≤ t + k.

In the following, we assume that k̃ < k̂ (the case k̃ ≥ k̂ can be dealt with in a similar way). 
A φk(m) contributes admissible monomials of BC2,k+r,k+t only when m ∈ S is given in 
(5.9) such that k = |γ| +

∑
n(2n + 1)a2n+1, f = f0 and k1 = |β|. More explicitly, the 

leading terms exactly appear in φk(m) which are admissible monomials of BC2,k+r,k+t. 
We claim that other terms in φk(

∑
m∈S rmm) are obtained from (5.14) by

(1) using the terms ek+i,ij , ek+i,ij of φk(xi) to replace some (k + i, ij),
(2) using the terms ei,j , ei,j 1 ≤ i, j ≤ k (resp., eji,k+j , eji,k+j of φk(xj)) to replace (i, j) 

in c2n+1 (resp., (k + j, ji)) if (1) does not occur,
(3) using the term x′

k+i of φk(xi) to replace (k + i, ij) or using the term x′
k+i of φk(xi)

to replace (k + i, ij), or using either x′
j or x′

j to replace some (i, j) in c2n+1, provided 
that neither (1) nor (2) occurs,

(4) using some (k + j, s) or cs(k + j, s)cs, s > k to replace (k + j, ji); or using 
(i, j), cj(i, j)cj to replace (i, j) in c2n+1; or using (k + i, s), cs(k + i, s)cs, s > k1, to 
replace (k + i, ij), provided that (1)–(3) do not occur,

(5) using cji(k + j, ji)cji to replace (k + j, ji), or using cj(i, j)cj to replace (i, j) in c2n+1
or using cij (k + i, ij)cij to replace (k + i, ij), provided that (1)–(4) do not occur.

In the case (1), we use defining relations for BC2,r+k,t+k to rewrite the corresponding 
monomial as a linear combination of normal monomials. Each of these normal monomials 
corresponds to a unique walled Brauer diagram, say D, in which there is a horizontal edge 
[i, j] at the top row of D such that 1 ≤ j ≤ k. Such a monomial does not satisfy (b)(5). 
Similarly, in case (2) (resp., (3), (4), (5)), the corresponding monomials of BC2,k+r,k+t

can be written as linear combinations of normal monomials which do not satisfy (b)(1) 
or (b)(3) (resp., (c) or (b)(3), (b)(3), (a)). This verifies our claim.

We assume that m1, m2, . . . , mp are all monomials in S which contribute leading 
terms. Write

mi = cα(mi)xβ(mi)d1(mi)−1ef(mi)w(mi)d2(mi)xγ(mi)cδ(mi)
∏

n∈Z>0

ω
a2n+1(mi)
2n+1 . (5.15)

Then k = |γ(mi)| +
∑

n(2n + 1)a2n+1(mi), f(mi) = f0 and k1 = |β(mi)|. Let Ai be 
the set of all leading terms contributed by φk(mi). These leading terms are admissible 
monomials of BC2,k+r,k+t. We have proven that other terms of 

∑
m∈S rmφk(m) will not 

contribute admissible monomials of BC2,k+r,k+t. So,
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p∑
i=1

r̃mi

∑
n∈Ai

n = 0, (5.16)

where r̃mi
is arm and a is a power of ±2, which comes from the coefficients of leading 

terms of ξ2n+1,k+1. In the following, we explain that (5.16) does not hold. If so, then S
is linear independent and the result will follow.

Suppose gi = (k+ i, 1)(k+ i, 2) · · · (k+ i, k1) and gj = (k + j, 1)(k + j, 2) · · · (k + j, k)
for 1 ≤ i ≤ r and 1 ≤ j ≤ t. Note that each element in As contains factors 
(k + i, i1) · · · (k + i, iβi

) contributed by φk(xi)βi , such that i1, · · · , iβi
, 1 ≤ i ≤ r, is 

a permutation of some elements in 1, 2, . . . , k1. So, (k + i, k1) · · · (k + i, k1 − βi + 1)
is one of such factors and hence gi(k + i, k1)(k + i, k1 − 1) · · · (k + i, k1 − βi + 1) fixes 
k1, . . . , k1−βi+1. So, there is an element in gi(As) whose walled Brauer diagram contains 
vertical edges [j, j], where j ranges β(ms)i numbers in {1, 2, . . . , k1}. If gi(As′) contains 
an element such that the corresponding walled Brauer diagram contains vertical edges 
[j, j] for β(ms)i numbers in {1, 2, . . . , k1}, then β(ms′)i = β(ms)i. So, we can assume 
β(m1) = β(mj), 2 ≤ j ≤ p. Similarly, we use gj instead of gi to obtain γ(m1) = γ(mj), 
2 ≤ j ≤ p. Note that c2n+1 is the product of a2n+1 disjoint cycles with length 2n +1. So, 
different 

∏
n ω

a2n+1
2n+1 gives product of disjoint cycles with different lengths and thus, we 

can assume a2n+1(mi) is independent of mi. Since any leading term is of form in (5.14), 
by Theorem 4.8 or Theorem 2.4, we can also assume that α(mi), δ(mi) are independent 
of mi. Since c2i = −1 and c2j = 1, we can assume α(mi) = 0r ∈ Zr

2 and δ(mi) = 0t ∈ Zt
2. 

Using (5.14), we see that there exists a leading term in Ai ∩Aj if and only if mi = mj . 
So, r̃mi

= 0 for all 1 ≤ i ≤ p, a contradiction. So, S is linear independent over C and 
hence over Z[2−1, ω1]. In general, using arguments on base change yields the result over 
an arbitrary integral domain R containing ω1 and 2−1. �

The following result follows from Theorem 5.14, immediately.

Theorem 5.15. Suppose R is a domain containing 2−1 and ω2n+1, for all n ∈ N. Then 
B̃Cr,t is free over R spanned by all of its regular monomials. In particular, B̃Cr,t is of 
infinite rank.

6. A basis of the cyclotomic Brauer–Clifford superalgebra

In this section, we assume that R is a domain containing 2−1 and parameters {ω2n+1 ∈
R | n ∈ N}. The affine walled Brauer–Clifford superalgebra B̃Cr,t with respect to the 
defining parameters ω2n+1’s can be also defined in a simpler way as follows. As a free 
R-superspace,

B̃Cr,t = R[xr] ⊗BCr,t ⊗R[xt], (6.1)

the tensor product of the walled Brauer–Clifford superalgebra BCr,t with two polynomial 
algebras R[xr] := R[x1, x2, . . . , xr] and R[xt] := R[x1, x2, . . . , xt]. The multiplication of 
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B̃Cr,t is defined such that R[xr] ⊗1 ⊗1, 1 ⊗1 ⊗R[xt], 1 ⊗BCr,t⊗1, R[xr] ⊗HCr⊗1 and 
1 ⊗HCt ⊗ R[xt] are subalgebras isomorphic to R[xr], R[xt], BCr,t, HCaff

r , and HC aff
t

respectively, and (for simplicity, without confusion we identify elements xi⊗1 ⊗1, 1 ⊗si⊗1, 
1 ⊗ ei ⊗ 1, 1 ⊗ si ⊗ 1, 1 ⊗ ci ⊗ 1, 1 ⊗ ci ⊗ 1, 1 ⊗ 1 ⊗ xi in (6.1) with xi, si, ei, si, ci, ci, xi, 
respectively)

e1(x1 + x1) = (x1 + x1)e1 = 0, e1s1x1s1 = s1x1s1e1, e1s1x1s1 = s1x1s1e1, (6.2)

six1 = x1si, six1 = x1si, x1(e1 − c1e1c1 + x1) = (e1 − c1e1c1 + x1)x1, (6.3)

e1x
k
1e1 = ωke1, e1x

k
1e1 = ωke1, (6.4)

where ω2k+1 determined by ω1, . . . , ω2k+1 as in Corollary 3.5. Further, ω2n = ω2n = 0.
We hope to classify finite dimensional simple B̃Cr,t-modules over an algebraically 

closed field F with characteristic not 2. This leads us to introduce cyclotomic Brauer–
Clifford superalgebras as follows. Let f(x) be the minimal polynomial of x1 with respect 
to a finite dimensional simple B̃Cr,t-module M . Then

f(x) = xk
n∏

i=1
(x− ui), (6.5)

where u1, . . . , un are nonzero in F . Let 〈f(x1)〉 be the two-sided ideal of B̃Cr,t generated 
by f(x1). Since M is simple, 〈f(x1)〉 �= B̃Cr,t. Let ε ∈ {−1, 1}.

Lemma 6.1. We have c1f(x1) = εf(x1)c1, where f(x) is given in (6.5).

Proof. We prove the result by induction on deg f(x). If deg f(x) = 1, then f(x1) =
x1 − u. When u �= 0, we have 〈x1 − u〉 = B̃Cr,t, a contradiction, since 2u = c1(x1 −
u)c1 − (x1 − u) ∈ 〈x1 − u〉. So, f(x1) = x1 and c1f(x1) = −f(x1)c1. In general, if 
f(x1)c1 ∈ {c1f(x1), −c1f(x1)}, there is nothing to prove. Otherwise, by Definition 3.1(2), 
f(−x1) = −c1f(x1)c1 and f(−x1) �= f(x1). In this case, we choose h(x1) ∈ {f(−x1) +
f(x1), f(−x1) − f(x1)} such that degh(x) < deg f(x). Define d(x) = g.c.d (h(x), f(x)), 
the greatest common divisor of h(x) and f(x). Then 〈d(x1)〉 = 〈f(x1)〉 and hence the 
irreducible B̃Cr,t-module M is killed by d(x1). This is a contradiction since f(x1) is the 
minimal polynomial of x1 with respect to M . �

Recall that f(x1) in (6.5). Since c1f(x1)c1 = −εf(x1), and c1f(x1)c1 = ±xk
1
∏n

i=1(x1+
ui), f(x) is the minimal polynomial of x1 with respect to M if and only if xk

1
∏n

i=1(x1+ui)
is the minimal polynomial of x1 with respect to M . In other words, ui and −ui appear 
simultaneously if ui �= 0. Thus, we can assume

f(x1) = xk
1

m∏
(x2

1 − u2
i ), (6.6)
i=1
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where 0 �= ui ∈ F , 1 ≤ i ≤ m. Moreover, by Lemmas 3.3–3.4, there is a monic polynomial 
g(x1) with degree l = k + 2m such that

e1f(x1) = (−1)ke1g(x1). (6.7)

Lemma 6.2. Let g(x1) be given such that (6.7) is satisfied. Then c1g(x1) = εg(x1)c1.

Proof. Since l = k + 2m, we have

(−1)ke1g(x1)c1 = e1f(x1)c1 = e1c1f(x1) = e1c1f(x1) = εe1f(x1)c1
= (−1)kεe1g(x1)c1 = (−1)kεe1c1g(x1) = (−1)kεe1c1g(x1).

By Theorem 5.15, c1g(x1) = εg(x1)c1. �
In the remaining part of this paper, we assume that

g(x1) = xk1
1

m1∏
j=1

(x2
1 − u2

j ), (6.8)

such that k1 + 2m1 = k + 2m and 0 �= uj ∈ F , 1 ≤ j ≤ m1. This is reasonable by 
Lemma 6.2. Since the finite dimensional simple B̃Cr,t-module M is killed by f(x1), by 
(6.7), it is killed by e1g(x1), too. We want to consider simple B̃Cr,t-modules M such 
that e1 acts on M nontrivially, it is necessary to assume that M is killed by g(x1). That 
is the reason why we introduce cyclotomic walled Brauer–Clifford superalgebras as in 
the Definition 3.14.

From here to the end of this section, we assume both B̃Cr,t and BCl,r,t are defined 
over a domain R containing 2−1 and parameters ω2n+1 for all n ∈ N.

Lemma 6.3. Write f(x1) = xk+2m
1 +

∑2m
i=1 aix

k+2m−i
1 , where f(x1) is given in (6.6). Then 

e1 is an R-torsion element of BCk+2m,r,t unless

ω� = −(a1ω�−1 + . . . + a2mω�−2m) for all 	 ≥ k + 2m. (6.9)

Proof. Let b� = ω� + a1ω�−1 + . . . + a2mω�−2m ∈ R. By (6.4), b�e1 = e1f(x1)x�−2m−k
1 e1

in B̃Cr,t and b�e1 = 0 in BCk+2m,r,t. Thus, e1 is an R-torsion element if b� �= 0 for some 
	 ≥ k + 2m. �
Definition 6.4. The superalgebras B̃Cr,t and BCk+2m,r,t are called admissible (with re-
spect to f(x1)) if (6.9) holds.

Lemma 6.5. For 1 ≤ i ≤ r, 1 ≤ j ≤ t, define fi = f(x′
i) and gi = g(x′

i), where f(x1) and 
g(x1) satisfy (6.6)–(6.8). Then the following equations hold for all admissible i, j:
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(1) cjfi = εficj,
(2) cjgi = εgicj,
(3) cjfi = ficj,
(4) cjgi = gicj,

(5) sjfi = fisj,
(6) sjgi = gisj,
(7) fifj = fjfi in gr(B̃Cr,t),
(8) gigj = gjgi in gr(B̃Cr,t).

Proof. These equations can be easily verified by using Lemmas 6.1–6.2 and Defini-
tion 3.1. �

Note that the affine Hecke–Clifford superalgebra HCaff
r (resp., HC aff

t ) is isomorphic to 
the sub-superalgebra of B̃Cr,t generated by x1, s1, . . . , sr−1 and c1 (resp., x1, s1, . . . , st−1
and c1).

Lemma 6.6. For any a ∈ Z>0, we have

(1) (x′
i)af(x′

�) − f(x′
�)x′ a

i ∈
∑

b<a

∑max{i,�}
h,h1=1 f(x′

h)(x′
h1

)bHCr,

(2) g(x′
�)(x′

i)a − (x′
i)ag(x′

�) ∈
∑

b<a

∑max{i,�}
h,h1=1 HCt(x′

h1
)bg(x′

h).

Proof. We have x1x2 = x2x1, where x2 = x′
2−s1− c2s1c2 (see (2.7)). By Lemma 6.5(1),

x′
2f(x1) = f(x1)(x′

2 − s1 − c2s1c2) + f(x′
2)s1 + εf(x′

2)c2s1c2. (6.10)

Considering si,2x′
2f(x1)s2,i yields the result when a = 1 and 	 = 1. If 	 > 1, then

x′
if(x′

�) = x′
is�−1f(x′

�−1)s�−1 = s�−1x
′
(i)s�−1

f(x′
�−1)s�−1.

So, the result follows from inductive assumption on 	 − 1. This is (1) when a = 1. 
The general case follows from arguments on induction on a. Finally, (2) can be verified, 
similarly. �
Proposition 6.7. Define JL =

∑t
i=1 B̃Cr,t gi and JR =

∑r
i=1 fi B̃Cr,t. Let I be the two-

sided ideal of B̃Cr,t generated by f(x1) and g(x1). We have

(1) JR is a left HCaff
r ⊗HCt-module,

(2) JL is a right HCr ⊗HC aff
t -module,

(3) I = JL + JR if B̃Cr,t is admissible.

Proof. It is easy to see that JR is stable under the left action of HCr ⊗ HCt. By 
Lemma 6.6(1), it is stable under the left action of HCaff

r . One can check (2) via 
Lemma 6.6(2), similarly.

Obviously, JL + JR ⊆ I. So, (3) follows if we can prove I ⊆ JL + JR. Since 
f(x1), g(x1) ∈ JL + JR, it suffices to verify that JL + JR is a two-sided ideal of B̃Cr,t. 
We claim
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hJR ⊂ JL + JR, (6.11)

for any generator h of B̃Cr,t. If so, h(JL + JR) ⊂ JL + JR and hence JL + JR is a left 
ideal.

In fact, by (1), it is enough to verify (6.11) when h ∈ {x1, e1}. If we have e1JR ⊂
JL+JR, then c1e1c1JR ⊂ JL+JR. Since (x1+e1−e1)f(x1) = f(x1)(x1+e1−e1) ∈ JR, we 
have x1f(x1) ∈ JL+JR. Multiplying (1, i) on both sides of x1f(x1) yields x1fi ∈ JL+JR. 
So, we need to verify e1JR ⊂ JL+JR. By (6.2), e1fi = fie1 for i ≥ 2. So, e1JL ⊂ JL+JR
if e1f(x1)B̃Cr,t ⊂ JL + JR. This will be verified by checking

e1f(x1)m ∈ JL + JR, (6.12)

for each regular monomial m of B̃Cr,t in Definition 3.15. Using arguments on graded 
structure of B̃Cr,t, we can write m = cαxβei1,j1 · · · eif ,jfwxγcδ for some (α, δ) ∈ Zr

2 ×Zt
2

and (β, γ) ∈ Nr × Nt, and w ∈ Σr × Σt and 1 ≤ i1, . . . , if ≤ r and 1 ≤ j1, . . . , jf ≤ t

such that {ik, jk} ∩ {il, jl} = ∅ if k �= l. In the following, we write e�i,�j = ei1,j1 · · · eif ,jf . 
We prove (6.12) by induction on |β|.

Case 1: |β| = 0.
If f = 0, then e1f(x1)cαwxγcδ = (−1)ke1g(x1)cαwxγcδ ⊆ JL. The last inclusion 

follows from (2). Suppose 1 ≤ f ≤ min{r, t}. Since B̃Cr,t is admissible, e1f(x1)e1 = 0. 
On the other hand, we have e1x

k
1c1e1 = 0 for all k. So, e1f(x1)m = 0 if e1 is a factor of 

e�i,�j . If e1 is not a factor of e�i,�j , there are three cases we need to discuss.

• If ep,1 is a factor of e�i,�j , and p �= 1, then we assume that i1 = p and j1 = 1
since any two factors of e�i,�j commute with each other. We have e1f(x1)cαep,1 =∏r

i=2 c
αi
i e1f(x1)ep,1cα1

1 . Since

e1f(x1)ep,1 = sp,2e1f(x1)s1e1s1,p = sp,2e1s1f(x′
2)e1s1,p = sp,2f(x′

2)e1s1,p ∈ JR,

we have e1f(x1)cαe1,p ∈ JR by (1). So, e1f(x1)m ∈ JR.
• If e1,p is a factor of e�i,�j and p �= 1, we assume i1 = 1 and j1 = p. We have

e1f(x1)e1,p = (−1)ksp,2e1g(x1)s1e1s1,p = (−1)ksp,2e1s1g(x′
2)e1s1,p

= (−1)ksp,2e1g(x′
2)s1,p = (−1)ksp,2e1s1,pg(x1) ∈ JL.

So, e1f(x1)cαe1,p =
∏r

i=2 c
αi
i e1f(x1)cα1

1 e1,p =
∏r

i=2 c
αi
i cα1

p e1f(x1)e1,p ∈ JL. By (2) 
and the equation g(x1) 

∏f
k=2 eik,jk =

∏f
k=2 eik,jkg(x1), e1f(x1)m ∈ JL.

• Finally, suppose {il, jl} ∩{1} = ∅ for all possible l, then e1f(x1)m ∈ JL follows from 
(2) and the following fact

e1f(x1)
f∏

l=1

eif ,jf =
f∏

l=1

eif ,jf e1f(x1) = (−1)k
f∏

l=1

eif ,jf e1g(x1) ∈ JL.
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Case 2: |β| > 0.
Suppose βi �= 0 for some 2 ≤ i ≤ r. We have xim′ = εm by Lemma 3.8(1)–(2), 

where m′ is obtained from m by removing one xi and ε = ±1. So e1f(x1)m ∈ JL + JR
if e1f(x1)xim′ ∈ JL + JR. Since f(x1)xi = xif(x1), it suffices to prove e1Lif(x1)m′ ∈
JL + JR and e1(xi − Li)f(x1)m′ ∈ JL + JR.

In the first case, since e1(j, i) = (j, i)e1 if j �= 1 and e1ci = cie1 and cif(x1) = f(x1)ci, 
by inductive assumption on |β| and (1)–(2), it is enough to prove e1(1, i)f(x1)clim′ ∈ JR
for l ∈ Z2. In fact, it is the case since

e1(1, i)f(x1)clim′ = e1f(x′
i)(1, i)clim′ = f(x′

i)e1(1, i)clim′ ∈ JR.

In the second case, since e1(xi − Li)f(x1)m′ = (xi − Li)e1f(x1)m′, by induction on |β|, 
e1f(x1)m′ ∈ JL + JR. By (1), we have (xi − Li)e1f(x1)m′ ∈ JL + JR. So, e1f(x1)m ∈
JL + JR.

If βi = 0, 2 ≤ i ≤ r, then xβ = xβ1
1 with β1 > 0. In this case, m = cαxβ1

1 e�i,�jwx
γcδ. 

We want to prove v = e1f(x1)m ∈ JL + JR. If j� �= 1, 1 ≤ 	 ≤ f , then by inductive 
assumption,

v = e1f(x1)cαxβ1
1 e�i,�jwx

γcδ = (−1)ke1g(x1)cαxβ1
1 e�i,�jwx

γcδ

≡ (−1)ke1c
αxβ1

1 g(x1)e�i,�jwx
γcδ

= (−1)ke1c
αxβ1

1 e�i,�j g(x1)wxγcδ ∈ JLwx
γcδ ⊂ JL + JR,

where the “≡ ” is modulo JL + JR. Finally, if j� = 1 for some 	, without loss of any 
generality, we assume j1 = 1. If i1 = 1, we have e1f(x1)cαxβ

1 e1 = 0 no matter whether 
α1 = 1 or α1 = 0. In the first case, this result follows from the equation e1x

k
1c1e1 = 0 for 

all k ∈ N. In the second case, this result follows from the fact that B̃Cr,t is admissible. 
It remains to deal with the cases when il �= 1 for all l. Define i′ = (i2, . . . , if ) and 
j′ = (j2, . . . , jf ). Then

v = e1f(x1)cαxβ1
1 ei1,1e�i′,�j′wx

γcδ =
r∏

i=2
cαi
i e1f(x1)ei1,1c

α1
1 xβ1

1 e�i′,�j′wx
γcδ

=
r∏

i=2
cαi
i e1ei1,1f(x1)cα1

1 xβ1
1 e�i′,�j′wx

γcδ =
r∏

i=2
cαi
i e1(1, i1)f(x1)cα1

1 xβ1
1 e�i′,�j′wx

γcδ

=
r∏

i=2
cαi
i e1f(x′

i1)(1, i)c
α1
1 xβ1

1 e�i′,�j′wx
γcδ ∈

r∏
i=2

cαi
i JR ⊂ JR, by (1).

This completes the proof of (6.12) and hence hJR ⊂ JL+JR. One can similarly check 
JLh ⊂JL+JR. �

For (α, β) ∈ Nr × Nt, let f(x′)α = fα1
1 · · · fαr

r and g(x′)β = gβ1
1 · · · gβt

t . Recall that 
l = k + 2m.
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Lemma 6.8. The affine walled Brauer–Clifford superalgebra B̃Cr,t is a free R-module 
with N as its R-basis, where

N =
min{r,t}
∪
f=0

{f(x′)αcγ̃xγd−1
1 efwd2x

δcδ̃g(x′)β | (α, β) ∈ Nr × Nt,

(γ, δ, γ̃, δ̃) ∈ Zr
l × Zt

l × Zr
2 × Zt

2, d1, d2 ∈ Df
r,t, w ∈ Σr−f × Σt−f}.

(6.13)

Proof. The result follows from Theorem 5.15 since the transition matrix between N and 
the basis in Theorem 5.15 is upper-unitriangular. �
Lemma 6.9. Let I be the two-sided ideal of B̃Cr,t generated by f(x1) and g(x1) satisfying 
(6.6)–(6.8). If B̃Cr,t is admissible, then S is an R-basis of I, where

S = {f(x′)αcγ̃xγd−1
1 efwd2x

δcδ̃g(x′)β ∈ N | αi + βj �= 0 for some i, j}. (6.14)

Proof. Let M be the R-module spanned by S. Obviously, M ⊆ I. If JL ⊆ M and 
JR ⊆ M , by Lemma 6.7(3), M = I, proving the result. By symmetry, we verify JR ⊆ M . 
By Lemma 6.8, we need to verify f(x′

i)m ∈ M for any basis element m in (6.13). In fact, 
we have

f(x′
i)f(x′

�) ∈ f(x′
�)f(x′

i) +
�−1∑
j=1

f(x′
j)B̃Cr,t, by Lemma 6.6.

Using induction on degrees, we have f(x′
i)m ∈ M . Finally, one can check JL ⊂ M , 

similarly. �
Theorem 6.10. The cyclotomic walled Brauer–Clifford superalgebra BCk+2m,r,t is free 
over R with rank 2r+t(k + 2m)r+t(r + t)! if and only if BCk+2m,r,t is admissible.

Proof. By Corollary 3.16, BCk+2m,r,t is spanned by all of its regular monomials. 
If BCk+2m,r,t is not admissible, e1 is an R-torsion element by Corollary 3.5. Since 
e1 ∈ M , either BCk+2m,r,t is not free or the rank of BCk+2m,r,t is strictly less than 
2r+t(k+2m)r+t(r+t)!, the number of all regular monomials of BCk+2m,r,t. If BCk+2m,r,t

is admissible, by Lemmas 6.8–6.9, all regular monomials of BCk+2m,r,t are R-linear in-
dependent. So BCk+2m,r,t is free over R with rank 2r+t(k + 2m)r+t(r + t)!. �
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