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1. Introduction and notation

Let G be a finite group and (K, O, k) be a sufficiently large p-modular system such
that k is algebraically closed where p is a fixed prime. Let b be a p-block of OG with
a maximal b-Brauer pair (P,bp). Let Q = hyp(b) be the hyperfocal subgroup of b with
respect to (P,bp) ([14]). A character-theoretic shadow of Rouquier’s conjecture ([15] A.2)
says that if @) is abelian, then b and bgG(Q) are perfectly isometric ([4]1.4).
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By the results in [20], and [19] or [7], if p is odd and P is non-abelian metacyclic, then
Q is cyclic. In this article we will prove the following:

Theorem 1.1. Assume that p is odd, and P is metacyclic and either of the following
holds.

(i) P is non-abelian.

(ii) P is abelian and Q is cyclic.
Then b is isotypic to its Brauer correspondents in Ng(P) and Ng(Q).

Hence, a character-theoretic version of Rouquier’s conjecture for blocks with non-abelian
metacyclic defect groups is true when p is odd. See [16] Chapter 8 on results on p-blocks
with metacyclic defect groups including 2-blocks. Note that, in [22], an isotypy between b
and its Brauer correspondent in the case where P is abelian (not necessarily rank 2) and
Q is cyclic is already proved in a different manner. Also note that if b has a non-trivial
cyclic hyperfocal subgroup @, then p is odd by [23] Lemma 3 and Lemma 4 (ii).

We give an outline of our proof of Theorem 1.1 using the notation mentioned below.
We may assume @ # 1, since Q = 1 if and only if b is nilpotent. By referring to ideas
in [5], we will determine Irr(b) from Irr(h) where b = bIG;, G = Ng(Q) and Q is the
minimal subgroup of @. But [(b) and k(b) are already known by [23]. In determining
Irr(b), Broué-Puig *-construction also plays a big role.

The block ¢ = bgG(Ql) is nilpotent and b covers ¢. Since Irr(c) is known ([3]), Trr(b)
is determined by Clifford theory for blocks and Fong-Reynolds correspondence (Theo-
rem 2.6). i

The induction from G to G induces the K-linear isometry from D oueQ\{1} X,(C"’b“) (G, b)
t0 X ueq\ (1} X,(Cu’b“)(G, b) (Theorem 3.3), and any x € Irr(b) appears in some element
of > uco\i1} X,(Cu’b“)(G7 b) (Proposition 3.4). This is a crucial key to determine Irr(b).

In §4, Irr(b) is determined by long calculations (Theorem 4.4). In particular, (4.17)
below is an important equation expressing a connection between Irr(b) and Irr(b). Then
we also determine the Cartan matrix of b with respect to a basic set (Proposition 4.6).

For any (u,b,) € (P,bp), b, is nilpotent, or b, has a metacyclic defect group and a
cyclic hyperfocal subgroup and I(b,) = e. That is, we can apply the results in previous
sections to non-nilpotent b,. In §5, we determine generalized decomposition numbers in
b from (4.17), the orthogonality relations for them and the Cartan matrix of b,, u € P
(Theorem 5.1 and Theorem 5.2).

In the final section, by applying [11] Theorem 2 for b and V' = bgG(P’bP ), we obtain
a perfect isometry between them using the signs appearing in (4.17). We also obtain a
perfect isometry I* between local blocks b, and b!, for any u € P. The isometry in the
local blocks is arranged by the sign appearing in Theorem 5.1 or Theorem 5.2. Then
{I* | u € P} defines an isotypy between b and b’ (Theorem 6.5).

We denote by Irr(b) (resp. IBr(b)) the set of ordinary (resp. Brauer) irreducible char-
acters in b and by Irr; () the set of ordinary irreducible characters in b of height i. We set
1(b) = [IBr(b)], k(b) = |Irr(b)| and k;(b) = [Irr;(b)[. We set X(G,b) = 3_, crp(p) Zx and
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Xi(G,b) = X ety Kx- For a, B € Xic(G,b), we denote by (a, 3) the inner product
of o and S. For each u € P, let (u by) be the Brauer element belonging to (P,bp). For
X € Irr(b) and a basic set {905 ,gog“), e ,gol(b } for b, we denote by d*(x, (u)) the
generalized decomposition number. For x € X;C(G,b), x(®b) is the class function of
G vanishing outside of the p-section of v and which is such that x(“«)(us) = y(usb,)
for s € Cg(u), where G, is the set of p’-elements of G. If (u,b,) and (v,b,) are not
G-conjugate, then (y(“bw) y/(:02)) = 0 for any x,x" € Xx(G,b) (cf. [13] Theorems
3.6.13 and 5.4.7). We define a K-vector space

X,(Cu’bu)(G, b) _ {X(“’bu) ‘ X € XIC(Gvb)}'

Then dimy (X,(C“’b“)(G, b)) = I(by). For a normal subgroup N of G and a character ¢ of
N, we denote by S¢(() the stabilizer of ¢ in G. By inflation, Irr(G/N) will be regarded
as a subset of Irr(G). For z € G, we denote by ¢ the conjugacy class of , and by 2 the
class sum. For a finite abelian group X, we denote by X the character group of X. For a
subgroup Y of X, we have X /Y ~ Y via restriction where Y+ = {\ € X | Y C Ker(\)}.
We can regard Y as a subset of X via extension of linear characters to X, which is not
uniquely determined.

In this paper we assume () is cyclic. Then the Brauer category F(py,.)(G,b) is con-
trolled by Ng(P,bp), see [23] Theorem 3. Any Brauer pair (T, br) contained in (P,bp)
is extremal in (P, bp), see [23] Lemma 5. Let E be a complement of PCgx(P)/Cq(P)
in Ng(P,bp)/Cq(P), and e = |E| be the inertial index of b. We have [(b) = e, see [23]
Theorem 1. The group E is cyclic of order dividing p — 1 since E < Aut(Q), see [23]
Lemma 3. We have Q = [Q, E], and e = 1 if and only if Q = 1, see [23] Lemma 4 (ii).
Set

L=PxE,
and define II as follows:
IT: a set of representatives for the L-conjugacy classes of P.

Then {(u,b,) | v € I} is a set of representatives for the G-conjugacy classes of b-Brauer
elements. Let 7 be a (G, bp)-stable generalized character of P, that is, if (u,by,), (v, by) €
(P,bp) are G-conjugate, then n(u) = n(u’). For x € Xi(G,b), x *n € X (G,b) is such
that

xoen =Y nu)x™,

uell

and x *n € X(G,b) whenever x € X(G,b), see [2]. We set

R = Cp(E).
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Moreover we assume () is non-trivial. Then p # 2. By [23] Lemma 4 (i),
P=QxR.

Note that any generalized character A of R regarded as a generalized character of P is
(G, bp)-stable as Ng (P, bp) controls F(pj,.)(G,b). For u € P, b, is nilpotent if and only
if u ¢p R, see [23] Lemma 7. When u €p R, we have [(b,) = e by [23] Lemma 6 and
Lemma 7. For p € Irr(Q), we set

P,=Sp(n), R,=RNP,, h,issuchthat p" =|P:P,|=|R:R,|

Then P, is normal in Ng(P,bp) and E-invariant as Aut(Q) is cyclic. We denote by fi
the extension of u to P, with R,, C Ker fi. Let @1 be the subgroup of @ with order p.
Note that Q1 C Z(P). Set

C=Ca(Q), c=bg,, N=Ng(Qi,c), é=c, G=Ng(Q1), b=2e

The pair (P,bp) is a maximal ¢ (resp. ¢ b)-Brauer pair. The block ¢ is nilpotent. The
block ¢ has an inertial group E, and has a hyperfocal subgroup @ from Q = [Q, FE] <
[P, E] and [23] Lemma 6. The block b is the Clifford correspondent of é.

2. Irr(b)

In this section, we determine the irreducible characters in b.
Firstly, we have

r(P) = | J { (IA)1E, | A € Ix(R,)} (2.1)

HER

where R is a set of representatives for the P-conjugacy classes of Irr(Q).

Proposition 2.1. ([3] Theorem 1.2)

(i) l(c) = 1.

(ii) For any c-Brauer element (u, f), f is nilpotent.

(iii) There is an irreducible character (o in ¢ with height 0 such that d*(Co, (u,5)) = *1
for any c-Brauer element (u, f) and the unique irreducible Brauer character ¢, sy in f.

(iv) Ewvery generalized character of P is (C,bp)-stable and Irr(c) = {(o*xv | v €
Irr(P)}.

We have N = Ng(P,bp)C since N = Nng(Ppp)(Q1,¢)C and Q1 < Ng(P,bp). We also
have N¢(P,bp) = PCq(P). In fact, we have No(P,bp) = (Nc(P,bp) N P)(Ne(P,bp) N
F) for a lift F' in Ng(P,bp) of a suitable inertial quotient group of b, and C'N F acts
trivially on P since F' acts trivially on P/Q and C' N F acts trivially on Q. Hence, we
have N/C = E.
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Since (p is the unique irreducible character in ¢ such that it is p-rational, (y is
N-invariant. We set

G =Co*v

for v € Trr(P). For n € Ng(P,bp), we have

(G)" = (Co*v)" = (um. (2.2)

Write v = (i) Tgﬂ where p € Irr(Q) and A € Irr(R),), see (2.1). If p = 1¢, then v = X,
and we have S5 (¢y) = N from N = Ng(P,bp)C and (2.2). Hence () extends to N. On
the other hand, if ;1 # 1¢, then we have S ((,) = C. In fact, if v = v for n € Ng(P,bp),
then p and p™ are irreducible constituents of I/\Lg. Hence p = p™* for some v € P. Since
a p/-automorphism of Q does not fix any element of Q\{1}, we have nu € PCq(P) C C,
and son € C.

We define M as follows:

M : a set of representatives for the L-conjugacy classes of Trr(Q)\{1}.
Let
Gia(i=1,2,---  e) be the extensions of {x to N (X € Irr(R)),

and set

Gurs = (Carp )18 (€ M, Ay € Iie(R,)).
Since ¢ is the unique block of N covering ¢, the above implies the following:

Theorem 2.2.

Irr(@) = {Ga | A€ lir(R), 1 <i<e}U U {CNH)\“ | Ay € Irr(Ry)}
pneM

We note that ZM is of height 0 and 5#)\“ is of height h,,.

We denote by (P,bp). (resp. (P,bp)z, (P,bp);) the pair (P, bp) regarded as a maximal
¢ (resp. ¢, I~))—Brauer pair to avoid confusion. For each S < P, let (S,cs) C (P,bp)e,
(S,&s) C (P,bp)z and (S,bs) C (P,bp);. Similarly, for each u € P, let (u,c,) € (P,bp).,
(u,é,) € (P,bp)s and (u,by) € (P,bp);.

Lemma 2.3. For S < P, &g is the unique block of Cx(S) covering cs and bs is the unique
block of C(S) covering ¢s.
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Proof. We show by induction on |P : S|. When S = P, the statement is clear. Let S<T' <
P. Then BrT(cSéSI;S)cTET?)T = crérbr by [21] Theorem 40.4. (Here ~ : OG — kG is
the canonical epimorphism.) By the induction hypothesis we have crérbr # 0, and so

csCsbg # 0. Hence ég covers ¢g and bg covers ¢g. For the uniqueness, note Q1 < G and
[13] Theorem 5.2.8 (ii). O

Lemma 2.4. Let A be an L-invariant generalized character of P.
(i) For any ¢ € Trr (@),
(Cx M 4E= (CLe) * A
(ii) For any ¢ € Irr(c),

(C*)\)Tc (CTC)

(iit) For any ¢ € Irr(é),

(CxN1E= (1) + A

Proof. First of all we note that, for u,v € P, if u = v" and &, covers ¢! for some h € N,
then A\(v) = A(u). In fact, the condition implies (v,é&,)" = (u,é,) by Lemma 2.3, and
hence v and v are L-conjugate.

(i) If (((“ Cu) iN)(” ev) £0, then A\(u) = \(v ) In fact, by the assumption there exists
some h € N and s € Cc(v), such that u = v and

0 # [0 )| (Ewen) | F)wen) (y5) = {0 (psCe®e,) = E(u(sCeWe, )z, ).

Then we have

(C =30 D7 M) &) = 3T ) = (48 * A

ver uell vET

where 7 is a set of representatives for the conjugacy classes of P.

(ii) If (C(”vcv)TCN)("vau) # 0, then A(v) = A(u). In fact, by the assumption there exists
some s € C'5(u), such that (¢(vev) Tg)(usa-ir(\“)éu) # 0, so we have s € C and there is
h € N such that v = u" and

—

0 £ () (usOrD2,)") = ((0(sO5 e, e,).

Then we have

A= 3 STA@) e ) @) = 37 A @) (1) @) = (¢18) * A

uellven u€ell

(iii) Similar as (ii). O
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Set

Gi=Ciip €Tr(é) (i=1,2,---,e), i.e.,  are the extensions of ¢y to N,

Cu = Cutn, = = (Gurp )1 Neln(@) (neM),
X :ClT]\:[ EII‘I‘(i)) (121727 76);
% =G1S eTr(h) (ueM).

From now on we assume R is abelian. Since any A\ € R C Irr(P) is L-invariant R

acts on Irr(é), Irr(b) and Irr(b) respectively, via *-construction. For y € Irr(b) U Irr(b)
we denote by O(x) the R-orbit of y.

Proposition 2.5. (i) For any A € R, G A (i=1,2,---  e) are the extensions of (.
(ii) For any u € M and \ € R,

G A=,

In particular, Cu * \ = CM if and only if A e R , and so (’)(5”) = {CNH xA| A€ I/%;}
(iii) For any p € M and X € R,

(Cu ¥ N 1G= X0 # A

In particular, X, * A = X, if and only if A € R ,and so O(X) ={Xu*A| A€ ]/%;}
Proof. (i) We have

O = (Co* V1= (G18) * A = ch )# A= ZQ*A

by Lemma 2.4 (ii). This implies (i).
(ii) By Lemma 2.4 (ii) and [13] Theorem 3.2.14 (i),

G A= ((Gox AthIE ) # X = (Gox (A IE) 5, T8 = Gunp -

(iii) This follows from Lemma 2.4 (iii) and (ii). O

By Theorem 2.2 and Proposition 2.5, we have the following:

Theorem 2.6.

Irr(b U{XZ*)\ [ xe RYU (J {Xu* M\ | A € R}
i=1 pnemM

We note that x; * A is of height 0, and x, * A, is of height h
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3. A linear isometry from b to b

All notation in previous sections are kept in the following sections. Set

Xe@G o\ = @ xHG,0).
uelIN(Q\{1})

We shall obtain a linear isometry from X (G,b; Q\{1}) onto Xx(G,b;Q\{1}) in The-
orem 3.3 below, which is a crucial tool to determine Irr(b). Note that Cg(u) < C and

by (= b,) is nilpotent for u € Q\{1}.
We see

T, = {x € G| the p-part of x is G-conjugate to u} (u € Q\{1}) (3.1)
is a T.I. set in G with normalizer G. '

Lemma 3.1. Let u € IIN (Q\{1}) and X € Irr(b). We have

X(uabu) Tg: ()Z(u7bu) Tg)('uwbu).

Proof. Assume ()Z(“’E“) Tg)(”’f) # 0 for a Brauer element (v, f) of G. Then we may

assume v = u. Let s € Cg(u)y be such that ()Z(“j’") Tg)(“’f)(us) # 0. From (3.1) we
have

—

0 # (X5 1) (usCe( ) = X0 (usCe ).
Hence f = b, = by, and this completes the proof. O

For each p € M, we set

e

Pu= Y Xurdi— Y (D Xi*)), (3.2)

A.ER, i=1 \eR

Pu = ﬁuTg : (3.3)

Lemma 3.2. {5, | n € M} is a K-basis of Xxc(G,b; Q\{1}).

Proof. From (3.2),

s
t:.

_:bz
Il

]

(R = 0" 3% = A= IRE Y (o 3o )™
=1 i=1

wellNQ

AER

by the second orthogonality relation for 2. On the other hand, since X, = (Co*( [l TII;“ )) Tg
and 37, Xi = Co 1G, we have
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e
o — hu = G
Xu =2DP Xi on Gy
i=1

Hence p, € Xx(G,b;Q\{1}). Moreover, clearly p, (u € M) are linearly indepen-
dent over K and |[M| = [II N (Q\{1})|. Therefore {p, | n € M} forms a K-basis of
Xk(G,b;Q\{1}). O

Theorem 3.3. The induction from G to G gives a K-linear isometry

9 Xic(G,b;Q\{1}) = Xk (G, b; Q\{1}).
Moreover {p,, | p € M} is a K-basis of Xxc(G,b; Q\{1}).

Proof. At first we note dimx X (G, b; Q\{1}) = [IIN (Q\{1})| = dimx Xx (G, b; Q\{1}).
By Lemma 3.1, ¢ is well-defined. From (3.1) we see that ¢ preserves the inner products
(cf. [6] Theorem 12.1 (Brauer-Suzuki)). Set X (G, b; Q\{1}) = X(G,b)N Xk (G, b; Q\{1})
and X(G,b;Q\{1}) = X(G,b) N Xx(G,b; Q\{1}). Let 9 be the restriction of ¥ to
X (G,b;Q\{1}). Then 9 induces a map from X (G, b; Q\{1}) into X (G, b; Q\{1}) which
is injective. Hence {9(p,) | p € M} is linearly independent over Z by Lemma 3.2. Since
Xk (G, b) 2 Koz X(G,b), {9(p,) | p € M} is linearly independent over K. Hence 9 is
surjective and hence is a KC-linear isometry. This and (3.3) complete the proof. O

The following propositions will be used in the proof of Proposition 4.3 below.
Proposition 3.4. For x € Irr(b), there exists p € M such that (p,, x) # 0.

Proof. We have x(*¢) #£ 0 for z € Q;\{1} by [1] (4C) and we can write y*¢ =
> e Py (a, € K) by Theorem 3.3. Hence we have

(3 awpi) = g 3 XEIeax((0) ™) = 2 3 K e £ 0

neM ELECP/ ELECP/

This completes the proof. O

Proposition 3.5. For € M, x € Irr(b) and X € R,

(Pus X *A) = (P, X)-

Proof. Since p, € X (G,b; Q\{1}) we have p, * XA = p,,, and (pu, x) = (pu * A, X * A) =
(Pusx *A). O
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4. Irreducible characters in a block with metacyclic defect group

From now we consider the case where p is odd and P is metacyclic. In the case where
P is non-abelian, using a theorem of fusion in [20], and an analysis of the automorphism
group of P in [19] or [7], we see that @Q is cyclic and the assumption @ # 1 implies P is
split. In the case where P is abelian, recall that we are assuming @ is non-trivial cyclic.
Hence we may assume that

P=(zy|a" =y" =1, yoy ' =2 ), Q= (z), R=(y)
where m>1, n>1,1>1, 0<m—-1<n.

Our purpose of this section is to determine Irr(b) (Theorem 4.4 below).
Concerning the action of y on z, we note that for an odd p and an integer ¢ such that
p [ ¢, we have

(1+ cpl)pi =14 p"** for some ¢ such that ¢ = ¢ (mod p).

The kernel of the action of R on Q is <ypm7l) that is, R/(y?" ') is isomorphic to a
subgroup of Aut(Q) of order p™~!, and R/ <y” l) is also isomorphic to a subgroup of
Aut(Q) of order p™~ as p¥ = 1“’ for pe Q.

Set

Mi={pe M| R, =R}, mi=|M;| (0<i<m-—1I).

Then M = U7",' M; and we see

pt— 1 pl 7pl71
and m; = ——
e e

mo = (1<i<m-1I). (4.2)

We have [(b) = e and k(b) = k(bg) where by = bNG(P bP) | see [23] Theorem 1. Since
Fo(bo) = (2= 4e)p™, ki(bo) = 22 pn = (1 < i < m—1) and ky(bo) = 0 (i > m—1) from
(4.2) and Theorem 2.6 in the case G = Ng(P,bp), we have k(by) = (plﬂ’l 1_€QL7M71_1 +
e)p™. Therefore

1 1—1 2l—m—1
p+p T —p -1
k(b) = (

e

+e)p", (4.3)

see [16] Theorem 8.8.
Set

i i+1

My =10 (P\@QW). Th=Tn QW \Qw'™) (1 <i<m—1).

We remark II,,_; is empty if m — [ = n.
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Lemma 4.1. (i) Let u € P with u ¢p R. Then (up)a;éup for any a € E\{1}.
! 1
iy p -1 1 P = 1 n n—1
o = (1 + 2= )" —p» 1) and P =y - ,
() M) = (1+ 2 ) and 3 1(00) = (e + 27— )

u€lly
(iii) Assume that 1 <i<m—1 andi <n. Then

p—1 p—p

| = (1+ =——=+i——)(p" " =p""") and
[ [ -1
p—1 p—p n—i _  n—i—
> 1) = e+ e L) -y,

u€ell;

Proof. (i) Note that (u”)® = (u®)” is a conjugacy class of P. Now suppose that v and
u® are P-conjugate for some a € E\{1}. Then (a) acts on uf by conjugation, and there
is u' € u”” such that u/* = u’ by a lemma of Glauberman. Hence we have u”% = v and
so u?@ " =y for some v € P where @ is an inverse image of a in Ng(P,bp). This gives
a contradiction by [23] Lemma 4(i).

(ii) For any y" € (y)\(y?), we have
="y

where unions are disjoint and s ranges over the integers such that 0 < s < p! — 1. Let
y' =y’ where p 1 j. From the relation in (4.1), we have

(“xkyj/)(ﬁ?”/)(xkyj/r1 = xs(le)j/ L pk(=04pH)7) -y € ZS(ZPLM/
for any k and j'. Note that <x1—(1+;nl)f> _ <xpl>_ Hence we have (z°y')P = a:s<xpl)y’, and
{yIu{e*y [1<s<p -1}
is a set of representatives for the P-conjugacy classes of the L-invariant subset Qy’ of P.

Then the statement follows from (i).
(iii) For any ' € (y? W\ (P ), we see

Qy—x”yUU @y \ @),

and

=Us? T @y T = e ) 0o <o)

where unions are disjoint, s ranges over the integers such that 0 < s < p'—1 and ¢ ranges
over the integers such that 0 <t < p' —1 and ptt. Let ¢ = y*'/ where p{ j. From
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1+ ’

(xkyj’)(xspiy/)(xkyj')—l — P 4P pkA=Q4PY)P) e pspt ="y

we have (z7'y/)F = 7' <xpl+i>y'. Note that (x(l_(l"’pl)plj)) = (2*"""). Also from

(xkyjl)(xtpvy/)(zkyj,)71 _ xtpv(lerl)j/ . xk(17(1+pl)yij) ) y/ c xtpv <:Cpl+v>y/,
we have (2'?"y)F = 27" (277" )y/. Note that {z?"(+P") | j’ ranges over integers} =
2" (2P} since we see P (14707 = 2tp"(14p)" if and only if j' = 57 (mod p™~I=v).
Hence

i—1

{yIu{a?y [1<s<pyulJ 'y o<t<p), ptt}
v=0

is a set of representatives for the P-conjugacy classes of the L-invariant subset Qy’ of P.
Then the statement follows from (i). O

Let z = y?" ' € Z(P). Then x(**9) # 0 for any x € Irr(b) by [1] (4C). Hence, if
x*A=x for A € R, then A € RL_, and so |O(x)| > p"~ (™. Let

Irr}(b) = {x € Irr(b) | |O(x)| = p" "} for 0 <i <m —1.
(In fact, Irr}(b) coincides with the set Irr;(b) of irreducible characters in b with height ¢

by Proposition 5.8 below.) For x € Irr(b) and i where 0 < i < m — [, x € Irrj(b) if and
only if x(®b«) =0 for all u € U;;%)Hj. Hence a table

(u,bu)
X mot
XEIrr(b),uEUj:(] I1;

is of the form as follows:

Ho | Iy [ IIp | - | Hpegeq | 1l
Irry (b) * * * | - * *
Irr’y (b) 0 * x | .- * *
) [0 o [« [ ] « : (4.4)
: 0 0 0 *
L), ;b)) O | O | 0 |- 0 *

Let
Ifr;(b) be a set of representatives for the elements of Irr(b) under R-action,

and let
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n; = n;(b) = |Irr, ().

If 4 € M, then |O(X,)| = p"~* by Proposition 2.5(iii). Hence ng(b) = mg + e and

n;(b) = m; (1 < ¢ < m —1) by Theorem 2.6. This holds for b too, see Proposition 4.3
below.

Lemma 4.2. (i) ng > e + mg.

(ii) Let m —1 > 1. If ng = e + mo, then ny > my.

(ili) Let m —1 > 2 and i be such that 2 <i<m—1. If ng = e+ mgy and n; =m; for
any j where 1 <3 <1i—1, then n; > m;.

Proof. (i) By the table (4.4), we have dimy (@, ., X" (G, b)) < nop™. In fact,

u€llp

dimye (@D X" (G.b)) < nop™H(p — 1)
u€lly

since the Ri-orbit sum of y € Irry(b) vanishes on ITy. On the other hand,
(u,by) P -1 1
dime (@@ X¢(G.) = (e + )" — ")
u€lly

by Lemma 4.1(ii). Hence, we have

(e+mo)(p" —p" ") < mo(p” —p" ),

and so (i) follows.
(ii) At first we consider the case n = 1. Then m —1 = 1. From (4.2) and (4.3), we have

(pl +pl—1 _pl—2 -1
e

ngp +ny = +e)p:(e+m0)p+m1.

Hence by the assumption, we have ny = m;.
Next assume n > 1. By the table (4.4), we have dimy (€D
nop™ +nip” ' In fact,

U,by
u€llgUITy XI(C )(G7 b)) §

dime (@@ X"(G,0) < nop"2(p? — 1) +map" 2 (p— 1)
u€IMoUITy

since the Ry-orbit sum of x € Irr;(b) (j = 0, 1) vanishes on ITo UTI;. On the other hand,
!

: u -1 n n—
dime (P XY = e+ =" —p" )
u€llgUIl,
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by Lemma 4.1(ii) and Lemma 4.1(iii) for ¢ = 1. Hence, we have

(e+mo)(P" —p" 2) +mi(p" " —p" %) < no(p" —p" )+ (pt Tt —p" ),

and so (ii) follows by the assumption.
(iii) We can show similarly. O

Proposition 4.3. (i)

F—1
no=e+mg=c¢+ .
e
(i)
|
ni:mi:& (1<i<m-1).
e

Proof. In the proof, u;, ) and p are elements in M; (0 <i <m —1). Set

Pup = Pu — P for p,p' € M.

From (3.2), (3.3) and Theorem 3.3,

(Ppiis Puy) = 0i5p" " + ep™.

If p;, pi and pf are different from each other, then

(puivpuuM) = pniia (pm,uﬁn puuué) = aniza (pmxll«;-’ pm,uﬁ;’) =D

n—u

If 7 # j, then

.o n—1

(pumu’npu;‘,u;) =0, (Ppipss Ppip;) =P +p" .
Moreover, if p; # pl and i # j, then,

(pumubpm,uj) =p"".
These equations are used repeatedly in the proof.

We note that mo = 1, if and only if m; =1 forall 0 <i<m — [, ifand only if [ =1
and e = p — 1 from (4.2).

At first, we consider the case m; > 1.

For puo, p1y € Mo, puo,uy, has at most two constituents in Ifrg (b) from Proposition 3.5
and (Ppg.uts Puo.puty) = 20" We show

there exists o, ig € Mo such that p,, . consists of two elements in Ifrg(b). (4.5)
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Assume (4.5) does not hold and let g € M. Since (pu,, Puy) < nop™ from mg > 1 and
Lemma 4.2(i), there exists y € Ifrg (b) such that x does not appear in p,,,, and x appears
in py,,, for some p € M\{uo} by Proposition 3.4. Then y is the unique element of
Ifrg(b) appearing in p,, , by the assumption or the inequality (pug,pu, Puo,u) < 2™ where
w € M\My. If some x' € Ifri)(b)\{x} also does not appear in p,,,, then similarly there
is some p’ € M\{uo, u} such that x’ is the unique element of Ifrg(b) appearing in py, ./,
and then both the x and x’ appear in p. ,, = puo.u — Puo.p’» Which gives a contradiction.
Hence, any element of Ifrg(b)\{x} appears in p,,, and so (ng — 1)p" < (Pug, Puo) =
(e + 1)p™. Then by Lemma 4.2(i) we have (po,po) = (no — 1)p™ and p,, consists of
ng — 1 elements of Ifrg(b)\{x}, which gives a contradiction since (p,y, puo.p) 7 0. Hence
(4.5) holds. Below, let po, iy € Mg be as in (4.5) and let p,,, ,» consist of two elements
Xpio> Xuty € Ifrg(b).
Set

A={xe Ifrg(b) | x appears in p,,, ,, for some p € M}.

Then we have
A={xe Ifrg(b) | x appears in p,,,,, for some ;€ Mo}

since (Ppg,pus Puo.p) < 20" and (Pug s Ppo,uy) 7 0 for € MAMo. For p € Mo\{po, 1o}
~ !

Ppuo,p has at most one constituent x,, in Trrg(b)\{X o> Xuy } since (pug,ur Ppuo,p) = 2p™ and

(Ppiosis Pro,ty) = P"- Hence we have |A| < mg. Next, set

B={x¢€ Ifrg(b) | x appears in p,, }.

Then we have |B| < e+ 1 since (pu,, pu,) = (e + 1)p". We may assume x,, € AN B
since (pyug,uy> Puo) 7 0, and we have [A N B| > 1. Since Irr:)(b) = AU B, we have

ng <mo+(e+1)—1=e+ myg.

Therefore we have ng = e + mg by Lemma 4.2(i) and above inequalities are equalities.
Hence we see there exist e characters x1,- -, Xe € If"ré (0)\{xpu | v € Mo} and some signs
€,€1, - , € such that

€

Pro = D €0uo ¥ XN = D > (x5 # N

\eR J=1xeR

Moreover we see p,,., consists of x,, and x, for u € Mo\{uo,uo}. Then for p €
Mo\{po} we have

Pro.p = Z 6 (Xpo * A) — Z S(xpu % A)

\eR AeR
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for some sign § as py,,. (1) = 0. Since p, = puy — Puo,p a0d (P, pp) = (e+1)p™, we have
€ = J. Therefore

I;ri)(b) ={x;j|1<j<elU{xulpe Moy} and

(4.6)
puzz ZZEJ for p € M.
\eR J=1xeR
Below let u € M\ M;,. We show
(s xu) =0 for any p’ € Mg and (p,, x;) = —€; for any j (1 <j <e). (4.7)

Let pu € M;. Then we have (pr i, pp,) = p™ +p"~*. On the right side of this equation,
pn 7
(pus pur) > (pu, pp)- Hence the multiplicities of elements of Irro(b) in p,s and in p,, are

comes from a constituent of p,, and p™ comes from a constituent of p,, by (4.6) and

the same except one element of Ifr:) (b) and the exception is x, or x; for some j. The
multiplicities of x, and x,~ in p, are the same for any p" € My from (pp, ppr,) =0
and (4.6). Hence if the exception is x; for some j, then we have (p,,p,) > {(e — 1) +
mo}p™ > (e + 1)p™, which is a contradiction. Therefore the exception is x,/, and (4.7)
follows from (p,, pu) = p™ ' + ep™.

Let x € Irr(b) Where ¢ # 0 and assume x appears in p,, for 4 € M;. Note j # 0 by
(4.6). If j > i + 1, then |O(x)| < p"~7 < p"~(+D from (p,, p,) = p" 7 + ep™ and (4.7),
which is a contradiction. Hence we have

for x € Irr}(b) (i # 0), there exists some p € U M such that x appears in p,. (4.8)
j=1

For u € My, p, has at most one constituent x, in Ifr/l(b) and the multiplicity (when
Xy appears) is € from (p,, p,) = p" "' +ep”, (4.7) and p, ., (1) = 0. For any x € Ifrll(b)
there exists some p € M such that x appears in p, by (4.8). Hence we have n; < m.
Therefore by Lemma 4.2(ii) we have n; = my and the following:

v (b) = {Xu | p € M1} and

P = Z Xp * A1) ZZGJ ik A) for pe Mj.

MER, J=1xeR

(4.9)

Similarly, for 4 € Ma, p,, has at most one constituent x,, in Ifr;(b) and the multiplicity
(when x,, appears) is €. For any x € Ifr;(b) there exists some p € Ms such that x appears
in p, by (4.8) and (4.9). Hence we have ny < mg. Therefore by Lemma 4.2(iii) for ¢ = 2
we have ny = mso and the following:
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Trry(b) = {Xu | € M} and

(4.10)
Pu = Z e(xpu * A2) ZZQXJ*)\ for p € Ma.
)\QERQ J=1xeR
Continuing this procedure, Proposition 4.3 in the case m; > 1 follows.
We show
if x € Irr(b) appears in py, ,;, then |O(x)| < max{p"~ CpnTIY. (4.11)

Assume (4.11) does not hold. Then max{p"~*, p" 7} < [O(X)| < (Ppi s Pus;) = P+
p" I < 2max{p" % p" I} < pmax{p"~
contradiction, so (4.11) holds.

Below, we assume m; = 1 for all ¢ where 0 < i < m — . Let M; = {u;}. We have

P = Puo t Purpos Pps = Puo + Purpo + Puzipns s Prm—t = Puo + Purpo + Puzpn T+
Prim—1.1m—1_1, d0d by Proposition 3.4 we have

,p" 7}, Since |O(x)| is a p-power, this gives a

any x € Irr(b) appears in at least one of pug, Pus o Prssirs s Prmsopim—1—1- (4.12)

Firstly, we consider the case m—I = 0. Any x € Irr((b)(= Irr(b)) appears in p,,,. Hence
nop™ < (pu, pu) = (e + 1)p™. Therefore by Lemma 4.2(i) we have ng = e+ 1 =e+my
and we can write

~ !
Irro(b) = {X/LoaXh o 7Xe} and

Puo = E €(Xpo * A) — E E €;i(x for some signs €,,,, €1, - , €.

\eR =1l xeR

(4.13)

Below, we consider the case m — [ > 1.
Any x € Ifrg(b) appears in pu, or pu,.ue by (4.11) and (4.12). The number of con-
stituents of p,, in Irro(b) is e or e + 1 from (pu,,pu,) = (€ + )™, (Puripos Pruropo) =
p"~t+4p™ and Lemma 4.2(i). If e elements of Irr:) (b) appear in p,,,, then from Lemma 4.2(i
and (Putoios Puao) = P+ p™ there exists just one element of Ifré)(b) which appears in
Pur,uo and does not appear in p,, and so p,, would have e + 1 constituents in Ifrg(b)
contradicting to (pu,, pu,) = p"~* +ep™. Hence, p,, consists of e + 1 elements in Irro(b)
We also have ng = e+1 = e+mg from (pu, o+ Py o) = P" ++0" and (P, ue» Pro) = P

Therefore we have (4.13) in this case too.

— n—1

From (4.13), (o> Puo) = P™ and (pp,, puy) = p" =" + ep", we see

(pqulLo) =0 and (pquj) = =€ for aHYj (1 < .7 < 6), (414)

changing the notations in (4.13) appropriately. Note n; > m; = 1 by Lemma 4.2(ii). We
show
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any x € Irr} (b) appears in p,, . (4.15)

When m — [ = 1, this is clear from Proposition 3.4 and (4.13). Let m — ! > 2. From
(4.11) and (4.12) any x € Irr|(b) appears in p,, OF puyue O Pus.urs and hence in p,
or pu, by (4.13). From (puy s Pus.pn) < P™, the multiplicities of the elements of Irry(b)
in p,, and p,, are the same. Hence no element of x € Irr(b) appears in p,, from
(Pas Puz) = P2+ ep™ and (4.14). So (4.15) holds. Then from (p,,, pu,) = p" ' +ep”
and (4.14), p,, has just one constituent x,, in Ifrll(b) and n; = 1 = my. Also from
Pur.uo (1) = 0 we have

Ity (b) = {x,, } and

Pur = Z XHI*)\l ZZEJ

\€ER; J=1xeR

(4.16)

Continuing this procedure, Proposition 4.3 in the case m; = 1 follows. O
In the proof of Proposition 4.3, the following theorem is proved:

Theorem 4.4.

ter(h) = [ J{ui# A [ A€ RYU | D A | M € Ry}

i=1 pneM

where x; (1 =1,2,--- ,e) and x, (u € M) satisfy

Pu = Z e(xp *Ap) — Z Z €i(xi * \) for some signs €, €1, - , €. (4.17)

el =1 xeR

We remark that O(x,) = {xu *A\u | Ay € ]/%;} from the proof of Proposition 4.3.
We call y; (1 << e) non-exceptional irreducible characters of b.

Proposition 4.5. For i (1 < ¢ < e), the R-orbit O(xi) contains a unique p-rational
character.

Proof. Following [1] §6 (cf. [13] Chapt. V §4), we consider the action of the Galois group
I' = Gal(Q('9/1)/Q('“"»'v/1)). Note that I is cyclic since p # 2. For v € T, x7(g) =
Xx(g)" where g € G and x € Irr(b), and T acts on X (G,b) by the K-linear extension.
There exists a rational integer () such that pt (), (y) =1 (mod |G|y) and x7(us) =
x(us) where u is a p-element of G and s € Cg(u),. I' also acts on the b-Brauer
elements by (u,b,)” = (u{"),b,). This action is compatible with the G-conjugation,
and I acts on the G-conjugacy classes of b-Brauer elements. In the proof, G-conjugate
b-Brauer elements will be identified. Note d“(x7,¢) = d"(x,¢)? = a” (x, ) where
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¢ € IBr(b,). Then (x *n)? = x? xn" for a (G,bp)-stable character n of P. Hence
O(x)” = O(x") and T acts on the set of R-orbits of Irr(b). Note that there exists at
most one p-rational character in O(x).

Assume (u,b,) is fixed by T'. Then (u(),b,) and (u,b,) are G-conjugate for any
v € T and there exists some a € L such that «(Y) = u®. Hence | Ny, ((u))/CL(u)| = |u"| =
P
u ¢p R. In particular, I(b,) = 1. Moreover, from Theorem 4.4 we see u € @, since the

p — 1) where «' = {u() | v € T} and p*® is the order of u. Then e = p — 1 and

column of the generalized decomposition matrix of b corresponding to (u, b, ) consists of
rational integers by the assumption. Set

W ={uellIn(Q\{1}) | (u,by) is fixed by I'}
={ueln(@\{1}) | u =L u for any v € T’}

and w = |W/|. Applying Brauer’s permutation lemma ([13] Lemma 3.2.18) to the gen-
eralized decomposition matrix of b, we see b has exactly (e + w) p-rational irreducible
characters.

Here we consider the condition that an element of @ belongs to W. Let u € Q). Since
(u) is stabilized by L, we have ul C u!. Therefore u € W if and only if [ul| = |ul].
Assume W is non-empty. Then e = p — 1. Let u € W and suppose u € (27 )\ (z?') for
some i (1 < i < m). Then the order of u is p™~ (=Y and |u"| = (p — 1)p™~". On the

1 ; .
U= 27 we have |[u”| = e-p™~'=0=1) when i < m — [, and

other hand, since yxy~
|u*| = e when i > m — [. Thus, we have w = m when [ = 1, and we have w = 1 when
I>1.

Return to the proof, set
W' ={peM|p =pu =g pforany y € T}

and w' = |W’|. Then w = w’ since p¥ = p!*? for p € Q. When |[M| = 1, clearly
w =w' =1 and b has exactly (e 4+ 1) p-rational irreducible characters. Therefore each of
O(xi) and O(x,,) contains a p-rational character. Suppose [M| > 2. Since (p is p-rational,
S X = (o 1§ is fixed by T and we have (X,)” = ((Co* (@ 5,)) 1E)Y = Xy for p e M
and vy € I'. Hence (p,,)Y = p,~. Since p,,—p,r = Z)\“ea e(Xlt*AH)szu,eﬁ;, e(xp * M)
for p, ' € M such that p # p/, we have (O(x,))" = O(xu~) for p € M. In particular
O(xy) is stabilized by I' if and only if ;1 € W’. Hence there exist at most w p-rational
characters in {O(x,) | © € M}. Therefore each of O(x;) and O(x,) stabilized by I'
contains a p-rational character. This completes the proof. O

Below, we will assume that y; (i =1,2,--- ,e) is p-rational.

Proposition 4.6. Keeping our notations, set

Y; = Gij\lpr/ (.7 = 1a2a' o ,6).
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Then

Bs(b) = {SOJ | ]: 1a27"' 76}
is a basic set for b and the decomposition numbers d(x, ¢;) of x with respect to Bs(b) are
given as follows:
d(xi *x A, ¢j) = €05,
d(X,u * )\,ua (Pj) = eph“

wheret =1,2,--- ;e, A € ﬁ,j =1,2,---,e,ue Mand )\, € é; (Here, §;; is Kronecker
delta.) Moreover the Cartan matriz of b with respect to Bs(b) is of the form

t+1 t t
t t+1 --- t
C=|R|
t t e t41
exe
where
-1
,_lel-1
e

Proof. From (4.17) and p,, € Xx(G,b; Q\{1}), we have

e
X ba, =0 ei(xila,)

=1

for p; € M; (0 <1i < m —1). Then the statement follows from I(b) = e, Theorem 4.4
and (4.2). O

Remark. When ¢ = 1, we have m — 1 = 0 and mo = 1, and let M = Mg = {u}. In this
case €;X; and —ex,, are interchangeable with respect to Theorem 4.4 for any j. Also note

that —ex, la, = —>5_1 X 4a,,-
5. Generalized decomposition numbers in a block with metacyclic defect group

In this section we determine the generalized decomposition numbers of b with respect
to a basic set obtained by the p’-restriction of irreducible characters with signs.

For (u,b,) € (P,bp), b, has a defect group Cp(u). The block b, is nilpotent if and
only if u ¢p R. Let

¢y be the unique irreducible Brauer character in b, when u ¢p R.
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When u € R, E can be viewed as an inertial quotient group of b,,, and b,, has a hyperfocal
subgroup Co(u) from [Cgq(u), E] = Cg(u). Also Cp(u) = Cg(u) x R. For the above, see
[23] Lemma 5, Lemma 6 and Lemma 7. Note that, when « €p R, we can apply results
in previous sections for b,. We denote by e, the inertial index of b, for u € P.

For an E-invariant subgroup T of P containing @ and v € Irr(T'), we define

N = Zya.

aclE

Note that we have Nk = My 1L and 7, does not depend on the choice of E.
We will prove the following two theorems.

Theorem 5.1. Let uw € P be such that u ¢p R, that is, e, = 1. Then there exists a sign
0y Ssuch that

d(xi * A\, o) = €0, M (1),
d" (X * A Pu) = €5u77m}1§“ (w)Ap(u)

wherei:1,2,~~,e,)\€}?,u€/\/l and/\#e}/%;.

Theorem 5.2. Let u € P be such that u €p R, that is, e, = e. Then there exists a sign
0y such that for the basic set Bs(b,) = {cpju) l7=1,2,--- ,e} for b, (see Proposition 4.6
for Bs(by))

du(Xl * )‘7 ()OEU)) = eiéu(sijA(u)v

4" O * A 05) = €0 (@ 15) (u) Ny ()

N

under suitable choice of the notations of Irr(b,) where i = 1,2,--- e, A € R, j =
1,2, e, peMand N\, € R,.

For the proof of the above theorems, firstly we collect some lemmas.

Lemma 5.3. Let w ¢ p R. Then

1 2 _ |Cp(u)]
E —\npap (W) = ——— —
e ph“| NTPM( )| pm

Proof. We have

Z R, |77m§;M (U>|2
pneEM

= Y > IRAE) @ ) (1h)” (w)

a,a’€E pemM
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=3 5 SRR ) (Y (ath) ()

a’€E peMacE

> Z U A (1R ()M )
a’€E \c R LEM aEE
= SN @) @ AT (@tE) (@ )A @)
a’€E AER HEMa€E
=> u ) = 3 1ApN) ) (1pA) (u®))
a’€E  velrr(P) \eR
= |Cp(u)| — ep™.

Note (2.1) for Irr(P), and that u® is not P-conjugate to u for o’ € E\{1} by
Lemma 4.1(1). O

Lemma 5.4. Let u ¢ p R. Then

S g (L, 1)) = —1.

"
peM p

Proof. Let Q = Q/[Q,u] and write u = gr where ¢ € Q and r € R. We have ¢ ¢ [Q, u],
since if ¢ € [Q,u] = {[¢,7]| ¢ € Q}, then we would have u € r?. Note that u € P, if

and only if p € [Q,u]* ~ Q. Then we have

1
D i, @On ) = 3 mth ()= 3 wo=-1 0
HEM HEMN[Q,u]* neO\{1}

Lemma 5.5. Let r € R. Then

S (a1, = G

(&
neM

Proof. Note r € R, if and only if u € [Q, 7]+, and Q/Cq(r) ~ [@,r]. Then we have

OIESITRY SIEEND DRI DR

HEM HEMN[Q,r]+ HEMN[Q,r]+
Q.1 [Co(r)] -1
e e '

Next, we consider the generalized decomposition numbers when u € Q\{1} and then
the heights of irreducible characters in b. For u € Q\{1}, note that Cx(u) = Cx(u) =
Ce(u) and by = &y = Cy, and let 8, = d"(Co,u) (a sign), see [3].
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Lemma 5.6. Let u € Q\{1}. Then
(i) d“(Xi, pu) =0y fori=1,2,--- e
(ii) a* ()Z;n Yu) = 6“77;%@“(’“’) for pe M.

Proof. Let s € Cx(u), = Co(u),. Then we have
Xi(USbu) = gi(USéu) = CO(USCU) = du((()v Lpu)cpu(s)
This implies (i). Since ¢y is N-invariant and N/C = E, we have
Rpu(usby) = Gu(ustn) = (Gox (A5 18 (ustu) = Y pth, (u®)Co(uscy)
acE
=g, (u)Co(uscy,)-
This implies (ii). O

Proposition 5.7. Let u € Q\{1}. Then
(i) du(Xiv LPU) =€;0y fori=1,2,--- e
(i1) d*(Xp> pu) = Eéunﬂﬁ;“(u) for pe M.

Proof. From (3.2), (3.3), (4.17) and Lemma 3.1, we have

~ ‘L (wbu) , ¢ u,by,)
(5 G350 0) 16 = (3 v st S )
\ER i=1 AER

This implies

h

5u(nﬂT?L<u) -D Me) = 6du<X/u (Pu - Zej Xw (pu
by Lemma 5.6. Hence we have
ed" (X}M qu) = 5u77[LT£“(u) +ph“X (51)

where

X = Zeld“ Xi, Pu) — Oue.

i=1
Since
" " Cp(u
Zd (x> pu)? + Z Id (o)) = | p£ )

HEM
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from [13] Theorem 5.4.11, and

1 Cp(u m o _ 1
Y ol s el P = (CPl oy g5, x ¢ ——x?

ueMp# p

from Lemma 5.3, the second orthogonality relation for @ and (4.2), we have

m—1
Zez (Xis Pu) _5u)2:_p—X2~

e
Hence (i) holds, and (ii) also holds by (5.1). O

Proposition 5.8. (i) x; is of height 0 for i =1,2,--- e.
(ii) x, s of height h, for p € M.

Proof. From [1] (4C) and Proposition 5.7 for u € Q1\{1}, we see the statements (i) and
(ii). For (ii), note also that n;(u) = e # 0 mod J(O). O

By Theorem 4.4 and Proposition 5.8, (4.3) is refined to the following proposition,
which is a generalization of [9] Theorem 5.21, [10] Theorem, [8] Theorem 1.1 and [17]
Theorem 2.3:

p—1
(&

el

Proposition 5.9. (i) kqo(b) = (e +
-1
(i) k(b)) = 2P pr=i (1 <i<m-1)
e
(iii) k(b)) =0 (i>m—1)

1 1—1 21—m—1
. p+p — -1
(iv) k(b) = (

)P

p
e

+e)p”

Now we will show equations on generalized characters in b, see Proposition 5.11 below.
It is used in the proofs of Theorem 5.1 and Theorem 5.2.

Lemma 5.10. (i) Let pn € Mg. Then

N = Zm +elp

where ps € (u)\(uP).
(ii) Assume 1 <i<m —1 and let u € M;. Then

p(e—1) p'—1
— ~ f— —_ P
77#71“13“ nuTﬁu - 2 1: nusTﬁﬂ + ; - n(ﬁlﬁf)?ﬁﬂ + 6(113;; TPH)
s= =

where pis € (W\(pP) and vy € (p)\{1}.
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Proof. Note that p ~ p=1(u")® gives an automorphism of (u), that is, p=(u")* €
() \(pP), if and only if a # 1 where p € M, r € R/R,, and a € E.
(i) We have

77;?177;1: Z (ﬁil)aﬁa/ = Z (ﬁilﬁa)a/ = Z Na—1pe +elp.

a,a’€E a,a’'€E acE\{1}

(ii) We have

Mg Mg, = (15, ) 00 15 = (n= (0 15, 45,)) 15,

and
Ui ((na t2) 45, ) = Z Z Na-1(ar)a
a€EreR/R,
a€E\{1} r€R/R, re(R/Ru)\{1}

Proposition 5.11. For u € M, we have

(e1x1) * e = (e = 1)(erxa) * (1r, ) = D (eixi) * (1r, T8,) + exu
1=2

by replacing x, by an element of O(x,) if necessary.

Proof. From p, € Xx(G,b; Q\{1}), Proposition 5.7 and the second orthogonal relation
for R and R,,, we see

Z (e1x1) * (Umgu Au)

A.€R,

=(e—1)> (eax)* A= D> > (exa) * A+ D (exu) * A

\eR i=2 \eR A ER,

(5.2)

From (5.2) at least one element of O(x,) appears in (€1X1) * g1z . On the other hand,

since (x1 * %TQL) * A=y * Narg, for A € R/f, we can set

(€1x1) *nyp = > cian, ((@xi) * (1r, 17,))

i=1

+Z Z ci’y((eixi) * (v Tgu)) texu o,

=1 y(#1R, )ER,
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where ¢; ,, (v € ]/2\#) and ¢ are integers by [2] Theorem. We may assume ¢ # 0 by replacing
Xu by Xu* X (A € R) if necessary. Since E/\uel’%—;(y Tgu))‘u =Y \epAforany v e R,
we have

e—1= chyy, —1= ch (2<i<e)

yel/{; ueﬁz

from (5.2) and (5.3).
Let T' = Gal(Q('Y/1)/Q('“'»"v/1)) be the Galois group as in the proof of Proposi-
tion 4.5, and let o be an element of T' of order e. Note (o) acts on R;\{lRu} fixed-point

e—1 ~gt

freely and n; = tho 1% . Then ((€1X1) *”ﬂ?@u)g = (e1x1)7 * (nmgu )7 = (e1x1) *nmﬁu
and hence

Clip, =€—1(mode), ¢, =—1(mode) (2<i<e).

In particular, Cisln, # 0. Considering the action of T" on (e1x1) * Nark , We see €11y,
i

does not depend on ! with pt1. Set X = Cllg, -
Now let u € M; (0 <i <m —1). We will prove the statement by induction on i.
Suppose that i = 0. Then from (5.3) we have

(€1X1, (€1x1) * (77’?177;1)) = ((61X1) *Nis (€1x1) * 77;1)

e
ZXQ—FZCZ*JRHZ—‘,-CQ2X2+(6—1)+1:X2+6.
i=2

On the other hand, by Lemma 5.10(i) we have

(€1X1, (e1x1) * (nﬁ'r]ﬂ)) =(e—1DX +e

Hence we have (e — 1)X > X?2. From this and X = e — 1 (mod ¢), we have X = ¢ — 1
and above inequalities are equalities. Therefore we have ¢;, =0 (1 <i <e, v # 1g,)
and ¢;1,, = —1 (2 <4 < e). Moreover, (5.2) and (5.3) imply ¢ = €. Hence the statement
holds for p € M.

Next suppose that g € M; and ¢ > 1 assuming m — ! > 1. Then from (5.3) we have

(e1x1, (e1x1) * (= 77;1@1;“)) = ((exx1) * Mg, s (€1x1) *Umgu)
i

€
>p' X2 +p' Y cing,t+ 2P X2 +pie— 1)+ 1.
1=2

On the other hand, by the induction hypothesis and Lemma 5.10(ii) we have

(ele, (e1x1) * (nﬁ,r;unmﬁ“)) = Xp'(e—1)+ (pi —e—1)+e.
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Here note that we have

— !
T@iong, = Z\ wirp, N for v € (W\{1}
NeP,, /P,

where we view ) as a character of P by extension and inflation, and that e; ;%\ ! does
not appear in €1x1 %715 by the induction hypothesis. Hence we have X pile—1-X) >
vt

0, and as in the case i = 0, we have the statement in this case too. O

We choose x,, (1 € M) so that the relation in Proposition 5.11 is satisfied.
Now, we prove Theorem 5.1 and Theorem 5.2.

Proof of Theorem 5.1. Clearly it suffices to show the case A = 1. Set x; = €;d" (x4, ©u)-
Note x; is a rational integer by Proposition 4.5. Also note z; is non-zero by Proposition 5.8
and [3] Theorem 1.5. From Proposition 5.11 we have

e

ed" (Xpws 0u) = Mg, (War + (L, T5,) (W) Y _(zi —a) for pe M. (5.4)

i=2
Hence, for the proof it suffices to show
there is some sign J,, depending on u such that 1 = z9 =+ =z, = Jy. (5.5)
From [13] Theorem 5.4.11 and (5.4) we have
- 2 _ |Cp(u)]
Z$ + Z w1y, (W + (g, )W) Y (@i —z)| = P
;LGM =2

By Lemma 5.3 and Lemma 5.4, this equation can be translated to

€

u)| +Z( —z)? + Z (1r, Tgu)(u)Z(wi 7531))2 _o.

/JEM =2

(] —

Then (5.5) follows from this equation. 0O

Note that the notation d, in Proposition 5.7 is consistent with the notation §, in
Theorem 5.1.

Proof of Theorem 5.2. We may assume u € R = Cp(E). We will consider the basic set
Bs(bu) = {; () |1 < j < e} for b, as described in Proposition 4.6 and the generalized

decomposition numbers d*(y;, <p§-u)) (1<i<e,1<j<e)with respect to the basic set
Bs(by). Set z;; = €;d" (i, <p§ )) Note z;; is a rational integer.
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Since Narg, (u) = e(1g, T%)(u), we have

ed” (x,, 0\") = (1r, TR ) qu (LeM, 1<j<e) (5.6)

from Proposition 5.11. Hence, we have

injwik"‘tu(zwij)(zfik) =ty + Ok (5.7)
i=1 i=1 i=1

[Co(uw)] -1

from [13] Theorem 5.4.11 and Lemma 5.5 where ¢, = - Since Xy, (1o € Mo)

e
is of height 0, there is some jo such that > 5, z;;, # 0 by (5.6) and [3] Theorem 1.5.
At first, assume ¢, > 2. Since

Soa? (S wiy,) =t 1
i=1 i=1

by (5.7), we have Y ¢, 27, = 1. Hence there exists some i such that x;,;, = £1 and

x5, = 0 for any ¢ different from 4. Set 0, = x4,j,. Let ji be different from jy. Then we
have

me—i—t me =t,+1
mexm +t me lejo =ty

by (5.7). From this we see there exists 1 (# i9) such that x;,;, = J, and z;;, = 0 for
any ¢ different from 4;. Let jo be different from jy and j;. Then we have

Z%z” me =t,+1
Zmljzmwo—"_t leh lejo =1ty
Zfﬂijmm +tu(Zwij2)(Zwij1) =ty
=1 =1 =1

by (5.7). From this we see there exists 5 (# i9,%1) such that x;,;, = J, and z;j, =
0 for any i different from i5. Continuing this procedure, if we choose the index j of
non-exceptional irreducible characters of b, so that ig = jg, i1 = j1, - -+, then we have
i (i 8) = 253 = Bubiy and 50 ed( ™) = (I, TR i @iy = (i 1,
)(u) by (5.6). Hence we have the statement in the case t,, > 2.
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Next, assume t,, = 1. Then since

e €
szzj + (inj)Q =2,
i=1 i=1

we have

Ze:xfj =1 and (Ze:xij)Q =1
i=1 i=1

or
Zp:xfj =2 and (XP: z;)> =0
=1 i=1

When j = jo, the former case occurs and there exists some ig such that x;,;, = +1 and
Zi5, = 0 for any 4 different from .
Assume there exists ji (# jo) such that Y7, x =1land (3°;_, #;;)? = 1. Then since

e e e
D wijwige + (D @) (D wije) = 1,
=1 i=1 i=1

we see there exists i1 (# o) such that x;, ;, = ;,;, and z;;, = 0 for any ¢ different from 4.
Set 0, = x4,j,- Let j2 be different from jo and j;. Since we have

€
2: 2 2 : _
zi_]2 xljz -
i=1
e
E:xihxijo E xzyz E xzyo =
i=1
e
> wijpig + ( E gy ) ( E i) =1,
i=1 i=1 i=1

we see there exists 49 (# 49, ¢1) such that x;,;, = 0, and z;;, = 0 for any ¢ different from 5.

Continuing this procedure, under suitable choice of the index j, we have e;d"(x;, cpgu))

0,0;; and ed“(Xﬂ,go;u)) = 0y (f Tg )(u) as before. Hence we have the statement in the
case where t,, = 1 and there exists j; (# jo) such that ZZ vy =1and (35 @4;)* = 1.
Finally, we consider the case where t, =1, Y37, x7; = 2 and (>, @ij)? = 0 for any

j different from jo. Let j; be different from jo. Then since

€ € €
Yo wigwie + (D) (D i) = 1,
i=1 =1 =1

we see Tj,;, = Tiyj, and there exists i1 (# ip) such that z;,;, = —x;,; and z;;, = 0 for
any ¢ different from 49 and i;. Set d, = —x4,j,. Let jo be different from jy and j;. Since
we have
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e e e
D wipwige + (D wipn) (D wije) =1
i=1 =1 =1

e € €
Zl‘z’jgﬂ?m + (Z%z) (Z%‘l) =1,
i=1 =1 =1

we see T, = T4y, and there exists ip (# g, 1) such that z;,;, = —z;,;, and z;;, = 0
for any i different from iy and is. Continuing this procedure, under suitable choice of the
index j, we have

eid®(xi, 05) = 0ubiy (i #d0)s  €ind™(Xig, @0")) = b0,

ed (X, 8) = 0 (j # Jo), ed" (xu 5)) = —0u(@ 15, ().

If we take an alternative basic set
RTINS Z A N )

of by, then the generalized decomposition numbers with respect to this basic set are

eid" (xi, 05")) = 0udiy (5 # do),  ead" (xi, — Zso(“’ io),
€ind" (Xis — O ¢5)) = 0u,  ed“(xu 08") = 0u(@ 15,) (w) (G # jo),

X;u Z <P(U) TPM)(U).

Then changing the notations of Irr(b,) as in Remark after Proposition 4.6 for j = jo, we
have the statement in this case too. 0O

6. Perfect isometries and isotypies

In this section we prove Theorem 1.1. It suffices to construct an isotypy between b
and bgG(P’bP ) (see Theorem 6.5 below). For the notions of perfect isometry and isotypy
introduced by Broué ([4] 1.4, 4.6), we follow Definition 2.1 and Definition 2.2 in [12]. The

K-vector space Xx(G,b) coincides with CF(G, b, K) defined in [12].
Lemma 6.1. Assume that G = Ng(P,bp). Then we have

e=1,6=1(G(=12--¢), dy=1 (ucP).
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Proof. By the assumption we have G = N. Then we have ¢ = 1 and ¢, = 1 by (3.2),
(3.3) and (4.17).

We have C = PC¢(P), (o is a canonical character of b, x; (i = 1,2,---,e) are the
extensions of (o, and Bs(b) = {¢; [j =1,2,--- e}t = {x;lc, |7=1,2,-- e} coincides
with IBr(b). For u € P, Cg(u) normalizes a maximal b,-Brauer pair (Cp(u),bop(u))-
Hence the same situation as b occurs for b, when u € p R. In particular, Bs(b,) = IBr(b,,).
Since xi(us) = @i log) (s) for u € P and s € Cg(u)y, generalized decomposition
numbers for y; in Theorem 5.1 and Theorem 5.2 are non-negative integers. Hence, d,, = 1
forue P. O

Let G’ be a finite group and b’ be a block of G'. Let I : Xxc(G,b) — Xic(G', V') be a
perfect isometry. Then we have

I(a(l’b)) = (I(a)) (1,6)

for o € X (G, b)
by the “separation condition” ([12] Definition 2.1(b)) of the perfect isometry, and let
Iy - X3V by — xU @ )

be the K-linear map induced by I. A class function on G} belonging to b will be viewed
as an element of X ,(Cl’b)(G, b). Under this convention, we have

Iy(ala,) = (I(@)la, - (6.1)
From now we set

G' = Ng(P,bp), b =13 .
We use ' for the notations concerning to t'. Then F(py,.y(G,b) =~ F(pp,)(G', '), and Q
is the hyperfocal subgroup of &’. We may take L' = L, R’ = R, II' =II, M’ = M and
soon. Note ¢ =€, =0/, =1fori=1,2,---,e and u € P by Lemma 6.1.
Proposition 6.2. The K-linear map

I': Xk (G, b) — Xk (G, V)

such that

I'(xi * A) = €x) * A,

Il(Xﬂ *Ay) = EX;L * Ap,

where i =1,2,--- e, A € R, e Mand, € ]/%;, s a perfect isometry.
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Proof. This follows from [11] Theorem 2 (see also [18] Theorem 6.1) and Theorem 5.1
and Theorem 5.2 for b and ¥'. In fact, for v € II\{1} take

{0upu} and {¢] } when u ¢p R
{(5uap§-u)\j:1,2,-~- ,e} and {(p;-(u)|j:1727--- ,e} when u €p R

as Bs(b,,) and Bs(b),) in [11] Theorem 2 (iv), where <p ) and cp ) are taken so that the
generalized decomposition numbers are described as in Theorem 5.2. 0O

In Proposition 6.2, the numbering of the non-exceptional irreducible characters of b
is arbitrary, and in the situation of Remark after Proposition 4.6, the choice of 1, - -,
Xe is also arbitrary. Similar for .

Next, we consider the perfect isometries in the local blocks. These isometries are
arranged by the sign d,, in Theorem 5.1 and Theorem 5.2.

By [3] Theorem 1.2 we have the following ([4] 5.2):

Proposition 6.3. Let u € P be such that u ¢p R, that is, e, = e}, = 1. Then the K-linear
map

I*: XK(Cg(u), bu) — X}C(CG/ (’LL)7 b;)
such that

where ¢, and (!, are the unique p-rational irreducible characters of b, and bl, respectively
and A, € Irr(Cp(uw)), is a perfect isometry.

When u €p R, we can apply the results in previous sections to b, and b/,. We use
() for the notations concerning to b, and ’ (%) for the notations concerning to b!,. When
u € RY for v € P, we may take L = '™ = Cp(u) x E*, R® = R = R and so
on. Note ¢/ = e’gu) =1fori=1,2,---,e. From Theorem 5.1 and Theorem 5.2 for b,

and b!, and [11] Theorem 2, we have the following:

Proposition 6.4. Let u € P be such that uw €p R, that is, e, = €], = e. Then the K-linear
map

I : Xx(Cq(u),by) = X (Cor(u), b;)
such that

I“( (W) 4 AWy =6, e(“) ’(-u) x A

I'(x, M(u) *)‘Mm)) = 6,y A
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where i =1,2,--- ,e, () € ]5(\“), p® e MW qnd /\Sfl) € RL’?Z), is a perfect isometry.

A similar remark as stated after Proposition 6.2 holds for Proposition 6.4.
Since y; is p-rational, we have §, = &, and hence I* = IV for u,v € P such that
(u) = (v). So, for a non-trivial cyclic subgroup S of P, we have a perfect isometry

I%: X (Ca(S),bs) = Xic(Car(S), bs)

defined by I® = I* where u is any generator of S.
For uw € P, let

A8 X (G,b) — X (C(u), by)

be the K-linear map defined by dg’b“)(x)(s) = x4 (us) where x € Irr(b) and s €
Ca(u)p

Theorem 6.5. b and b’ are isotypic with a local system {I°|S : cyclic subgroup of P}.
Proof. For the proof, it suffices to confirm
u (wby) _ S(ubl) 71
I odg =dg " ol

for any u € P.
Let u € P be such that u ¢p R. Fori=1,2,--- ceand ) € R,

I} o dgf’b“)(xi * ) =1, (eiéu/\(u)gou) = €0, (1) (8u),) = A (u)¢l,
by Theorem 5.1 for b and (6.1), and
d(éf,’b;) oI (x; * A) = dgi’bi‘)(eixi * A) = e\ (u)@l,

by Theorem 5.1 for b’'. Hence we have I o d(éf’b“)(xi k) = d(éf,’b;) ol! (Xi * )\). Similarly
we have

U, by, “»b;,
L 0 dg™ (xux M) = ety (whu(w)el, = dgr™ o I' (0% A)

foruEMand)\#EE.
Next let u €p R. By Theorem 5.2 for b and (6.1)

1% 0 dS") (i + A) = I (6 A w)l™) = e A (), ™.

On the other hand, by Theorem 5.2 for ¢’

dgf/bi‘) oI*(xi*x \) = dgf/’b;)(eix; £ ) = e \(u)g) (),
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Similarly,
o © d(u bu )(X;l, * ) =1 (i 66“77%5“ (U)Aﬂ(u)wgu)) = g, (W) A (1) i sO;(u)
i=1 i
and
d(éf"b;) o ' (xu % M) = d(c?"bi‘)(fXL *Au) = 677qu Z QO/ .

This completes the proof. 0O
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