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1. Formulation of results

This section contains Introduction (Subsect. 1.1), Notation (Subsect. 1.2), formula-
tion of results (Subsect. 1.3–1.8), additional comments and links with other works, and 
discussion of similar objects (Subsect. 1.9–1.13).

1.1. Introduction

Denote by F a finite field with q = pl elements, where p is prime. Consider the linear 
space V over F consisting of two-sided sequences

(. . . , v−1, v0, v1, . . . ),

where vj = 0 for sufficiently large j. The space V is locally compact with respect to the 
natural topology.3 So it has a unique up to a scalar factor Haar measure (i.e., a measure 
invariant with respect to all translations). Denote by GL◦ the group of all continuous 
linear operators in V , by GL its subgroup consisting of transformations preserving the 
Haar measure. Clearly GL is a normal subgroup in GL◦, and

GL◦
/GL � Z.

The group GL was introduced in [33] as the maximal group of symmetries of a certain 
infinite-dimensional Grassmannian over a finite field.

Now there exist well-developed theories of unitary representations of infinite-
dimensional real classical groups and of infinite symmetric groups, these two theories 
are parallel one to another. Infinite-dimensional classical groups over finite fields were 
topics of many attacks since [48], 1976, see, e.g., [46], [7], [52], [53], [10], [13], [33], [50]
(we present a brief survey of various versions of such groups in Subsect. 1.11), but a 
picture remains to be less transparent, less connected, and less rich than for real groups 
and symmetric groups.

The present paper contains an attempt to classify all unitary representations of GL. 
For an irreducible unitary representation ρ of GL we assign a number z satisfying 0 �
z � 1. Next,

— if z > 0, then we assign a canonically defined pair (k, σ), where k is a non-negative 
integer and σ is an irreducible representation of GL(k, F);

— the case z = 0 is slightly different, we assign two integers l � m and an irreducible 
representation of the group GL(l −m, F).

3 An infinite locally compact separable linear space over F can be discrete (such space V is the direct 
sum of a countable number of copies of F), compact (such space V � is isomorphic to the direct product 
of a countable number of copies of F), or isomorphic to V . Groups GL(V ) and GL(V �) are discussed in 
Subsect. 1.11.
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Data of such type uniquely determine a representation ρ, but we do not know, which 
(k, σ) actually correspond to representations of GL for z > 0.

The proof is based on the following phenomenon, which is interesting by itself. Denote 
by Wk ⊂ V the subspace consisting of all vectors v satisfying vj = 0 for j > k. For a 
pair of subspaces Wk ⊃ Wl we denote by Ql,k ⊂ GL the subgroup consisting of all g
such that

1) gWk = Wk, gWl = Wl.
2) g induces the unit operator in the quotient space Wk/Wl.
In other words, we consider the group of all invertible matrices of the block form(∗ ∗ ∗

0 1 ∗
0 0 ∗

)
.

We show that there is a natural associative multiplication of double coset spaces

Ql1,k1
\GL/Ql2,k2

× Ql2,k2
\GL/Ql3,k3

→ Ql1,k1
\GL/Ql3,k3

.

In this way we get a category GL, whose objects are pairs (l, k) and sets of morphisms 
(l2, k2) → (l1, k1) are double coset spaces Ql1,k1\GL/Ql2,k2

. Unitary representations of 
the group GL are in a canonical one-to-one correspondence with ∗-representations of the 
category GL.

Next, we obtain a transparent description of the category GL. For any double coset 
Ql1,k1

·g ·Ql2,k2
we assign a linear subspace in Wk2/Wl2⊕Wk1/Wl1 (a linear relation) and 

a non-negative integer. These data uniquely determine a double coset, and the category 
GL is equivalent to a certain ‘central extension’ of the category of linear relations. This 
relatively easily implies the statement about representations mentioned above.

Remark. Multiplication of double cosets is a fairly common phenomenon for infinite-
dimensional groups, we briefly discuss this in Subsect. 1.10, but our case is unusual 
inside a collection of known examples. �

1.2. Notation

Below Z+ denotes the set of non-negative integers, C× denotes the multiplicative 
group of complex numbers C.

By 1k we denote the unit matrix of order k, sometimes we omit a subscript k, also 
sometimes we write 1. The symbol 1 denotes also units in groups and semigroups. For 
a matrix A denote by At the transposed matrix. In particular, for a vector-row v we 
denote by vt the corresponding vector-column.

Denote by F a finite field with q = pl elements, where p is prime. Denote by F× its 
multiplicative group.
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We are mainly interested in groups of infinite matrices over the finite field F . How-
ever, some nontrivial considerations (see Theorems 1.1, 1.5, 1.6) are valid in a wider 
generality.4 Denote by o an arbitrary commutative ring with unit, by k an arbitrary 
field.

Denote by GL(∞, o) the group of infinite matrices g =

⎛⎝g11 g12 . . .
g21 g22 . . .
...

...
. . .

⎞⎠ over a ring 

o such that g − 1 has finite number of non-zero matrix elements. We call such matrices 
g finitary.

Denote by GL(2∞, o) the group of all finitary two-sided infinite matrices g over o. 
Of course, a bijection between N and Z induces an isomorphism between GL(∞, o) and 
GL(2∞, o). By o2∞ we denote the space of two-sided sequences {vj}j∈Z consisting of 
elements of o such that vj = 0 for sufficiently large |j|. The group GL(2∞, o) acts on 
this space by multiplication of columns by matrices.

For a finite matrix g ∈ GL(α, o) we define matrices

g↘ :=
(
g 0
0 1∞

)
∈ GL(∞, o), ↖g↘ :=

(1∞ 0 0
0 g 0
0 0 1∞

)
∈ GL(2∞, o).

By S∞ we denote the group of permutations of N with finite support. By S∞ we 
denote the group of all permutations, equipped with a natural topology (a sequence 
σj ∈ S∞ converges to σ if for each n ∈ N we have σjn = σn starting some j).

Let G be a group, K, L its subgroups. By G/ /K we denote the space of conjugacy 
classes of G with respect to K, by K\G/L the double coset space with respect to K
and L.

A Hilbert space means a separable Hilbert space.

1.3. Multiplication of double cosets

Denote by A the set of all pairs α− � α+ of integers, we denote them by

α := (α−, α+).

Denote

|α| := α+ − α−.

Define a partial order on A assuming that

β ≺ α if the segment [β− + 1, β+] is contained in [α− + 1, α+].

4 In particular, a wider generality can be interesting in a context of p-adic classical groups, see [31].
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Fix α ∈ A. Split Z into segments,

−∞ < k � α− + 1, α− + 1 < k � α+, α+ < k < ∞ (1.1)

of lengths ∞, α+ − α−, ∞. According (1.1), we split our space o2∞ into a direct sum of 
3 subspaces consisting of sequences of the form

o−α : (. . . , vα−−2, vα−−1, vα− , 0, 0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .);

oα : (. . . . . . . . . . . . . . . . . . , 0, 0, vα−+1, vα−+2, . . . , vα+ , 0, 0, . . . . . . . . . . . . );

o+
α : (. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 0, 0, vα−+1, vα−+2, . . . ).

Denote by Qα−, α+ = Qα the subgroup in GL(2∞, o) consisting of block matrices of 
the following form:

⎛⎜⎝ ∗ ∗ ∗
0 1|α| ∗
0 0 ∗

⎞⎟⎠ , (1.2)

the blocks correspond to the decompositions

o2∞ = o−α ⊕ oα ⊕ o+
α.

We wish to show that for each α, β, γ ∈ A there is a natural multiplication on double 
coset spaces

Qα\GL(2∞, o)/Qβ × Qβ\GL(2∞, o)/Qγ → Qα\GL(2∞, o)/Qγ ,

defined in the following way. For a double coset a ∈ Qα\GL(2∞, o) / Qβ we choose a 
representative

A =
↖(

a11 a12 a13
a21 a22 a23
a31 a32 a33

)
↘

, (1.3)

a size of the matrix has the form

(N− + |α| + N+) × (M− + |β| + M+),

where

N− − α− = M− − β−, N+ + α+ = M+ + β+
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Notice that for any μ, ν � 0 the expression

Ã =

↖
⎛⎜⎜⎜⎜⎜⎝

1μ 0 0 0 0
0 a11 a12 a13 0
0 a21 a22 a23 0
0 a31 a32 a33 0
0 0 0 0 1ν

⎞⎟⎟⎟⎟⎟⎠
↘

(1.4)

determines the same element of GL(2∞, o).
Consider two double cosets

a ∈ Qα\GL(2∞, o)/Qβ, b ∈ Qβ\GL(2∞, o)/Qγ .

Choose their representatives

A =
↖(

a11 a12 a13
a21 a22 a23
a31 a32 a33

)
↘

, B =
↖(

b11 b12 b13
b21 b22 b23
b31 b32 b33

)
↘

. (1.5)

We can assume that sizes of matrices A, B are(
N− + |α| + N+

)
×

(
M− + |β| + M+

)
and (

M− + |β| + M+

)
×

(
K− + |γ| + K+

)
,

otherwise we apply the transformation (1.4). We wish to define a product of double 
cosets

a � b ∈ Qα\GL(2∞, o)/Qγ .

For matrices A, B we denote

A◦ :=

⎛⎜⎜⎜⎜⎜⎝
1M− 0 0 0 0

0 a11 a12 a13 0
0 a21 a22 a23 0
0 a31 a32 a33 0
0 0 0 0 1M+

⎞⎟⎟⎟⎟⎟⎠ (1.6)

and
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B♦ :=

⎛⎜⎜⎜⎜⎜⎝
b11 0 b12 0 b13
0 1M− 0 0 0
b21 0 b22 0 b23
0 0 0 1M+ 0
b31 0 b32 0 b33

⎞⎟⎟⎟⎟⎟⎠ (1.7)

Then a � b is the double coset containing the matrix

A � B :=↖[A◦B♦]↘. (1.8)

Theorem 1.1. a) A double coset a � b defined above does not depend on the choice of 
representatives A and B.

b) The �-multiplication is associative, i.e., for

a ∈ Qα\GL(2∞, o)/Qβ, b ∈ Qβ\GL(2∞, o)/Qγ , c ∈ Qγ\GL(2∞, o)/Qδ

we have

(a � b) � c = a � (b � c).

The proof of the theorem occupy Section 2.
Thus we get a category GL = GL(o), the set Ob(GL) of its objects is A, the sets of 

morphisms are

Mor(β,α) := Qα\GL(2∞, o)/Qβ.

We also denote by End(α) := Mor(α, α) the set of endomorphisms of α and by Aut(α)
the group of automorphisms. The unit 1α ∈ End(α) is the double coset containing the 
unit matrix. It is easy to see that Aut(α) � GL(|α|, o).

The map A �→ A−1 determines the maps a �→ a∗ of double coset spaces

Qα\GL(2∞, o)/Qβ → Qβ\GL(2∞, o)/Qα.

Proposition 1.2. The maps a �→ a∗ define an involution in the category GL, i.e.,

(a � b)∗ = b∗ � a∗.

The proof is contained in Subsect. 2.1.

1.4. Description of the category GL(k)

Now we consider only groups of matrices over a field k. In notation of the previous 
subsection we replace o by k, for instance, we write kα instead of oα. In this case we are 
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able to present a transparent description of the category GL = GL(k) in the language of 
linear relations.

Recall some simple notions. Let V , W be linear spaces over k. A linear relation
P : V ⇒ W is a linear subspace in V ⊕ W . Let P : V ⇒ W , Q : W ⇒ Y be linear 
relations. Their product QP : V ⇒ Y is the set of all (v, y) ∈ V ⊕ Y , for which there 
exists w ∈ W such that (v, w) ∈ P , (w, y) ∈ Q.

For a linear relation P : V ⇒ W we define:
— the kernel kerP = P ∩ V ;
— the image imP is the projection of P to W along V ;
— the domain of definiteness domP is the projection of P to V along W ;
— the indefiniteness indef P = P ∩W ;
— the rank

rkP = dimP − dim kerP − dim indef P =
= dim domP − dim kerP = dim imP − dim indef P.

We also define the pseudoinverse linear relation P� : W ⇒ V as the set of all pairs 
(w, v) such that (v, w) ∈ P .

Remark. A graph of a linear operator T : V → W is a linear relation, in this case 
domA = V , indef A = 0. A product of operators is a special case of products of linear 
relations. If an operator is invertible, then its pseudoinverse linear relation is the graph 
of the inverse operator. �

For an element A given by (1.3) of GL(2∞, k) we define a characteristic linear relation5

χ(A) : kβ ⇒ kα

as the set of all pairs (v, u) ∈ kβ ⊕ kα, for which there exist x ∈ k−
α, y ∈ k−

β such that(
x
u
0

)
=

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)(
y
v
0

)
. (1.9)

Lemma 1.3. The linear relation χ(A) depends only on the double coset a ∈ Qα\GL(2∞, k)
/Qβ containing A.

A double coset is not determined by the characteristic relation and we need an addi-
tional invariant of a double coset, namely

η(a) := rk a31.

5 See an extension of this construction in [40].
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Proposition 1.4. Any pair (χ(a), η(a)) satisfies the condition

η(a) � β− − α− + dim kerχ(a) − dim indef χ(a). (1.10)

This is a unique restriction for such pairs.

Theorem 1.5. The pair 
(
χ(a), η(a)

)
completely determines a double coset a.

Theorem 1.6. Let a ∈ Qα\GL(2∞, k)/Qβ, b ∈ Qβ\GL(2∞, k)/Qγ . Then
a) χ(a � b) = χ(a)χ(b).
b) η(a � b) = η(a) + η(b) + dim

(
indef χ(b)/(indef χ(b) ∩ domχ(a))

)
.

c) We have χ(a∗) = χ(a)� and

η(a∗) = η(a) + dim indef χ− dim kerχ− β− + α. (1.11)

Remark. The category of double cosets admits a more natural description in terms of 
polyhomomorphisms, see below Subsect. 1.13. �

Proofs of statements of this subsection are contained in Section 3.

1.5. The group GL

Now we again reduce our generality and consider groups of matrices over a finite field 
F . Our next purpose is to define the topological group GL, which is the main object of 
the paper.

Denote by V the direct sum of a countable number of copies of the field F . We regard 
V as the space of all vectors

v = (v1, v2, v3, . . . ),

where vj ∈ F and vj = 0 for all but a finite number of j. The group V is countable, we 
equip it with the discrete topology. By V � we denote the direct product of an infinite 
number of copies of F . We regard V � as the space of all vectors

v� = (. . . , v−2, v−1, v0),

where vj ∈ F . We equip V � with the product topology and get a compact group. The 
groups V and V � are Pontryagin dual (on the Pontryagin duality, see, e.g., [25] or [19], 
Subsect. 12.1). More precisely, there is a pairing V × V � → F , defined by

S(v, w) =
∞∑

vj+1w−j . (1.12)

j=0
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(a sum actually is finite). Choosing an arbitrary nontrivial homomorphism χ of the 
additive group of F to C× we write the duality V × V � → C× by

(v, w) �→ χ
{
S(v, w)

}
.

The direct sum

V := V � ⊕ V

can be regarded as the space of all two-sided sequences

(. . . , v−2, v−1, v0, v1, v2, . . . ), (1.13)

where vj ∈ F and vm = 0 for sufficiently large m. The group V is a locally compact 
Abelian group.

Denote by GL◦ the group of all continuous linear transformations6 of V , for details, 
see [33]. We write elements of V � ⊕ V as columns, matrices act by multiplications from 
the left: (

v�

v

)
�→ g

(
v�

v

)
=

(
a b
c d

)(
v�

v

)
. (1.14)

In this notation:
1) the matrix b : V → V � can be arbitrary;
2) c : V � → V contains only a finite number of nonzero elements;
3) each row of a : V � → V � contains only a finite number nonzero elements;
4) each column of d : V → V contains a finite number of nonzero elements.
Also g has an inverse matrix satisfying the same properties.
We equip the group GL◦ with the topology of uniform convergence on compact sets7

(since V � ⊕ V is an Abelian topological group, the uniform convergence is well defined, 
see e.g., [19], Subsect. 2.6, or [25], Sect. 8). Denote by Wm the subgroup in V consisting 
of all sequences (1.13) such that vj = 0 for j > m. We get an exhausting sequence

· · · ⊂ Wk ⊂ Wk+1 ⊂ Wk+2 ⊂ . . .

of compact subsets (subgroups) in V . A sequence gj ∈ GL◦ converges to 1, if for any 
α = (α−, α+) for sufficiently large j for each w ∈ Wα+ we have (gj − 1)w ∈ Wα−+1.

6 If the order of F is prime, then GL◦ is the group of all automorphisms of the Abelian group V .
7 Topologies on such groups are determined by groups themselves. More precisely, the statement Any 

homomorphism of Polish groups is continuous is compatible with the Zermelo–Fraenkel system plus the 
axiom of dependent choice. Any reasonable complete topology invented by the reader for GL(V ) will be the 
same, see [55].
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Equivalently, we consider the subgroups Qα consisting of block matrices of the form ⎛⎜⎝ ∗ ∗ ∗
0 1|α| ∗
0 0 ∗

⎞⎟⎠ as above, see (1.2). Then such subgroups form a fundamental system of 

open neighborhoods of unit. The closure of Qα is Qα.
Normalize a Haar measure on V by the assumption: the measure of V � is 1. We prefer 

to work with a subgroup

GL ⊂ GL◦

consisting of transformations preserving the Haar measure on V . Generally, an element 
g ∈ GL◦ sends a set of measure α to a set of measure qkα, where k = k(g) ∈ Z, see a 
general statement [2], Subsect. VII.1.4.

Below we need the following a more precise description of the subgroup GL (for details, 
see [33]). For a matrix a =: a(g) in (1.14) there is the following analog of the Fredholm 
index (see [28], Subsects. 2.4–2.7) defined by

ind a(g) := codim im a(g) − dim ker a(g)

(both numbers are finite). It is easy to verify that g �→ ind a(g) is a homomorphism 
GL◦ → Z,

ind a(g1g2) = ind a(g1) + ind a(g2).

We define the group GL as the kernel of this homomorphism.
Consider the shift operator

J : {vj} �→ {vj+1} (1.15)

in the space of sequences (1.13). It is contained in GL◦ but not in GL, in fact we have a 
semidirect product

GL◦ � Z� GL,

where Z is the group generated by the shift.

1.6. Multiplicativity

Here we show that unitary representations of the group GL can be reduced to repre-
sentations of the category GL(F).

Lemma 1.7. a) Any double coset a ∈ Qα\GL/Qβ contains an element of GL(2∞, F).
b) If A1, A2 ∈ GL(2∞) are contained in one double coset a ∈ Qα\GL/Qβ, then they 

are contained in one double coset ∈ Qα\GL(2∞, F)/ Qβ.
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Therefore the following sets coincide:

Qα\GL/Qβ � Qα\GL(2∞,F)/ Qβ.

Let ρ be a unitary representation of GL in a Hilbert space H. Denote by Hα ⊂ H

the subspace of Qα-fixed vectors. Obviously,{
β 
 α

}
⇒

{
Hβ ⊃ Hα

}
.

Denote by Pα the operator of orthogonal projection H → Hα.

Lemma 1.8. For a unitary representation ρ of GL(2∞, F) in a Hilbert space H the fol-
lowing statements are equivalent:

1) ρ has a continuous extension to the group GL;
2) the subspace ∪αHα is dense in H.

For a ∈ Qα\GL/Qβ we define the operator

ρ̂α,β(a) : Hβ → Hα

by

ρ̂α,β(a) := Pαρ(A)
∣∣
Hβ

, where A ∈ a.

It can be readily checked that this operator does not depend on the choice of a repre-
sentative A ∈ a. The following multiplicativity theorem holds:

Theorem 1.9. a) For any α, β, γ ∈ A and any

a ∈ Qα\GL/Qβ, b ∈ Qβ\GL/Qγ

we have

ρ̂α,β(a) ρ̂β,γ(b) = ρ̂α,γ(a � b).

b) For any α, β and any a ∈ Qα\GL/Qβ we have

ρ̂α,β(a)∗ = ρ̂β,α(a∗). (1.16)

c) ‖ρ̂α,β(a)‖ � 1.

The statement a) requires a proof, b) and c) are obvious.
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In other words we get a representation of the category GL(F), i.e., a functor from 
the category GL(F) to the category of Hilbert spaces and bounded linear operators (the 
first statement of the theorem). This representation is compatible with the involution 
(we also use the term ∗-representations for such representations., i.e., representations 
satisfying (1.16)).

Proofs of statements of this subsection are contained in Section 4.

1.7. The spherical character of irreducible representations of GL

Here for any unitary representation of GL in a Hilbert space H we assign a canonical 
intertwining operator Z : H → H. By the Schur lemma, for an irreducible representation 
ρ this operator is scalar, Z = z ·1. We call the number z = z(ρ) by the spherical character 
of ρ.

Denote by ζkα the double coset defined by

ζkα = Qα ·
↖ ( 0 0 1k

0 1|α| 0
1k 0 0

)
↘

·Qα. (1.17)

The following statement is straightforward:

Proposition 1.10. a) The element ζkα is contained in the center of the semigroup 
End(α) = Qα\GL/ Qα and

ζkα � ζlα = ζk+l
α .

b) For each α, β and a ∈ Mor(β, α) we have

ζkα � a = a � ζkβ.

c) The characteristic linear relation χ(ζkα) is the graph of the unit operator, η(ζkα) = k.

The statement b) means that for α ≺ β we have

ρ̂β,β(ζkβ)
∣∣∣
Hα

= ρ̂α,α(ζkα).

Therefore we have well defined self-adjoint operators Zk in H satisfying

Zk
∣∣∣
Hα

= ρ̂α,α(ζkα), ‖Zk‖ � 1, ZkZl = Zk+l

commuting with the representation ρ. In particular, for irreducible representations such 
operators Zk must be scalar operators,

Zkh = zkh, where −1 � z � 1.
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Lemma 1.11. The number z(ρ) satisfies to the condition 0 � z � 1.

The proof of the lemma is given in Subsect. 5.2.

Conjecture 1.12. The number z(ρ) has the form q−k, where k ∈ Z+, or z = 0.

Remarks. a) It is easy to see that for the (reducible) representation of GL in the space 
�2(V ) we have z = q−1; for the irreducible representations of GL constructed in [33] we 
also have z = q−1. Problems of harmonic analysis discussed in Subsect. 1.9.1)-2) produce 
many representations with z = q−l. Irreducible representations with z = 0 are described 
in Proposition 1.17.

b) There is an explicit compact semigroup Γ ⊃ G with separately continuous mul-
tiplication, such that G is dense in Γ and any unitary representation admits a weakly 
continuous extension to Γ, see [39]. This semigroup has a center isomorphic to Z+, the 
center acts in unitary representations of G by operators Zk.

c) An existence of such ‘spherical character’ is a general phenomenon for infinite-
dimensional groups, see [45], Subsect. 2.10, [28], Subsect. 1.12, [34], Subsect. 3.17. 
However, usually these characters depend on an infinite number of parameters. �.

1.8. Data determining irreducible representations of the group GL

Thus Theorem 1.9 reduces unitary representations of the group GL to representations 
of the category GL(F). Here we discuss some corollaries from this reduction.

Proposition 1.13. Let ρ be an irreducible unitary representation of GL in a Hilbert 
space H. If Hα �= 0, then ρ is uniquely determined by the representation of End(α)
in Hα (which is automatically irreducible).

This is an automatic statement in the spirit of: ‘an irreducible unitary representation 
σ of a group G is determined by any its matrix element 〈σ(g)v, v〉’. See, e.g., [34] Lemma 
2.7.

For a representation ρ denote by Ξ(ρ) the set of all α such that Hα �= 0. Clearly, if 
α ∈ Ξ(ρ) and β 
 α, then β ∈ Ξ(ρ).

Lemma 1.14. Let α be a minimal element of Ξ(ρ). Let for a ∈ End(α) we have ρ̂(a) �= 0. 
Then8 χ(a) ∈ GL(|α|, F).

If additionally ρ is irreducible, then we have an irreducible representation of the 
semigroup GL(|α|) × Z+. It is determined by an irreducible representation of GL(|α|)
and a number z ∈ [0, 1], defining a representation of Z+.

8 Formally, we must say χ(a) is a graph of an invertible operator.
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Fig. 1. To Theorem 1.15 A set Ξ(ρ) for z > 0 and z = 0.

Theorem 1.15. Let ρ be an irreducible unitary representation of GL.

a) Let z(ρ) > 0. Then there is k � 0 such that set Ξ(ρ) consists of all α such that 
|α| � k. If |α| = |α′| = k, then the representations of GL(k, F) in Hα and Hα′ are 
equivalent.

b) Let z(ρ) = 0. Then there is α such that Ξ(ρ) consists of all β � α.

See, Fig. 1.
Thus, for z > 0 an irreducible representation ρ of GL is uniquely determined by a triple 

(z, k, τ), where τ is an irreducible representation of GL(k, F). For z = 0 a representation ρ
is determined by a triple (0, α, τ), where τ is an irreducible representation of GL(|α|, F).

Remark. Let J : V → V be the shift operator, see (1.15). Then the map g �→ JgJ−1 is 
an automorphism of the group GL. In particular for any irreducible representation ρ(g)
of GL we have a representation ρJ(g) := ρ(JgJ−1). If z �= 0, then ρJ is equivalent to ρ. 
It is easy to show that ρ can be extended to a unitary representation of the group GL◦. 
If z = 0, then ρJ is not equivalent to ρ. The set Ξ(ρJ) (see Fig. 1.b) is obtained from 
Ξ(ρ) by the shift (α−, α+) �→ (α− + 1, α+ + 1) �

Corollary 1.16. The subgroup Q0,0 is spherical9 in GL.

Indeed, the corresponding semigroup End(0) = GL(0, F) × Z+ is Z+, its irreducible 
representations are one-dimensional and a spherical representation is determined by its 
spherical character. �

Return to a general situation. The case z = 0 is rather simple. Consider the subgroup 
Pα ⊃ Qα consisting of matrices of the form

9 A subgroup H in a topological group G is spherical if for any irreducible unitary representation of G
the dimension of the subspace of H-fixed vectors is � 1. The definition assumes that H-fixed vectors exist 
in some representations of G. In our case this is so, for instance the natural representation of GL in �2(V )
has a Q0,0-fixed vector, see also [33].
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(
a11 a12 a13
0 a22 a23
0 0 a33

)
.

Then Qα is normal in Pα, and

Pα/Qα � GL(|α|,F).

A representation τ of GL(α, F) can be regarded as a representation of Pα. It is easy 
to see that the homogeneous space GL/ Pα is countable, therefore the induction of 
representations from Pα to GL makes sense.

Proposition 1.17. The representation of GL corresponding to a triple (0, α, τ) is the 
representation induced from the representation τ of the subgroup Pα.

Representation theory of finite groups GL(n, F) (see, e.g., [21], Chapter IV) does not 
appear in our considerations. It seems that it must be reflected in a final form of a 
classification of representations.10

Conjecture 1.18. For a given k and an irreducible representation τ of GL(k, F) the set 
of z > 0 such that the triple (z, k, τ) corresponds to a unitary representation of GL has 
the form q−l, where l is integer ranging in a set of form l � m, where m = m(k, τ).

Theorem 1.19. a)The group GL has11 type I.
b) Any irreducible unitary representation of GL is a direct integral of irreducible rep-

resentations.

Remark. If Conjecture 1.12 is the truth, then any unitary representation of GL is a direct 
sum of irreducible representations (this is clear from the proof in Subsect. 5.5). �

Statements of this subsection are proved in Section 5.
At this point we end the presentation of theorems of the paper, our next purpose is 

additional remarks and some links, formal and heuristic, with other works on infinite-
dimensional groups.

1.9. Some problems of harmonic analysis for the group GL

In this paper we do not discuss constructions of irreducible representations of the 
group GL, except Subsect. 5.6. In any case, there are the following problems of harmonic 
analysis, which provide us a way to obtain a lot of irreducible representations in their 
spectra.

10 and in problems of harmonic analysis discussed in the next subsection.
11 For the definition and discussion of types of representation and groups, see, e.g., [23], [4].
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1) Howe duality. Let the characteristic of F be �= 2. Define a skew-symmetric 
bilinear form on V = V � ⊕ V by

{
(v1, w1), (v2, w2)

}
:= S(v1, w2) − S(v2, w1),

where S(·, ·) is the pairing V �×V → F , see (1.12). Denote by Sp = Sp(V ) the subgroup 
of GL consisting of operators in V preserving this form. For this group the Weil repre-
sentation is well defined: since V and V � are locally compact, the construction of Weil 
[54] remains to be valid in this case. As it was shown in [36], this representation admits 
an extension to a certain category of ‘Lagrangian’ linear relations V ⇒ V .

The group GL admits a natural embedding to Sp. Namely, consider the space V :=
V � ⊕ V and its dual

V � = (V � ⊕ V )� � V ⊕ V � � V .

For A ∈ GL consider the dual operator At in V � and its inverse (At)−1. The group GL
acts in V ⊕ V � by operators

A �→
(
A 0
0 (At)−1

)
preserving the duality V × V � → F . On the other hand

V ⊕ V � = (V � ⊕ V ) ⊕ (V ⊕ V �) � (V � ⊕ V �) ⊕ (V ⊕ V ) � V ,

since V ⊕ V � V . We get the desired embedding GL(V ) → Sp(V ⊕ V ).
Next, fix m, consider the space (V ⊕ V ) ⊗ Fm, consider the Weil representation of 

Sp
(
(V⊕V ) ⊗Fm

)
and restrict it to the subgroup GL(V ) ×GL(m, F). We come to a ques-

tion of the Howe duality type (see, e.g., [16], [12]). The Howe duality for groups over finite 
fields was a topic of numerous works (see, e.g., [1]). Notice that finite-dimensional coun-
terparts of our objects are not pairs (GL(N, F), GL(m, F)) but (EndGL(α), GL(m, F)). 
May be our problem is more similar to the initial Howe’s work [15].

2) Flag Spaces. In [33] there were constructed GL-invariant measures on certain 
spaces of flags in V . Namely, there were considered (finite or infinite) flags of discrete 
cocompact12 subspaces

· · · ⊂ Lj−1 ⊂ Lj ⊂ Lj+1 ⊂ . . .

in V . There arises a problem about explicit decompositions of the corresponding spaces 
L2. For the Grassmannians this problem has an explicit solution in terms of Carlitz–Al 

12 I.e., quotients V/Li are compact.
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Salam q-hypergeometric orthogonal polynomials, the spectrum consists of Q0,0-spherical 
representations.

3) Other spaces of flags. We can also consider finite flags

M1 ⊂ · · · ⊂ Mk

of compact subspaces in V of positive Haar measure. Such spaces of flags are countable 
and Mackey’s argumentation [22] (see also [5]) reduces the decomposition of �2 to certain 
questions about finite groups GL(n, F). It seems that this problem is less interesting than 
1) and 2).

1.10. General remarks on multiplication of conjugacy classes and double cosets

Here we discuss some standard facts related to classical groups. Let k be a field and 
o ⊂ k be a subring with unit (the most important case is13 k = o = C). Denote by 
GL(m +∞, k) the same group GL(∞, k) considered as a group of finitary block matrices (
a b
c d

)
of size m + ∞. Denote by K the subgroup, consisting of matrices of the form (

1m 0
0 H

)
, where H is a matrix over o,

K � GL(∞, o).

We claim that the set of conjugacy classes

G//K = GL(m + ∞,k)//GL(∞, o)

is a semigroup with respect to the following ◦-multiplication. For two matrices(
a b
c d

)
↘

,

(
p q
r t

)
↘

∈ GL(m + ∞)

we define their ◦-product by

(
a b
c d

)
↘

◦
(
p q
r t

)
↘

:=
[(

a b 0
c d 0
0 0 1

)(
p 0 q
0 1 0
r 0 t

)]
↘

=

⎛⎜⎝ ap b aq

cp d cq

r 0 t

⎞⎟⎠
↘

. (1.18)

Theorem 1.20. a) The ◦-multiplication is a well-defined associative operation on the set 
of conjugacy classes GL(m + ∞, k)/ /GL(∞, o).

13 The case when k is a p-adic field Qp and o is a ring of p-adic integers was discussed in [35].
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b) The ◦-multiplication is a well-defined associative operation on the set of conjugacy 
classes U(m + ∞)/ /U(∞).

The statement (as soon as it is formulated) is more-or-less obvious. Various versions 
of these semigroups are classical topics of system theory and operator theory, see, e.g., 
[3], [8], Chapter 19, [11], Part VII, [14], [47], see also [35].

If o = k, then the multiplication ◦ can be clarified in the following way. For g =(
a b
c d

)
we write the following14 ‘perverse equation for eigenvalues’:

(
p
x

)
=

(
a b
c d

)(
q
λx

)
, λ ∈ k. (1.19)

Eliminating x we get a relation of the type

p = χg(λ)q,

where χ : k �→ GL(m, k) is the ‘Livshits characteristic function’ or ‘transfer-function’

χg(λ) = a + λb(1 − λd)−1c.

Theorem 1.21.

χg◦h(λ) = χg(λ)χh(λ).

Multiplications of double cosets. We denote:

— U(∞) ⊂ GL(∞, C) is the group of finitary unitary matrices over C;

— O(∞) ⊂ GL(∞, R) is the group of finitary real orthogonal matrices;

— O(∞, C) ⊂ GL(∞, C) is the group of finitary complex orthogonal matrices.

Theorem 1.22. a) The ◦-multiplication is a well-defined associative operation on double 
coset spaces GL(∞, o)\GL(m + ∞, k)/ GL(∞, o).

b) The formula (1.18) determines an associative operation on double cosets

O(∞)\U(m + ∞)/O(∞). (1.20)

c) The formula (1.18) determines an associative operation on double cosets O(∞, C)\
GL(m + ∞, C)/O(∞, C).

14 Cf. the definition (1.9) of the characteristic linear relation.
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In the case of O(∞)\U(m + ∞)/O(∞) we have a ‘multiplicativity theorem’ as we 
discussed above. See [44], for details, see [26], Section IX.4.

According [44], theorems of this type hold for all infinite-dimensional limits of sym-
metric pairs G ⊃ K. Recently [42], [43], [27], [28], [27], [34] it was observed that these 
phenomena are quite general. For instance, there is a well defined multiplication on the 
double cosets space

diag U(∞) \ GL(m + ∞,C) × · · · × GL(m + ∞,C)︸ ︷︷ ︸
m times

/ diag U(∞), (1.21)

where diag U(∞) is the subgroup

diag U(∞) ⊂ diag GL(∞,C) ⊂ diag GL(m + ∞,C)

in the diagonal diag GL(m + ∞, C) of the direct product. Such multiplication can be 
described in terms of semigroups of matrix-valued rational functions of matrix argument.

In all known cases we have double cosets with respect to infinite dimensional analogs 
K of certain simple or reductive groups as

U(n), U(n) × U(n), O(n), Sp(n), Sn, . . . (1.22)

It seems natural to continue this list by GL(n, F). However, we consider groups of 
block matrices over F having the form(∗ ∗ ∗

0 1 ∗
0 0 ∗

)
. (1.23)

This family of subgroups naturally arose in the context of [33]. Lemma 4.2 below provides 
us an a priori explanation: any vector in a representation of GL fixed by all matrices of 

the form 

(∗ 0 0
0 1 0
0 0 ∗

)
is also fixed by all matrices of the form (1.23).

Another unexpected place is the proof of Theorem 1.1.a (which claims that the prod-
uct of double cosets is well defined). The proof is not difficult, but meets an obstacle, 
which is not observable in previously known cases, see below Remark after Lemma 2.1. 
In particular, I do not see a possibility to produce counterparts of semigroups (1.21)
considering double cosets with respect to subgroups of the type (1.23).

1.11. What is an infinite-dimensional group GL over a finite field?

The group

GL(∞,F) = lim GL(n,F)

−→
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of finitary matrices is not15 of type I. So a representation theory in the usual sense 
for this group is impossible. There were several approaches to formulate problems of 
representation theory for this group.

A. Unitary representations of completions. Define the following completions 
of GL(∞, F):

1) The group GL(V ) of all linear operators in the space V (recall that V is the direct 
sum of a countable number of copies of F). In other words, we consider the group of 
all invertible matrices g such that g and g−1 have only finite number of nonzero matrix 
elements in each column.

2) The group GL(V �) of all linear operators in the space V � (recall that V ◦ is the 
direct product of a countable number of copies of F). The groups GL(V �) and GL(V )
are isomorphic, the isomorphism is given by g �→ (gt)−1.

3) The group

GL(V � V �) := GL(V ) ∩ GL(V �).

In this case g and g−1 have only finite number of nonzero matrix elements in each column 
and each row.16

Denote by Gα, Qα, Pα the subgroups in GL(∞, F) consisting of block matrices of size 
α + ∞ having the form

(
1 0
0 ∗

)
,

(
1 ∗
0 ∗

)
,

(
∗ ∗
0 ∗

)
respectively.

For a unitary representation of GL(∞, F) in a Hilbert space H we denote by HGα (resp. 
HQα) the subspaces in H consisting of Gα-fixed (resp. Qα-fixed) vectors.

Classification of unitary representations of the group GL(V ) was obtained in 2012 by 
Tsankov [50] as a special case of his general theorem on oligomorphic groups. The answer 
is simple: any irreducible representation is induced from a representation of a subgroup 
Pα (for some α = 0, 1, 2, . . . ) trivial on Qα.

It can be shown (this is a simplified version of Theorem 1.1) that double cosets

Qα\GL(∞,F)/Qβ

15 The simplest proof: the group PGL(∞, F) = GL(∞, F)/F× has infinite conjugacy classes except the 
unit. This easily implies that the left regular representation of PGL(∞, F) generates a Murray-von Neumann 
factor of the type II1, see [23], Corollary on page 62. On the hand by the Thoma criterion a discrete group 
has type I iff it has an Abelian subgroup of finite index.
16 For completeness, we say definitions of topologies. The group GL(V ) acts by permutations of a countable 
set V , its topology is induced from the symmetric group. The group GL(V � V �) has two different actions 
on V , namely, v �→ gv and v �→ (gt)−1v. So it acts on a countable space V �V , the topology also is induced 
from the symmetric group.
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form a category and ∗-representations of this category are in a one-to-one correspondence 
with unitary representations of GL(V ). Explicit description of this category is simple: 
this is the category of partial isomorphisms17 of finite-dimensional linear spaces over F .

The same work of Tsankov covers the group GL(V � V �), but in a certain sense 
unitary representations of this group were described by Olshanski [46], 1991. Olshanski 
considered the class of unitary representations of the group GL(∞, F) admissible in 
the following sense: the subspace ∪αH

Gα is dense in H. The paper [46] contains a 
classification of all admissible representations (see, also Dudko [7]).

Proposition 1.23. A unitary representation of GL(∞, F) is Olshanski admissible if and 
only if it admits a continuous extension to GL(V � V �).

Olshanski noted the arrow ⇒. Tsankov observed the arrow ⇐, which follows from 
coincidence of classifications of admissible representations of GL(2∞, F) and represen-
tations of GL(V � V �). For a clarification of the picture, we present an a priori proof in 
Subsect. 4.4.

In this case double cosets

Gα\GL(∞,F)/Gβ

form a category (this is a special case of Theorem 1.22.a), admissible representations 
of GL(∞, F) are in one-to-one correspondence with ∗-representations of this category. 
This category has not faithful ∗-representations.18 Consider the common kernel of all 
representations and the quotient category by the kernel. This leads to the following 
category. Denote by Yn the space Fn, by Y �

n the dual space. Denote by {·, ·} the pairing 
Y ×Y � → F . An object of the category is the direct sum Yn⊕Y �

n . A morphism Yn⊕Y �
n →

Ym ⊕ Y �
m is a pair of partial isomorphisms σ : Yn → Ym, σ� : Y �

n → Y �
m such that

{σ(z), σ�(z�)} = {z, z�}, where z ∈ dom σ, z� ∈ dom σ�.

Our group GL contains a subgroup GL(V ) × GL(V �). If to look to the analogy with 
real classical groups (see [26]), it seems that GL(V ) is a counterpart of heavy groups and 
GL is a counterpart of the Olshanski infinite-dimensional classical groups. On the other 
hand the set of parameters of representations of GL seems small comparatively infinite 
dimensional real groups or infinite symmetric groups.

B. Infinite-dimensional Hecke algebras. Thoma [49], 1964, classified all repre-
sentations of the infinite symmetric group S∞ generating Murray–von Neumann factors19

17 A partial isomorphism of linear spaces R : X → Y is a bijection of a subspace in X to a subspace in 
Y . In other words it is a linear relation with kerR = 0, indef R = 0.
18 The same phenomenon arises for infinite-dimensional p-adic groups, see [38].
19 For definitions, see, e.g., [23] or [4].
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of type II1. This is equivalent to a description of extreme points of the set of central pos-
itive definite functions on S∞. Olshanski [45] noticed that this problem also is equivalent 
to a description of representations of the double S∞ × S∞ spherical with respect to the 
diagonal S∞. Skudlarek [48] in 1976 tried to extend the Thoma approach to GL(∞, F)
but his list of positive definite central functions was trivial. Nevertheless, such extension 
exists.

Define some groups and subgroups:
— denote by GLB(∞, F) the group of all matrices having only finite number of 

nonzero elements under the diagonal; this completion of GL(∞, F) is the next topic 
of our overview;

— denote by B(∞, F) ⊂ GLB(∞, F) the group consisting of upper triangular matrices.
— let GLB(n, F) ⊂ GLB(∞, F) be the group generated by GL(n, F) and B(∞, F), 

i.e., the group of all infinite invertible matrices gij such that gij = 0 whenever i > j, 
i > n.

Then GLB(∞, F) is the inductive limit

GLB(∞,F) = lim
−→

GLB(n,F).

The groups B(∞, F), GLB(n, F) are compact, GLB(∞, F) is locally compact and is not 
a group of type I.

For a locally compact group G and its compact open subgroup K denote by 
A(K\G/K) the convolution algebra consisting of compactly supported continuous func-
tions, which are constant on double cosets K · g · K. In other words, we consider the 
algebra of K-biinvariant functions f on G: for k1, k2 ∈ K, we have f(k1gk2) = f(g).

If G = GL(n, Fq) and K = B(n, Fq) is the group of upper triangular matrices, then

A
(
B(n,Fq)\GL(n,Fq)/B(n,Fq)

)
is the well-known Hecke–Iwahori algebra Hq(n) of dimension n!, see, Iwahori, [18], 1964. 
It is generated by double cosets sj := B(n, Fq)σkB(n, Fq), where σj ∈ GL(n, Fq) is the 
permutation of j-th and (j + 1)-th basis elements in Fn, relations are

sisj = sjsi; if |i− j| � 2; (1.24)

sjsj+1sj = sj+1sjsj+1; (1.25)

s2
j = (q − 1)sj + qe, (1.26)

where e is the double coset B(n, Fq) · 1 · B(n, Fq). We also have an antilinear involution 
defined by σ∗

j = sj , (ab)∗ = b∗a∗. Initially, Hq(n) was defined for q = pl being a power 
of prime. But relations allow to consider this algebra for any q ∈ C. Clearly, for q = 1
this algebra H1(n) is the group algebra of the symmetric group Sn.
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On the other hand (see [13], Proposition 2.5)

A
(
B(∞,Fq)\GLB(n,Fq)/B(∞,Fq)

)
� A

(
B(n,Fq)\GL(n,Fq)/B(n,Fq)

)
.

We have inclusions

B(∞,F)\GLB(n,F)/B(∞,F) ⊂ B(∞,F)\GLB(n + 1,F)/B(∞,F),

this allows to regard the algebra of GLB(∞, F)-bi-invariant functions on the group 
GLB(∞, F) as the inductive limit

A(B(∞,F)\GLB(∞,F)/B(∞,F)
)

= lim
−→

A
(
B(∞,F)\GLB(n,F)/B(∞,F)

)
=

= ∪∞
n=1A

(
B(∞,F)\GLB(n,F)/B(∞,F)

)
. (1.27)

This algebra Hq(∞) is generated by s1, s2, . . . ; relations are given by the same formulas 
(1.24)–(1.26).

Vershik and Kerov in 1988 [51] obtained a classification of all extreme positive traces 
(extreme traces of Hq(n) correspond to irreducible characters of GL(n, Fq)) on Hq(∞), 
for q > 0 (a trace T is positive if T (aa∗) � 0). If q = 1, then the classification coincides 
with the Thoma’s classification for S∞. Any extreme positive trace canonically gener-
ates a representation of the double Hq(∞) ⊗ Hq(∞), an explicit construction of such 
representations is contained in [41].

Some further works20 are [52], [13], [6]; according [13] (see, also [41]) any extreme 
positive trace on Hq(∞) generates an irreducible unitary representation of the dou-
ble GLB(∞, Fq) × GLB(∞, Fq); the restriction of such a representation to a single 
GLB(∞, Fq) generates a Murray-von Neumann of the type II∞ (except the trivial one-
dimensional representation and the Steinberg representation21).

C. Few words about a comparison. It seems (at least in the present moment), 
that the stories with GLB(∞, F) and GL are orthogonal. In any case, both of them are 
based on limits of algebras of the type A

(
K(n)\G(n)/K(n)

)
, where G(1) ⊂ G(2) ⊂ . . .

is a chain of locally compact groups and K(1) ⊂ K(2) ⊂ . . . is a chain of open compact 
subgroups. Rather often in the limit where arises a multiplication of double cosets (as 
in Subsect. 1.3, 1.10, 1.11 above), in such cases a limit convolution algebra naturally 
degenerates to a semigroup algebra22. A mechanism of degeneration is explained in [46], 
[29]. In a certain sense, for sufficiently large values of n a convolution of uniform measures 
on given double cosets K(n)g1K(n) and K(n)g2K(n) is concentrated near a third double 

20 S. V. Kerov died in 2000, Vershik published text [52] based on his posthumous notes.
21 For a model of the Steinberg representation of GLB(F), see [32].
22 Let Γ be a countable semigroup, then we have a natural structure of algebra on the linear space of all 
finite linear combinations ∑j cjγj , where γj ∈ Γ, cj ∈ R.
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coset K(n)g3K(n). On the other hand a double coset K(∞)gK(∞) generates a well-
defined operator in the space of K(∞)-fixed vectors in a unitary representation, and 
quite often the set of such operators is closed with respect to multiplication.23

The inductive limit (1.27) for GLB(∞, F) is unusual in the existing picture in the 
following sense: only groups G(n) = GLB(n, F) change, the prelimit compact subgroups 
K(n) = B(∞, F) remain to be the same. For this reason, algebras A(. . . ) range into an 
inductive limit (1.27).

A degeneration of convolutions of double cosets to products simplifies the situation. 
On the other hand, this allows to enrich picture, since we can include to consideration 
objects of the type (1.20)-(1.21) or numerous examples in [34]. In such cases prelimit 
objects seem to be unapproachable (at least in the present moment).

1.12. Infinite-dimensional Chevalley groups

There are the following groups, for which our approach must work, at least partially.
1) The symplectic group Sp(2∞) defined in Subset. 1.9.
2) The orthogonal group O(2∞) of the space V , i.e., the group of operators in V

preserving the bilinear form[
(v1, w1), (v2, w2)

]
:= S(v1, w2) + S(v2, w1).

We also can add a one dimensional summand to this space and get an infinite orthogonal 
group of ‘odd order’ O(2∞ + 1).

3) If q = p2l, then the field F has an automorphism of order 2, namely

x �→ x := xpl

.

In this case we also have the ‘unitary’ group U(2∞, Fq) ⊂ GL consisting of matrices 
preserving the sesquilinear form[

(v1, w1), (v2, w2)
]

:= S(v1, w2) + S(w1, v2).

1.13. The category GL(F) as a category of polyhomomorphisms

Here we present another interpretation of invariants χ(a), η(a), the inequality (1.10)
for these invariants, and the formula (1.11).

Normalize a Haar measure on V assuming that the measure of W0 is 1. Our spaces 
Fα are quotients Wα+/Wα− . The Haar measure determines a uniform measure μα on 

23 Firstly, this phenomenon arose in the work by Ismagilov, [17], he considered G = SL(2, K), where K is 
a complete normed field having infinite ring of residues. The subgroup K is SL(2) over integers of the field. 
The semigroup of double cosets in this case is Z+.
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each quotient: the measure of each point is qα− , the total measure of Wα+/Wα− is qα+ . 
Fix α, β. Let A ∈ GL. Consider the subspace Y = A−1Wα+ ∩Wβ− ⊂ V and consider 
the map

S : Y → Wβ+ ⊕Wα+

given by S : y �→ (y, Ay). Passing to quotients, we get a map

σ : Y → Wβ+/Wβ− ⊕Wα+/Wα+ .

This a rephrasing of equation (1.9) determining the characteristic linear relation. So 
σ(Y ) = χ(a). But the space Y is also equipped with a Haar measure, its image under 
σ is a canonically defined uniform measure νa on the subspace χ(a). A measure of each 
point is qβ−−η(a)−dim indef χ(a),{

projection of νa to Fβ

}
= q−η(a)μβ

∣∣∣
domχ(a)

;{
projection of νa to Fα

}
= q−η(a∗)μα

∣∣∣
imχ(a)

.

On this language, the passage a �→ a∗ is simply the permutation Fβ ⊕ Fα → Fα ⊕ Fβ. 
We also see that projections of νa are dominated by μα and μβ (and this explains the 
inequality (1.10)).

Let G1, G2 be locally compact groups equipped with fixed two-side invariant 
Haar measures dg1, dg2 respectively. According [39] a polyhomomorphism (H, dh) :
(G1, dg1) → (G2, dg2) is a closed subgroup H ⊂ H1 ×H2 with a fixed Haar measure dh
such that projection of dh to G1 (resp. to G2) is dominated by dg1 (resp. by dg2). For 
polyhomomorphisms (H, dh) : (G1, dg1) → (G2, dg2), (K, dk) : (G2, dg2) → (G3, dg3)
there is a well-defined product and the product obtained in Theorem 1.6 is a special case 
of the product of polyhomomorphisms.

1.14. The further structure of the paper

In Section 2 we prove Theorem 1.1 about products of double cosets. The description 
of this product in terms of linear relations is derived in Section 3. Multiplicativity is 
proved in Section 4. The statements (Theorem 1.15–1.19) on representations of GL are 
obtained in Section 5.

2. Multiplication of double cosets

Here we prove the statements of Subsect. 1.3, i.e., we show that the category of double 
cosets is well defined.
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2.1. Rewriting of the definition

Recall, see (1.8), that

A � B= ↖[A◦B♦]↘, (2.1)

where A◦ is defined by (1.6) and B♦ by (1.7). Denote

Jβ(ν, μ) =

⎛⎜⎜⎜⎜⎜⎝
0 1ν 0 0 0
1ν 0 0 0 0
0 0 1β 0 0
0 0 0 0 1μ
0 0 0 1μ 0

⎞⎟⎟⎟⎟⎟⎠ . (2.2)

We have

B♦ = Jβ(M+,M−)B◦Jβ(M+,M−)

Therefore we can rewrite (2.1) as

A � B= ↖[A◦Jβ(M+,M−)B◦Jβ(M+,M−)]↘.

Since Jβ(M+, M−) ∈ Qβ, the same double coset is given by the formula

Qα · ↖[A◦Jβ(M+,M−)B◦]↘ ·Qγ (2.3)

This implies Proposition 1.2 about the involution.

2.2. Proof of Theorem 1.1.a

Denote the expression in the square brackets in (2.3) by

A�B = A◦Jβ(M+,M−)B◦.

It is sufficient to prove the following statement

Lemma 2.1. Let A, P ∈ GL(∞, o) and Φ ∈ Qβ. Then
a) There exists Γ ∈ Qγ such that

(A · Φ) � P = (A� P ) · Γ. (2.4)

b) There exists Δ ∈ Qα such that A � (Φ · P ) = Δ · (A � P ).
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Remark. In all statements of this type known earlier, the factor Γ in (2.4) depends only 
on Φ. In our case this factor depends on Φ and P , see (2.7), (2.9). �

By the symmetry in formula (2.3), it is sufficient to prove the first statement. To avoid 
subscripts (as in (1.5)) consider matrices

A =
(
a b c
d e f
g h j

)
, P =

(
p q r
u v w
x y z

)
(2.5)

Then

A� P =

⎛⎜⎜⎜⎜⎜⎝
p 0 q 0 r

bu a bv c bw

eu d ev f ew

hu g hv j hw

x 0 y 0 z

⎞⎟⎟⎟⎟⎟⎠ .

It is sufficient to prove the lemma for Φ ranging in a collection of generators

(
μ 0 0
0 1 0
0 0 ν

)
,

(1 ϕ 0
0 1 0
0 0 1

)
,

(1 0 θ
0 1 0
0 0 1

)
,

(1 0 0
0 1 ψ
0 0 1

)
(2.6)

of the group Qβ. Here the size of matrices is M− + |β| +M+, the matrices μ, ν range in 
GL(M∓, o); matrices ϕ, ψ, θ are arbitrary matrices (of appropriate size).

We examine these generators case by case.
First,

[
A ·

(
μ 0 0
0 1 0
0 0 ν

)]
� P =

⎛⎜⎜⎜⎝
p 0 q 0 r
bu aμ bv cν bw
eu dμ ev fν ew
hu gμ hv jν hw
x 0 y 0 z

⎞⎟⎟⎟⎠ =(A� P )

⎛⎜⎜⎜⎝
1 0 0 0 0
0 μ 0 0 0
0 0 1 0 0
0 0 0 ν 0
0 0 0 0 1

⎞⎟⎟⎟⎠ ,

the (K− + M− + |γ| + M+ + K+)-matrix in the right-hand side is contained in the 
subgroup Qβ.

Second,

[
A ·

(1 ϕ 0
0 1 0
0 0 1

)]
� P =

⎛⎜⎜⎜⎝
p 0 q 0 r

bu + aϕu a b + aϕv c bw + aϕw
eu + dϕu d e + dϕv f ew + dϕw
hu + gϕu g h + gϕv j hw + gϕw

⎞⎟⎟⎟⎠ =
x 0 y 0 z
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= (A� P ) ·

⎛⎜⎜⎜⎝
1 0 0 0 0
ϕu 1 ϕv 0 ϕw
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎠ , (2.7)

the (K− + M− + |γ| + M+ + K+)-matrix in the right-hand side is contained in the 
subgroup Qβ.

Next,

[
A ·

(1 0 θ
0 1 0
0 0 1

)]
� P =

⎛⎜⎜⎜⎝
p 0 q 0 r
bu a bv c + aθ bw
eu d ev f + dθ ew
hu g hv j + gθ hw
x 0 y 0 z

⎞⎟⎟⎟⎠ =

= (A� P ) ·

⎛⎜⎜⎜⎝
1 0 0 0 0
0 1 0 θ 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎠ .

Examine the last generator of the list (2.6). We have

[
A ·

(1 0 0
0 1 ψ
0 0 1

)]
� P =

⎛⎜⎜⎜⎝
p 0 q 0 r
bu a bv c + bψ bw
eu d ev f + eψ ew
hu g hv j + hψ hw
x 0 y 0 z

⎞⎟⎟⎟⎠ . (2.8)

Denote (
p q r
u v w
x y z

)−1

=
(
P Q R
U V W
X Y Z

)
.

Then the right-hand side of (2.8) is⎛⎜⎜⎜⎝
p 0 q 0 r
bu a bv c bw
eu d ev f ew
hu g hv j hw
x 0 y 0 z

⎞⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎝
1 0 0 Qψ 0
0 1 0 0 0
0 0 1 V ψ 0
0 0 0 1 0
0 0 0 Y ψ 1

⎞⎟⎟⎟⎠ . (2.9)

(the first factor is A � P ). To verify this, we must evaluate 4th column of the product. 
We get

pQ + qV + rY = 0;

buQψ + bvV ψ + c + bwY ψ = c + b(uQ + vV + wY )ψ = c + bψ;
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euQψ + evV ψ + f + ewY ψ = f + e(uQ + vV + wY )ψ = f + eψ;

huQψ + hvV ψ + j + hwY ψ = j + h(uQ + vV + wY )ψ = j + hψ;

xQ + yV + zY = 0,

and this completes the proof.

2.3. Associativity

A group Qα contains a product Sα of two copies of the symmetric group S(∞), it 
consists of 0-1-matrices of the form (

u 0 0
0 1|α| 0
0 0 v

)
.

To verify the statement b) of Theorem 1.1, we must show that for representatives A, 
B, C of cosets a, b, c there exist matrices Π ∈ Qα, Γ ∈ Qδ such that

A � (B � C) = Π · (A � B) � C · Γ.

It is more-or-less clear that we can choose desired Π ∈ Sα, Q ∈ Sγ .

3. Description of the category of double cosets

Here we prove the statements of Subsect. 1.4. The proof of completeness of the system 
of invariants (Theorem 1.5) is relatively long. We observe that the group GL(|α|, F) ×
GL(|β|, F) acts in both the double coset space Qα\GL(∞, F)/Qβ and in the target space 
(a linear relation plus an invariant ∈ Z). Next we observe that GL × GL-orbits in two 
spaces are in one-to-one correspondence and show that stabilizers of orbits coincide.

Proof of Theorem 1.6 (isomorphism of categories of double cosets and of extended 
linear relations) is parallel to proofs of previously known statements in this spirit in [26], 
Sect. IX.4, and in [27].

3.1. The characteristic linear relation

Here we prove that the characteristic linear relation χ(·) is an invariant of a double 
coset a (Lemma 1.3).

We consider an element A ∈ GL(2∞, k), and write the corresponding equation (1.9)
for another element of the same double coset,

(
x′

u

)
=

(
d11 d12 d13
0 1 d23

)−1 (
a11 a12 a13
a21 a22 a23

)(
c11 c12 c13
0 1 c23

)(
y′

v

)
, (3.1)
0 0 0 d33 a31 a32 a33 0 0 c33 0
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or, equivalently, (
d11x

′ + d12u
u
0

)
=

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)(
c11y

′ + c12v
v
0

)
.

Thus for a given u, v solutions x, y and x′, y′ of systems (1.9) and (3.1) are connected 
by

x = d11x
′ + d12u y = c11y

′ + c12v.

Since matrices d11, c11 are invertible, we get that u, v in both cases are same.

3.2. The discrete invariant

Proposition 3.1. Numbers

rk (a31 ) , rk (a31 a32 ) , rk
(
a21
a31

)
, rk

(
a21 a22
a31 a32

)
are invariants of double cosets.

Proof Indeed, let

A′ =
(
d11 d12 d13
0 1 d23
0 0 d33

)(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)(
c11 c12 c13
0 1 c23
0 0 c33

)
.

Then

a′31 = d33a31c11,

(
a′21 a′22
a′31 a′32

)
=

(
1 d23
0 d33

)(
a21 a22
a31 a32

)(
c11 c21
0 1

)
,

etc. The statement becomes obvious. �
3.3. Completeness of the system of invariants

Here we prove Theorem 1.5, i.e., show that the characteristic linear relation χ(a) and 
the invariant η(a) ∈ Z+ completely determine a double coset a.

Consider ‘parabolic’ groups Pα ⊃ Qα consisting of matrices(
c11 c12 c13
0 c22 c23
0 0 c33

)
, c22 ∈ GL(|α|,k).

Clearly, Qα is a normal subgroup in Pα, the quotient is GL(|α|, k). This implies the 
following observation:
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Lemma 3.2. Let R ranges in GL(|α|, k), S in GL(|β|, k). Then the map

A �→
(1 0 0

0 R 1
0 0 1

)−1

A

(1 0 0
0 S 1
0 0 1

)

induces an action of the group GL(|α|, k) × GL(|β|, k) on the double coset space 
Qα\GL(2∞, k)/Qβ.

On the other hand the same group acts on the set of linear relations L : k|β| ⇒ k|α|

by

L �→ R−1LS.

The following statement also is obvious.

Lemma 3.3. The map a �→ χ(a) is GL(|α|, k) × GL(|β|, k)-equivariant.

Let us describe double cosets Pα\GL(2∞, k)/Pβ.

Lemma 3.4. Any double coset in Pα\GL(2∞, k)/Pβ has a unique representative as a
0-1-matrix of the form

Jκ =

↖ ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
↘

, (3.2)

where sizes κij � 0 of units in ij-blocks satisfy conditions

κ11 + κ12 + κ13 = M−; (3.3.row1)

κ21 + κ22 + κ23 = |α| = α+ − α−; (3.3.row2)

κ31 + κ32 + κ33 = M+; (3.3.row3)

κ11 + κ21 + κ31 = N−; (3.3.col1)

κ12 + κ22 + κ33 = |β| = β+ − β−; (3.3.col2)

κ13 + κ23 + κ33 = N+. (3.3.col3)
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Recall that α±, β± are fixed and M±, N± satisfy conditions

M− − α− = N− − β−; (3.4−)

M+ + α+ = N+ + β+. (3.4+)

The lemma follows from the Gauss reduction of systems of linear equation and we 
omit its proof. �
Remark. Replacing κ11 �→ κ11 + 1 (resp., κ33 �→ κ33 + 1) does not change the matrix 
Jκ (due to the presence arrows ↖, ↘ in (3.2)). In particular, we can set κ11 = 0,
κ33 = 0. �

Lemma 3.5. The linear relation χ(Jκ) from

kβ = kκ21 ⊕ kκ22 ⊕ kκ23

to

kα = kκ12 ⊕ kκ22 ⊕ kκ32

consists of all vectors of the form

(v, u, 0) ⊕ (w, u, 0).

In particular,

rkχ(Jκ) = κ22, dim indef χ(Jκ) = κ21, dim kerχ(Jκ) = κ12. (3.5)

This follows from a straightforward calculation. �
Notice that each orbit of the group GL(|α|, k) ×GL(|β|, k) on the set of linear relations 

kβ ⇒ kα has a unique representative of the form χ(Jκ).
Theorem 1.5 is a corollary of the following lemma.

Lemma 3.6. The map a �→ χ(a) is a bijection on each GL(|α|, k) × GL(|β|, k)-orbit.

Proof. It is sufficient to show that the stabilizer M(Jκ) of a double coset Qα · Jκ ·Qβ

coincides with the stabilizer N (Jκ) of the linear relation χ(Jκ). The inclusion M(Jκ) ⊂
N (Jκ) follows from the equivariance. Let us prove the inclusion.

The stabilizer N (κ) consists of pairs (R, S) ∈ GL(|α|, k) ×GL(|β|, k) having the form

(
r11 r12 r13
0 r22 r23

)
,

(
s11 s12 s13
0 s22 s23

)
, where r22 = s22.
0 0 r33 0 0 s33
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Indeed, a matrix S must preserve the flag kerχ(Jκ) ⊂ domχ(Jκ), a matrix R must 
preserve the flag indef χ(Jκ) ⊂ imχ(Jκ). This implies triangular forms of our matrices. 
The linear map

domχ(Jκ)/ kerχ(Jκ) → imχ(Jκ)/ indef χ(Jκ)

in our case is identical and this implies r22 = s22.
Let us show that such pairs stabilize the double coset Qα · Jκ · Qβ. Without loss of 

generality we can assume κ11 = κ33 = 0. Denote T = R−1, so t22 = s−1
22 . Then

(1 0 0
0 T 0
0 1 0

)
· Jκ ·

(1 0 0
0 S 0
0 1 0

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 s11 s12 s13 0 0
0 0 0 0 0 1 0
t11 0 0 t12s22 t12s23 0 t13
0 0 0 1 t22s23 0 t23
0 0 0 0 0 0 t33
0 1 0 0 0 0 0
0 0 0 0 s33 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is more or less clear that multiplying such matrices by elements of Qα from the left 
and elements of Qβ from the right we can reduce this matrix to the form Jκ. Formally, 
the last product is equal to

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s11 0 0 s12 −s12t23t
−1
33 0 s13

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 t22s23
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 t33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

× Jκ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t11 0 0 t12s22 t12s23 0 t13
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 t23
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 t33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and this completes the proof. �
3.4. The expression for η(a∗)

Here we prove the statement c) of Theorem 1.6. We can assume that A has form 
Jκ , see (3.2). Extracting β− from both sides of (3.3.row1) and α− from both sides of 
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(3.3.col1) and keeping in the mind the equality N− − β− = M− − α−, see (3.4−), we 
come to

κ11 + κ21 + κ31 − β− = κ11 + κ12 + κ13 − α−,

or

η(a∗) = κ13 = κ21 + κ31 − β− − κ12 + α− = (3.6)

= dim indef χ(a) + η(a) − β− − dim kerχ(a) + α+ (3.7)

The last line is formula (1.11).

3.5. Inequalities for η(a)

Here we prove Proposition 1.4 about possible domain for η(a) if χ(a) is fixed. The 
expression in the line (3.7) must be � 0, and this implies the desired inequality (1.10). 
We must show that this is sufficient.

Lemma 3.7. Denote by Ξ the set of all 13-ples of

κij ∈ Z+, where 1 � i, j � 3 and N±, M± ∈ Z+,

satisfying 10 equations (3.3.row1)–(3.3.col3), (3.4−)–(3.4+). Then possible sub-tuples 
(κ21, κ22, κ31, κ12) are precisely integer points of the cone Δ defined by equalities

κ21 � 0, κ22 � 0, κ31 � 0, κ12 � 0; (3.8.ineq1)

κ12 + κ22 � β+ − β−, κ12 + κ22 � α+ − α−; (3.8.ineq2)

κ21 + κ31 − β− − κ12 + α− � 0. (3.8.ineq3)

Proof. All steps of the proof are obvious but the result is not clear until steps are 
preformed.

We notice that our 8 equations are dependent: the sum of 3 equations (3.3.row1)–
(3.3.row3) minus the sum of 3 equations (3.3.col1)–(3.3.col2) coincides with the sum of 
(3.4−) and (3.4+).

Next, fix a point (κ21, κ22, κ31, κ12) ∈ Δ and construct a point of Ξ over it. Let assign 
the remaining coordinates step by step.

1) κ23, κ32. We find them from the equations (3.3.col2) and (3.3.row2). By (3.8.ineq2), 
κ23, κ32 ∈ Z+.

2) Set κ11 = κ33 = 0.
3) M+, N−. We find them from equations (3.3.row3) and (3.3.col1). Obviously, they 

are in Z+.
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4) M−. We evaluate it from the equation (3.4−). Positivity of M− in this moment is 
not obvious.

5) We find κ13 from the equation (3.3.row1) and get κ13 = κ21 +κ31−β−−κ12 +α−
(in fact this calculation is present in the previous subsection). The condition (3.8.ineq3)
claims that it is positive. Therefore M− is positive by (3.3.row1).

6) N+. We find it from (3.3.col3). Obviously, N+ ∈ Z+.
Thus we get a vector in Z13

+ . We used 7 equations, (3.3.row1)–(3.3.col3) and (3.4−). 
So they are satisfied. The 8-th equation is satisfied automatically. �
3.6. Characteristic linear relations of products of double cosets

Let(
x2
u
0

)
=

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)(
y2
v
0

)
,

(
x1
v
0

)
=

(
b11 b12 b13
b21 b22 b23
b31 b32 d33

)(
y1
w
0

)
. (3.9)

Then

A◦B♦

⎛⎜⎜⎜⎝
y1
y2
w
0
0

⎞⎟⎟⎟⎠ = A◦

⎛⎜⎜⎜⎜⎜⎝
b11 0 b12 0 b13
0 1 0 0 0
b21 0 b22 0 b23
0 0 0 1 0
b31 0 b32 0 b33

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
y1
y2
w
0
0

⎞⎟⎟⎟⎠ = A◦

⎛⎜⎜⎜⎝
x1
y2
v
0
0

⎞⎟⎟⎟⎠ = (3.10)

=

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 a11 a12 a13 0
0 a21 a22 a23 0
0 a31 a32 a33 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
x1
y2
v
0
0

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
x1
x2
u
0
0

⎞⎟⎟⎟⎠ . (3.11)

Therefore (w, u) ∈ χ(a � b).
Conversely, let the right hand side of the equation (3.10)–(3.11) equals to the left 

hand side. Then applying B♦ to a column (y1 y2 w 0 0)t, we get a column of the 
form (z1 y2 q 0 s)t. Applying A◦ to this column, we get an expression of the form 
(z1 z2 r t s)t. But we must get a vector of a form (x1 x2 u 0 0)t, i.e., t = 0, 
s = 0. Hence(

z2
r
0

)
=

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)(
y2
q
0

)
,

(
x1
q
0

)
=

(
b11 b12 b13
b21 b22 b23
b31 b32 d33

)(
y1
w
0

)
.

Therefore (w, q) ∈ χ(b), (q, r) ∈ χ(a). �
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3.7. The invariant η of a product of double cosets

It remains to prove the formula

η(a � b) = η(a) + η(b) + dim indef b/(indef b ∩ dom a). (3.12)

Let us pass to another invariant

ξ(a) := rk
(
a21
a31

)
= η(a) + dim indef χ(a)

(the identity is clear from the canonical forms). It is easy to see that for any linear 
relations P : X ⇒ Y , Q : Y ⇒ Z we have

dim indef QP = dim indef Q + dim(indef P ∩ domQ) − dim(indef P ∩ kerQ).

Hence

dim indef
(
χ(a)χ(b)

)
= dim indef χ(a) + dim indef χ(b)−

− dim
(
indef χ(b)/(indef χ(b) ∩ domχ(a))

)
− dim

(
indef χ(b) ∩ kerχ(a)

)
.

Therefore (3.12) can be written as

ξ(a � b) = ξ(a) + ξ(b) − dim
(
kerχ(a) ∩ indef χ(b)

)
. (3.13)

We wish to prove the last identity.
Consider the space M(a) of all y, for which there exists x such that(

x
0
0

)
=

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)(
y
0
0

)
. (3.14)

We can say the same in a shorter way, M is defined by the equation

0 =
(
a21
a31

)
(y ) .

Clearly, ξ(a) is the codimension of M in the space of all y.
We must evaluate the codimension of the subspace M(a � b) of all (y1, y2) such that 

there exists (x1, x2) satisfying ⎛⎜⎜⎜⎝
x1
x2
0
0

⎞⎟⎟⎟⎠ =
(
A◦B♦ )

⎛⎜⎜⎜⎝
y1
y2
0
0

⎞⎟⎟⎟⎠ .
0 0
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Applying the matrix B♦ to a vector (y1 y2 0 0 0)t we get a vector of the form 
(z1 y2 p 0 h2 )t. Applying A◦ we come to a vector of the form (z1 z2 q h1 h2 )t.
We want h1 = 0, h2 = 0, and q = 0. Therefore we have(

x2
0
0

)
=

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)(
y2
p
0

)
,

(
x1
p
0

)
=

(
b11 b12 b13
b21 b22 b23
b31 b32 b33

)(
y1
0
0

)
. (3.15)

We see that p ∈ indef χ(b) ∩ kerχ(a).
Clearly M(a � b) ⊃ M(a) ⊕M(b). Moreover, we have a surjective map

π : M(a � b) → indef χ(b) ∩ kerχ(a),

and kerπ ⊃ M(a) ⊕M(b). Conversely, let 
(
y1
y2

)
∈ kerπ. Then it satisfies two equations 

(3.15) with p = 0. Therefore y1 ∈ M(b) and y2 ∈ M(a), and

M(a � b)
/(

M(a) ⊕M(b)
)
� indef χ(b) ∩ kerχ(a).

This completes the proof of Theorem 1.6.b.

4. The group GL and multiplicativity

Here we prove statements of Subsect. 1.6. The key place is ‘Mautner phenomenon’, 
see Subsect. 4.3 and Lemma 4.2. After this the proof of Theorem 1.9 (multiplicativity) 
becomes automatic.

Subsection 4.4 contains two observations outside the main topic of the paper, the first 
is devoted to the group GL(V � V �) (see Subsect. 1.11), the second is related to groups 
of infinite matrices over p-adic integers.

4.1. Proof of Lemma 1.7

a) We must show that for any s ∈ GL the double coset Qα · s ·Qβ contains a finitary 
matrix. Without loss of generality we can assume that α = β. Otherwise we take γ such 
that γ 
 α, γ 
 β and examine the double coset Qγ · s ·Qγ . Thus let represent s as a 
block matrix of size (∞ + |α| + ∞) × (∞ + |α| + ∞),

s =
(
a b c
d e f
g h k

)
.

Transformations

s �→
(
u1 0 0
0 1 0

)−1

s

(
u2 0 0
0 1 0

)

0 0 v1 0 0 v2
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send

s �→ u−1
1 au2, k �→ k−1

1 kv2.

The matrices a, k are Fredholm matrices in the sense of [33], Subsects. 2.4–2.7, their 
Fredholm indices are 0. Therefore we can reduce a and k to the forms

a =
(

1∞ 0
0 0

)
, d =

(
0 0
0 1∞

)
,

where two 0’s are square matrices (see [33], Lemma 2.7). Hence our double coset contains 
a matrix of the form

s′ =

⎛⎜⎜⎜⎝
1 0 b1 c11 c12
0 0 b2 c21 c22
d1 d2 e f1 f2
g11 g12 h1 0 0
g21 g22 h1 0 1

⎞⎟⎟⎟⎠ .

Multiplying such matrices from the left and right by matrices of the form⎛⎜⎜⎜⎝
1 0 ∗ ∗ ∗
0 1 0 0 ∗
0 0 1 0 ∗
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎠ ∈ Qα,

we can make zero from b1, c11, c12, c22, f2. The blocks e, b2, c21, f1 have finite sizes, 

the definition of GL implies that the blocks (d1 d2 ), 
(
g11 g12
g21 g22

)
, 
(
e1
e2

)
contain only 

finite numbers of nonzero matrix elements. Thus we get a finitary matrix.
b) By Theorem 1.5, the invariants χ(a) and η(a) separate double cosets Qα\

GL(2∞, F)/Qβ. However, χ(a) and η(a) also are invariants of double cosets Qα\GL/Qβ

(our proof in Subsect. 3.1 is valid in this case).

4.2. Proof of Lemma 1.8

Recall that Hα denotes the space of Qα-fixed vectors in a representation of GL(∞, F). 
We must show that for a unitary representation of GL(∞, F) the continuity in the topol-
ogy of GL is equivalent to density of the space ∪αHα.

The statement ⇒. The subgroups Qα ⊂ GL are open and form a fundamental 
system of neighborhoods of unit in GL. This is sufficient for application of Proposition 
VIII.1.2 from [26], which immediately gives the desired statement.

The statement ⇐. Conversely, let ∪αHα be dense. We must verify that matrix 
elements 〈ρ(g)h1, h2〉 are continuous in the topology of GL. It is sufficient to do this for 
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h1, h2 ranging in a dense subspace in H, in particular in the subspace ∪Hα. However, 
if h1 ∈ Hβ, h2 ∈ Hγ , then our matrix element is a function on a countable space

Qγ\GL(2∞,F)/Qβ � Qγ\GL/Qβ.

Since subgroups Qδ ⊂ GL are open, the double coset space in the right hand side is 
discrete, and all functions on this space are continuous.

4.3. The Mautner phenomenon. Coincidence of spaces of fixed vectors

Recall the following phenomenon related to Lie groups, which was discovered by 
Gelfand and Fomin [9] and investigated in details by Mautner and Moore, see [24]. 
Let G be a Lie group, H a non-compact subgroup. Then very often a vector in a unitary 
representation fixed by H is automatically fixed by a larger subgroup Ĥ ⊂ G.

Recall that GL(V ) denotes the group of all linear operators in the countable linear 
space V over F . By GL(V �) we denote the group of all continuous linear operators in the 
dual space V ◦, see Subsect. 1.11. Both groups are present in Qα as subgroups consisting 
of matrices of the form(1 0 0

0 1|α| 0
0 0 d

)
and

(
a 0 0
0 1|α| 0
0 0 1

)

respectively.

Lemma 4.1. For a unitary representation of the group GL(V ), any S∞-fixed vector is 
fixed by the whole group GL(V ).

The statement can be derived from Tsankov’s classification [50] of unitary represen-
tations of GL(V ), however, we present a simple direct proof.

For each group Qα consider the subgroup S[α] consisting of 0-1-matrices of the form

(∗ 0 0
0 1|α| 0
0 0 ∗

)
.

By S[α] denote its (dense) subgroup consisting of finitary matrices.

Lemma 4.2. Let ρ be a unitary representation of the group Qα in a Hilbert space H. Let 
h ∈ H be an S[α]-fixed vector. Then h is Qα-fixed.

Proofs of these lemmas are based on the following statement.

Proposition 4.3. Let a countable discrete group Γ act by automorphisms on a compact 
Abelian group N . Let N̂ be the Pontryagin dual group, i.e. the group of characters of N . 
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Assume that all orbits of Γ on the discrete group N̂ except the orbit of the trivial character 
are infinite. Then for any unitary representation of the semidirect product Γ �N , any 
Γ-fixed vector is fixed by the whole group Γ �N .

Proof of Proposition 4.3. The group Γ � N is locally compact. Therefore a unitary 
representation of this group can be decomposed into a direct integral of irreducible rep-
resentations (see, e.g., [23], Sect 2.6, [19], Subsect. 8.4). We claim that any irreducible 
representation ρ of Γ �N having an Γ-fixed vector is trivial.

According the Mackey theorem about a unitary dual of locally compact group with 
an Abelian normal subgroup (see, e.g., [19], Theorem 13.3.1), any irreducible unitary 
representations of the group Γ � N can be realized in the following way. Consider an 
orbit Ω of Γ on N̂ , fix χ0 ∈ Ω. Denote by Δ the stabilizer of χ0 in Γ, fix an irreducible 
unitary representation τ of Δ in a Hilbert space K. Consider the space �2(Ω, K) of �2-
functions on the discrete set Ω = Δ\Γ taking values in K. The Abelian subgroup N acts 
in this space by multiplications

n : F (χ) �→ χ(n)F (γ), (4.1)

where χ(n) denotes the value of a character χ ∈ N̂ on an element n ∈ N . The group Γ
acts by transformations of the form

γ : F (χ) �→ T (γ, χ)F (χγ),

where T is a function from Γ × Ω to the unitary group of the space K satisfying the 
cocycle identity

T (γ1γ2, χ) = T
(
γ1, χγ2)T (γ2, χ)

and the condition

T (γ, χ0) = τ(γ) for γ ∈ Δ.

The norm of a function F ∈ �2(Ω, K) is given by

‖F‖2
�2(Ω,K) =

∑
χ∈Ω

‖F (χ)‖2
K .

If F is Γ-fixed, then all summands in the right-hand side coincide. Therefore F = 0 or Ω
consists of one point (the trivial character), �2(Ω, K) is K. By (4.1), the representation 
is trivial on the normal divisor N . �
Proof of Lemma 4.1. Consider the subgroup in GL(V ) generated by S∞ and the group 
N of all diagonal matrices, so N is a countable direct product of multiplicative groups 



Y.A. Neretin / Journal of Algebra 585 (2021) 370–421 411
F× � Zq−1. Applying Proposition 4.3 to the group S∞ � (F×)∞, we get that a vector 
fixed by S∞ is also fixed by all diagonal matrices.

Next, we consider the subgroup Z ⊂ GL(V ), consisting of all block (1 + ∞)-matrices 

having the form 
(

1 x
0 σ

)
, where σ ranges in the group of finitary 0-1-matrices, and 

x = (x1 x2 . . .) is arbitrary. So x is contained in the direct product of a countable 
number of copies of F . Applying Proposition 4.3 to this group, we get that a vector 

fixed by S∞ is also fixed by all matrices of the form 
(

1 x
0 1

)
. In particular, we can 

choose x = (s, 0, 0 . . . ). Conjugating this matrix by elements of S∞ we can get arbitrary 
matrices of the form 1 +sEkl, where k �= l and Ekl is the matrix having 1 on kl-th place.

Therefore a vector fixed by S∞ is fixed by all Chevalley generators of GL. Hence it is 
fixed by the whole group GL(∞, F). By continuity, it is fixed by GL(V ). �
Proof of Lemma 4.2. We apply Proposition 4.3 to two subgroups H1, H2 consisting of 
matrices

(
σ1 ∗ ∗
0 1 0
0 0 1

)
and

(1 0 ∗
0 1 ∗
0 0 σ2

)

respectively, where σ1, σ2 a finitary 0-1-matrices. This implies that a Sα-fixed vector ξ
is fixed by the subgroups consisting of all matrices of the form

(1 ∗ ∗
0 1 0
0 0 0

)
and

(1 0 ∗
0 1 ∗
0 0 1

)

respectively. Therefore ξ is fixed by the product of these subgroups, i.e., by the group of 
all strictly upper triangular block matrices.

It remains to apply Lemma 4.1 to two subgroups S∞ in Qα. �
4.4. Some digressions. Admissibility in the Olshanski sense for the group GL(V � V �)
and its p-adic analogs

The group GL(V �V �). Here we discuss some corollaries of Proposition 4.3 outside 
the main topic of this paper. Recall that GL(V � V �) denotes the group of all infinite 
matrices over F having a finite number of elements in each row and in each column, see 
Subsect. 1.11.

Lemma 4.4. For any unitary representation of the group GL(V �V �) any S∞-fixed vector 
is fixed by the whole group GL(V � V �).
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Proof. We can not literally repeat the proof the similar statement for GL(V ), i.e., 

Lemma 4.1, since the subgroup of (1 + ∞)-block matrices 
(

1 x
0 1

)
now is not com-

pact. We modify this place of the proof in the following way.
Let us split the space V as a direct sum of two-dimensional subspaces, V = ⊕jWj . 

We regard subspaces Wj as canonically isomorphic. Consider the subgroup Σ ⊂ GL(V )
consisting of finitary permutations of subspaces Wj. Consider the subgroup Δ consisting 

of block diagonal matrices, whose diagonal entries have the form 
(

1 xj

0 1

)
. We apply 

Proposition 4.3 to the semidirect product Σ � Δ and observe that Δ also is contained 
in the stabilizer of ξ. Next, we set x1 = s, x2 = x3 = · · · = 0 and get that a Chevalley 
generator 1 + sE12 also is contained in the stabilizer. The remaining part of the proof is 
the same. �
Corollary 4.5. Unitary representations of GL(V � V �) are admissible in the Olshanski 
sense.

Proof. Denote by G
α the subgroup in GL(V � V �) consisting of block matrices of size 

α+∞ having the form 
(

1 0
0 ∗

)
. Denote S

α

∞ := G
α∩S∞. For a unitary representation of 

GL(V �V �) in a Hilbert space H denote by H[α] the subspace of Sα

∞-fixed vectors. Then 
∪αH[α] is dense in H, see, e.g. [26], Proposition VII.1.2. It remains to apply Lemma 4.4
to each subgroup G

α. �
Lemma 4.6. Any double coset Gα\GL(V � V �)/Gα contains a finitary matrix.

We omit a non-interesting proof (in particular the statement follows from slightly 
more difficult p-adic Lemma 4.1.a from [37]).

Corollary 4.7. A unitary representation of GL(∞, F) admissible in the Olshanski sense 
admits a continuous extension to GL(V � V �).

It is sufficient to apply the argument from Subsect. 4.2, the second statement. �
Groups of infinite p-adic matrices with integer elements. Now let r be a 

compact commutative local ring. We keep in mind rings of integers in locally compact 
non-Archimedean fields and their finite quotients as Z/pnZ or truncated polynomial 
rings F [t]/tnF [t] (it seems that matrix groups over general local rings are not a topic of 
theory of unitary representations). Denote by l = l(r) the module of all sequences in r
converging to 0. By GL(l � l�) we denote the group of matrices g such that g, gt ∈ GL(l).

Lemma 4.8. For any unitary representation of the group GL(l � l�) any S∞-fixed vector 
is fixed by the whole group GL(l � l�).

The proof of Lemma 4.4 remains to be valid in this case.
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The lemma implies the Olshanski admissibility of unitary representations of the group 
GL(l � l�). This statement is the main result of the paper [37].

4.5. Multiplicativity

Denote by Sβ(∞) ⊂ S(∞) the subgroup consisting of permutations fixing 1, . . . , 
β ∈ N. Denote

I
(β)
N :=

(1β 0 0
0 0 1N
0 1N 0

)
↘

∈ Sβ(∞)

We use the following statement (see [26], Theorem 1.4.c.
Let ρ be a unitary representation of the group S(∞) in a Hilbert space H. Denote by 

Hβ ⊂ H the subspace of all Sβ(∞)-fixed vectors, let Πβ be the operator of orthogonal 
projection to Hβ. Then ρ(I(β)

N ) weakly converges to Πβ.
The group S(∞) has type I (see [20]), therefore S(∞) × S(∞) also has type I (see, 

e.g., [23], Sect. 3.1). Therefore (see [4], 13.1.8) irreducible unitary representations of 
S(∞) × S(∞) are tensor products of irreducible representations of factors. This implies 
the following statement:

Corollary 4.9. Let τ be a unitary representation of the group S(∞) × S(∞) in a Hilbert 
space K. Denote by Kβ ⊂ K the subspace of all Sβ(∞) ×Sβ(∞)-fixed vectors, let Πβ be 
the operator of orthogonal projection to Kβ. Then τ(I(β)

N , I(β)
N ) weakly converges to Πβ.

Let Jβ(μ, ν) ∈ GL be as above (2.2),

Jβ(ν, μ) =

⎛⎜⎜⎜⎜⎜⎝
0 1ν 0 0 0
1ν 0 0 0 0
0 0 1β 0 0
0 0 0 0 1μ
0 0 0 1μ 0

⎞⎟⎟⎟⎟⎟⎠ .

Corollary 4.10. Let ρ be a unitary representation of the group GL in a Hilbert space H. 
Then the sequence ρ(Jβ(n, n)) weakly converges to Pβ as n → ∞.

Proof. By the previous corollary this sequence converges to the projector to the subspace 
of S[β]-fixed vectors. By Lemma 4.2, subspaces of S[β]-fixed vectors and Qβ-fixed vectors 
coincide. �
Proof of Theorem 1.9. Consider two double cosets a ∈ Qα\GL/Qβ, b ∈ Qβ\GL/Qγ . 
Choose finitary representatives A ∈ a, B ∈ b (see Lemma 1.7). We must evaluate
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Pα ρ(A)Pβ ρ(B)Pγ = lim
n→∞

Pα ρ(A) lim
n→∞

ρ
(
Jβ(n, n)

)
ρ(B)Pγ =

= Pα lim
n→∞

ρ
(
AJβ(n, n)B

)
Pγ

This sequence is eventually constant. Its limit is

Pα ρ
(
AJβ(N,N)B

)
Pγ

for sufficiently large N . By (2.3), AJβ(N, N)B ∈ a � b. �
5. Representations of GL

Here we prove statements formulated in Subsect. 1.8, i.e., upper estimates of the set 
of unitary representations of GL. The category GL(F) of double cosets is an ordered 
category in the sense of book [26], the statements of Subsect. 1.8 are a kind of ‘general 
nonsense’ related to ordered categories.

5.1. Notation

We will regard each space Fα as a space with a distinguished basis eα−+1, . . . , eα+ . 
Let us assign circles on the integer ‘line’ Z to basis elements of Fα:

In this section we use several linear relations χ(a) : Fα ⇒ Fβ, which are spanned by 
vectors of the type

ei ⊕ 0, ej ⊕ ek, 0 ⊕ em.

We represent such relations as two-line diagrams:
— having a vector ej ⊕ ek, we connect the corresponding circles in the upper row and 

lower row;
— for a vector ei ⊕ 0 we draw a black circle at i-th position in the upper row;
— for 0 ⊕ em we draw a black circle at m-th position of lower row.
To draw a pair (χ(a), η(a)) we also add to the diagram η(a) copies of the simbol �:

For a passage to the adjoint morphism, we must permute rows and evaluate a new 
number of �’s with Theorem 1.6.c.
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5.2. Proof of Lemma 1.11

Now we must prove that the number z determining a spherical character is nonnega-
tive. Consider an α = (α−, α+) such that Hα �= 0. Denote α′ := (α− − 1, α+). Consider 
a morphism m : α → α′ defined by the diagram

Then m∗ corresponds to the diagram

The product m∗ ∗m is

,

i.e., m∗ ∗m coincides with the central element ζ1
α defined by (1.17). We have

0 � ρ(m∗) ρ(m) = ρ(ζ1
α) = z(ρ) · 1.

5.3. The structure of ordered category on GL(F)

Let β ≺ α. Consider the morphism

λα
β : β → α

defined by

λα
β = Qα · 1 ·Qβ.

The corresponding diagram has the form

In the notation we write a 
 -larger object α is superscript, and a smaller object in the 
subscript.

Denote

μα
β :=

(
λα
β

)∗ ∈ Mor(α,β).
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The corresponding diagram is

Finally, define θαβ ∈ End(α) by

θαβ := λα
β � μα

β ,

it corresponds to the diagram

Then we have

λα
β � μα

β = θαβ , μα
β � λα

β = 1β,
(
θαβ )2 = θαβ ;

(λα
β )∗ = μα

β ,
(
θαβ

)∗ = θαβ .

For γ ≺ β ≺ α we have

λα
β � λβ

γ = λα
γ , μβ

γ � μα
β = 1β, θαβ � θαγ = θαγ

This means that GL(F) is an ordered category with involution in the sense of [26], 
Sect. III.4.24 This (see [26], Lemma III.4.5, Proposition III.4.6) implies the following 
statement.

Lemma 5.1. a) Let β ≺ α. Then the map

ι : p �→ μα
β � p � μα

β

is an embedding of semigroups End(β) → End(α).
b) Let ρ̂ be a ∗-representation of the category GL(F). For each object α denote by 

H(α) corresponding Hilbert space. Then the operator ρ̂(λα
β ) : Hβ → Hα is an opera-

tor of isometric embedding intertwining the representation of End(β) in H(β) with the 
representation of ι

(
End(β)

)
in the image of the projector ρ̂(θαβ ).

Proof of Lemma 1.14.b. Let δ = (δ−, δ+) be a minimal element of Ξ(ρ). We must show 
that if a ∈ End(δ) satisfy ρ̂(a) �= 0, then χ(a) is an invertible matrix.

24 In that definition a set of objects is linear ordered, but a partial order with existence of maximum for 
any pair of elements is sufficient. In any case, for Lemma 5.1 below it is sufficient to consider a subcategory 
with two objects, β, α.
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By Lemma 5.1 for all ε ≺ δ we have ρ̂(θδε
)

= 0. Assume that ρ(a) �= 0. Without loss 
of a generality we can assume a∗ = a, otherwise we can pass to a∗ � a. For a self-adjoint 
a the linear relation χ(a) satisfies χ(a)� = χ(a). Applying an appropriate conjugation 
by an element of GL, we can reduce such a linear relation to a form of the type

The invariant η(a) can be nonzero, so a itself has the form

θδμ ζmδ ,

where μ ≺ δ. But ρ̂(θδμ) = 0 by Lemma 5.1. �
Remark. Lemma 1.14 is a counterpart of [45], Theorem 4.3, the proofs also are simi-
lar. �

5.4. Proof of Theorem 1.15

Recall that we wish to describe possible sets Ξ(ρ) of α, for which the space of Qα-fixed 
vectors is non-zero.

Let δ be a minimal element of the set Ξ(ρ). Let κκκ := (δ− + m, δ+ + m), so |κκκ| = |δ|. 
To be definite, assume m > 0. Consider the following morphism r : δ → κκκ.

The adjoint morphism has the form

(the number of �’es is m). We have

r∗ � r = ζmδ , r � r∗ = ζm
κκκ
,

therefore

ρ̂(r)∗ρ̂(r) = zm · 1, ρ̂(r)ρ̂(r∗) = zm · 1,

If z > 0, then the operator z−m/2ρ̂(r) is a unitary operator Hδ → Hκκκ . This proves the 
first statement of the theorem.

Now let z = 0. Then ρ(r) = 0. Consider a morphism c : δ → κκκ. If χ(c) is not a graph 
of an invertible operator, then χ(c∗ � c) also is not a graph of an invertible operator. 
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Fig. 2. Ref. to proof of Lemma 5.2.

Therefore ρ̂(c∗ � c) = 0 and ρ̂(c) = 0. If χ(c) is invertible, then it differs from χ(r) by 
an element of GL(|δ|, F), and ρ̂(c) = 0. Thus all operators ρ(c) are zero, and therefore 
Hκκκ = 0.

Thus (for z = 0), if δ a minimal element of the set Ξ(ρ), then for ν ∈ Ξ(ρ) we have 
ν = δ or |ν| > |δ|. In particular, Ξ(ρ) contains a unique minimal element. This proves 
the second statement of Theorem.

5.5. The group GL has type I

Lemma 5.2. There exists a (noncanonical) linear order � on A compatible with the partial 
order ≺ satisfying the condition: for each α ∈ A the set of all β ∈ A such that β � α, 
is finite.

Proof of Lemma. For α ∈ A denote by m := α−, n := α+ − α−. Then (m, n) ranges 
in the set Z × Z+. A set β ≺ α is drawn on Fig. 2.a. Now define a linear order � in 
the following way. We consider the sequence of segments I0, I1, I2, . . . as it is drawn on 
Fig. 2.b and enumerate integer points of the upper half-plane in the following way: the 
unique point of I0, then we pass I1 in upper direction, I2 in upper direction, etc. �
Proof of Theorem 1.19. We must examine the von Neumann algebra N of all operators 
commuting with all operators ρ(g), where g ∈ GL.

Keeping in mind Lemma 5.2, we write a sequence

α1 � α2 � α3 � . . .

containing all α ∈ A. Let us decompose the Hilbert space H into a countable direct sum 
H = ⊕∞

j=1Kj according the following inductive rule. Consider the subspace Hα1 and its 
GL-cyclic span K1. Next, consider H �K1, the subspace (H �K1)α2 and its GL-cyclic 
span K2. Then we consider the cyclic span K2 of (H �K1 �K2)α3 . Etc.

Clearly, elements of N leave all subspaces Kj invariant, and N = ⊕Nj , where Nj are 
induced von Neumann algebras in Kj. Therefore, we must examine Nj . It is easy to see 
that this algebra is isomorphic to the algebra of operators in (Kj)αj

commuting with 
End(αj). The latter semigroup is GL(|αj |, F) ×Z+. Evidently the von Neumann algebra 
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generated by this semigroup has type I, therefore its commutant Nj also has type I. This 
proves the statement a) of the theorem (the group GL has type I).

The statement b) follows from the same considerations. It is clear that any ∗-pre-
sentation of GL(|αj |, F) ×Z+ in Hαj

can be decomposed into a direct integral. A simple 
watching shows that this induces a decomposition of the whole space Kj into a direct 
integral. �
5.6. Constructions of all representations of GL with z = 0

A proof of Proposition 1.17 is an exercise on induced representations. The homoge-
neous space

X := Pα\GL � Pα\GL(∞,F)

is discrete (it consists of two-terms flags of the form Y ⊃ Z, where Y ⊂ V is a compact 
subspace of volume qα− and Z is a compact subspace of volume qα+). This allows to apply 
the usual construction of induced representations in functions on a discrete homogeneous 
space, see [22], [19], Subsect. 13.1.

It is easy to see that all orbits of Pα on Pα\GL are infinite except the orbit of the 
initial point (i.e., of the point Pα · 1). Now irreducibility follows from [5], Theorem 2. 
By the same infinity of orbits the space of fixed vectors consists of functions supported 
by the initial point.
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