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Let p be an odd prime, G be a finite group and b be a p-block 
of G with non-abelian metacyclic defect group P . Then it 
is known that a hyperfocal subgroup Q of b is cyclic. In 
this study motivated by Rouquier’s conjecture on blocks with 
abelian hyperfocal subgroups, we show that b is isotypic to its 
Brauer correspondents in NG(P ) and NG(Q).
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1. Introduction and notation

Let G be a finite group and (K, O, k) be a sufficiently large p-modular system such 
that k is algebraically closed where p is a fixed prime. Let b be a p-block of OG with 
a maximal b-Brauer pair (P, bP ). Let Q = hyp(b) be the hyperfocal subgroup of b with 
respect to (P, bP ) ([14]). A character-theoretic shadow of Rouquier’s conjecture ([15]A.2) 
says that if Q is abelian, then b and bNG(Q)

P are perfectly isometric ([4] 1.4).
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By the results in [20], and [19] or [7], if p is odd and P is non-abelian metacyclic, then 
Q is cyclic. In this article we will prove the following:

Theorem 1.1. Assume that p is odd, and P is metacyclic and either of the following 
holds.

(i) P is non-abelian.
(ii) P is abelian and Q is cyclic.

Then b is isotypic to its Brauer correspondents in NG(P ) and NG(Q).

Hence, a character-theoretic version of Rouquier’s conjecture for blocks with non-abelian 
metacyclic defect groups is true when p is odd. See [16] Chapter 8 on results on p-blocks 
with metacyclic defect groups including 2-blocks. Note that, in [22], an isotypy between b
and its Brauer correspondent in the case where P is abelian (not necessarily rank 2) and 
Q is cyclic is already proved in a different manner. Also note that if b has a non-trivial 
cyclic hyperfocal subgroup Q, then p is odd by [23] Lemma 3 and Lemma 4 (ii).

We give an outline of our proof of Theorem 1.1 using the notation mentioned below. 
We may assume Q �= 1, since Q = 1 if and only if b is nilpotent. By referring to ideas 
in [5], we will determine Irr(b) from Irr(b̃) where b̃ = bG̃P , G̃ = NG(Q1) and Q1 is the 
minimal subgroup of Q. But l(b) and k(b) are already known by [23]. In determining 
Irr(b), Broué-Puig ∗-construction also plays a big role.

The block c = b
CG(Q1)
P is nilpotent and b̃ covers c. Since Irr(c) is known ([3]), Irr(b̃)

is determined by Clifford theory for blocks and Fong-Reynolds correspondence (Theo-
rem 2.6).

The induction from G̃ to G induces the K-linear isometry from 
∑

u∈Q\{1} X
(u,b̃u)
K (G̃, ̃b)

to 
∑

u∈Q\{1} X
(u,bu)
K (G, b) (Theorem 3.3), and any χ ∈ Irr(b) appears in some element 

of 
∑

u∈Q\{1} X
(u,bu)
K (G, b) (Proposition 3.4). This is a crucial key to determine Irr(b).

In §4, Irr(b) is determined by long calculations (Theorem 4.4). In particular, (4.17)
below is an important equation expressing a connection between Irr(b̃) and Irr(b). Then 
we also determine the Cartan matrix of b with respect to a basic set (Proposition 4.6).

For any (u, bu) ∈ (P, bP ), bu is nilpotent, or bu has a metacyclic defect group and a 
cyclic hyperfocal subgroup and l(bu) = e. That is, we can apply the results in previous 
sections to non-nilpotent bu. In §5, we determine generalized decomposition numbers in 
b from (4.17), the orthogonality relations for them and the Cartan matrix of bu, u ∈ P

(Theorem 5.1 and Theorem 5.2).
In the final section, by applying [11] Theorem 2 for b and b′ = b

NG(P,bP )
P , we obtain 

a perfect isometry between them using the signs appearing in (4.17). We also obtain a 
perfect isometry Iu between local blocks bu and b′u for any u ∈ P . The isometry in the 
local blocks is arranged by the sign appearing in Theorem 5.1 or Theorem 5.2. Then 
{Iu | u ∈ P} defines an isotypy between b and b′ (Theorem 6.5).

We denote by Irr(b) (resp. IBr(b)) the set of ordinary (resp. Brauer) irreducible char-
acters in b and by Irri(b) the set of ordinary irreducible characters in b of height i. We set 
l(b) = |IBr(b)|, k(b) = |Irr(b)| and ki(b) = |Irri(b)|. We set X(G, b) =

∑
χ∈Irr(b) Zχ and 
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XK(G, b) =
∑

χ∈Irr(b) Kχ. For α, β ∈ XK(G, b), we denote by (α, β) the inner product 
of α and β. For each u ∈ P , let (u, bu) be the Brauer element belonging to (P, bP ). For 
χ ∈ Irr(b) and a basic set {ϕ(u)

1 , ϕ(u)
2 , · · · , ϕ(u)

l(bu)} for bu, we denote by du(χ, ϕ(u)
j ) the 

generalized decomposition number. For χ ∈ XK(G, b), χ(u,bu) is the class function of 
G vanishing outside of the p-section of u and which is such that χ(u,bu)(us) = χ(usbu)
for s ∈ CG(u)p′ where Gp′ is the set of p′-elements of G. If (u, bu) and (v, bv) are not 
G-conjugate, then (χ(u,bu), χ′ (v,bv)) = 0 for any χ, χ′ ∈ XK(G, b) (cf. [13] Theorems 
3.6.13 and 5.4.7). We define a K-vector space

X
(u,bu)
K (G, b) = {χ(u,bu) | χ ∈ XK(G, b)}.

Then dimK
(
X

(u,bu)
K (G, b)

)
= l(bu). For a normal subgroup N of G and a character ζ of 

N , we denote by SG(ζ) the stabilizer of ζ in G. By inflation, Irr(G/N) will be regarded 
as a subset of Irr(G). For x ∈ G, we denote by xG the conjugacy class of x, and by x̂G the 
class sum. For a finite abelian group X, we denote by X̂ the character group of X. For a 
subgroup Y of X, we have X̂/Y ⊥ � Ŷ via restriction where Y ⊥ = {λ ∈ X̂ | Y ⊆ Ker(λ)}. 
We can regard Ŷ as a subset of X̂ via extension of linear characters to X, which is not 
uniquely determined.

In this paper we assume Q is cyclic. Then the Brauer category F(P,bP )(G, b) is con-
trolled by NG(P, bP ), see [23] Theorem 3. Any Brauer pair (T, bT ) contained in (P, bP )
is extremal in (P, bP ), see [23] Lemma 5. Let E be a complement of PCG(P )/CG(P )
in NG(P, bP )/CG(P ), and e = |E| be the inertial index of b. We have l(b) = e, see [23]
Theorem 1. The group E is cyclic of order dividing p − 1 since E ≤ Aut(Q), see [23]
Lemma 3. We have Q = [Q, E], and e = 1 if and only if Q = 1, see [23] Lemma 4 (ii). 
Set

L = P � E,

and define Π as follows:

Π : a set of representatives for the L-conjugacy classes of P.

Then {(u, bu) | u ∈ Π} is a set of representatives for the G-conjugacy classes of b-Brauer 
elements. Let η be a (G, bP )-stable generalized character of P , that is, if (u, bu), (u′, bu′) ∈
(P, bP ) are G-conjugate, then η(u) = η(u′). For χ ∈ XK(G, b), χ ∗ η ∈ XK(G, b) is such 
that

χ ∗ η =
∑
u∈Π

η(u)χ(u,bu),

and χ ∗ η ∈ X(G, b) whenever χ ∈ X(G, b), see [2]. We set

R = CP (E).
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Moreover we assume Q is non-trivial. Then p �= 2. By [23] Lemma 4 (i),

P = Q � R.

Note that any generalized character λ of R regarded as a generalized character of P is 
(G, bP )-stable as NG(P, bP ) controls F(P,bP )(G, b). For u ∈ P , bu is nilpotent if and only 
if u /∈P R, see [23] Lemma 7. When u ∈P R, we have l(bu) = e by [23] Lemma 6 and 
Lemma 7. For μ ∈ Irr(Q), we set

Pμ = SP (μ), Rμ = R ∩ Pμ, hμ is such that phμ = |P : Pμ| = |R : Rμ|.

Then Pμ is normal in NG(P, bP ) and E-invariant as Aut(Q) is cyclic. We denote by μ̂
the extension of μ to Pμ with Rμ ⊆ Ker μ̂. Let Q1 be the subgroup of Q with order p. 
Note that Q1 ⊆ Z(P ). Set

C = CG(Q1), c = bQ1 , Ñ = NG(Q1, c), c̃ = cÑ , G̃ = NG(Q1), b̃ = c̃G̃.

The pair (P, bP ) is a maximal c (resp. c̃, b̃)-Brauer pair. The block c is nilpotent. The 
block c̃ has an inertial group E, and has a hyperfocal subgroup Q from Q = [Q, E] ≤
[P, E] and [23] Lemma 6. The block b̃ is the Clifford correspondent of c̃.

2. Irr(b̃)

In this section, we determine the irreducible characters in b̃.
Firstly, we have

Irr(P ) =
⋃
μ∈R

{ (μ̂λμ)↑PPμ
| λμ ∈ Irr(Rμ)} (2.1)

where R is a set of representatives for the P -conjugacy classes of Irr(Q).

Proposition 2.1. ([3] Theorem 1.2)
(i) l(c) = 1.
(ii) For any c-Brauer element (u, f), f is nilpotent.
(iii) There is an irreducible character ζ0 in c with height 0 such that du(ζ0, ϕ(u,f)) = ±1

for any c-Brauer element (u, f) and the unique irreducible Brauer character ϕ(u,f) in f .
(iv) Every generalized character of P is (C, bP )-stable and Irr(c) = {ζ0 ∗ ν | ν ∈

Irr(P )}.

We have Ñ = NG(P, bP )C since Ñ = NNG(P,bP )(Q1, c)C and Q1�NG(P, bP ). We also 
have NC(P, bP ) = PCG(P ). In fact, we have NC(P, bP ) =

(
NC(P, bP ) ∩P

)(
NC(P, bP ) ∩

F
)

for a lift F in NG(P, bP ) of a suitable inertial quotient group of b, and C ∩ F acts 
trivially on P since F acts trivially on P/Q and C ∩ F acts trivially on Q. Hence, we 
have Ñ/C ∼= E.
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Since ζ0 is the unique irreducible character in c such that it is p-rational, ζ0 is 
Ñ -invariant. We set

ζν = ζ0 ∗ ν

for ν ∈ Irr(P ). For n ∈ NG(P, bP ), we have

(ζν)n = (ζ0 ∗ ν)n = ζνn . (2.2)

Write ν = (μ̂λ) ↑PPμ
where μ ∈ Irr(Q) and λ ∈ Irr(Rμ), see (2.1). If μ = 1Q, then ν = λ, 

and we have SÑ (ζλ) = Ñ from Ñ = NG(P, bP )C and (2.2). Hence ζλ extends to Ñ . On 
the other hand, if μ �= 1Q, then we have SÑ (ζν) = C. In fact, if νn = ν for n ∈ NG(P, bP ), 
then μ and μn are irreducible constituents of ν ↓PQ. Hence μ = μnu for some u ∈ P . Since 

a p′-automorphism of Q̂ does not fix any element of Q̂\{1}, we have nu ∈ PCG(P ) ⊆ C, 
and so n ∈ C.

We define M as follows:

M : a set of representatives for the L-conjugacy classes of Irr(Q)\{1}.

Let

ζ̃i,λ (i = 1, 2, · · · , e) be the extensions of ζλ to Ñ (λ ∈ Irr(R)),

and set

ζ̃μ,λμ
= (ζ(μ̂λμ)↑P

Pμ
)↑ÑC (μ ∈ M, λμ ∈ Irr(Rμ)).

Since c̃ is the unique block of Ñ covering c, the above implies the following:

Theorem 2.2.

Irr(c̃) = {ζ̃i,λ | λ ∈ Irr(R), 1 ≤ i ≤ e} ∪
⋃

μ∈M
{ζ̃μ,λμ

| λμ ∈ Irr(Rμ)}.

We note that ζ̃i,λ is of height 0 and ζ̃μ,λμ
is of height hμ.

We denote by (P, bP )c (resp. (P, bP )c̃, (P, bP )b̃) the pair (P, bP ) regarded as a maximal 
c (resp. c̃, b̃)-Brauer pair to avoid confusion. For each S ≤ P , let (S, cS) ⊂ (P, bP )c, 
(S, ̃cS) ⊂ (P, bP )c̃ and (S, ̃bS) ⊂ (P, bP )b̃. Similarly, for each u ∈ P , let (u, cu) ∈ (P, bP )c, 
(u, ̃cu) ∈ (P, bP )c̃ and (u, ̃bu) ∈ (P, bP )b̃.

Lemma 2.3. For S ≤ P , c̃S is the unique block of CÑ (S) covering cS and b̃S is the unique 
block of CG̃(S) covering c̃S.
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Proof. We show by induction on |P : S|. When S = P , the statement is clear. Let S�T ≤
P . Then BrT (cS c̃S b̃S)cT c̃T b̃T = cT c̃T b̃T by [21] Theorem 40.4. (Here : OG → kG is 
the canonical epimorphism.) By the induction hypothesis we have cT c̃T b̃T �= 0, and so 
cS c̃S b̃S �= 0. Hence c̃S covers cS and b̃S covers c̃S . For the uniqueness, note Q1 � G̃ and 
[13] Theorem 5.2.8 (ii). �
Lemma 2.4. Let λ be an L-invariant generalized character of P .

(i) For any ζ̃ ∈ Irr(c̃),

(ζ̃ ∗ λ)↓ÑC = (ζ̃ ↓ÑC ) ∗ λ.

(ii) For any ζ ∈ Irr(c),

(ζ ∗ λ)↑ÑC = (ζ ↑ÑC ) ∗ λ.

(iii) For any ζ̃ ∈ Irr(c̃),

(ζ̃ ∗ λ)↑G̃
Ñ

= (ζ̃ ↑G̃
Ñ

) ∗ λ.

Proof. First of all we note that, for u, v ∈ P , if u = vh and c̃u covers chv for some h ∈ Ñ , 
then λ(v) = λ(u). In fact, the condition implies (v, ̃cv)h = (u, ̃cu) by Lemma 2.3, and 
hence u and v are L-conjugate.

(i) If (ζ̃(u,c̃u) ↓ÑC )(v,cv) �= 0, then λ(u) = λ(v). In fact, by the assumption there exists 
some h ∈ Ñ and s ∈ CC(v)p′ such that u = vh and

0 �= |sCC(v)|(ζ̃(u,c̃u) ↓ÑC )(v,cv)(vs) = ζ̃(u,c̃u)(vŝCC(v)cv) = ζ̃
(
u(ŝCC(v)cv)hc̃u

)
.

Then we have

(ζ̃ ∗ λ)↓ÑC =
∑
v∈π

∑
u∈Π

λ(u)(ζ̃(u,c̃u) ↓ÑC )(v,cv) =
∑
v∈π

λ(v)(ζ̃ ↓ÑC )(v,cv) = (ζ̃ ↓ÑC ) ∗ λ

where π is a set of representatives for the conjugacy classes of P .
(ii) If (ζ(v,cv) ↑ÑC )(u,c̃u) �= 0, then λ(v) = λ(u). In fact, by the assumption there exists 

some s ∈ CÑ (u)p′ such that (ζ(v,cv) ↑ÑC )(uŝCÑ (u)c̃u) �= 0, so we have s ∈ C and there is 
h ∈ Ñ such that v = uh and

0 �= ζ(v,cv)((uŝCÑ (u)c̃u)h
)

= ζ
(
v(ŝCÑ (u)c̃u)hcv

)
.

Then we have

(ζ ∗ λ)↑ÑC =
∑
u∈Π

∑
v∈π

λ(v)(ζ(v,cv) ↑ÑC )(u,c̃u) =
∑
u∈Π

λ(u)(ζ ↑ÑC )(u,c̃u) = (ζ ↑ÑC ) ∗ λ.

(iii) Similar as (ii). �
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Set

ζ̃i = ζ̃i,1R
∈ Irr(c̃) (i = 1, 2, · · · , e), i.e., ζ̃i are the extensions of ζ0 to Ñ ,

ζ̃μ = ζ̃μ,1Rμ
= (ζμ̂↑P

Pμ
)↑ÑC ∈ Irr(c̃) (μ ∈ M),

χ̃i = ζ̃i ↑G̃Ñ ∈ Irr(b̃) (i = 1, 2, · · · , e),

χ̃μ = ζ̃μ ↑G̃Ñ ∈ Irr(b̃) (μ ∈ M).

From now on we assume R is abelian. Since any λ ∈ R̂ ⊆ Irr(P ) is L-invariant, R̂
acts on Irr(c̃), Irr(b̃) and Irr(b) respectively, via ∗-construction. For χ ∈ Irr(b̃) ∪ Irr(b), 
we denote by O(χ) the R̂-orbit of χ.

Proposition 2.5. (i) For any λ ∈ R̂, ζ̃i ∗ λ (i = 1, 2, · · · , e) are the extensions of ζλ.
(ii) For any μ ∈ M and λ ∈ R̂,

ζ̃μ ∗ λ = ζ̃μ,λ↓R
Rμ

.

In particular, ζ̃μ ∗ λ = ζ̃μ if and only if λ ∈ R⊥
μ , and so O(ζ̃μ) = {ζ̃μ ∗ λ | λ ∈ R̂μ}.

(iii) For any μ ∈ M and λ ∈ R̂,

(ζ̃μ ∗ λ)↑G̃
Ñ

= χ̃μ ∗ λ.

In particular, χ̃μ ∗ λ = χ̃μ if and only if λ ∈ R⊥
μ , and so O(χ̃μ) = {χ̃μ ∗ λ | λ ∈ R̂μ}.

Proof. (i) We have

ζλ ↑ÑC = (ζ0 ∗ λ)↑ÑC = (ζ0 ↑ÑC ) ∗ λ = (
e∑

i=1
ζ̃i) ∗ λ =

e∑
i=1

(ζ̃i ∗ λ)

by Lemma 2.4 (ii). This implies (i).
(ii) By Lemma 2.4 (ii) and [13] Theorem 3.2.14 (i),

ζ̃μ ∗ λ =
(
(ζ0 ∗ μ̂↑PPμ

)↑ÑC
)
∗ λ =

(
ζ0 ∗

(
μ̂(λ ↓PPμ

)
)
↑PPμ

)
⏐Ñ

C
= ζ̃μ,λ↓R

Rμ
.

(iii) This follows from Lemma 2.4 (iii) and (ii). �
By Theorem 2.2 and Proposition 2.5, we have the following:

Theorem 2.6.

Irr(b̃) =
e⋃

i=1
{χ̃i ∗ λ | λ ∈ R̂} ∪

⋃
μ∈M

{χ̃μ ∗ λμ | λμ ∈ R̂μ}.

We note that χ̃i ∗ λ is of height 0, and χ̃μ ∗ λμ is of height hμ.
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3. A linear isometry from b̃ to b

All notation in previous sections are kept in the following sections. Set

XK(G, b;Q\{1}) =
⊕

u∈Π∩(Q\{1})
X

(u,bu)
K (G, b).

We shall obtain a linear isometry from XK(G̃, ̃b; Q\{1}) onto XK(G, b; Q\{1}) in The-
orem 3.3 below, which is a crucial tool to determine Irr(b). Note that CG(u) ≤ C and 
bu(= b̃u) is nilpotent for u ∈ Q\{1}.

We see

Tu = {x ∈ G̃ | the p-part of x is G̃-conjugate to u } (u ∈ Q\{1})
is a T.I. set in G with normalizer G̃.

(3.1)

Lemma 3.1. Let u ∈ Π ∩ (Q\{1}) and χ̃ ∈ Irr(b̃). We have

χ̃(u,b̃u) ↑G
G̃

= (χ̃(u,b̃u) ↑G
G̃

)(u,bu).

Proof. Assume (χ̃(u,b̃u) ↑G
G̃

)(v,f) �= 0 for a Brauer element (v, f) of G. Then we may 

assume v = u. Let s ∈ CG(u)p′ be such that (χ̃(u,b̃u) ↑G
G̃

)(u,f)(us) �= 0. From (3.1) we 
have

0 �= (χ̃(u,b̃u) ↑G
G̃

)(uŝCG(u)f) = χ̃(u,b̃u)(uŝCG(u)f).

Hence f = b̃u = bu, and this completes the proof. �
For each μ ∈ M, we set

ρ̃μ =
∑

λμ∈R̂μ

χ̃μ ∗ λμ −
e∑

i=1

( ∑
λ∈R̂

χ̃i ∗ λ
)
, (3.2)

ρμ = ρ̃μ↑GG̃ . (3.3)

Lemma 3.2. {ρ̃μ | μ ∈ M} is a K-basis of XK(G̃, ̃b; Q\{1}).

Proof. From (3.2),

phμ ρ̃μ =
∑
λ∈R̂

(
χ̃μ − phμ

e∑
i=1

χ̃i

)
∗ λ = |R|

∑
u∈Π∩Q

(
χ̃μ − phμ

e∑
i=1

χ̃i

)(u,b̃u)

by the second orthogonality relation for R. On the other hand, since χ̃μ =
(
ζ0∗(μ̂↑PPμ

)
)
↑G̃C

and 
∑e

i=1 χ̃i = ζ0 ↑G̃C , we have
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χ̃μ = phμ

e∑
i=1

χ̃i on G̃p′ .

Hence ρ̃μ ∈ XK(G̃, ̃b; Q\{1}). Moreover, clearly ρ̃μ (μ ∈ M) are linearly indepen-
dent over K and |M| = |Π ∩ (Q\{1})|. Therefore {ρ̃μ | μ ∈ M} forms a K-basis of 
XK(G̃, ̃b; Q\{1}). �
Theorem 3.3. The induction from G̃ to G gives a K-linear isometry

ϑ : XK(G̃, b̃;Q\{1}) ∼= XK(G, b;Q\{1}).

Moreover {ρμ | μ ∈ M} is a K-basis of XK(G, b; Q\{1}).

Proof. At first we note dimKXK(G, b; Q\{1}) = |Π ∩ (Q\{1})| = dimKXK(G̃, ̃b; Q\{1}). 
By Lemma 3.1, ϑ is well-defined. From (3.1) we see that ϑ preserves the inner products 
(cf. [6] Theorem 12.1 (Brauer-Suzuki)). Set X(G̃, ̃b; Q\{1}) = X(G̃, ̃b) ∩XK(G̃, ̃b; Q\{1})
and X(G, b; Q\{1}) = X(G, b) ∩ XK(G, b; Q\{1}). Let ϑ0 be the restriction of ϑ to 
X(G̃, ̃b; Q\{1}). Then ϑ0 induces a map from X(G̃, ̃b; Q\{1}) into X(G, b; Q\{1}) which 
is injective. Hence {ϑ(ρ̃μ) | μ ∈ M} is linearly independent over Z by Lemma 3.2. Since 
XK(G, b) ∼= K ⊗Z X(G, b), {ϑ(ρ̃μ) | μ ∈ M} is linearly independent over K. Hence ϑ is 
surjective and hence is a K-linear isometry. This and (3.3) complete the proof. �

The following propositions will be used in the proof of Proposition 4.3 below.

Proposition 3.4. For χ ∈ Irr(b), there exists μ ∈ M such that (ρμ, χ) �= 0.

Proof. We have χ(z,c) �= 0 for z ∈ Q1\{1} by [1] (4C) and we can write χ(z,c) =∑
μ∈M aμρμ (aμ ∈ K) by Theorem 3.3. Hence we have

( ∑
μ∈M

aμρμ, χ
)

= 1
|C|

∑
a∈Cp′

χ(z,c)(za)χ((za)−1) = 1
|C|

∑
a∈Cp′

|χ(z,c)(za)|2 �= 0.

This completes the proof. �
Proposition 3.5. For μ ∈ M, χ ∈ Irr(b) and λ ∈ R̂,

(ρμ, χ ∗ λ) = (ρμ, χ).

Proof. Since ρμ ∈ XK(G, b; Q\{1}) we have ρμ ∗ λ = ρμ, and (ρμ, χ) = (ρμ ∗ λ, χ ∗ λ) =
(ρμ, χ ∗ λ). �
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4. Irreducible characters in a block with metacyclic defect group

From now we consider the case where p is odd and P is metacyclic. In the case where 
P is non-abelian, using a theorem of fusion in [20], and an analysis of the automorphism 
group of P in [19] or [7], we see that Q is cyclic and the assumption Q �= 1 implies P is 
split. In the case where P is abelian, recall that we are assuming Q is non-trivial cyclic. 
Hence we may assume that

P = 〈 x, y | xpm

= yp
n

= 1, yxy−1 = x1+pl 〉, Q = 〈x〉, R = 〈y〉
where m ≥ 1, n ≥ 1, l ≥ 1, 0 ≤ m− l ≤ n.

(4.1)

Our purpose of this section is to determine Irr(b) (Theorem 4.4 below).
Concerning the action of y on x, we note that for an odd p and an integer c such that 

p � | c, we have

(1 + cpl)p
i

= 1 + c′pl+i for some c′ such that c′ ≡ c (mod p).

The kernel of the action of R on Q is 〈ypm−l〉, that is, R/〈ypm−l〉 is isomorphic to a 
subgroup of Aut(Q) of order pm−l, and R/〈ypm−l〉 is also isomorphic to a subgroup of 
Aut(Q̂) of order pm−l as μy = μ1+pl for μ ∈ Q̂.

Set

Ri = 〈ypi〉 ≤ R, Pi = Q � Ri (0 ≤ i ≤ n),
Mi = {μ ∈ M | Rμ = Ri}, mi = |Mi| (0 ≤ i ≤ m− l).

Then M =
⋃m−l

i=0 Mi and we see

m0 = pl − 1
e

and mi = pl − pl−1

e
(1 ≤ i ≤ m− l). (4.2)

We have l(b) = e and k(b) = k(b0) where b0 = b
NG(P,bP )
P , see [23] Theorem 1. Since 

k0(b0) = (p
l−1
e +e)pn, ki(b0) = pl−pl−1

e pn−i (1 ≤ i ≤ m −l) and ki(b0) = 0 (i > m −l) from 

(4.2) and Theorem 2.6 in the case G = NG(P, bP ), we have k(b0) = (p
l+pl−1−p2l−m−1−1

e +
e)pn. Therefore

k(b) =
(pl + pl−1 − p2l−m−1 − 1

e
+ e

)
pn, (4.3)

see [16] Theorem 8.8.
Set

Π0 = Π ∩
(
P\(Q〈yp〉)

)
, Πi = Π ∩

(
Q〈ypi〉\Q〈ypi+1〉

)
(1 ≤ i ≤ m− l).

We remark Πm−l is empty if m − l = n.
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Lemma 4.1. (i) Let u ∈ P with u /∈P R. Then (uP )a �= uP for any a ∈ E\{1}.

(ii) |Π0| = (1 + pl − 1
e

)(pn − pn−1) and 
∑
u∈Π0

l(bu) = (e + pl − 1
e

)(pn − pn−1).

(iii) Assume that 1 ≤ i ≤ m − l and i < n. Then

|Πi| = (1 + pl − 1
e

+ i
pl − pl−1

e
)(pn−i − pn−i−1) and

∑
u∈Πi

l(bu) = (e + pl − 1
e

+ i
pl − pl−1

e
)(pn−i − pn−i−1).

Proof. (i) Note that (uP )a = (ua)P is a conjugacy class of P . Now suppose that u and 
ua are P -conjugate for some a ∈ E\{1}. Then 〈a〉 acts on uP by conjugation, and there 
is u′ ∈ uP such that u′a = u′ by a lemma of Glauberman. Hence we have uvâ = uv and 
so uvâv−1 = u for some v ∈ P where â is an inverse image of a in NG(P, bP ). This gives 
a contradiction by [23] Lemma 4(i).

(ii) For any y′ ∈ 〈y〉\〈yp〉, we have

Qy′ =
⋃
s

xs〈xpl〉y′

where unions are disjoint and s ranges over the integers such that 0 ≤ s ≤ pl − 1. Let 
y′ = yj where p � j. From the relation in (4.1), we have

(xkyj
′
)(xsy′)(xkyj

′
)−1 = xs(1+pl)j

′

· xk(1−(1+pl)j) · y′ ∈ xs〈xpl〉y′

for any k and j′. Note that 〈x1−(1+pl)j 〉 = 〈xpl〉. Hence we have (xsy′)P = xs〈xpl〉y′, and

{y′} ∪ {xsy′ | 1 ≤ s ≤ pl − 1
}

is a set of representatives for the P -conjugacy classes of the L-invariant subset Qy′ of P . 
Then the statement follows from (i).

(iii) For any y′ ∈ 〈ypi〉\〈ypi+1〉, we see

Qy′ = 〈xpi〉y′ ∪
i−1⋃
v=0

(
〈xpv 〉y′ \ 〈xpv+1〉y′

)
,

and

〈xpi〉y′ =
⋃
s

xspi〈xpl+i〉y′, 〈xpv 〉y′ \ 〈xpv+1〉y′ =
⋃
t

xtpv〈xpl+v 〉y′ (0 ≤ v ≤ i− 1)

where unions are disjoint, s ranges over the integers such that 0 ≤ s ≤ pl−1 and t ranges 
over the integers such that 0 ≤ t ≤ pl − 1 and p � t. Let y′ = yp

ij where p � j. From
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(xkyj
′
)(xspi

y′)(xkyj
′
)−1 = xspi(1+pl)j

′

· xk(1−(1+pl)p
ij) · y′ ∈ xspi〈xpl+i〉y′,

we have (xspi

y′)P = xspi〈xpl+i〉y′. Note that 〈x(1−(1+pl)p
ij)〉 = 〈xpl+i〉. Also from

(xkyj
′
)(xtpv

y′)(xkyj
′
)−1 = xtpv(1+pl)j

′

· xk(1−(1+pl)p
ij) · y′ ∈ xtpv 〈xpl+v〉y′,

we have (xtpv

y′)P = xtpv〈xpl+v〉y′. Note that {xtpv(1+pl)j
′
| j′ ranges over integers} =

xtpv 〈xpl+v〉 since we see xtpv(1+pl)j
′

= xtpv(1+pl)j
′′

if and only if j′ ≡ j′′ (mod pm−l−v). 
Hence

{y′} ∪
{
xspi

y′ | 1 ≤ s < pl
}
∪

i−1⋃
v=0

{
xtpv

y′ | 0 ≤ t < pl, p � t
}

is a set of representatives for the P -conjugacy classes of the L-invariant subset Qy′ of P . 
Then the statement follows from (i). �

Let z = yp
m−l ∈ Z(P ). Then χ(z,bz) �= 0 for any χ ∈ Irr(b) by [1] (4C). Hence, if 

χ ∗ λ = χ for λ ∈ R̂, then λ ∈ R⊥
m−l and so |O(χ)| ≥ pn−(m−l). Let

Irr′i(b) = {χ ∈ Irr(b) | |O(χ)| = pn−i} for 0 ≤ i ≤ m− l.

(In fact, Irr′i(b) coincides with the set Irri(b) of irreducible characters in b with height i
by Proposition 5.8 below.) For χ ∈ Irr(b) and i where 0 ≤ i ≤ m − l, χ ∈ Irr′i(b) if and 
only if χ(u,bu) = 0 for all u ∈ ∪i−1

j=0Πj . Hence a table

(
χ(u,bu)

)
χ∈Irr(b),u∈∪m−l

j=0 Πj

is of the form as follows:

Π0 Π1 Π2 · · · Πm−l−1 Πm−l

Irr′0(b) ∗ ∗ ∗ · · · ∗ ∗
Irr′1(b) 0 ∗ ∗ · · · ∗ ∗
Irr′2(b) 0 0 ∗ · · · ∗ ∗

... 0 0 0 · · · ∗ ∗
Irr′m−l(b) 0 0 0 · · · 0 ∗

(4.4)

Let

˜Irr′i(b) be a set of representatives for the elements of Irr′i(b) under R̂-action,

and let
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ni = ni(b) = | ˜Irr′i(b)|.

If μ ∈ Mi, then |O(χ̃μ)| = pn−i by Proposition 2.5(iii). Hence n0(b̃) = m0 + e and 
ni(b̃) = mi (1 ≤ i ≤ m − l) by Theorem 2.6. This holds for b too, see Proposition 4.3
below.

Lemma 4.2. (i) n0 ≥ e + m0.
(ii) Let m − l ≥ 1. If n0 = e + m0, then n1 ≥ m1.
(iii) Let m − l ≥ 2 and i be such that 2 ≤ i ≤ m − l. If n0 = e + m0 and nj = mj for 

any j where 1 ≤ j ≤ i − 1, then ni ≥ mi.

Proof. (i) By the table (4.4), we have dimK
(⊕

u∈Π0
X

(u,bu)
K (G, b)

)
≤ n0p

n. In fact,

dimK
( ⊕
u∈Π0

X
(u,bu)
K (G, b)

)
≤ n0p

n−1(p− 1)

since the R⊥
1 -orbit sum of χ ∈ Irr′0(b) vanishes on Π0. On the other hand,

dimK
( ⊕
u∈Π0

X
(u,bu)
K (G, b)

)
= (e + pl − 1

e
)(pn − pn−1)

by Lemma 4.1(ii). Hence, we have

(e + m0)(pn − pn−1) ≤ n0(pn − pn−1),

and so (i) follows.
(ii) At first we consider the case n = 1. Then m − l = 1. From (4.2) and (4.3), we have

n0p + n1 =
(pl + pl−1 − pl−2 − 1

e
+ e

)
p = (e + m0)p + m1.

Hence by the assumption, we have n1 = m1.
Next assume n > 1. By the table (4.4), we have dimK

(⊕
u∈Π0∪Π1

X
(u,bu)
K (G, b)

)
≤

n0p
n + n1p

n−1. In fact,

dimK
( ⊕
u∈Π0∪Π1

X
(u,bu)
K (G, b)

)
≤ n0p

n−2(p2 − 1) + n1p
n−2(p− 1)

since the R⊥
2 -orbit sum of χ ∈ Irr′j(b) (j = 0, 1) vanishes on Π0 ∪Π1. On the other hand,

dimK
( ⊕
u∈Π0∪Π1

X
(u,bu)
K (G, b)

)
= (e + pl − 1

e
)(pn − pn−1)

+ (e + pl − 1 + pl − pl−1
)(pn−1 − pn−2)
e e
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by Lemma 4.1(ii) and Lemma 4.1(iii) for i = 1. Hence, we have

(e + m0)(pn − pn−2) + m1(pn−1 − pn−2) ≤ n0(pn − pn−2) + n1(pn−1 − pn−2),

and so (ii) follows by the assumption.
(iii) We can show similarly. �

Proposition 4.3. (i)

n0 = e + m0 = e + pl − 1
e

.

(ii)

ni = mi = pl − pl−1

e
(1 ≤ i ≤ m− l).

Proof. In the proof, μi, μ′
i and μ′′

i are elements in Mi (0 ≤ i ≤ m − l). Set

ρμ,μ′ = ρμ − ρμ′ for μ, μ′ ∈ M.

From (3.2), (3.3) and Theorem 3.3,

(ρμi
, ρμj

) = δijp
n−i + epn.

If μi, μ′
i and μ′′

i are different from each other, then

(ρμi
, ρμi,μ′

i
) = pn−i, (ρμi,μ′

i
, ρμi,μ′

i
) = 2pn−i, (ρμi,μ′

i
, ρμi,μ′′

i
) = pn−i.

If i �= j, then

(ρμi,μ′
i
, ρμj ,μ′

j
) = 0, (ρμi,μj

, ρμi,μj
) = pn−i + pn−j .

Moreover, if μi �= μ′
i and i �= j, then,

(ρμi,μ′
i
, ρμi,μj

) = pn−i.

These equations are used repeatedly in the proof.
We note that m0 = 1, if and only if mi = 1 for all 0 ≤ i ≤ m − l, if and only if l = 1

and e = p − 1 from (4.2).
At first, we consider the case mi > 1.
For μ0, μ′

0 ∈ M0, ρμ0,μ′
0

has at most two constituents in ˜Irr′0(b) from Proposition 3.5
and (ρμ0,μ′

0
, ρμ0,μ′

0
) = 2pn. We show

there exists μ0, μ
′
0 ∈ M0 such that ρμ0,μ′ consists of two elements in ˜Irr′0(b). (4.5)
0
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Assume (4.5) does not hold and let μ0 ∈ M0. Since (ρμ0 , ρμ0) < n0p
n from m0 > 1 and 

Lemma 4.2(i), there exists χ ∈ ˜Irr′0(b) such that χ does not appear in ρμ0 , and χ appears 
in ρμ0,μ for some μ ∈ M\{μ0} by Proposition 3.4. Then χ is the unique element of 
˜Irr′0(b) appearing in ρμ0,μ by the assumption or the inequality (ρμ0,μ, ρμ0,μ) < 2pn where 
μ ∈ M\M0. If some χ′ ∈ ˜Irr′0(b)\{χ} also does not appear in ρμ0 , then similarly there 
is some μ′ ∈ M\{μ0, μ} such that χ′ is the unique element of ˜Irr′0(b) appearing in ρμ0,μ′ , 
and then both the χ and χ′ appear in ρμ′,μ = ρμ0,μ−ρμ0,μ′ , which gives a contradiction. 
Hence, any element of ˜Irr′0(b)\{χ} appears in ρμ0 , and so (n0 − 1)pn ≤ (ρμ0 , ρμ0) =
(e + 1)pn. Then by Lemma 4.2(i) we have (ρ0, ρ0) = (n0 − 1)pn and ρμ0 consists of 
n0 − 1 elements of ˜Irr′0(b)\{χ}, which gives a contradiction since (ρμ0 , ρμ0,μ) �= 0. Hence 
(4.5) holds. Below, let μ0, μ′

0 ∈ M0 be as in (4.5) and let ρμ0,μ′
0

consist of two elements 
χμ0 , χμ′

0
∈ ˜Irr′0(b).

Set

A = {χ ∈ ˜Irr′0(b) |χ appears in ρμ0,μ for some μ ∈ M}.

Then we have

A = {χ ∈ ˜Irr′0(b) |χ appears in ρμ0,μ for some μ ∈ M0}

since (ρμ0,μ, ρμ0,μ) < 2pn and (ρμ0,μ, ρμ0,μ′
0
) �= 0 for μ ∈ M\M0. For μ ∈ M0\{μ0, μ′

0}
ρμ0,μ has at most one constituent χμ in ˜Irr′0(b)\{χμ0 , χμ′

0
} since (ρμ0,μ, ρμ0,μ) = 2pn and 

(ρμ0,μ, ρμ0,μ′
0
) = pn. Hence we have |A| ≤ m0. Next, set

B = {χ ∈ ˜Irr′0(b) |χ appears in ρμ0}.

Then we have |B| ≤ e + 1 since (ρμ0 , ρμ0) = (e + 1)pn. We may assume χμ0 ∈ A ∩ B

since (ρμ0,μ′
0
, ρμ0) �= 0, and we have |A ∩B| ≥ 1. Since ˜Irr′0(b) = A ∪B, we have

n0 ≤ m0 + (e + 1) − 1 = e + m0.

Therefore we have n0 = e + m0 by Lemma 4.2(i) and above inequalities are equalities. 
Hence we see there exist e characters χ1, · · · , χe ∈ ˜Irr′0(b)\{χμ | μ ∈ M0} and some signs 
ε, ε1, · · · , εe such that

ρμ0 =
∑
λ∈R̂

ε(χμ0 ∗ λ) −
e∑

j=1

∑
λ∈R̂

εj(χj ∗ λ).

Moreover we see ρμ0,μ consists of χμ0 and χμ for μ ∈ M0\{μ0, μ′
0}. Then for μ ∈

M0\{μ0} we have

ρμ0,μ =
∑

δ(χμ0 ∗ λ) −
∑

δ(χμ ∗ λ)

λ∈R̂ λ∈R̂
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for some sign δ as ρμ0,μ(1) = 0. Since ρμ = ρμ0 − ρμ0,μ and (ρμ, ρμ) = (e +1)pn, we have 
ε = δ. Therefore

˜Irr′0(b) = {χj | 1 ≤ j ≤ e} ∪ {χμ |μ ∈ M0} and

ρμ =
∑
λ∈R̂

ε(χμ ∗ λ) −
e∑

j=1

∑
λ∈R̂

εj(χj ∗ λ) for μ ∈ M0.
(4.6)

Below let μ ∈ M\M0. We show

(ρμ, χμ′) = 0 for any μ′ ∈ M0 and (ρμ, χj) = −εj for any j (1 ≤ j ≤ e). (4.7)

Let μ ∈ Mi. Then we have (ρμ′,μ, ρμ′,μ) = pn + pn−i. On the right side of this equation, 
pn−i comes from a constituent of ρμ and pn comes from a constituent of ρμ′ by (4.6) and 
(ρμ′ , ρμ′) > (ρμ, ρμ). Hence the multiplicities of elements of ˜Irr′0(b) in ρμ′ and in ρμ are 
the same except one element of ˜Irr′0(b) and the exception is χμ′ or χj for some j. The 
multiplicities of χμ′ and χμ′′ in ρμ are the same for any μ′′ ∈ M0 from (ρμ, ρμ′,μ′′) = 0
and (4.6). Hence if the exception is χj for some j, then we have (ρμ, ρμ) ≥ {(e − 1) +
m0}pn ≥ (e + 1)pn, which is a contradiction. Therefore the exception is χμ′ , and (4.7)
follows from (ρμ, ρμ) = pn−1 + epn.

Let χ ∈ Irr′i(b) where i �= 0 and assume χ appears in ρμ for μ ∈ Mj . Note j �= 0 by 
(4.6). If j ≥ i + 1, then |O(χ)| ≤ pn−j ≤ pn−(i+1) from (ρμ, ρμ) = pn−j + epn and (4.7), 
which is a contradiction. Hence we have

for χ ∈ Irr′i(b) (i �= 0), there exists some μ ∈
i⋃

j=1
Mj such that χ appears in ρμ. (4.8)

For μ ∈ M1, ρμ has at most one constituent χμ in ˜Irr′1(b) and the multiplicity (when 
χμ appears) is ε from (ρμ, ρμ) = pn−1 + epn, (4.7) and ρμ,μ0(1) = 0. For any χ ∈ ˜Irr′1(b)
there exists some μ ∈ M1 such that χ appears in ρμ by (4.8). Hence we have n1 ≤ m1. 
Therefore by Lemma 4.2(ii) we have n1 = m1 and the following:

˜Irr′1(b) = {χμ |μ ∈ M1} and

ρμ =
∑

λ1∈R̂1

ε(χμ ∗ λ1) −
e∑

j=1

∑
λ∈R̂

εj(χj ∗ λ) for μ ∈ M1.
(4.9)

Similarly, for μ ∈ M2, ρμ has at most one constituent χμ in ˜Irr′2(b) and the multiplicity 
(when χμ appears) is ε. For any χ ∈ ˜Irr′2(b) there exists some μ ∈ M2 such that χ appears 
in ρμ by (4.8) and (4.9). Hence we have n2 ≤ m2. Therefore by Lemma 4.2(iii) for i = 2
we have n2 = m2 and the following:
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˜Irr′2(b) = {χμ |μ ∈ M2} and

ρμ =
∑

λ2∈R̂2

ε(χμ ∗ λ2) −
e∑

j=1

∑
λ∈R̂

εj(χj ∗ λ) for μ ∈ M2.
(4.10)

Continuing this procedure, Proposition 4.3 in the case mi > 1 follows.
We show

if χ ∈ Irr(b) appears in ρμi,μj
, then |O(χ)| ≤ max{pn−i, pn−j}. (4.11)

Assume (4.11) does not hold. Then max{pn−i, pn−j} < |O(χ)| ≤ (ρμi,μj
, ρμi,μj

) = pn−i+
pn−j ≤ 2max{pn−i, pn−j} < pmax{pn−i, pn−j}. Since |O(χ)| is a p-power, this gives a 
contradiction, so (4.11) holds.

Below, we assume mi = 1 for all i where 0 ≤ i ≤ m − l. Let Mi = {μi}. We have 
ρμ1 = ρμ0 + ρμ1,μ0 , ρμ2 = ρμ0 + ρμ1,μ0 + ρμ2,μ1 , · · · , ρμm−l

= ρμ0 + ρμ1,μ0 + ρμ2,μ1 + · · ·+
ρμm−l,μm−l−1 , and by Proposition 3.4 we have

any χ ∈ Irr(b) appears in at least one of ρμ0 , ρμ1,μ0 , ρμ2,μ1 , · · · , ρμm−l,μm−l−1 . (4.12)

Firstly, we consider the case m −l = 0. Any χ ∈ Irr′0(b)(= Irr(b)) appears in ρμ0 . Hence 
n0p

n ≤ (ρμ, ρμ) = (e + 1)pn. Therefore by Lemma 4.2(i) we have n0 = e + 1 = e + m0
and we can write

˜Irr′0(b) = {χμ0 , χ1, · · · , χe} and

ρμ0 =
∑
λ∈R̂

ε(χμ0 ∗ λ) −
e∑

j=1

∑
λ∈R̂

εj(χj ∗ λ) for some signs εμ0 , ε1, · · · , εe.
(4.13)

Below, we consider the case m − l ≥ 1.
Any χ ∈ ˜Irr′0(b) appears in ρμ0 or ρμ1,μ0 by (4.11) and (4.12). The number of con-

stituents of ρμ0 in ˜Irr′0(b) is e or e + 1 from (ρμ0 , ρμ0) = (e + 1)pn, (ρμ1,μ0 , ρμ1,μ0) =
pn−1+pn and Lemma 4.2(i). If e elements of ˜Irr′0(b) appear in ρμ0 , then from Lemma 4.2(i) 
and (ρμ1,μ0 , ρμ1,μ0) = pn−1 + pn there exists just one element of ˜Irr′0(b) which appears in 
ρμ1,μ0 and does not appear in ρμ0 , and so ρμ1 would have e + 1 constituents in ˜Irr′0(b), 
contradicting to (ρμ1 , ρμ1) = pn−1 + epn. Hence, ρμ0 consists of e +1 elements in ˜Irr′0(b). 
We also have n0 = e +1 = e +m0 from (ρμ1,μ0 , ρμ1,μ0) = pn−1+pn and (ρμ1,μ0 , ρμ0) = pn. 
Therefore we have (4.13) in this case too.

From (4.13), (ρμ1,μ0 , ρμ0) = pn and (ρμ1 , ρμ1) = pn−1 + epn, we see

(ρμ1 , χμ0) = 0 and (ρμ1 , χj) = −εj for any j (1 ≤ j ≤ e), (4.14)

changing the notations in (4.13) appropriately. Note n1 ≥ m1 = 1 by Lemma 4.2(ii). We 
show
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any χ ∈ Irr′1(b) appears in ρμ1 . (4.15)

When m − l = 1, this is clear from Proposition 3.4 and (4.13). Let m − l ≥ 2. From 
(4.11) and (4.12) any χ ∈ Irr′1(b) appears in ρμ0 or ρμ1,μ0 or ρμ2,μ1 , and hence in ρμ1

or ρμ2 by (4.13). From (ρμ2,μ1 , ρμ2,μ1) < pn, the multiplicities of the elements of Irr′0(b)
in ρμ2 and ρμ1 are the same. Hence no element of χ ∈ Irr′1(b) appears in ρμ2 from 
(ρμ2 , ρμ2) = pn−2 + epn and (4.14). So (4.15) holds. Then from (ρμ1 , ρμ1) = pn−1 + epn

and (4.14), ρμ1 has just one constituent χμ1 in ˜Irr′1(b) and n1 = 1 = m1. Also from 
ρμ1,μ0(1) = 0 we have

˜Irr′1(b) = {χμ1} and

ρμ1 =
∑

λ1∈R̂1

ε(χμ1 ∗ λ1) −
e∑

j=1

∑
λ∈R̂

εj(χj ∗ λ).
(4.16)

Continuing this procedure, Proposition 4.3 in the case mi = 1 follows. �
In the proof of Proposition 4.3, the following theorem is proved:

Theorem 4.4.

Irr(b) =
e⋃

i=1
{χi ∗ λ | λ ∈ R̂} ∪

⋃
μ∈M

{χμ ∗ λμ | λμ ∈ R̂μ}

where χi (i = 1, 2, · · · , e) and χμ (μ ∈ M) satisfy

ρμ =
∑

λμ∈R̂μ

ε(χμ ∗ λμ) −
e∑

i=1

∑
λ∈R̂

εi(χi ∗ λ) for some signs ε, ε1, · · · , εe. (4.17)

We remark that O(χμ) = {χμ ∗ λμ | λμ ∈ R̂μ} from the proof of Proposition 4.3.
We call χi (1 ≤ i ≤ e) non-exceptional irreducible characters of b.

Proposition 4.5. For i (1 ≤ i ≤ e), the R̂-orbit O(χi) contains a unique p-rational 
character.

Proof. Following [1] §6 (cf. [13] Chapt. V §4), we consider the action of the Galois group 
Γ = Gal

(
Q( |G|√1)/Q( |G|

p′
√

1)
)
. Note that Γ is cyclic since p �= 2. For γ ∈ Γ, χγ(g) =

χ(g)γ where g ∈ G and χ ∈ Irr(b), and Γ acts on XK(G, b) by the K-linear extension. 
There exists a rational integer (γ) such that p � (γ), (γ) ≡ 1 (mod |G|p′) and χγ(us) =
χ(u(γ)s) where u is a p-element of G and s ∈ CG(u)p′ . Γ also acts on the b-Brauer 
elements by (u, bu)γ = (u(γ), bu). This action is compatible with the G-conjugation, 
and Γ acts on the G-conjugacy classes of b-Brauer elements. In the proof, G-conjugate 
b-Brauer elements will be identified. Note du(χγ , ϕ) = du(χ, ϕ)γ = du

(γ)(χ, ϕ) where 
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ϕ ∈ IBr(bu). Then (χ ∗ η)γ = χγ ∗ ηγ for a (G, bP )-stable character η of P . Hence 
O(χ)γ = O(χγ) and Γ acts on the set of R̂-orbits of Irr(b). Note that there exists at 
most one p-rational character in O(χ).

Assume (u, bu) is fixed by Γ. Then (u(γ), bu) and (u, bu) are G-conjugate for any 
γ ∈ Γ and there exists some a ∈ L such that u(γ) = ua. Hence |NL(〈u〉)/CL(u)| = |uΓ| =
ps−1(p − 1) where uΓ = {u(γ) | γ ∈ Γ} and ps is the order of u. Then e = p − 1 and 
u /∈P R. In particular, l(bu) = 1. Moreover, from Theorem 4.4 we see u ∈ Q, since the 
column of the generalized decomposition matrix of b corresponding to (u, bu) consists of 
rational integers by the assumption. Set

W = {u ∈ Π ∩ (Q\{1}) | (u, bu) is fixed by Γ}
= {u ∈ Π ∩ (Q\{1}) | u(γ) =L u for any γ ∈ Γ}

and w = |W |. Applying Brauer’s permutation lemma ([13] Lemma 3.2.18) to the gen-
eralized decomposition matrix of b, we see b has exactly (e + w) p-rational irreducible 
characters.

Here we consider the condition that an element of Q belongs to W . Let u ∈ Q. Since 
〈u〉 is stabilized by L, we have uL ⊆ uΓ. Therefore u ∈ W if and only if |uL| = |uΓ|. 
Assume W is non-empty. Then e = p − 1. Let u ∈ W and suppose u ∈ 〈xpi−1〉\〈xpi〉 for 
some i (1 ≤ i ≤ m). Then the order of u is pm−(i−1) and |uΓ| = (p − 1)pm−i. On the 
other hand, since yxy−1 = x1+pl , we have |uL| = e · pm−l−(i−1) when i ≤ m − l, and 
|uL| = e when i > m − l. Thus, we have w = m when l = 1, and we have w = 1 when 
l > 1.

Return to the proof, set

W ′ = {μ ∈ M | μγ = μ(γ) =L μ for any γ ∈ Γ}

and w′ = |W ′|. Then w = w′ since μy = μ1+pl for μ ∈ Q̂. When |M| = 1, clearly 
w = w′ = 1 and b has exactly (e + 1) p-rational irreducible characters. Therefore each of 
O(χi) and O(χμ) contains a p-rational character. Suppose |M| ≥ 2. Since ζ0 is p-rational, ∑e

i=1 χ̃i = ζ0 ↑G̃C is fixed by Γ and we have (χ̃μ)γ = ((ζ0∗(μ̂ ↑PPμ
)) ↑GC)γ = χ̃μγ for μ ∈ M

and γ ∈ Γ. Hence (ρμ)γ = ρμγ . Since ρμ−ρμ′ =
∑

λμ∈R̂μ
ε(χμ∗λμ) −

∑
λμ′∈R̂μ′

ε(χμ′∗λμ′)
for μ, μ′ ∈ M such that μ �= μ′, we have (O(χμ))γ = O(χμγ ) for μ ∈ M. In particular 
O(χμ) is stabilized by Γ if and only if μ ∈ W ′. Hence there exist at most w p-rational 
characters in {O(χμ) | μ ∈ M}. Therefore each of O(χi) and O(χμ) stabilized by Γ
contains a p-rational character. This completes the proof. �

Below, we will assume that χi (i = 1, 2, · · · , e) is p-rational.

Proposition 4.6. Keeping our notations, set

ϕj = εjχj ↓G ′ (j = 1, 2, · · · , e).

p
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Then

Bs(b) = {ϕj | j = 1, 2, · · · , e}

is a basic set for b and the decomposition numbers d(χ, ϕj) of χ with respect to Bs(b) are 
given as follows:

d(χi ∗ λ, ϕj) = εiδij ,

d(χμ ∗ λμ, ϕj) = εphμ

where i = 1, 2, · · · , e, λ ∈ R̂, j = 1, 2, · · · , e, μ ∈ M and λμ ∈ R̂μ. (Here, δij is Kronecker 
delta.) Moreover the Cartan matrix of b with respect to Bs(b) is of the form

C = |R|

⎛
⎜⎜⎜⎜⎝

t + 1 t · · · t

t t + 1 · · · t
...

...
...

...
t t · · · t + 1

⎞
⎟⎟⎟⎟⎠

e×e

where

t = |Q| − 1
e

.

Proof. From (4.17) and ρμi
∈ XK(G, b; Q\{1}), we have

χμi
↓Gp′ = εpi

e∑
j=1

εj(χj ↓Gp′ )

for μi ∈ Mi (0 ≤ i ≤ m − l). Then the statement follows from l(b) = e, Theorem 4.4
and (4.2). �
Remark. When t = 1, we have m − l = 0 and m0 = 1, and let M = M0 = {μ}. In this 
case εjχj and −εχμ are interchangeable with respect to Theorem 4.4 for any j. Also note 
that −εχμ ↓Gp′ = − 

∑e
j=1 εjχj ↓Gp′ .

5. Generalized decomposition numbers in a block with metacyclic defect group

In this section we determine the generalized decomposition numbers of b with respect 
to a basic set obtained by the p′-restriction of irreducible characters with signs.

For (u, bu) ∈ (P, bP ), bu has a defect group CP (u). The block bu is nilpotent if and 
only if u /∈P R. Let

ϕu be the unique irreducible Brauer character in bu when u /∈P R.
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When u ∈ R, E can be viewed as an inertial quotient group of bu, and bu has a hyperfocal 
subgroup CQ(u) from [CQ(u), E] = CQ(u). Also CP (u) = CQ(u) �R. For the above, see 
[23] Lemma 5, Lemma 6 and Lemma 7. Note that, when u ∈P R, we can apply results 
in previous sections for bu. We denote by eu the inertial index of bu for u ∈ P .

For an E-invariant subgroup T of P containing Q and ν ∈ Irr(T ), we define

ην =
∑
a∈E

νa.

Note that we have ην↑P
T

= ην ↑PT and ην does not depend on the choice of E.
We will prove the following two theorems.

Theorem 5.1. Let u ∈ P be such that u /∈P R, that is, eu = 1. Then there exists a sign 
δu such that

du(χi ∗ λ, ϕu) = εiδuλ(u),

du(χμ ∗ λμ, ϕu) = εδuημ̂↑P
Pμ

(u)λμ(u)

where i = 1, 2, · · · , e, λ ∈ R̂, μ ∈ M and λμ ∈ R̂μ.

Theorem 5.2. Let u ∈ P be such that u ∈P R, that is, eu = e. Then there exists a sign 
δu such that for the basic set Bs(bu) = {ϕ(u)

j |j = 1, 2, · · · , e} for bu (see Proposition 4.6
for Bs(bu))

du(χi ∗ λ, ϕ(u)
j ) = εiδuδijλ(u),

du(χμ ∗ λμ, ϕ
(u)
j ) = εδu(μ̂ ↑PPμ

)(u)λμ(u)

under suitable choice of the notations of Irr(bu) where i = 1, 2, · · · , e, λ ∈ R̂, j =
1, 2, · · · , e, μ ∈ M and λμ ∈ R̂μ.

For the proof of the above theorems, firstly we collect some lemmas.

Lemma 5.3. Let u /∈P R. Then

∑
μ∈M

1
phμ

|ημ̂↑P
Pμ

(u)|2 = |CP (u)|
pn

− e.

Proof. We have
∑
μ∈M

|Rμ| |ημ̂↑P
Pμ

(u)|2

=
∑

′

∑
|Rμ|(μ̂↑PPμ

)a(u−1)(μ̂↑PPμ
)a

′
(u)
a,a ∈E μ∈M
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=
∑
a′∈E

∑
μ∈M

∑
a∈E

|Rμ|(μ̂↑PPμ
)a(u−1)(μ̂↑PPμ

)a(ua′
)

=
∑
a′∈E

∑
λ∈R̂

∑
μ∈M

∑
a∈E

1
phμ

(μ̂↑PPμ
)a(u−1)λ(u−1)(μ̂↑PPμ

)a(ua′
)λ(ua′

)

=
∑
a′∈E

∑
λ∈R̂μ

∑
μ∈M

∑
a∈E

(μ̂↑PPμ
)a(u−1)λ(u−1)(μ̂↑PPμ

)a(ua′
)λ(ua′

)

=
∑
a′∈E

( ∑
ν∈Irr(P )

ν(u−1)ν(ua′
) −

∑
λ∈R̂

(1Pλ)(u−1)(1Pλ)(ua′
)
)

= |CP (u)| − epn.

Note (2.1) for Irr(P ), and that ua′ is not P -conjugate to u for a′ ∈ E\{1} by 
Lemma 4.1(i). �
Lemma 5.4. Let u /∈P R. Then

∑
μ∈M

1
phμ

ημ̂↑P
Pμ

(u)(1Rμ
↑RRμ

)(u) = −1.

Proof. Let Q = Q/[Q, u] and write u = qr where q ∈ Q and r ∈ R. We have q /∈ [Q, u], 
since if q ∈ [Q, u] = {[q′, r] | q′ ∈ Q}, then we would have u ∈ rQ. Note that u ∈ Pμ if 
and only if μ ∈ [Q, u]⊥ � Q̂. Then we have

∑
μ∈M

1
phμ

ημ̂↑P
Pμ

(u)(1Rμ
↑RRμ

)(u) =
∑

μ∈M∩[Q,u]⊥
ημ̂ ↑PPμ

(u) =
∑

μ∈Q̂\{1}

μ(q) = −1. �

Lemma 5.5. Let r ∈ R. Then

∑
μ∈M

1
phμ

(
(1Rμ

↑RRμ
)(r)

)2 = |CQ(r)| − 1
e

.

Proof. Note r ∈ Rμ if and only if μ ∈ [Q, r]⊥, and Q/CQ(r) � [Q, r]. Then we have

∑
μ∈M

1
phμ

(
(1Rμ

↑RRμ
)(r)

)2 =
∑

μ∈M∩[Q,r]⊥
phμ =

∑
μ∈M∩[Q,r]⊥

|μL|
e

= |[Q, r]⊥| − 1
e

= |CQ(r)| − 1
e

. �
Next, we consider the generalized decomposition numbers when u ∈ Q\{1} and then 

the heights of irreducible characters in b. For u ∈ Q\{1}, note that CG̃(u) = CÑ (u) =
CG(u) and b̃u = c̃u = cu, and let δu = du(ζ0, ϕu) (a sign), see [3].
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Lemma 5.6. Let u ∈ Q\{1}. Then
(i) du(χ̃i, ϕu) = δu for i = 1, 2, · · · , e.
(ii) du(χ̃μ, ϕu) = δuημ̂↑P

Pμ
(u) for μ ∈ M.

Proof. Let s ∈ CG̃(u)p′ = CC(u)p′ . Then we have

χ̃i(usb̃u) = ζ̃i(usc̃u) = ζ0(uscu) = du(ζ0, ϕu)ϕu(s).

This implies (i). Since ζ0 is Ñ -invariant and Ñ/C ∼= E, we have

χ̃μ(usb̃u) = ζ̃μ(usc̃u) =
(
ζ0 ∗ (μ̂↑PPμ

)
)
↑ÑC (usc̃u) =

∑
a∈E

μ̂↑PPμ
(ua)ζ0(uscu)

= ημ̂↑P
Pμ

(u)ζ0(uscu).

This implies (ii). �
Proposition 5.7. Let u ∈ Q\{1}. Then

(i) du(χi, ϕu) = εiδu for i = 1, 2, · · · , e.
(ii) du(χμ, ϕu) = εδuημ̂↑P

Pμ
(u) for μ ∈ M.

Proof. From (3.2), (3.3), (4.17) and Lemma 3.1, we have

( ∑
λ∈R̂

(
χ̃μ − phμ

e∑
i=1

χ̃i

)
∗ λ

)(u,b̃u)
⏐G

G̃
=

( ∑
λ∈R̂

(
εχμ − phμ

e∑
i=1

εiχi

)
∗ λ

)(u,bu)
.

This implies

δu(ημ̂↑P
Pμ

(u) − phμe) = εdu(χμ, ϕu) − phμ

e∑
i=1

εjd
u(χi, ϕu)

by Lemma 5.6. Hence we have

εdu(χμ, ϕu) = δuημ̂↑P
Pμ

(u) + phμX (5.1)

where

X =
e∑

i=1
εid

u(χi, ϕu) − δue.

Since

e∑
du(χi, ϕu)2 +

∑ 1
phμ

|du(χμ, ϕu)|2 = |CP (u)|
pn
i=1 μ∈M
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from [13] Theorem 5.4.11, and

∑
μ∈M

1
phμ

|du(χμ, ϕu)|2 =
( |CP (u)|

pn
− e

)
− 2δuX + pm − 1

e
X2

from Lemma 5.3, the second orthogonality relation for Q and (4.2), we have

( e∑
i=1

εid
u(χi, ϕu) − δu

)2 = −pm − 1
e

X2.

Hence (i) holds, and (ii) also holds by (5.1). �
Proposition 5.8. (i) χi is of height 0 for i = 1, 2, · · · , e.

(ii) χμ is of height hμ for μ ∈ M.

Proof. From [1] (4C) and Proposition 5.7 for u ∈ Q1\{1}, we see the statements (i) and 
(ii). For (ii), note also that ημ̂(u) ≡ e �≡ 0 mod J(O). �

By Theorem 4.4 and Proposition 5.8, (4.3) is refined to the following proposition, 
which is a generalization of [9] Theorem 5.21, [10] Theorem, [8] Theorem 1.1 and [17]
Theorem 2.3:

Proposition 5.9. (i) k0(b) = (e + pl − 1
e

)pn

(ii) ki(b) =
pl − pl−1

e
pn−i (1 ≤ i ≤ m − l)

(iii) ki(b) = 0 (i > m − l)

(iv) k(b) = (p
l + pl−1 − p2l−m−1 − 1

e
+ e)pn

Now we will show equations on generalized characters in b, see Proposition 5.11 below. 
It is used in the proofs of Theorem 5.1 and Theorem 5.2.

Lemma 5.10. (i) Let μ ∈ M0. Then

η
μ̂−1ημ̂ =

e−1∑
s=1

ημ̂s
+ e1P

where μs ∈ 〈μ〉\〈μp〉.
(ii) Assume 1 ≤ i ≤ m − l and let μ ∈ Mi. Then

η
μ̂−1↑P

Pμ

ημ̂↑P
Pμ

=
pi(e−1)∑
s=1

ημ̂s↑P
Pμ

+
pi−1∑
t=1

η(ν̂t↓
Pνt
Pμ

)↑P
Pμ

+ e(1Pμ
↑PPμ

)

where μs ∈ 〈μ〉\〈μp〉 and νt ∈ 〈μp〉\{1}.
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Proof. Note that μ �→ μ−1(μr)a gives an automorphism of 〈μ〉, that is, μ−1(μr)a ∈
〈μ〉\〈μp〉, if and only if a �= 1 where μ ∈ M, r ∈ R/Rμ and a ∈ E.

(i) We have

η
μ̂−1ημ̂ =

∑
a,a′∈E

(μ̂−1)aμ̂a′
=

∑
a,a′∈E

(μ̂−1μ̂a)a
′
=

∑
a∈E\{1}

ημ̂−1μ̂a + e1P .

(ii) We have

η
μ̂−1↑P

Pμ

ημ̂↑P
Pμ

= (η
μ̂−1 ↑PPμ

)(
ημ̂ ↑PPμ

) =
(
η
μ̂−1

(
(ημ̂ ↑PPμ

) ↓PPμ

))
↑PPμ

and

η
μ̂−1

(
(ημ̂ ↑PPμ

) ↓PPμ

)
=

∑
a∈E

∑
r∈R/Rμ

ημ̂−1(μ̂r)a

=
∑

a∈E\{1}

∑
r∈R/Rμ

ημ̂−1(μ̂r)a +
∑

r∈(R/Rμ)\{1}
ημ̂−1μ̂r + e1Pμ

. �

Proposition 5.11. For μ ∈ M, we have

(ε1χ1) ∗ ημ̂↑P
Pμ

= (e− 1)(ε1χ1) ∗ (1Rμ
↑RRμ

) −
e∑

i=2
(εiχi) ∗ (1Rμ

↑RRμ
) + εχμ

by replacing χμ by an element of O(χμ) if necessary.

Proof. From ρμ ∈ XK(G, b; Q\{1}), Proposition 5.7 and the second orthogonal relation 
for R and Rμ, we see

∑
λμ∈R̂μ

(ε1χ1) ∗ (ημ̂↑P
Pμ

λμ)

= (e− 1)
∑
λ∈R̂

(ε1χ1) ∗ λ−
e∑

i=2

∑
λ∈R̂

(εiχi) ∗ λ +
∑

λμ∈R̂μ

(εχμ) ∗ λμ.

(5.2)

From (5.2) at least one element of O(χμ) appears in (ε1χ1) ∗ ημ̂↑P
Pμ

. On the other hand, 
since (χ1 ∗ ημ̂↑P

Pμ
) ∗ λ = χ1 ∗ ημ̂↑P

Pμ
for λ ∈ R⊥

μ , we can set

(ε1χ1) ∗ ημ̂↑P
Pμ

=
e∑

i=1
ci,1Rμ

(
(εiχi) ∗ (1Rμ

↑RRμ
)
)

+
e∑

i=1

∑
ν( 	=1 )∈R̂

ci,ν
(
(εiχi) ∗ (ν ↑RRμ

)
)

+ cχμ + · · · ,
(5.3)
Rμ μ
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where ci,ν (ν ∈ R̂μ) and c are integers by [2] Theorem. We may assume c �= 0 by replacing 
χμ by χμ ∗ λ (λ ∈ R̂) if necessary. Since 

∑
λμ∈R̂μ

(ν ↑RRμ
)λμ =

∑
λ∈R̂ λ for any ν ∈ R̂μ, 

we have

e− 1 =
∑
ν∈R̂μ

c1,ν , −1 =
∑
ν∈R̂μ

ci,ν (2 ≤ i ≤ e)

from (5.2) and (5.3).
Let Γ = Gal

(
Q( |G|√1)/Q( |G|

p′
√

1)
)

be the Galois group as in the proof of Proposi-
tion 4.5, and let σ be an element of Γ of order e. Note 〈σ〉 acts on R̂μ\{1Rμ

} fixed-point 
freely and ημ̂ =

∑e−1
t=0 μ̂σt . Then 

(
(ε1χ1) ∗ ημ̂↑P

Pμ

)σ = (ε1χ1)σ ∗ (ημ̂↑P
Pμ

)σ = (ε1χ1) ∗ ημ̂↑P
Pμ

and hence

c1,1Rμ
≡ e− 1 (mod e), ci,1Rμ

≡ −1 (mod e) (2 ≤ i ≤ e).

In particular, ci,1Rμ
�= 0. Considering the action of Γ on (ε1χ1) ∗ ημ̂↑P

Pμ
, we see c1,1Rμ

does not depend on μl with p � l. Set X = c1,1Rμ
.

Now let μ ∈ Mi (0 ≤ i ≤ m − l). We will prove the statement by induction on i.
Suppose that i = 0. Then from (5.3) we have

(
ε1χ1, (ε1χ1) ∗ (η

μ̂−1ημ̂)
)

=
(
(ε1χ1) ∗ ημ̂, (ε1χ1) ∗ ημ̂

)

≥ X2 +
e∑

i=2
ci,1Rμ

2 + c2 ≥ X2 + (e− 1) + 1 = X2 + e.

On the other hand, by Lemma 5.10(i) we have

(
ε1χ1, (ε1χ1) ∗ (η

μ̂−1ημ̂)
)

= (e− 1)X + e.

Hence we have (e − 1)X ≥ X2. From this and X ≡ e − 1 (mod e), we have X = e − 1
and above inequalities are equalities. Therefore we have ci,ν = 0 (1 ≤ i ≤ e, ν �= 1Rμ

) 
and ci,1Rμ

= −1 (2 ≤ i ≤ e). Moreover, (5.2) and (5.3) imply c = ε. Hence the statement 
holds for μ ∈ M0.

Next suppose that μ ∈ Mi and i ≥ 1 assuming m − l ≥ 1. Then from (5.3) we have

(
ε1χ1, (ε1χ1) ∗ (η

μ̂−1↑P
Pμ

ημ̂↑P
Pμ

)
)

=
(
(ε1χ1) ∗ ημ̂↑P

Pμ
, (ε1χ1) ∗ ημ̂↑P

Pμ

)

≥ piX2 + pi
e∑

i=2
ci,1Rμ

2 + c2 ≥ piX2 + pi(e− 1) + 1.

On the other hand, by the induction hypothesis and Lemma 5.10(ii) we have

(
ε1χ1, (ε1χ1) ∗ (η

μ̂−1↑P ημ̂↑P
P

)
)

= Xpi(e− 1) + (pi − 1)(e− 1) + e.

Pμ μ
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Here note that we have

η(ν̂t↓
Pνt
Pμ

)↑P
Pμ

=
∑

λ′∈ ̂Pνt/Pμ

ην̂t↑P
Pνt

λ′ for νt ∈ 〈μp〉\{1}

where we view λ′ as a character of P by extension and inflation, and that ε1χ1∗λ′−1 does 
not appear in ε1χ1∗ην̂t↑P

Pνt

by the induction hypothesis. Hence we have Xpi(e −1 −X) ≥
0, and as in the case i = 0, we have the statement in this case too. �

We choose χμ (μ ∈ M) so that the relation in Proposition 5.11 is satisfied.
Now, we prove Theorem 5.1 and Theorem 5.2.

Proof of Theorem 5.1. Clearly it suffices to show the case λ = 1. Set xi = εid
u(χi, ϕu). 

Note xi is a rational integer by Proposition 4.5. Also note xi is non-zero by Proposition 5.8
and [3] Theorem 1.5. From Proposition 5.11 we have

εdu(χμ, ϕu) = ημ̂↑P
Pμ

(u)x1 + (1Rμ
↑RRμ

)(u)
e∑

i=2
(xi − x1) for μ ∈ M. (5.4)

Hence, for the proof it suffices to show

there is some sign δu depending on u such that x1 = x2 = · · · = xe = δu. (5.5)

From [13] Theorem 5.4.11 and (5.4) we have

e∑
i=1

x2
i +

∑
μ∈M

1
phμ

∣∣ημ̂↑P
Pμ

(u)x1 + (1Rμ
↑RRμ

)(u)
e∑

i=2
(xi − x1)

∣∣2 = |CP (u)|
pn

.

By Lemma 5.3 and Lemma 5.4, this equation can be translated to

(x2
1 − 1) |CP (u)|

pn
+

e∑
i=2

(xi − x1)2 +
∑
μ∈M

1
phμ

(
(1Rμ

↑RRμ
)(u)

e∑
i=2

(xi − x1)
)2 = 0.

Then (5.5) follows from this equation. �
Note that the notation δu in Proposition 5.7 is consistent with the notation δu in 

Theorem 5.1.

Proof of Theorem 5.2. We may assume u ∈ R = CP (E). We will consider the basic set 
Bs(bu) = {ϕ(u)

j | 1 ≤ j ≤ e} for bu as described in Proposition 4.6 and the generalized 

decomposition numbers du(χi, ϕ
(u)
j ) (1 ≤ i ≤ e, 1 ≤ j ≤ e) with respect to the basic set 

Bs(bu). Set xij = εid
u(χi, ϕ

(u)
j ). Note xij is a rational integer.
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Since ημ̂↑P
Pμ

(u) = e(1Rμ
↑RRμ

)(u), we have

εdu(χμ, ϕ
(u)
j ) = (1Rμ

↑RRμ
)(u)

e∑
i=1

xij (μ ∈ M, 1 ≤ j ≤ e) (5.6)

from Proposition 5.11. Hence, we have

e∑
i=1

xijxik + tu
( e∑

i=1
xij

)( e∑
i=1

xik

)
= tu + δjk (5.7)

from [13] Theorem 5.4.11 and Lemma 5.5 where tu = |CQ(u)| − 1
e

. Since χμ0 (μ0 ∈ M0) 
is of height 0, there is some j0 such that 

∑e
i=1 xij0 �= 0 by (5.6) and [3] Theorem 1.5.

At first, assume tu ≥ 2. Since

e∑
i=1

x2
ij0 + tu

( e∑
i=1

xij0

)2 = tu + 1

by (5.7), we have 
∑e

i=1 x
2
ij0

= 1. Hence there exists some i0 such that xi0j0 = ±1 and 
xij0 = 0 for any i different from i0. Set δu = xi0j0 . Let j1 be different from j0. Then we 
have

e∑
i=1

x2
ij1 + tu

( e∑
i=1

xij1

)2 = tu + 1
e∑

i=1
xij1xij0 + tu

( e∑
i=1

xij1

)( e∑
i=1

xij0

)
= tu

by (5.7). From this we see there exists i1 (�= i0) such that xi1j1 = δu and xij1 = 0 for 
any i different from i1. Let j2 be different from j0 and j1. Then we have

e∑
i=1

x2
ij2 + tu

( e∑
i=1

xij2

)2 = tu + 1
e∑

i=1
xij2xij0 + tu

( e∑
i=1

xij2

)( e∑
i=1

xij0

)
= tu

e∑
i=1

xij2xij1 + tu
( e∑
i=1

xij2

)( e∑
i=1

xij1

)
= tu

by (5.7). From this we see there exists i2 (�= i0, i1) such that xi2j2 = δu and xij2 =
0 for any i different from i2. Continuing this procedure, if we choose the index j of 
non-exceptional irreducible characters of bu so that i0 = j0, i1 = j1, · · · , then we have 
εid

u(χi, ϕ
(u)
j ) = xij = δuδij and so εdu(χμ, ϕ

(u)
j ) = (1Rμ

↑RRμ
)(u)

∑e
i=1 xij = δu(μ̂ ↑PPμ

)(u) by (5.6). Hence we have the statement in the case tu ≥ 2.
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Next, assume tu = 1. Then since

e∑
i=1

x2
ij +

( e∑
i=1

xij

)2 = 2,

we have
e∑

i=1
x2
ij = 1 and (

e∑
i=1

xij)2 = 1

or
e∑

i=1
x2
ij = 2 and (

e∑
i=1

xij)2 = 0.

When j = j0, the former case occurs and there exists some i0 such that xi0j0 = ±1 and 
xij0 = 0 for any i different from i0.

Assume there exists j1 (�= j0) such that 
∑e

i=1 x
2
ij = 1 and (

∑e
i=1 xij)2 = 1. Then since

e∑
i=1

xij1xij0 +
( e∑
i=1

xij1

)( e∑
i=1

xij0

)
= 1,

we see there exists i1 (�= i0) such that xi1j1 = xi0j0 and xij1 = 0 for any i different from i1.
Set δu = xi0j0 . Let j2 be different from j0 and j1. Since we have

e∑
i=1

x2
ij2 +

( e∑
i=1

xij2

)2 = 2
e∑

i=1
xij2xij0 +

( e∑
i=1

xij2

)( e∑
i=1

xij0

)
= 1

e∑
i=1

xij2xij1 +
( e∑

i=1
xij2

)( e∑
i=1

xij1

)
= 1,

we see there exists i2 (�= i0, i1) such that xi2j2 = δu and xij2 = 0 for any i different from i2. 
Continuing this procedure, under suitable choice of the index j, we have εidu(χi, ϕ

(u)
j ) =

δuδij and εdu(χμ, ϕ
(u)
j ) = δu(μ̂ ↑PPμ

)(u) as before. Hence we have the statement in the 
case where tu = 1 and there exists j1 (�= j0) such that 

∑e
i=1 x

2
ij = 1 and (

∑e
i=1 xij)2 = 1.

Finally, we consider the case where tu = 1, 
∑e

i=1 x
2
ij = 2 and (

∑e
i=1 xij)2 = 0 for any 

j different from j0. Let j1 be different from j0. Then since

e∑
i=1

xij1xij0 +
( e∑
i=1

xij1

)( e∑
i=1

xij0

)
= 1,

we see xi0j1 = xi0j0 and there exists i1 (�= i0) such that xi1j1 = −xi0j1 and xij1 = 0 for 
any i different from i0 and i1. Set δu = −xi0j0 . Let j2 be different from j0 and j1. Since 
we have
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e∑
i=1

xij2xij0 +
( e∑
i=1

xij2

)( e∑
i=1

xij0

)
= 1

e∑
i=1

xij2xij1 +
( e∑
i=1

xij2

)( e∑
i=1

xij1

)
= 1,

we see xi0j2 = xi0j0 and there exists i2 (�= i0, i1) such that xi2j2 = −xi0j2 and xij2 = 0
for any i different from i0 and i2. Continuing this procedure, under suitable choice of the 
index j, we have

εid
u(χi, ϕ

(u)
j ) = δuδij (i �= i0), εi0d

u(χi0 , ϕ
(u)
j ) = −δu,

εdu(χμ, ϕ
(u)
j ) = 0 (j �= j0), εdu(χμ, ϕ

(u)
j0

) = −δu(μ̂ ↑PPμ
)(u).

If we take an alternative basic set

{ϕ(u)
1 , · · · , ϕ(u)

j0−1, −
e∑

j=1
ϕ

(u)
j , ϕ

(u)
j0+1, · · · , ϕ(u)

e }

of bu, then the generalized decomposition numbers with respect to this basic set are

εid
u(χi, ϕ

(u)
j ) = δuδij (j �= j0), εid

u(χi,−
e∑

j=1
ϕ

(u)
j ) = 0 (i �= i0),

εi0d
u(χi0 ,−

e∑
j=1

ϕ
(u)
j ) = δu, εdu(χμ, ϕ

(u)
j ) = δu(μ̂ ↑PPμ

)(u) (j �= j0),

εdu(χμ,−
e∑

j=1
ϕ

(u)
j ) = δu(μ̂ ↑PPμ

)(u).

Then changing the notations of Irr(bu) as in Remark after Proposition 4.6 for j = j0, we 
have the statement in this case too. �
6. Perfect isometries and isotypies

In this section we prove Theorem 1.1. It suffices to construct an isotypy between b
and bNG(P,bP )

P (see Theorem 6.5 below). For the notions of perfect isometry and isotypy 
introduced by Broué ([4] 1.4, 4.6), we follow Definition 2.1 and Definition 2.2 in [12]. The 
K-vector space XK(G, b) coincides with CF(G, b, K) defined in [12].

Lemma 6.1. Assume that G = NG(P, bP ). Then we have

ε = 1, εi = 1 (i = 1, 2, · · · , e), δu = 1 (u ∈ P ).
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Proof. By the assumption we have G = Ñ . Then we have ε′ = 1 and ε′i = 1 by (3.2), 
(3.3) and (4.17).

We have C = PCG(P ), ζ0 is a canonical character of b, χi (i = 1, 2, · · · , e) are the 
extensions of ζ0, and Bs(b) = {ϕj | j = 1, 2, · · · , e} = {χj ↓Gp′ | j = 1, 2, · · · , e} coincides 
with IBr(b). For u ∈ P , CG(u) normalizes a maximal bu-Brauer pair (CP (u), bCP (u)). 
Hence the same situation as b occurs for bu when u ∈P R. In particular, Bs(bu) = IBr(bu). 
Since χi(us) = ϕi ↓CG(u) (s) for u ∈ P and s ∈ CG(u)p′ , generalized decomposition 
numbers for χi in Theorem 5.1 and Theorem 5.2 are non-negative integers. Hence, δu = 1
for u ∈ P . �

Let G′ be a finite group and b′ be a block of G′. Let I : XK(G, b) → XK(G′, b′) be a 
perfect isometry. Then we have

I(α(1,b)) =
(
I(α)

)(1,b′) for α ∈ XK(G, b)

by the “separation condition” ([12] Definition 2.1(b)) of the perfect isometry, and let

Ip′ : X(1,b)
K (G, b) → X

(1,b′)
K (G′, b′)

be the K-linear map induced by I. A class function on Gp′ belonging to b will be viewed 
as an element of X(1,b)

K (G, b). Under this convention, we have

Ip′(α↓Gp′ ) =
(
I(α)

)
↓G′

p′
. (6.1)

From now we set

G′ = NG(P, bP ), b′ = bG
′

P .

We use ′ for the notations concerning to b′. Then F(P,bP )(G, b) � F(P,bP )(G′, b′), and Q
is the hyperfocal subgroup of b′. We may take L′ = L, R′ = R, Π′ = Π, M′ = M and 
so on. Note ε′ = ε′i = δ′u = 1 for i = 1, 2, · · · , e and u ∈ P by Lemma 6.1.

Proposition 6.2. The K-linear map

I1 : XK(G, b) → XK(G′, b′)

such that

I1(χi ∗ λ) = εiχ
′
i ∗ λ,

I1(χμ ∗ λμ) = εχ′
μ ∗ λμ,

where i = 1, 2, · · · , e, λ ∈ R̂, μ ∈ M and λμ ∈ R̂μ, is a perfect isometry.
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Proof. This follows from [11] Theorem 2 (see also [18] Theorem 6.1) and Theorem 5.1
and Theorem 5.2 for b and b′. In fact, for u ∈ Π\{1} take

{δuϕu} and {ϕ′
u} when u /∈P R

{δuϕ(u)
j | j = 1, 2, · · · , e} and {ϕ′

j
(u) | j = 1, 2, · · · , e} when u ∈P R

as Bs(bu) and Bs(b′u) in [11] Theorem 2 (iv), where ϕ(u)
j and ϕ′

j
(u) are taken so that the 

generalized decomposition numbers are described as in Theorem 5.2. �
In Proposition 6.2, the numbering of the non-exceptional irreducible characters of b

is arbitrary, and in the situation of Remark after Proposition 4.6, the choice of χ1, · · · , 
χe is also arbitrary. Similar for b′.

Next, we consider the perfect isometries in the local blocks. These isometries are 
arranged by the sign δu in Theorem 5.1 and Theorem 5.2.

By [3] Theorem 1.2 we have the following ([4] 5.2):

Proposition 6.3. Let u ∈ P be such that u /∈P R, that is, eu = e′u = 1. Then the K-linear 
map

Iu : XK(CG(u), bu) → XK(CG′(u), b′u)

such that

Iu(ζu ∗ λu) = δuζ
′
u ∗ λu,

where ζu and ζ ′u are the unique p-rational irreducible characters of bu and b′u respectively 
and λu ∈ Irr(CP (u)), is a perfect isometry.

When u ∈P R, we can apply the results in previous sections to bu and b′u. We use 
(u) for the notations concerning to bu and ′ (u) for the notations concerning to b′u. When 
u ∈ Rv for v ∈ P , we may take L(u) = L′(u) = CP (u) � Ev, R(u) = R′(u) = Rv and so 
on. Note ε′(u) = ε′

(u)
i = 1 for i = 1, 2, · · · , e. From Theorem 5.1 and Theorem 5.2 for bu

and b′u and [11] Theorem 2, we have the following:

Proposition 6.4. Let u ∈ P be such that u ∈P R, that is, eu = e′u = e. Then the K-linear 
map

Iu : XK(CG(u), bu) → XK(CG′(u), b′u)

such that

Iu(χ(u)
i ∗ λ(u)) = δuε

(u)
i χ′(u)

i ∗ λ(u),

Iu(χ(u)
(u) ∗ λ(u)

(u)) = δuε
(u)χ′(u)

(u) ∗ λ(u)
(u) ,
μ μ μ μ
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where i = 1, 2, · · · , e, λ(u) ∈ R̂(u), μ(u) ∈ M(u) and λ(u)
μ(u) ∈

̂
R

(u)
μ(u) , is a perfect isometry.

A similar remark as stated after Proposition 6.2 holds for Proposition 6.4.
Since χi is p-rational, we have δu = δv and hence Iu = Iv for u, v ∈ P such that 

〈u〉 = 〈v〉. So, for a non-trivial cyclic subgroup S of P , we have a perfect isometry

IS : XK(CG(S), bS) → XK(CG′(S), b′S)

defined by IS = Iu where u is any generator of S.
For u ∈ P , let

d
(u,bu)
G : XK(G, b) → X

(1,bu)
K (CG(u), bu)

be the K-linear map defined by d(u,bu)
G (χ)(s) = χ(u,bu)(us) where χ ∈ Irr(b) and s ∈

CG(u)p′ .

Theorem 6.5. b and b′ are isotypic with a local system {IS | S : cyclic subgroup of P}.

Proof. For the proof, it suffices to confirm

Iup′ ◦ d(u,bu)
G = d

(u,b′u)
G′ ◦ I1

for any u ∈ P .
Let u ∈ P be such that u /∈P R. For i = 1, 2, · · · , e and λ ∈ R̂,

Iup′ ◦ d(u,bu)
G (χi ∗ λ) = Iup′

(
εiδuλ(u)ϕu

)
= εiδuλ(u)(δuϕ′

u) = εiλ(u)ϕ′
u

by Theorem 5.1 for b and (6.1), and

d
(u,b′u)
G′ ◦ I1(χi ∗ λ

)
= d

(u,b′u)
G′ (εiχ′

i ∗ λ) = εiλ(u)ϕ′
u

by Theorem 5.1 for b′. Hence we have Iup′ ◦ d(u,bu)
G (χi ∗ λ) = d

(u,b′u)
G′ ◦ I1(χi ∗ λ

)
. Similarly 

we have

Iup′ ◦ d(u,bu)
G (χμ ∗ λμ) = εημ̂↑P

Pμ
(u)λμ(u)ϕ′

u = d
(u,b′u)
G′ ◦ I1(χμ ∗ λμ)

for μ ∈ M and λμ ∈ R̂μ.
Next let u ∈P R. By Theorem 5.2 for b and (6.1)

Iup′ ◦ d(u,bu)
G (χi ∗ λ) = Iup′(εiδuλ(u)ϕ(u)

i ) = εiλ(u)ϕ′ (u)
i .

On the other hand, by Theorem 5.2 for b′

d
(u,b′u)
G′ ◦ I1(χi ∗ λ) = d

(u,b′u)
G′ (εiχ′

i ∗ λ) = εiλ(u)ϕ′ (u)
i .
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Similarly,

Iup′ ◦ d(u,bu)
G (χμ ∗ λμ) = Iup′

( e∑
j=1

εδuημ̂↑P
Pμ

(u)λμ(u)ϕ(u)
j

)
= εημ̂↑P

Pμ
(u)λμ(u)

e∑
j=1

ϕ
′ (u)
j

and

d
(u,b′u)
G′ ◦ I1(χμ ∗ λμ) = d

(u,b′u)
G′ (εχ′

μ ∗ λμ) = εημ̂↑P
Pμ

(u)λμ(u)
e∑

j=1
ϕ
′ (u)
j .

This completes the proof. �
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