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Supernilpotence is a generalization of nilpotence using a 
recently developed theory of higher-arity commutators for 
universal algebras. Many important structural properties have 
been shown to be associated with supernilpotence, and the 
exact relationship between nilpotence and supernilpotence 
has been the subject of investigation. We construct an 
algebra which is not solvable (and hence not nilpotent) but 
which is supernilpotent, thereby showing that in general 
supernilpotence does not imply nilpotence. We also extend 
this construction to ‘higher dimensions’ to obtain similar 
results for (n)-step supernilpotence.
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1. Introduction

The topic of this manuscript is related to a broad generalization of commutator the-
ory called higher commutator theory. Higher commutators are used to define a condition 
called supernilpotence, called such because it is usually a stronger condition than nilpo-
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tence. We construct algebras to demonstrate that supernilpotence and nilpotence are in 
general independent of one another and that this independence is preserved even if one 
considers ‘higher dimensional’ analogues of nilpotence.

Historically, a specific notion of commutator was used to study a specific variety of 
algebras, (e.g. a class of similar algebraic structures that satisfy some set of equational 
laws or identities), such as the variety of groups, rings, or Lie algebras. In each of these 
classes the notion of a commutator has led to important structural results, as it can be 
used to measure ‘abelianness’ and define generalizations of abelianness such as solvability 
and nilpotence. For example, a classical theorem of group theory states that a finite group 
is nilpotent if and only if it is the direct product of its Sylow subgroups.

Actually, each of these commutator theories is a special case of a commutator that 
may be formulated for any algebraic structure. The strength of the theory depends not 
on the similarity type of the algebra, but on the identities that it satisfies. The initial 
insight is due to Smith. In [18], he shows it is possible to define a commutator for any 
variety of algebras in which every member has a Mal’cev operation, that is, an operation 
p(x, y, z) built from the basic operations that satisfies the identities

p(x, x, y) ≈ p(y, x, x) ≈ y,

and that this commutator retains all the essential features of the examples known at the 
time, all of which were for algebras with a Mal’cev operation.

Commutator theory for universal algebras has grown substantially since then and we 
do not attempt a survey in this introduction. We refer the reader to the text Freese and 
McKenzie [4] and the text Gumm [5] for two different approaches to commutator theory 
for congruence modular varieties of algebras. For the development of commutator theory 
outside of the context of congruence modularity, the reader is referred to the monograph 
Kiss and Kearnes [8].

Such a general commutator theory comes equipped with the naturally generalized 
versions of abelianness, solvability, and nilpotence. Under some additional assumptions, 
finite nilpotent algebras are very similar in their structure to finite nilpotent groups. For 
example, Lyndon [11] shows that the equational theory of a nilpotent group is finitely 
based and Freese and McKenzie [4] shows that if a finite algebra of finite type (belonging 
to a congruence modular variety) is nilpotent and is the direct product of nilpotent alge-
bras of prime power order, then it has a finitely based equational theory. Such algebras 
are now known to be examples of supernilpotent algebras.

Supernilpotence is an analogue of abelianness that is definable with a higher arity 
commutator that generalizes the classical binary commutator. Such commutators were 
first introduced by Bulatov in [2]. In [1], Aichinger and Mudrinksi develop analogues of 
those properties shown to be essential for the binary commutator for the higher commu-
tator (in a Mal’cev variety). In the same paper every supernilpotent algebra belonging 
to a Mal’cev variety is shown to be nilpotent. Using earlier results of Kearnes from [7], 
Aichinger and Mudrinksi go on to prove that every finite supernilpotent Mal’cev algebra 
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of finite type is a product of prime power order nilpotent Mal’cev algebras, and vice 
versa.

Supernilpotent Mal’cev algebras of finite type share other properties with nilpotent 
groups. For example, Michael Kompatscher shows in [10] that there is a polynomial time 
algorithm that checks if equations over finite supernilpotent Mal’cev algebras of finite 
type have a solution. Equation solvability and related problems emphasize the need 
to understand the differences between nilpotence and supernilpotence, see Idziak and 
Krzaczkowski [6] for additional details.

The theory of the higher commutator has been recently extended to varieties that 
are not Mal’cev. In [13], the second author extends most of the theory of the higher 
commutator to congruence modular varieties. In [14], the second author develops a rela-
tional description of the modular ternary commutator and uses this to show that (2)-step 
supernilpotence implies (2)-step nilpotence in a congruence modular variety. In Wires 
[19], several properties of higher commutators are developed outside of the context of 
congruence modularity. Implicit in the results of Wires is that supernilpotence implies 
nilpotence for congruence modular varieties. More recently, Kearnes and Szendrei have 
announced that any finite supernilpotent algebra is nilpotent, which is to appear in [9]. 
It turns out that supernilpotence is a stronger condition than nilpotence for any variety 
of algebras that satisfies a nontrivial idempotent equational condition [15].

Each of the algebras we construct in this paper is therefore infinite and does not gen-
erate a Taylor variety. In Section 2 we develop notation and state definitions. In Section 3
we discuss different notions of nilpotence and solvability. In Section 4 we construct an 
algebra that is not solvable but is supernilpotent. The final section 5 generalizes this 
example to ‘higher dimensions’.

2. Definitions

2.1. Notation

In this paper the set of natural numbers is denoted by ω and has as its least element 
the empty set, or 0. The finite ordinal n is the set of its predecessors and we will often 
write i ∈ n instead of 0 ≤ i ≤ n − 1.

Some familiarity with the basics of Universal Algebra is assumed. Good references 
on the subject are [3] and [12]. An algebra is a set with some structure provided by 
a set of finitary operations. These two ingredients are usually written as a pair, e.g. 
A = 〈A; {fi}i∈I〉. Product, subalgebra, and homomorphism are defined in the obvious 
way.

Let A be an algebra, n ∈ ω, and R ⊆ An be a set of tuples over A of length n. If R is 
a subalgebra of An we say that R is an A-invariant relation, or just an invariant relation 
if there is no possibility for confusion.

The invariant equivalence relations of an algebra are called congruences and deter-
mine its possible homomorphic images. The lattice of all congruences of an algebra is 
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denoted by Con(A), with the largest congruence and least congruence denoted by 1 and 
0, respectively.

2.2. The higher commutator

The higher commutator is an operation on the lattice of congruences of an algebra 
and is usually defined via the so-called term condition, see [2] for the first instance in the 
literature. The main construction of this paper is most naturally presented by defining 
the commutator via a special invariant relation which we now describe. The commutator 
definition given here is equivalent to the usual one and the reader is referred to [13] or 
[17] for more details.

Let A = 〈A; {fi}i∈I〉 be an algebra and n ∈ ω a natural number. An invariant relation

R ≤ A2n

is said to be an (n)-dimensional invariant relation. The reason for this terminology is 
that the set of functions 2n is a natural coordinate system for the (n)-dimensional cube, 
where two functions are connected by an edge if and only if they differ in exactly one 
argument. A particular element

h ∈ A2n

is therefore thought of as a vertex labeled (n)-dimensional cube. Less formally, we will 
sometimes refer to h simply as an (n)-dimensional cube, or (when the dimension is clear) 
a just a cube.

A total function f ∈ 2n specifies the coordinates of a particular vertex of such an 
h ∈ A2n , and we denote the value of h at f by hf . This notation may be extended 
to partial functions, and in doing so one may specify inside of h the location of lower 
dimensional vertex labeled cubes. That is, for S ⊆ n and f : S → 2 define

hf :=
{
hg : g ∈ 2n and f ⊆ g

}
.

Less formally, a partial function f : n → 2 determines some of the coordinates for a 
vertex in h. The coordinates that are not yet determined may be specified by those 
g ∈ 2n that extend f . We hope that the reader alarmed by the potential ambiguity of 
this notation will find no ambiguity in its use.

We distinguish for any domain S the function 1 : S → 2 that takes the constant value 
1. Take some h ∈ A2n and i 	= j ∈ n. Define

Linesi(h) :=
{
hf : f ∈ 2n\{i}

}
=

{
hf : f ∈ 2n\{i}, f 	= 1

}
∪
{
h1 : 1 ∈ 2n\{i}

}
and
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Fig. 1. (2)-cross section lines and (0,1)-cross section squares decomposed into support and pivot sets. Ori-
entation of the labeled cube is given by the coordinate axes, n = 3 = {0, 1, 2}.

Squaresi,j(h) :=
{
hf : f ∈ 2n\{i,j}

}
=

{
hf : f ∈ 2n\{i,j}, f 	= 1

}
∪
{
h1 : 1 ∈ 2n\{i,j}

}
.

These sets are called the (i)-cross section lines and the (i, j)-cross section squares of h, 
respectively. The set of (i)-cross section lines is the disjoint union of two sets. The first set 
we denote by S-Linesi(h) and its members are called (i)-support lines; the single member 
of the second set is called the (i)-pivot line. Similarly, the set of (i, j)-cross section lines 
is composed of (i, j)-support squares and a single (i, j)-pivot square. See Fig. 1. We say 
that a line, square, or (generally) a cube is constant if all of the vertices have the same 
value. We call a set of lines, squares, or cubes constant if all of its members are.

Remark. We will often write equations in which terms are evaluated at vertex labeled 
cubes which are drawn as actual cubes. This notation is a different way of writing 
equations involving tuples in a product and is intended to emphasize the geometry of 
the relations that are being analyzed.

Let (θ0, . . . , θn−1) ∈ Con(A)n be a sequence of congruences. The relation used to define 
the higher commutator is a certain (n)-dimensional invariant relation that is generated 
by special vertex labeled (n)-dimensional cubes. For each i ∈ n, let

gCubeni (x, y) ∈ A2n

be the vertex labeled (n)-dimensional cube such that

(
gCubeni (x, y)

)
f

=
{
x if f(i) = 0,
y if f(i) = 1.

Now set

M(θ0, . . . , θ1) := SgA2n

(⋃ {
gCubeni (x, y) : 〈x, y〉 ∈ θi

})
.

i∈n
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Fig. 2. Examples of a gCube and the generators of the (3)-dimensional (θ0, θ1, θ2)-matrix relation. Orien-
tation is indicated by the coordinate axes. Elements of A connected by a line parallel to the i axis are 
members of θi.

This (n)-dimensional relation is called the algebra of (θ0, . . . , θn−1)-matrices. See Fig. 2. 
We can now formulate the centrality condition used to define the higher commutator.

Definition 2.1 (Centrality). Let A be an algebra, 2 ≤ n ∈ ω, δ ∈ Con(A) and 
(θ0, . . . , θn−1) ∈ Con(A)n a sequence of congruences with M(θ0, . . . , θn−1) defined as 
above. Let σ ∈ Sn be a permutation of n. We say that θσ(0), . . . , θσ(n−2) centralize 
θσ(n−1) modulo δ provided the following condition holds:

If h ∈ M(θ0, . . . , θn−1) is such that every (σ(n − 1))-support line of h is a δ-pair, then 
the (σ(n − 1))-pivot line of h is also a δ-pair.

This condition is abbreviated as C(θσ(0), . . . , θσ(n−2), θσ(n−1); δ).

Definition 2.2 (Higher Commutator). Under the same assumptions given in Defini-
tion 2.2, set

[
θσ(0), . . . , θσ(n−1)

]
:=

∧{
δ : C(θσ(0), . . . , θσ(n−2), θσ(n−1); δ)

}
.

There is some potential for confusion with this definition, because there are several 
distinct algebras of matrices that can be used to define the same commutator. Each of 
these algebras of matrices can be obtained from the other by a permutation of coordi-
nates, however. We therefore prefer, for a given set of congruences {θi : i ∈ n}, to fix a 
coordinate system at the outset. All centrality conditions involving the n-many congru-
ences belonging to {θi : i ∈ n} may then be formulated with respect to M(θ0, . . . , θn−1). 
This is best explained through example – see Figs. 3 and 4.

The following properties are immediate consequences of Definition 2.2.

Proposition 2.3. Let A be an algebra and α ∈ Con(A). The following hold:
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Fig. 3. The condition C(θ0, θ1, θ2; δ). That is, (θ0, θ1) centralize θ2 modulo δ. In Definition 2.1, σ = id.

Fig. 4. The condition C(θ1, θ2, θ0; δ). That is, (θ1, θ2) centralize θ0 modulo δ. In Definition 2.1, σ = (0 1 2). 
Applying σ to the coordinate axes gives a picture similar to Fig. 3.

(1) [α0, . . . , αk−1] ≤
∧

0≤i≤k−1

αi,

(2) For α0 ≤ β0, . . . , αk−1 ≤ βk−1 in Con(A), we have

[α0, . . . , αk−1] ≤ [β0, . . . , βk−1].

That is, the commutator is monotone in each argument.
(3) [α0, . . . , αk−1]︸ ︷︷ ︸

k-ary

≤ [α1, . . . , αk−1]︸ ︷︷ ︸
(k−1)-ary

.

2.3. Nilpotence, supernilpotence, and solvability

Let A be an algebra and let α ∈ Con(A). Recursively define over ω the congruences 
[α]0 := α =: (α]0,

[α]n+1 :=
[
[α]n, [α]n

]
, and (α]n+1 :=

[
α, (α]n

]
to produce two descending chains, called the derived and lower central series of α, 
respectively:

[α0] ≥ [α]1 ≥ · · · ≥ [α]n ≥ . . . and (α0] ≥ (α]1 ≥ · · · ≥ (α]n ≥ . . . .
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If [α]n = 0 or (α]n = 0, then α is said to be (n)-step solvable or (n)-step nilpotent, 
respectively. Since the binary commutator is monotonic in each of its arguments, it 
follows that nilpotence is a stronger condition than solvability.

A congruence α of A is said to be (n)-step supernilpotent if it satisfies

[α, . . . , α]︸ ︷︷ ︸
(n−1)-ary

= 0.

The reason for this terminology can be found in Aichinger and Mudrinksi [1], where it is 
shown that for a congruence permutable variety, all higher commutators of appropriate 
arity satisfy what they call HC8, which is an inequality involving nested commutators:

[
θ0, . . . , θm−1, [θm, . . . , θn−1]

]
≤ [θ0, . . . , θn−1]. (HC8)

Therefore, for congruence permutable varieties an easy induction shows that if a congru-
ence α is (n)-step supernilpotent then it must also be (n)-step nilpotent (and hence also 
(n)-step solvable).

If α = 1 we simply say that the algebra A is (n)-step nilpotent, solvable, or supernilpo-
tent, as the case may be. We conclude this section with a description of supernilpotence 
using the vocabulary that has been developed in this paper. The proof is only a trans-
lation of definitions and is therefore omitted.

Proposition 2.4. Let A be an algebra, n ≥ 2 a natural number, and i ∈ n. The algebra A is 
(n −1)-step supernilpotent if and only if there is no (n)-dimensional cube h ∈ M(1, . . . , 1)
such that

(1) every line belonging to S-Linesk(h) is constant, and
(2) the (k)-pivot of h line is not constant.

3. Generalized nilpotence and solvability

The main goal of this section is to demonstrate that the condition of nilpotence can be 
quite complicated and that, for our purposes, the condition of solvability is more useful. 
As noted in Section 1, the properties of nilpotence and solvability can be defined with 
the term condition commutator.

A choice was made in our definition of nilpotence to consistently evaluate the first 
argument of the binary commutator at α and the second argument at (α]n. If the com-
mutator for A is symmetric then this choice is immaterial, but if the commutator fails 
to be symmetric then this choice is important. In the non-symmetric case, our definition 
of nilpotence is demoted to what we call left nilpotence. The notion of right nilpotence
is defined in the obvious analogous way.
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Left and right nilpotence are not the same, as demonstrated by the following example. 
Let G and {o} be disjoint sets with G infinite. Let A = G ∪ {o} and fix some injection 
s : A2 → G. Let A = 〈A; t〉 be the algebra with binary operation t defined by

t(x, y) =
{
o if x = o,

s(x, y) otherwise.

A is not left nilpotent, because for each n ∈ ω there is a (1]n-class with infinitely many 
elements, namely {t(a, y) : y ∈ A} for a ∈ G via

t

(
o a

ao

,
y y

aa

)
=

o t(a, y)

t(a, a)o

.

However, A is right nilpotent. To see this, let δ be the congruence with classes G and {o}. 
It is a routine exercise to show that C(1, 1; δ) holds and that [δ, 1] = 0. A consequence 
of this is that [1, 1] ≤ δ and now (2) of Proposition 2.3 leads to the conclusion that 
[[1, 1], 1] = 0.

A moment’s reflection will reveal that the situation can be complicated. Let T[·,·]({x})
be the collection of all single-variable terms in the binary operation symbol [·, ·]. The 
previous definitions of solvability and nilpotence are statements of the form

Con(A) |=
(
t(1) = 0

)
for some special t(x) ∈ T[·,·]({x}), and the example above shows that nilpotence witnessed 
by a particular term t(x) need not imply that all terms of a particular depth evaluate to 0. 
The addition of higher arity commutators to the language allows for more complicated 
terms. That is, let

Ln =
{

[·, ·], . . . , [·, . . . , ·]︸ ︷︷ ︸
n-ary

}

be the set of commutator operation symbols of arity at most n and TLn
({x}) be the set 

of all single variable terms in the operation symbols appearing in Ln. We can now ask 
whether

Con(A) |=
(
t(1) = 0

)
for some t(x) ∈ TLn

({x}).
Our aim in this article is not to explore these complexities in full detail, but rather 

to construct algebras An such that for all t(x) ∈ TLn
({x}),

Con(A) 	|=
(
t(1) = 0

)
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but

Con(A) |=
(
[1, . . . , 1]︸ ︷︷ ︸
(n+1)-ary

= 0
)
.

These two conditions say that An fails to be nilpotent for any definition one could produce 
involving commutators up to arity n, but is nevertheless (n)-step supernilpotent.

We can simplify the problem by introducing a generalization of solvability. For n ≥ 2
and α ∈ Con(A), define [α]n0 := α. Now recursively define over ω the descending chain 
of congruences

[α]nm+1 :=
[
[α]nm, . . . , [α]nm

]
︸ ︷︷ ︸

n-ary

.

If [α]nm = 0 for some m, n ∈ ω we say that α is (m)-step solvable in dimension n.

Lemma 3.1. Let A be an algebra, α ∈ Con(A), and n ≥ 2 be a natural number. For all 
t(x) ∈ TLn

({x}) there exists m ∈ ω such that

Con(A) |=
(
[α]nm ≤ t(α)

)
.

Proof. The proof proceeds by induction on the complexity of terms. It is clear that the 
Lemma holds when t(x) = x, establishing the basis. Suppose that

t(x) = [s0(x), . . . , sk−1(x)]

for some terms s0, . . . , sk−1, where k ≤ n. By the inductive hypothesis there exist 
m0, . . . , mk−1 ∈ ω such that

Con(A) |=
(
[α]nmi

≤ si(α)
)
,

for each i ∈ k. Set m to be the maximum of m0, . . . , mk−1. It follows from (2) and (3) 
of Proposition 2.3 that

Con(A) |=
([

[α]nm, . . . , [α]nm
]︸ ︷︷ ︸

n-ary

≤
[
[α]nm, . . . , [α]nm

]︸ ︷︷ ︸
k-ary

≤ t(α)
)
.

This completes the proof. �
Proposition 3.2. Let A be an algebra, α ∈ Con(A), and let n ≥ 2 be a natural number. 
For all t(x) ∈ TLn

({x}),

Con(A) 	|=
(
t(α) = 0

)
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if and only if α fails to be (m)-step solvable in dimension n for all m ∈ ω.

Proof. One direction is obvious. For the other direction, suppose that there is some 
t(x) ∈ TLn

({x}) such that

Con(A) |=
(
t(α) = 0

)
.

By Lemma 3.1 there is an m ∈ ω such that

Con(A) |=
(
[α]nm ≤ t(α)

)
.

This forces α to be (m)-step solvable in dimension n. �
4. The algebra A2

Let O, R, G be disjoint countably infinite sets where the elements of O and R are 
indexed as follows:

O = {oji : i, j ∈ ω} and R = {rji : i, j ∈ ω}.

Define A2 = O ∪R ∪G and let A2 = 〈A2; t〉 be the algebra with underlying set A2 and 
a binary operation t : (A2)2 → A2 defined below.

(1) For all i, j ∈ ω,

t(rj4i, r
j
4i) = t(rj4i, r

j
4i+2) := oji ,

t(rj4i+2, r
j
4i) := rj+1

i ,

t(rj4i+2, r
j
4i+2) := rj+1

i+1 .

This can be written compactly as

t

⎛
⎜⎜⎝

rj4i rj4i+2

rj4i+2rj4i

,

rj4i rj4i

rj4i+2rj4i+2

⎞
⎟⎟⎠ :=

oji rj+1
i

rj+1
i+1oji

.

(2) Otherwise, t(x, y) := s(x, y) for some injective function s : (A2)2 → G.

See Fig. 5.
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Fig. 5. Partial Multiplication Table for t.

4.1. A2 is not solvable

We will prove that the algebra A2 fails to be (n)-step solvable (in dimension 2) for all 
n ∈ ω. Recall that the derived series of A2 is the sequence of congruences

1 = [1]0 ≥ · · · ≥ [1]n ≥ [1]n+1 ≥ . . . ,

where [1]n+1 =
[
[1]n, [1]n

]
.

Lemma 4.1. Let A2 = 〈A2; t〉 be the algebra defined at the start of this section. For each 
j ∈ ω, the set Rj = {rji : i ∈ ω} ⊆ R is contained in a [1]j-class.

Proof. The proof proceeds by induction on j. The Lemma clearly holds for j = 0, 
establishing the basis. Suppose that [1]j has a class that contains the set Rj = {rji : i ∈
ω}. It follows that

rj4i rj4i+2

rj4i+2rj4i

,

rj4i rj4i

rj4i+2rj4i+2)

∈ M
(
[1]j , [1]j

)

for each i ∈ ω. Therefore,

t

⎛
⎜⎜⎝

rj4i rj4i+2

rj4i+2rj4i

,

rj4i rj4i

rj4i+2rj4i+2

⎞
⎟⎟⎠ =

oji rj+1
i

rj+1
i+1oji

∈ M([1]j , [1]j).

Since 
〈
oji , o

j
i

〉
∈

[
[1]j , [1]j

]
, we conclude that 

〈
rj+1
i , rj+1

i+1
〉
∈ [1]j+1 for each i ∈ ω. Equiv-

alence relations are transitively closed, so it follows that 
〈
rj+1
0 , rj+1

i

〉
∈ [1]j+1 for each 
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i ∈ ω. Therefore, Rj+1 = {rj+1
i : i ∈ ω} is a subset of the class of [1]j+1 that is 

represented by rj+1
0 . This completes the induction and the proof. �

Theorem 4.2. The algebra A2 = 〈A2; t〉 is not solvable (in dimension 2).

Proof. If A2 were solvable then there would exist an n ∈ ω such that

[1]n = 0.

In particular, every class of [1]n would contain exactly one element, but Lemma 4.1
ensures the existence of a class with infinitely many elements. �
4.2. A2 is supernilpotent

We will now prove that the algebra A2 is (2)-step supernilpotent. The proof is an 
induction on the complexity of terms that generate the algebra of (1, 1, 1)-matrices (i.e. 
M(1, 1, 1)). Before embarking on the proof, however, we must build up some of the 
necessary machinery. The following lemmas are proved in full generality in Section 5 at 
the start of Subsection 5.2. There is not a strong geometrical intuition that can be gained 
from examining the lower-dimension proofs, so we refer the reader to the next section 
for detailed justification of these lemmas.

Lemma 4.3. Let A2 = 〈A2; t〉 be the algebra defined at the start of this section.

(1) If t(a, b) ∈ R ∪O then a, b ∈ R.
(2) If t(a, b) = t(c, d) 	∈ O then (a, b) = (c, d).
(3) If t(a, b) = t(c, d) and (a, b) 	= (c, d), then

• t(a, b) = t(c, d) = oji for some oji ∈ O,
• a = c = rj4i, and
•

{
b, d

}
=

{
rj4i, r

j
4i+2

}
.

Lemma 4.4. If

h =
c rji

r�kc

∈ M(1, 1) for some c ∈ A2,

then j = � and |i − k| ∈ {0, 1}.

Lemma 4.5. If

h =
rji rk�

arv

∈ M(1, 1)

u
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for some rji , r
k
l , r

v
u ∈ R and a ∈ A2, then

h ∈

⎧⎨
⎩

x x

yy

,

x y

yx

: x, y ∈ A2

⎫⎬
⎭ .

We are now ready to prove that A2 is not (2)-step supernilpotent. Although the proof 
of this theorem can be worked out from the proof of the higher-dimensional Theorem 5.7, 
we include it here in the hope that it will provide some geometrical intuition for the 
general case.

Theorem 4.6. The algebra A2 = 〈A2; t〉 is (2)-step supernilpotent.

Proof. By Proposition 2.4, A2 is (2)-step supernilpotent if and only if

h =

a b

ba

c e

dc

∈ M(1, 1, 1)

implies e = d. In other words, if the vertical support lines are constant, then the vertical 
pivot line is constant as well. Set

X0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x y

yx

x y

yx

,

y y

xx

y y

xx

,

x x

xx

y y

yy

: x, y ∈ A2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ and

Xn+1 = Xn ∪
{
t(a, b) : a, b ∈ Xn

}
.

By definition, M(1, 1, 1) = Sg(A2)23 (X) =
⋃

n∈N Xn. We proceed by induction on n.
For a cube h ∈ X0 it is true that having constant vertical support lines implies a 

constant vertical pivot line, establishing the basis. Suppose now that this implication 
holds for Xn and that

h =

a b

ba

c e

dc

∈ Xn+1 \Xn.

We will show that d = e. We have that
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h =

a b

ba

c e

dc

= t

⎛
⎜⎜⎜⎝

a′
0 b′0

b0a0

c′0 e0

d0c0

,

a′
1 b′1

b1a1

c′1 e1

d1c1

⎞
⎟⎟⎟⎠ ,

where the two argument cubes are elements of Xn. From Lemma 4.3, it must be that 
a0 = a′0, b0 = b′0, and c0 = c′0. Applying the inductive hypothesis to the first argument 
cube now yields e0 = d0, so the first argument cube has its bottom face equal to its top 
face. Observe that we need only prove that e1 = d1 since e0 = d0 already. The situation 
is now

h =

a b

ba

c e

dc

= t

⎛
⎜⎜⎜⎝

a0 b0

b0a0

c0 d0

d0c0

,

a′
1 b′1

b1a1

c′1 e1

d1c1

⎞
⎟⎟⎟⎠ . (4.1)

Let S be the set of vertical support lines of the second argument cube and let D be the 
set of constant lines:

S =
{

a1

a′
1
,
b1

b′1
,
c1

c′1
}
, D =

{
α

α

: α ∈ A2

}
.

We will proceed with a case analysis of S ∩D.
Case S ∩D 	= ∅: In this case, there is a constant vertical support line of the second 

argument cube, say c1 = c′1. Suppose towards a contradiction that a1 	= a′1. Since h has 
all constant vertical support lines, t evaluated at this line must be a failure of injectivity. 
By Lemma 4.3, it must be that (modulo vertical reflection) a = oji , a0 = rj4i, a1 = rj4i, 
and a′1 = rj4i+2. Equation (4.1) is now

h =

oji b

boji

c e

dc

= t

⎛
⎜⎜⎜⎝

rj4i b0

b0rj4i

c0 d0

d0c0

,

rj4i+2 b′1

b1rj4i

c1 e1

d1c1

⎞
⎟⎟⎟⎠ .

If we apply Lemma 4.4 to the left face of the second cube, we obtain a contradiction, 
since |4i + 2 − 4i| = 2 	∈ {0, 1}. It follows that a1 = a′1. We can continue around the 
cube in this manner to obtain all constant vertical support lines, forcing e1 = d1 by 
the inductive hypothesis. This, in turn, implies that e = d. At the start of this case 
we assumed that the (c1, c′1) line was the constant vertical support line, but the above 
argument works no matter which support line is constant.

Case S ∩ D = ∅: In this case, from the definition of t and Lemma 4.3, equation 4.1
looks like
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h =

o�k onm

onmo�k

oji e

doji

= t

⎛
⎜⎜⎜⎜⎜⎝

r�4k rn4m

rn4mr�4k

rj4i d0

d0rj4i

,

r�4k+β
rn4m+δ

rn4m+γr�4k+α

rj4i+τ
e1

d1rj4i+ε

⎞
⎟⎟⎟⎟⎟⎠ ,

where {0, 2} = {α, β} = {γ, δ} = {ε, τ}. Applying Lemma 4.5 to the leftmost face, we 
obtain r�4k+α = rj4i+ε and r�4k+β = rj4i+τ . Similarly, the back face implies that r�4k+α =
rn4m+γ and r�4k+β = rn4m+δ. The situation is now (modulo vertically flipping the second 
cube)

h =

o�k o�k

o�ko�k

o�k e

do�k

= t

⎛
⎜⎜⎜⎜⎜⎝

r�4k r�4k

r�4kr�4k

r�4k d0

d0r�4k

,

r�4k+2 r�4k+2

r�4kr�4k

r�4k+2 e1

d1r�4k

⎞
⎟⎟⎟⎟⎟⎠ .

Applying Lemma 4.5 to the top and bottom faces of the first argument cube implies that 
d0 = r�4k. Applying Lemma 4.5 to the top and bottom faces of the second argument cube 
implies that d1 = r�4k and e1 = r�4k+2. Evaluating it all gives us e = o�k = d, as desired.

This completes the case analysis and the induction. �
5. The algebra An

Let n ∈ ω. Let O, R, G be disjoint sets, indexed as follows

O =
{
oji,g : i, j ∈ ω, g ∈ 2n−1} and R =

{
rji : i, j ∈ ω

}
.

Define An = O ∪R ∪G and let An = 〈An; t〉 be the algebra with underlying set An and 
an n-ary operation t : (An)n → An with values given by the cube equation

(
t
(

gCuben0 (rj4i, r
j
4i+2), . . . , gCubenn−1(r

j
4i, r

j
4i+2)

))
f

:=

⎧⎪⎪⎨
⎪⎪⎩
rj+1
i if f = (1, . . . , 1, 0) ∈ 2n,
rj+1
i+1 if f = (1, . . . , 1, 1) ∈ 2n,
oji,g if f |n−1 = g 	= 1 ∈ 2n\{n−1},

(5.1)

and otherwise t takes the value of some fixed injection s : (An)n → G. See Fig. 6.
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Fig. 6. Equation (5.1) with associated (n)-dimensional cube coordinate system for n = 3.

5.1. An is not solvable in dimension n

In this section we prove that the algebra An fails to be (j)-step solvable in dimension 
n for all j ∈ ω. Recall that the (n)-dimensional generalization of the derived series of An

is the sequence of congruences

1 = [1]n0 ≥ · · · ≥ [1]nj ≥ [1]nj+1 ≥ . . . ,

where [1]nj+1 =
[
[1]nj , . . . , [1]nj

]
(n-ary). We now repeat the same analysis that we did in 

the previous section.

Lemma 5.1. Let An = 〈An; t〉 be the algebra defined above. For each j ∈ ω, the set 
Rj = {rji : i ∈ ω} ⊆ R is contained in a [1]nj -class.

Proof. The proof proceeds by induction on j. The Lemma clearly holds for j = 0, 
establishing the basis. Suppose that [1]nj has a class that contains the set Rj = {rji : i ∈
ω}. It follows that

{
gCubenk (rj4i, r

j
4i+2) : k ∈ n

}
⊆ M

(
[1]nj , . . . , [1]nj︸ ︷︷ ︸

n

)

for each i ∈ ω. Therefore,

h = t
(

gCuben0 (rj4i, r
j
4i+2), . . . , gCubenn−1(r

j
4i, r

j
4i+2)

)
∈ M

(
[1]nj , . . . , [1]nj

)
.

By the definition of t, every element of S-Linesn−1(h) is constant. It follows that the pair 
determined by the (n − 1)-pivot line of h must belong to 

[
[1]nj , . . . , [1]n

]
(n-ary). The 

pair determined by the (n − 1)-pivot line of h is 
〈
rj+1
i , rj+1

i+1
〉
, so we have shown that
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〈
rj+1
i , rj+1

i+1
〉
∈ [1]nj+1.

It follows that 
〈
rj+1
0 , rj+1

i

〉
∈ [1]j+1 for each i ∈ ω. Therefore, Rj+1 = {rj+1

i : i ∈ ω} is 
a subset of the class of [1]nj+1 that is represented by rj+1

0 . This completes the induction 
and the proof. �
Theorem 5.2. The algebra An = 〈An; t〉 is not solvable (in dimension n).

Proof. If An were solvable in dimension n then there would exist an m ∈ ω such that

[1]nm = 0.

In particular, every class of [1]nm would contain exactly one element, but Lemma 5.1
ensures the existence of a class with infinitely many elements. �
5.2. An is (n)-step supernilpotent

We now prove versions of Lemmas 4.3, 4.4, and 4.5 for An. These lemmas describe in 
detail the exact manner in which the operation t fails to be injective, and the different 
kinds of squares that can appear in M(1, 1). The following Lemma follows immediately 
from the definition of An and is therefore omitted.

Lemma 5.3. Let An = 〈An; t〉 be the algebra defined at the start of this section.

(1) If t(a) ∈ R ∪O then a ∈ Rn.
(2) If t(a) = t(b) 	∈ O then a = b.
(3) If t(a) = t(b) and a 	= b, then

• t(a) = t(b) = oji,g for some oji,g ∈ O,
• ak = bk ∈

{
rj4i, r

j
4i+2

}
for all k ∈ (n − 1), and

•
{
an−1, bn−1

}
=

{
rj4i, r

j
4i+2

}
.

We are now ready to begin our analysis of the squares in M(1, 1).

Lemma 5.4. If

h =
c rji

r�kc

∈ M(1, 1) for some c ∈ An,

then j = � and |i − k| ∈ {0, 1}.

Proof. The proof shall be by induction on the level at which h first appears during 
subalgebra generation. Let
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X0 =

⎧⎨
⎩

x x

yy

,

x y

yx

: x, y ∈ An

⎫⎬
⎭ and

Xm+1 = Xm ∪
{
t(a) : a ∈ (Xm)n

}
.

By definition, M(1, 1) = Sg(An)22 (X0) =
⋃

m∈ω Xm. We will proceed by induction on 
m. The Lemma clearly holds for h ∈ X0, establishing the basis. Suppose now that the 
Lemma holds for Xm and that

h =
c rji

r�kc

∈ Xm+1 \Xm.

We will prove that j = � and |i − k| ∈ {0, 1}.
From Lemma 5.3, it must be that

h =
c rji

r�kc

= t

( a0 rj0−1
u0

r�0−1
v0

a0

, . . . ,

an−2 r
jn−2−1
un−2

r
�n−2−1
vn−2

an−2

,

bn−1 β

αan−1︸ ︷︷ ︸
∈Xm

)

(note that the last square need not have equal vertical lines). Applying the inductive 
hypothesis to the first (n − 1) argument squares gives us jp = �p and |up − vp| ∈ {0, 1}
for all p ∈ (n − 1).

Consider the evaluation of t on the rightmost vertical lines of the argument squares:

t

(
r�0−1
v0

rj0−1
u0

, . . . ,

r
�n−2−1
vn−2

r
jn−2−1
un−2

,

α

β )
=

r�k

rji

.

From Lemma 5.3 and the definition of t, the only way that this is possible is if there are 
some ε, τ ∈ {0, 1} such that for all p ∈ (n − 1)

jp = j, up = 4(i− ε) + 2, α = rj4(i−ε)+2ε,

�p = �, vp = 4(k − τ) + 2, β = r�4(k−τ)+2τ .

The reader is encouraged to consult Fig. 6. Combining this with the conclusions from 
the end of the previous paragraph, we have that j = � and

|up − vp| =
∣∣∣(4(i− ε) + 2

)
−

(
4(k − τ) + 2

)∣∣∣ = 4
∣∣(i− k) − (ε− τ)

∣∣ ∈ {0, 1}.

This implies that i −k = ε −τ . For all possibilities of ε, τ ∈ {0, 1}, we have |i −k| ∈ {0, 1}. 
This completes the induction, and finishes the proof. �
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Lemma 5.5. If

h =
rji rk�

arvu

∈ M(1, 1)

for some rji , r
k
l , r

v
u ∈ R and a ∈ An, then

h ∈

⎧⎨
⎩

x x

yy

,

x y

yx

: x, y ∈ An

⎫⎬
⎭ .

Proof. The proof is similar to the proof of Lemma 5.4, and we begin the same way. Let

X0 =

⎧⎨
⎩

x x

yy

,

x y

yx

: x, y ∈ An

⎫⎬
⎭ and

Xm+1 = Xm ∪
{
t(a) : a ∈ (Xm)n

}
,

so that M(1, 1) = Sg(An)22 (X0) =
⋃

m∈ω Xm. We proceed by induction on m. The Lemma 
trivially holds for h ∈ X0, establishing the basis. Suppose now that the Lemma holds for 
Xn and that

h =
rji rk�

arvu

∈ Xm+1 \Xm.

We will prove that h ∈ X0. As in Lemma 5.4, this implies (from the definition of t and 
by Lemma 5.3) that

h =
rji rk�

arvu

= t

( rj−1
4(i−τ)+2 rk−1

4(�−σ)+2

a0rv−1
4(u−ε)+2

, . . . ,

rj−1
4(i−τ)+2 rk−1

4(�−σ)+2

an−2rv−1
4(u−ε)+2

,

rj−1
4(i−τ)+2τ rk−1

4(�−σ)+2σ

an−1rv−1
4(u−ε)+2ε︸ ︷︷ ︸

∈Xm

)

for some ε, τ, σ ∈ {0, 1}. The reader is encouraged to consult Fig. 6. The inductive 
hypothesis applies to each of the argument squares, so for each square the columns are 
constant or the rows are constant.
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By symmetry, we may assume without loss of generality that the last argument square 
has constant columns. This implies that j = v and that 4(i − τ) + 2τ = 4(u − ε) + 2ε. 
This last equation reduces to 2i − τ = 2u − ε. Since ε, τ ∈ {0, 1}, we have that τ = ε

and thus i = u. This forces the first column of all the argument squares to be constant, 
which in turn (by the inductive hypothesis) forces the second columns of all the argument 
squares to be constant. Hence h has constant columns, and so h ∈ X0, completing the 
induction. �

In the previous section, the above n = 2 version of Lemma 5.5 above was sufficient to 
analyze the cubes in Theorem 4.6 since the faces of (3)-dimensional cubes are squares. 
The faces of (n + 1)-dimensional cubes, however, are (n)-dimensional cubes. The anal-
ysis which must be performed is therefore aided by generalizing the above lemma to 
(n)-dimensional cubes rather than squares.

Lemma 5.6. Let

h ∈ M(1, . . . , 1︸ ︷︷ ︸
n≥2

)

be an (n)-dimensional cube for n ≥ 2. If we have S-Linesn−1(h) ⊆ R2 then h =
gCubeni (r′, r′′) for some i ∈ n and r′, r′′ ∈ R.

Proof. Observe that when n = 2, this is just Lemma 5.5. We first show that h ∈ R2n . 
Since S-Linesn−1(h) ⊆ R2, we need only show that the (n − 1)-pivot line of h lies in R2. 
The two vertices of this line are h1 and hf where 1 ∈ 2n and f = (1, . . . , 1, 0) ∈ 2n. The 
(0, 1)-pivot square and (0, n − 1)-pivot square of h are

r′′ h1

r′′′r′︸ ︷︷ ︸
(0, 1)-pivot

and
r′′ h1

hfr′︸ ︷︷ ︸
(0, n − 1)-pivot

.

Applying Lemma 5.5 to the first square and then the second yields h1, hf ∈ R, proving 
that h ∈ R2n . Lemma 5.5 applied to all the cross section squares of h proves that each 
cross section square must be of the form gCube2

i (r′, r′′) for some i ∈ 2 and r′, r′′ ∈ R. 
The proof will be finished after we establish the following claim.

Claim. Let m ≥ 2 be an integer, S a set, and h ∈ S2m an (m)-dimensional cube. If 
every cross section square is of the form gCube2

i (a, b) for some i ∈ 2 and a, b ∈ S then 
h = gCubemj (c, d) for some j ∈ n and c, d ∈ S.

Proof of claim. We proceed by induction on the dimension m. The claim is trivial if 
m = 2. Assume now that it holds for m ≥ 2 and take h ∈ S2m+1 satisfying the hypotheses 
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of the claim. Denote by (m �→ 0) and (m �→ 1) the functions from the singleton {m} into 
2 that assign m the value 0 and 1, respectively. The inductive assumption implies that

h(m�→0) = gCubemj0(a0, b0) and h(m�→1) = gCubemj1(a1, b1)

for some j0, j1 ∈ m and a0, b1, a1, b1 ∈ S. If both a0 = b0 and a1 = b1 then h =
gCubem+1

m (a0, a1). We therefore assume that a0 	= b0. A typical (m, j0)-cross section 
square of h looks like

b0 d

ca0

,

where 〈a0, b0〉 and 〈c, d〉 are (j0)-cross section lines of h(m�→0) and h(m�→1), respectively. 
By hypothesis, this square must be of the form gCube2

i (a′0, b′0). Since a0 	= b0, it must be 
that i = 1, a′0 = a0 = c, and b′0 = b0 = d. Applying the same argument to a (m, j1)-cross 
section square yields a0 = a1 and b0 = b1. In turn, this now implies j1 = j0. Putting it 
all together, we have h = gCubem+1

j0
(a0, b0), proving the claim. �

We are now ready to prove the general version of Theorem 4.6.

Theorem 5.7. The algebra An = 〈An; t〉 is (n)-step supernilpotent.

Proof. By Proposition 2.4, we must show that for all (n + 1)-dimensional cubes

h ∈ M(1, . . . , 1︸ ︷︷ ︸
n+1

),

if S-Linesn(h) has all constant edges, then the (n)-pivot line is constant as well. Let

X0 =
{

gCuben+1
i (x, y) : x, y ∈ An, i ∈ n + 1

}
and

Xm+1 = Xm ∪
{
t(a) : a ∈ (Xm)n

}
.

Note that M(1, . . . , 1) = Sg(An)2n+1 (X0) =
⋃

m∈ω Xm. We will proceed by induction on 
m.

For h ∈ X0 it is true that having constant (n)-support lines implies having a constant 
(n)-pivot line, establishing the basis. Suppose now that this implication holds for Xm

and that

h ∈ Xm+1 \Xm

has S-Linesn(h) constant. We will show that the (n)-pivot line must also be constant. 
Since h ∈ Xm+1 \Xm, there are cubes c0, . . . , cn−1 ∈ Xm such that
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h = t
(
c0, . . . , cn−2, cn−1

)
.

Now, the (n)-support line of hf for a particular f ∈ 2(n+1)\{n} is of the form

hf = t

(
b0

a0

, . . . ,
bn−1

an−1
)
,

where for each d ∈ n, 
〈
ad, bd

〉
is the (n)-support line of (cd)f . Lemma 5.3 implies that 

ad = bd for all d ∈ (n − 1) and either an−1 = bn−1 or {an−1, bn−1} = {rj4i, r
j
4i+2} for 

some i, j ∈ ω. The inductive hypothesis applied to cd for d ∈ (n − 1) implies that the 
(n)-pivot line of cd (that is, (cd)1) is constant. Succinctly, we have determined that

Linesn(cd) ⊆
{

c

c

: c ∈ An

}
for all d ∈ (n− 1) and

S-Linesn(cn−1) ⊆
{

c

c

: c ∈ An

}
∪
{

rj4i+ε

rj4i+τ

: i, j ∈ ω, {ε, τ} = {0, 2}
}
.

Observe that if the (n)-pivot line of cn−1 is constant then the (n)-pivot line of h will be 
constant as well. Let D be the set of constant lines:

D =
{

c

c

: c ∈ An

}
.

We now proceed with a case analysis of S-Linesn(cn−1) ∩D.
Case S-Linesn(cn−1) ∩D 	= ∅: In this case, there is some constant (n)-support line of 

cn−1. This is enough to force every (n)-support line of cn−1 to be constant. To see this, 
notice that the hypercube 2n is path connected, where a path connecting two functions 
f, g ∈ 2n is a sequence of ‘bit flips’, or functions

f = z0, z1, . . . , ze−1 = g

such that two consecutive functions differ in exactly one argument.

Claim. Let f, g ∈ 2n = 2(n+1)\{n} be functions that differ in exactly one argument. If the 
(n)-support line (cn−1)f is constant then the (n)-support line (cn−1)g is also constant.

Proof of claim. Suppose that k ∈ n is the unique argument such that f(k) 	= g(k). We 
may assume without loss of generality that

f(k) = 0, g(k) = 1, (cn−1)f =
a

a

, and (cn−1)g =
rj

rj4i+τ
4i+ε
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for some a ∈ An, i, j ∈ ω, and ε, τ ∈ {0, 2}. Since f and g agree everywhere on n \ {k}, 
there is h ∈ 2(n+1)\{k,n} such that f and g extend h. This means that (cn−1)f and 
(cn−1)g will be the columns of the (k, n)-cross section square

(cn−1)h =
a rj4i+τ

rj4i+εa

.

Applying Lemma 5.4 to this we obtain ε = τ , which proves the claim. �
An induction using the above claim shows that if (cn−1)f is a constant (n)-support 

line and g is connected to f by a path in 2n then (cn−1)g is also a constant (n)-support 
line. Since 2n is path connected, this forces every (n)-support line of cn−1 to be constant. 
The inductive hypothesis applied to cn−1 now implies that the (n)-pivot line of cn−1 is 
also constant, which finishes the proof in this case.

Case S-Linesn(cn−1) ∩D = ∅: The condition for this case is equivalent to the statement

S-Linesn(cn−1) ⊆
{

rj4i+ε

rj4i+τ

: i, j ∈ ω, {ε, τ} = {0, 2}
}
.

For f ∈ 2n the (n)-support line of h at f is therefore

hf = t
(
(c0)f , . . . , (cn−2)f , (cn−1)f

)
= t

(
a0

a0

, . . . ,
an−2

an−2

,
rj4i+ε

rj4i+τ

)

for some a0, . . . , an−2 ∈ An, i, j ∈ ω, and {ε, τ} = {0, 2}. By assumption hf is constant, 
so an application of Lemma 5.3 yields a0, . . . , an−2 ∈ R. This reasoning works for any 
f ∈ 2n \ {1}, so we conclude that

S-Linesn(cd) ⊆
{

r′

r′′

: r′, r′′ ∈ R

}

for all d ∈ n. Applying Lemma 5.6 to this we obtain that cd ∈ X0 for all d ∈ n.
The situation now is that all of the c0, . . . , cn−1 are generators of M(1, . . . , 1). For 

d 	= n − 1 we know that S-Linesn(cd) is constant, so it follows that

cd = gCuben+1
i (ad, bd)

for some i 	= n and ad, bd ∈ An. We have also assumed (in the paragraph before the case 
analysis) that the (n)-pivot line of cn−1 is not constant, so we also know that

cn−1 = gCuben+1
n (rj4i+ε, r

j
4i+τ )
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for some i, j ∈ ω and {ε, τ} = {0, 2}.
Each of the cd with d 	= n − 1 is an (n + 1)-dimensional cube that is constant in all 

but a single dimension in (n + 1) \ {n}. There are n − 1 many such cd and n + 1 many 
dimensions, so there is at least one k ∈ (n + 1) \ {n} such that all of the cd are constant 
in dimension k. It follows that, for each d 	= n − 1, any (k, n)-cross section square of cd
is constant. In particular, for 1 ∈ 2(n+1)\{k,n}

(cd)1 =
bd bd

bdbd

for some bd ∈ An. Hence, the (k, n)-pivot square of h is

h1 = t

( b0 b0

b0b0

, . . . ,

bn−2 bn−2

bn−2bn−2

,

rj4i+τ rj4i+τ

rj4i+εrj4i+ε

)

=
t(b0, . . . , bn−2, r

j
4i+τ ) t(b0, . . . , bn−2, r

j
4i+τ )

t(b0, . . . , bn−2, r
j
4i+ε)t(b0, . . . , bn−2, r

j
4i+ε)

.

One of the columns of the (k, n)-pivot square of h is an (n)-support line and the other 
is the (n)-pivot column. Since these columns are equal and we have assumed that the 
(n)-support lines of h are constant, it follows that the (n)-pivot line is constant as well.

This completes the case analysis. In all cases, we showed that if all the (n)-support 
lines of h are constant, then the (n)-pivot line of h is constant as well. From the remarks 
at the start of the proof, this is enough to show that An is (n)-step supernilpotent. �
6. Concluding remarks

In [15], the second author shows that supernilpotence implies nilpotence in varieties 
that satisfy a nontrivial idempotent equational condition. Such varieties are called Taylor 
varieties in the literature. In [16], Olšák produces a strong Mal’cev condition character-
izing the class of Taylor varieties. We ask the question: If [V] is a chapter in the lattice 
of interpretability of types that does not lie in the interval above Olšák’s term, is there 
a variety W ∈ [V] with a supernilpotent algebra that is not nilpotent?
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