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Abstract

Let K be an infinite field. There has been recent study of the family H(n,K) of pairs of commuting
nilpotent n × n matrices, relating this family to the fibre H [n] of the punctual Hilbert scheme A[n] =
Hilbn(A2) over the point np of the symmetric product Symn(A2), where p is a point of the affine plane A2

[V. Baranovsky, The variety of pairs of commuting nilpotent matrices is irreducible, Transform. Groups 6
(1) (2001) 3–8; R. Basili, On the irreducibility of commuting varieties of nilpotent matrices, J. Algebra 268
(1) (2003) 56–80; A. Premet, Nilpotent commuting varieties of reductive Lie algebras, Invent. Math. 154
(3) (2003) 653–683]. In this study a pair of commuting nilpotent matrices (A,B) is related to an Artinian
algebra K[A,B]. There has also been substantial study of the stratification of the local punctual Hilbert
scheme H [n] by the Hilbert function as [J. Briançon, Description de Hilbn C[x, y], Invent. Math. 41 (1)
(1977) 45–89], and others. However these studies have been hitherto separate.

We first determine the stable partitions: i.e. those for which P itself is the partition Q(P ) of a generic
nilpotent element of the centralizer of the Jordan nilpotent matrix JP . We then explore the relation between
H(n,K) and its stratification by the Hilbert function of K[A,B]. Suppose that dimK K[A,B] = n, and
that K is algebraically closed of characteristic 0 or large enough p. We show that a generic element of the
pencil A + λB,λ ∈ K has Jordan partition the maximum partition P(H) whose diagonal lengths are the
Hilbert function H of K[A,B].
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1. Pairs of commuting nilpotent matrices

1.1. Introduction

There has been substantial study of the family H(n,K) of pairs of commuting nilpotent n×n

matrices with entries in a field K : see [Gur,GurSe,Hes,NeuSa,NeuSe,Bas1] and work referred to
in these papers. There has been recent work by V. Baranovsky, R. Basili, and A. Premet relating
H(n,K) to the fibre H [n] of the punctual Hilbert scheme A[n] = Hilbn(A2) over the point np of
the symmetric product Symn(A2), where p is a point of the affine plane A2 [Bar,Bas2,Prem]. In
this recent work, a pair of commuting nilpotent matrices (A,B) is related to an Artinian algebra
K[A,B]. We include a brief summary of this connection in Section 2. There has also been
substantial study of the stratification of the local punctual Hilbert scheme H [n] by the Hilbert
function, begun by J. Briançon [Br] and the second author [I2], with contributions by many,
including [ElS,Ch,Gö,Gu,Hui,KW,IY,Yam1,Yam2]. However these studies of H(n,K) and the
Hilbert function stratification of H [n] have been hitherto separate.

We first determine the stable partitions: i.e. those for which P itself is the partition Q(P ) of
a generic nilpotent element of the centralizer of the Jordan nilpotent matrix JP . We then explore
the relation between H(n,K) and its stratification by the Hilbert function of K[A,B]. Suppose
that dimK K[A,B] = n, and that K is algebraically closed of characteristic 0 or large enough p.
We show that a generic element of the pencil A + λB,λ ∈ K has Jordan partition the maximum
partition P(H) whose diagonal lengths are the Hilbert function H of K[A,B]. These results
were announced in the talk notes [Bas3,I4], and have been used by T. Košir and P. Oblak in their
proof that Q(P ) is itself stable [KoOb]. We finally comment on a potential relation between their
work and the original proof by J. Briançon that H [n] is irreducible.

Main results are outlined in Section 1.2. In Section 1.3 we prove those concerning stability—
they depend primarily on results concerning ranks of powers of a general nilpotent matrix
commuting with a given nilpotent matrix in [Bas2]. We study the Hilbert function strata in Sec-
tion 2.1, and we prove our main results concerning pencils of nilpotent matrices in Section 2.2.

1.2. Main results

We assume throughout Section 1 that K is an infinite field. Further assumptions on K , when
needed, will be explicitly stated in each result. Given B = JP ∈ Mn(K), a nilpotent n×n matrix
in Jordan form corresponding to the partition P of n, we denote by CB the centralizer of B ,

CB = {
A ∈ Mn(K)

∣∣ [A,B] = 0
}
, (1.1)

and by NB the set of nilpotent elements of CB . They each have a natural scheme structure. It is
well known that NB is an irreducible algebraic variety ([Bas2, Lemma 2.3], see also Lemma 1.5
below). Thus there is a Jordan partition that we will denote Q(P ) of a generic matrix A ∈ NB .
Several have studied the problem of determining Q(P ) given P [Ob1,Ob2,KoOb,Pan]. We
here first determine the “stable” partitions P under P → Q(P )—that is, those P for which
Q(P ) = P —using results from [Bas2] (see Theorem 1.12 below).
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Theorem 1. P is stable if and only if the parts of P differ pairwise by at least two.

We next in Section 2 consider a pair of commuting n × n nilpotent matrices (A,B) such that
dimK K[A,B] = n. The ring A = K[A,B] ∼= R/IA,B , where R = K{x, y} is the power series
ring (see Definition 2.1), has a Hilbert function H = H(A) satisfying

H = (1,2, . . . , ν, tν, . . . , tj ,0) where ν � tν � · · · � tj > 0,

where j is the socle degree of H . We denote by P(H) the dual partition to the partition of n given
by H : thus, the entries of P(H) are the lengths of the rows of the bar graph of H (Definition 2.7).
We denote by UB ⊂ NB the dense subset {A ∈NB | dimK K[A,B] = n}. Considering an element
of the pencil Cλ = A + λB,λ ∈ K , and the multiplication endomorphism ×(A + λB) it induces
on K[A,B], we have (Theorems 2.16 and 2.21).

Theorem 2.

(A) Suppose A ∈ UB , let H = H(K[A,B]) of socle degree j , and let K be an algebraically
closed field with charK = 0 or charK > j . Then for generic λ ∈ P1 the Jordan block sizes
of the action of A + λB on K[A,B] are given by the parts of P(H).

(B) Assume further charK = 0 or charK > n. Then the partition Q(P ) satisfies

Q(P ) = max
A∈UB

P
(
H

(
K[A,B])),

and has decreasing parts.

These results were announced in the talk notes [I4], and have been used by T. Košir and
P. Oblak in their proof that Q(P ) is itself stable [KoOb]. We state their result in Theorem 2.27.

1.3. Stable partitions P

We denote by P = (p1, . . . , pt ), p1 � · · · � pt � 1 a partition P with t parts (so the Jordan
nilpotent matrix of partition P has rank n− t); we let n(i) = # parts of P at least i. Then the dual
partition P̂ (switch rows and columns in the Ferrers graph of P ) satisfies P̂ = (n(1), n(2), . . .).
The following lemma is well known and motivates Definition 1.3.

Lemma 1.1 (Jordan blocks of JP
i ). Consider the n × n Jordan matrix JP of partition P . Then

(i) For P = [n], a single block, the partition of (JP )i for i � n is the unique partition of n

having i parts of sizes differing by at most 1. For P = [n] and i > n the partition of (JP )i

has n parts of size 1.
(ii) For an arbitrary P , the Jordan partition of (JP )i is the union of the partitions for (J[pk])i ,

k = 1, . . . , t .
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(iii) The rank of (JP )i satisfies

rank(JP )i = n − (
n(1) + · · · + n(i)

)
. (1.2)

(iv) Let A be nilpotent n × n. The difference sequence � of (n, rk(A1), rk(A2), . . .) is the dual
partition P̂A to PA, the Jordan partition of A.

Proof. Here (iv) follows from (1.2). �
Example 1.2. For P = [7], (JP )2 has blocks (4,3), (JP )3 has blocks (3,2,2), (JP )4 has blocks
(2,2,2,1).

Definition 1.3. We term a partition P whose largest and smallest part differ by at most one,
a “string.” Such a P is termed “almost rectangular” in [KoOb], since its Ferrer’s graph (Defini-
tion 2.7) is obtained by removing a portion of the last column from that of a rectangular partition.
Each partition P is the union P = P(1) ∪ · · · ∪ P(r) of strings P(i). We let rP be the minimum
number r of subpartitions P(i) in any such decomposition of P .

Example 1.4. For P = (5,4,4,3,2) we may subdivide P = (5,4,4) ∪ (3,2), which gives
rP = 2. For P = (8,7,7,7,5,5,4,2,1), rP = 3. The subdivision into rP strings need not be
unique: for P = (5,4,3,2,1) = (5,4) ∪ (3,2) ∪ (1) or (5,4) ∪ (3) ∪ (2,1), with rP = 3.

Recall that we denote by NB the set of nilpotent elements of the centralizer CB , endowed with
its natural structure as a scheme [Bo]. R. Basili showed in [Bas2, Lemma 2.3] based on [TuAi],
that the nilpotent commutator NB of a nilpotent matrix B is an irreducible variety. For complete-
ness we include a proof suggested by the referee of the following more general statement.

Lemma 1.5. If A is a finite-dimensional algebra over an infinite field K , then the scheme N (A)

of nilpotent elements of A is an irreducible variety.

Proof. Since irreducibility is a geometric property, we may make a base change and assume that
K is algebraically closed. Let J be the Jacobson radical of A. Then Wedderburn’s theorem yields
a semisimple subalgebra L ⊂ A such that A = L ⊕ J, an internal direct sum as vector spaces;
and the restriction of the natural projection p :A → A/J gives an isomorphism

p|L :L → A/J. (1.3)

Now J is a nilpotent ideal, and L ∼= A/J is a (split) semisimple algebra over K . Thus L is a
direct product of matrix algebras Matru(K) for certain ru, by another theorem of Wedderburn. It
is well known that the set of nilpotent elements N (L) is irreducible, since the unit group L∗ of L

is a connected algebraic group, and has a dense orbit on L.
Now, an element (�, j) ∈ L ⊕ J = A is nilpotent when � is nilpotent, and J is an ideal, so

as a variety is just a copy of an affine space, so is irreducible. Thus the nilpotent commutator
N (L) × J is the product of irreducible varieties, hence is irreducible. �

Note that the proof that NB is irreducible given in [Bas2, Lemma 2.3] is essentially an appli-
cation of the above proof to the special case A = CB , the centralizer of B . R. Basili uses there
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a specific parametrization of NB : certain matrices Ãu,u appearing there for CB , whose nilpotence
defines NB , are the elements of the matrix algebras Matru(K) in the above proof. Here ru is the
multiplicity of the uth distinct part of P .

Recall that, given a partition P , we denote by B = JP the Jordan nilpotent matrix of parti-
tion P . It follows from Lemma 1.5 that there is a unique partition Q(P ) that occurs for a generic
element of NB .

We recall the natural majorization partial order on the partitions P (we assume p1 � p2 �
· · · � pt ),

P � P ′ if and only if for each i,
∑

1�u�i

pi �
∑

1�u�i

p′
i . (1.4)

From Lemma 1.1 it is easy to see that

P � P ′ ⇔ ∀i, rank
(
JP

i
)
� rank

(
JP ′ i

)
. (1.5)

We let OP denote the Gl(n) orbit of JP . We have [Hes]

OP ⊃ OP ′ ⇔ P � P ′. (1.6)

Lemma 1.6. The partition Q(P ) determined by the Jordan block sizes of a generic element of NB

satisfies Q(P ) � PA for each A ∈NB .

Proof. This follows from the irreducibility of NB , from (1.2), and the semicontinuity of the
ranks of powers of A. �

Before the present work was announced [I4], there were several results known about Q(P ).

Theorem 1.7. (See [Bas2, Proposition 2.4].) The rank of a generic element A ∈ NB is n − rP .
Equivalently, the partition Q(P ) has rP parts.

Also, P. Oblak had determined the “index” or largest part of Q(P ) using graph theory [Ob1].
We subsequently have given another proof of Oblak’s result (see [Bas-I]).

We use the notation |P | = n, the integer partitioned by P .

Definition 1.8. Let P = (P1, . . . ,PrP ) be a decomposition of P into rP non-overlapping strings:

⋃
i

Pi = P, and Pi ∩ Pj = ∅ if i �= j. (1.7)

Given such a decomposition P of P , we denote by P̃ the partition (|P1|, . . . , |PrP |), rearranged
in decreasing order.

For P = (3,3,3,2,2,1) two such decompositions into strings are P = ((3,3,3), (2,2,1))

and P ′ = ((3,3,3,2,2), (1)). We have P̃ = (9,5) and P̃ ′ = (13,1). Here rP = 2.

Lemma 1.9. Suppose that the partition P of n contains two parts that are equal, or that differ
by one. Then Q(P ) > P .
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Proof. Assume that P has two parts that are the same or that differ by one. Choose a decom-
position P into rP strings P1, . . . ,PrP . We claim that some nilpotent matrix B̃ of partition P̃
commutes with JP . To show this, we may first reduce to the case that P has two parts, which dif-
fer by 0 or 1. We have by Lemma 1.1(i) that the partition of A = (Jn)

2 is P . Then gAg−1 = JP

for some g ∈ Gln(K), so the nilpotent matrix gJng
−1 centralizes JP and has partition P ′ = |P |.

This proves the claim. Also P ′ is different from P since at least one string of P has length greater
than one, and P ′ > P . We have by Lemma 1.6 that Q(P ) � P ′, so Q(P ) > P . �

Note that when P = (2,2), then P ′ = (4), and JP ′ does not itself commute with JP .
We now determine the “stable” partitions P , for which Q(P ) = P . We need the following

result of R. Basili. Given a partition P , let sP be the length of the longest string in P ,

sP = max
{
i
∣∣ ∃k

∣∣ (pk � pk+1 � · · · � pk+i−1) ⊂ P and pk − pk+i−1 � 1
}
.

For P = (5,4,4,3,2) we have sP = 3. Note that sP = 1 iff the parts of P differ by at least two.
The next theorem shows that the Jordan partition PAsP of the sP power of any element A ∈ NB

satisfies PAsP � P = PB .

Theorem 1.10. (See [Bas2, Proposition 3.5].) Let B ∼= JP be nilpotent of Jordan partition P ,
and let A ∈NB , the nilpotent commutator of B . Then

rank
(
AsP

)m � rank
(
Bm

)
. (1.8)

Theorem 1.11. Suppose that P has a decomposition P into rP strings, each of length sP . Then
Q(P ) = P̃ .

Proof. The assumption is equivalent to there being a unique decomposition of P into rP strings,
and also that these strings have equal length. Let B = JP and s = sP . The proof of Lemma 1.9
implies there exists B̃ ∈ NB of partition P̃ . By Lemma 1.1(ii) B̃s has Jordan blocks given by the
partition P , so for A = B̃ there is equality in (1.8) of Theorem 1.10. Hence, by semicontinuity of
rank, for an open dense subset of A ∈ NB , the Jordan partition of As is P . By the unicity of the
decomposition of P into rP strings, and using Theorem 1.7 we conclude that the partition of A

is constant on that subset, implying Q(P ) = P̃ . �
Thus, for P = (5,4,2,2), we have Q(P ) = (9,4); for P = (8,7,7,5,5,4,2,2,2), Q(P ) =

(22,14,6).
Given a positive integer c, we denote by cP the partition obtained by repeating c times each

part of P . For P = (3,1,1), 2P = (3,3,1,1,1,1).

Theorem 1.12 (Stable partitions). The following are equivalent.

(i) The parts of the partition P differ pairwise by at least two:

P = (p1, . . . , pt ), p1 � . . . � pt ,

and for 1 � u � t − 1, pu − pu+1 � 2. (1.9)
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(ii) Q(P ) = P .
(iii) For some positive integer c, Q(cP ) = (cp1, cp2, . . . , cpt ).

Proof. Theorem 1.11 shows (i) ⇒ (ii), and (i) ⇒ (iii). (ii) ⇒ (i) is from Lemma 1.9. To show
(iii) ⇒ (i), suppose, by way of contradiction, that P has two parts that differ by at most one: it
suffices to assume P = (p1 � p2). For any c � 1 one can use Lemma 1.1(i) in a way analogous
to the proof of Lemma 1.9 to find a nilpotent matrix A whose 2cth power is JcP and whose
partition has the single part c(p1 + p2); but then Q(cP ) �= (cp1, cp2). �

We note that D.I. Panyushev has recently determined the “self-large” (what we call “stable”)
nilpotent orbits in a quite general context of the Lie algebra of a connected simple algebraic
group over an algebraically closed field K of characteristic zero [Pan, Theorem 2.1]. When the
Lie algebra g of G is sl(V ) his result restricts to Theorem 1.12 above for such K [Pan, Exam-
ple 2.5 1(a)].

One of our goals is to show links between the study of nilpotent commuting matrices, and
that of the punctual Hilbert scheme. Thus, we have taken pains to refer to some of the relevant
literature that we were aware of. Nevertheless, the inclusion of proofs of Lemmas 1.5 and 2.14
make the main results of the paper relatively self contained. We do use in an essential way the
standard bases for ideals in K{x, y} from [Br,I2], in the proof of Theorem 2.16.

2. Pair of nilpotent matrices and the Hilbert scheme

We denote by R = K{x, y} the power series ring, i.e. the completed local ring at (0,0) of
the polynomial ring K[x, y], over a field K . We assume throughout Section 2 that K is an
algebraically closed field, unless we state otherwise for a particular result. We denote by M =
(x, y) the maximal ideal of R, and by V the n-dimensional vector space over the field K upon
which Mn(K) acts.

Definition 2.1. We denote by N (n,K) the set of nilpotent matrices in Mn(K), with its natural
structure as irreducible variety. We define H(n,K)

H(n,K) = {
(A,B)

∣∣ A,B ∈ N (n,K) and AB − BA = 0
}
.

Given an element (A,B) ∈ H(n,K), we denote by AA,B
∼= K[A,B] the Artinian quotient of R,

A = AA,B = R/I, I = IA,B = ker(θ),

θ :R → k[A,B], θ(x) = A, θ(y) = B.

We let U(n,K) ⊂ H(n,K) be the open subset such that dimK(AA,B) = n.

The Hilbert scheme A[n] = Hilbn(A2) parametrizes length-n subschemes of A2, and is
a desingularization of the symmetric product A(n) = Symn(A2). Given a point s ∈ A2, we denote
by H [n] the fiber of A[n] over the point (ns) of A(n): roughly speaking, the local punctual Hilbert
scheme H [n] parametrizes the length-n Artinian quotients of R.2 J. Briançon and subsequently

2 Work of R. Skjelnes et al. shows that this rough viewpoint is inaccurate, see [LST]; the fiber definition is accurate.
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M. Granger of the Nice school, showed that the scheme H [n] is irreducible in characteristic
zero [Br,Gr]; it was a slight extension to show H [n] is irreducible for charK > n [I2], but further
progress awaited a connection to H(n,K).

V. Baranovsky, R. Basili, and A. Premet related this problem of irreducibility to that of the
irreducibility of H(n,K) [Bar,Bas2,Prem]. Following H. Nakajima and V. Baranovsky, we set

W ⊂ H(n, k) × V :
{
(B,A,v) ∈ H(n,K) × V

∣∣ v is a cyclic vector for (B,A)
}
. (2.1)

That is, (B,A,v) ∈ W if any (B,A)-invariant subspace of V containing v is all of V . The group
Gl(V ) acts on H(n,K) × V by conjugation of the matrices, and action on the vector.

Lemma 2.2. (See [Nak, Theorem 1.9], [Bar, Lemma 6].) The action of Gl(V ) on W is free, and,
taking x → Av, y → Bv, x, y local parameters at s ∈ A2 we have a morphism,

π :W → H [n], (2.2)

whose fibers are the Gl(V ) orbits in W.

Theorem 2.3. (See [Bar, Theorem 4].3) The subset W ⊂ H(n,K) × V is dense.

See also Lemma 2.14ff. As a consequence of Lemma 2.2 and Theorem 2.3, the irreducibility
of H(n,K) is equivalent to that of H [n].

V. Baranovsky used this and Briançon’s theorem to prove the irreducibility of H(n,K), for
charK = 0 and charK > n. R. Basili gave a direct “elementary” proof of the irreducibility
of H(n,K), that is valid also for charK � n/2. A. Premet later gave a Lie algebra proof of
the irreducibility of H(n,K) that is valid in all characteristics. The Basili and Premet results
gave new (and different) proofs of the irreducibility of H [n] when K is algebraically closed, for
charK > n/2 (R. Basili) or arbitrary characteristic (A. Premet). Note that the space of R (real)
points of Hilbn(R) has at least �n/2� components [I2, §5B]. These results showed that there is a
strong connection between H(n,K) and H [n].

2.1. Hilbert function strata

Let A = R/I be an Artinian quotient of R = K{x, y} of length dimK(A) = n � 1, and recall
that M = (x, y) denotes the maximum ideal. The associated graded algebra A∗ = GrM(A) =⊕j

0 Ai of A satisfies (here j = socle degree A: Aj �= 0, Aj+1 = 0)

Ai = 〈
Mi ∩ I + Mi+1〉/Mi+1.

The Hilbert function H(A) is the sequence

H(A) = (h0, . . . , hj ), hi = dimK Ai .

We denote by n = |H | = ∑
i hi the length of H , satisfying n = dimK(A).

3 V. Baranovsky communicates in the MathSciNet review MR 1825165 of [Bar] that a parenthetical remark in the
proof of Lemma 3, in (a) “i.e. B1 has Jordan canonical form in this basis” is incorrect.
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Example 2.4. Let A = R/I , I = (y2 + x4, xy + x4). Then

A∗ = R/
(
y2, xy, x5), and H(A) = (1,2,1,1,1), (2.3)

since x(y2 + x4) − (y − x3)(xy + x4) = x5 + x7 ∈ I ⇒ x5 ∈ I .

Let H be a fixed Hilbert function sequence of length n. We now study the connection between
the Hilbert function strata ZH = HilbH (R) ⊂ H [n], parametrizing all Artinian quotients of R

having Hilbert function H , and the analogous subscheme of commuting pairs of matrices,

HH (n,K) = θ−1(ZH ) = {
pairs (A,B)

∣∣ H(AA,B) = H
}
.

Here ZH is locally closed in H [n] [I2, Proposition 1.6], and likewise so is HH (n,K) in U(n,K).
We have the projection

τ :ZH → GH , A →A∗

to the irreducible projective variety GH parametrizing graded quotients of R having Hilbert
function H . Each of ZH , GH have covers by opens in affine spaces of known dimension [Br,I2];
also τ makes ZH a locally trivial bundle over GH with fibres opens in an affine space, and
having a global section [I2, Theorems 3.13, 3.14], but ZH is not in general a vector bundle over
GH [I1]. When charK = 0 or charK = p > n the fiber is an affine space and the covers are
by affine spaces [I2, Theorems 2.9, 2.11]. The Nice school studied specializations of ZH , see
work of M. Granger [Gr] and J. Yaméogo [Yam1,Yam2], but the problem of understanding the
intersection ZH ∩ ZH ′ is in general difficult and quite unsolved (see [Gu,DB] for some recent
progress). Let Zν,n parametrize order ν colength n ideals I in R = K{x, y}: that is

Zν,n = {
I

∣∣ Mν ⊃ I, Mν+1 � I, and dimK R/I = n
}
.

J. Briançon’s irreducibility result can be stated, denoting by X the Zariski closure of X,

H [n] = Z1,n.

M. Granger showed, more generally

Theorem 2.5. (See [Gr].) For ν � 1 we have

Zν,n ⊃ Zν+1,n. (2.4)

We let Uν,n = θ−1(Zν,n) ⊂ U(n, k).

Corollary 2.6. Fix n. Then for ν � 1 we have

Uν,n ⊃ Uν+1,n. (2.5)
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Proof. This is an immediate consequence of Granger’s theorem and Lemma 2.2. �
Recall that when an Artinian algebra A has embedding dimension at most two (h1 � 2) its

Hilbert function H(A) satisfies (see [Mac2,Br,I2]),

H = (1,2, . . . , ν, hν, . . . , hj ), ν � hν � · · · � hj > 0. (2.6)

Here, writing A = R/I , R = K{x, y}, we have that ν is the order ν(I ) of the ideal I , namely the
smallest initial degree of any element of I . (When ν(I ) = 1, H = (1,1, . . . ,1): we regard this as
also a sequence satisfying (2.6).)

Henceforth, by Hilbert function we will mean one of codimension at most two, so a sequence
satisfying (2.6). The length of a Hilbert function is n = ∑j

0 hi . The socle degree of H is the
integer j from (2.6), and it is also the socle degree—maximum non-zero power of the maximal
ideal—of any Artinian algebra of Hilbert function H .

Definition 2.7. Recall that we arrange the Ferrer’s graph (Young diagram) of the partition
P = (p1 � · · · � pt) with the largest row of length p1 at the top. The diagonal lengths HP

of a partition P are the lengths of the lower left to upper right diagonals of the Ferrer’s graph
of P . The dual partition P̂ to P is obtained by switching rows and columns in the Ferrer’s graph:

P̂i = #{pk ∈ P | pk � i}. (2.7)

Given a Hilbert function H as in (2.6), we denote by P(H) the unique partition having diag-
onal lengths H and ν strictly decreasing parts. It satisfies P(H) = (p1, . . .) with pi the length of
the ith row of the bar graph of H . In other words, were the sequence H rearranged in descending
order, then P(H) would be the dual partition to H .

Example 2.8. For H = (1,2,3,2,1), P(H) = (5,3,1). The partitions P = (4,2,1,1,1) and
P ′ = (3,3,3) also have diagonal lengths H = (1,2,3,2,1), but are incomparable in the partial
order (1.4). We show below that P(H) is maximum among the partitions of diagonal lengths H .

Remark 2.9. Fixing a Hilbert function H , the elements of the set P(H) of partitions having
diagonal lengths H with a certain grading (by the number of difference-one hooks), corre-
spond bijectively to the cells in a cellular decomposition of the projective variety GH , graded
by dimension (see [IY]). The Hilbert function H determines a certain product B(H) of rectan-
gular partitions; and the elements of P(H) correspond bijectively to sequences of subpartitions
of B(H), in what is termed a “hook code” in [IY, Section 3D]. Thus, P(H) is enumerated by
a certain product of binomial coefficients [IY, Theorem 3.30].

There is a natural partial order on the set H(n) of Hilbert functions of codimension at most
two, having length n (see (2.6)), given by

H � H ′ ⇔ ∀u, 0 � u < n,
∑
k�u

Hk �
∑
k�u

H ′
k. (2.8)

For example, (1,1,1,1,1) < (1,2,1,1) < (1,2,2).
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The maximality of P(H) in the next Lemma 2.10(ii) follows from the irreducibility of GH

and considering the cells corresponding to each partition P of diagonal lengths H in GH (see
[IY, Theorem 3.12ff]). We include a simple direct proof of (ii).

Lemma 2.10.

(i) The assignment H → P(H) determines an order-reversing bijection between the partially
ordered set (POS) of Hilbert functions of length n (see (2.8)), and the POS of partitions of n

having decreasing parts (see (1.4)).
(ii) Let P have diagonal lengths H . Then P(H) � P in the partial order (1.4).

Proof. We first show (i). It is well known that the correspondence taking P to P̂ is an order
reversing involution on the POS of partitions of n [CoM, Lemma 6.3.1]. It takes a partition
P = (p1,p2, . . . , pv) having ν decreasing parts, to a partition Q = P̂ having no gaps among the
integers (1,2, . . . , ν). Given P we let HP = (1,2, . . . , v, hv, . . . , hj ), be the sequence obtained
by rearranging P̂ , so that HP begins (1,2, . . . , ν), and ends with the rest of the parts of P̂ in non-
increasing order. Then HP satisfies (2.6), and P(HP ) = P . Evidently, P → HP is a bijection as
stated in (i).

It remains to show that if two partitions Q = P̂ , and Q′ = P̂ ′ with maximum parts ν, ν′
respectively, and having no gaps among (1,2, . . . , ν) and (1,2, . . . , ν′), respectively, satisfy
Q � Q′ then the rearranged sequences H , H ′ satisfy H � H ′ in the order (2.8), and vice versa.
It is well known that the partial order between two partitions of n is preserved by the operation of
either removing (or, respectively, adding) a common part a to each, forming partitions of n − a

(or, respectively n+a). Removing in this way the parts (1,2, . . . , ν), and placing those parts first
leaves remainder partitions α(Q) � α(Q′). Now the first sequence is H = (1,2, . . . , ν,α(Q))

and we have H � (1,2, . . . , ν,α(Q′)) in the partial order obtained by formally extending that
of (2.8) to arbitrary sequences. Finally, rearranging the parts (ν + 1, . . . , ν′) (if any) of α(Q′)
first, (so just after ν), puts the second sequence in the form H ′; we have H � H ′ since each
of ν + 1, . . . , ν′ are larger than every part of α(Q). This argument reverses, showing that the
mapping H → P(H) inverts the partial order. This completes the proof of (i).

To show (ii), let P : p1 � · · · � ps have diagonal lengths H and consider the partition P(u) =
(p1, . . . , pu) comprised of the first u rows of P . Rearranging the rows of the Ferrer’s graph
of P(u) in staggered fashion, by advancing the vth row from the top (longest) by v − 1, and
forming an adjusted Ferrer’s graph AFG(P (u)) we see that the sequence H(u) given by the
diagonal lengths of P(u) is given by

H(u)i = the length of the ith column of AFG
(
P(u)

)
. (2.9)

The partition P(H(u)) is obtained by pushing all squares in AFG(P (u)) upward, so that in
each column there are no gaps. Thus, P(H(u)) partitions the same number |P(u)| as P(u).
Since Hi � H(u)i for each i, the Ferrer’s graph of the partition P(H) includes that of P(H(u))

(strictly if pu+1 �= 0). Thus for each u

∑
k�u

pk =
∑
k�u

P
(
H(u)

)
k
= ∣∣P(u)

∣∣ �
∑
k�u

P (H)k, (2.10)

showing that P � P(H) in the partial order (1.4). �
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Example 2.11. The partitions P = (6,4,3), P ′ = (6,4,2,1) with decreasing parts satisfy
P � P ′, so their duals P̂ = (3,3,3,2,1,1), P̂ ′ = (4,3,2,2,1,1) satisfy Q = P̂ � Q′ = P̂ ′.
Since ν = 3 this implies that α(Q) = (3,3,1) � α(Q′) = (4,2,1) in the POS of Eq. (1.4), im-
plying HP = (1,2,3,3,3,1) � HP ′ = (1,2,3,4,2,1) in the POS of (2.8).

Let I be an ideal of colength n in R = K{x, y} and let H = H(A), A = R/I . Recall ν =
order of I ; so Mν ⊃ I , Mν+1 � I, where M = (x, y). Consider the deg lex partial order,

1 < y < x < y2 < yx < x2 · · ·

and denote by E = E(I) the monomial initial ideal of I in this order. The monomial cobasis
E(I)c = N2 − E(I) may be seen as the Ferrer’s graph of a partition P = P(E) of diagonal
lengths H . Conversely, given a partition P = (k0, . . . , kν−1) with ν non-zero parts (the notation
is from the standard bases introduced just below in Definition 2.12), we define the monomial
ideal EP

EP = (
xk0, yxk1 , y2xk2, . . . , yν−1xkν−1, yν

)
, (2.11)

whose cobasis Ec
P is the complementary set, of monomials Ec

P = N2 − EP (where the pair of
non-negative integers (a, b) ∈ N2 denotes xayb).

Definition 2.12. The ideal I ⊂ R = K{x, y} has standard basis (fν, . . . , f0) in the direction x

if I has a (not necessarily minimal) generating set (f0, . . . , fν) of the following form:

(
fν = gν, fν−1 = xkν−1gν−1, . . . , f0 = xk0g0

)
, where

gi = yi + hi, hi ∈ Mi ∩ k[x]〈yi−1, . . . , y,1
〉

(2.12)

and k0 � k1 � · · · � kν−1 [IY, Definition 3.9ff]. We term the basis normal if k0 > k1 > · · · > kν−1
[Br,I2]. We will sometimes refer to these as “standard generators,” or “normal generators,” re-
spectively.

Then we have E = E(I) is the monomial ideal of (2.11) and Ec is the set of monomials

Ec = 〈
1, x, . . . , xk0−1;y, yx, . . . , yxk1−1; . . . ;yν−1, . . . , yν−1xkν−1−1〉. (2.13)

The existence of a normal basis in the direction x does not depend on the choice of y ∈ R1,
such that 〈y, x〉 = R1. Note also that for a normal basis the decreasing sequence P =
(k0, k1, . . . , kν−1) satisfies P = P(H), where H = H(R/I) is the Hilbert function of A = R/I .

The following result is standard, see for example [I2, Lemma 1.4]. We denote by 〈Ec〉 the
K-vector space spanned by Ec.

Lemma 2.13. The condition (2.12) is equivalent to

∀i � 0, 〈Ec〉 ∩ Mi ⊕ I ∩ Mi = Mi, an internal direct sum. (2.14)
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This notion of standard basis is stronger than just “Ec is a complementary basis to I in R,”
used in [BaH,NeuSa].

The following lemma is well known, for example [Bar, Lemma 3] shows that for a generic A

in NB the pair (A,B) has a cyclic vector, and by [NeuSa] this implies dimK K[A,B] = n. We
thank A. Sethuraman and T. Košir for discussions of these topics that led to our proof below.

Lemma 2.14.

(i) Let B be an n × n nilpotent Jordan matrix of partition P and let A be generic in NB . Let K

be an infinite field. Then

dimK K[A,B] = n.

(ii) (See [Bar, Lemma 3].) Let B be nilpotent, and C ∈ NB and assume K is algebraically
closed. Then there exists A ∈ NB such that the pencil A + tC ⊂ NB , and the pair (A,B)

has a cyclic vector.

Proof. For (i) consider the monomial ideal EP ; then the matrix of B = ×x acting on the ba-
sis Ec

P of (2.13) is the Jordan matrix of partition P ; the matrix of A = ×y has the conjugate
Jordan partition P̂ , and dimK K[A,B] = n. Now dimK K[A,B] is upper semicontinuous on
A ∈ NB , an irreducible variety (Lemma 1.5), and the dimension of the algebra generated by any
two commuting n × n matrices is less or equal n ([Ge], see also [Gur,GurSe]).

For (ii), since K is closed, w.l.o.g. we may assume that B is in Jordan form. By [Bas2,
Lemma 2.3] there is an element g ∈ CB∗ such that gCg−1 ∈ SB , where SB is a maximal nilpotent
subalgebra of NB . Let A′ be a general enough element of SB , and take A = g−1A′g. Then the
pencil A + tC ⊂ g−1SBg ⊂ NB ; and (i) implies dimK K[A,B] = n. �

V. Baranovsky uses (ii) to show that the subset W of H(n,K) × V consisting of triples
(A,B,v) for which v is a cyclic vector for the pair (A,B) is dense (Theorem 2.3).

2.2. Pencil of matrices and Jordan form

We first give an example illustrating the connection between Hilbert function strata ZH of
Artinian algebras and those of commuting nilpotent matrices. Here are some features. Assume
K[A,B] ∈HH (n,K). Then

(i) The ideals that occur in writing K[A,B] ∼= R/I are in general non-graded.
(ii) The partition P need not have diagonal lengths H = H(K[A,B]), and P(H) � P in (1.4).

(iii) The partition Pλ arising from the action of A + λB satisfies Pλ = P(H) for a generic λ, all
but a finite number (Theorem 2.16).

(iv) The closure of the orbit of P includes a partition of diagonal lengths P(H) (Theorem 2.20).
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Example 2.15 (Pencil and specialization). Take for B the Jordan matrix of partition (3,1,1). It
is easy to see that for P = (3,1,1) we have Q(P ) = (4,1), Also by [Bas2, Lemma 2.3], up to
conjugation by an element of the centralizer CB , any element A ∈ NB satisfies

B =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

, A =

⎛
⎜⎜⎜⎜⎝

0 a b f g

0 0 a 0 0
0 0 0 0 0
0 0 e 0 c

0 0 d 0 0

⎞
⎟⎟⎟⎟⎠

.

We send x → A, y → B , and let the ideal I = Ker(R → K[A,B]). We now assume that
acdf �= 0 so that A is general enough to have Jordan block partition Q(P ). Let β = 1/(cdf ),
and let

g2 = y2 − βx3, g1 = y − aβx2, g0 = 1.

Then I has a normal basis in the x direction (Definition 2.12): we have

A = AA,B = K[A,B] ∼= R/I, I = (
g2, xg1, x

4g0
)

with k0 = 4, k1 = 1 in (2.12), and the Hilbert function H(A) = (1,2,1,1). The multiplication
action A = mx of x on the classes 〈1, x, x2, x3;g1〉 in A has Jordan blocks given by the partition
(4,1) having diagonal lengths H(A).

We have in the y-direction I = (x3 − β−1y2, xy − ay2, y3): the non-homogeneous generator
x3 − β−1y2 with lead term x3 prevents I from having a standard basis in the direction y. The
action of B = my on the classes of 〈1, y,βx3;x − ay, y2〉 in A verifies that PB = (3,1,1) of
diagonal lengths (1,2,2), which is not H(A).

Now consider the associated graded algebra A∗ = R/I ∗: here I ∗ = (y2, xy, x4). The stan-
dard generators in the y direction (switch y, x in the Definition 2.12) are (x4, x3y, x2y, xy, y2).
The action of my on the K-basis 〈1, y;x, x2, x3〉 of A∗ has Jordan partition P ′ = (2,1,1,1) of
diagonal lengths H(A) = (1,2,1,1) (Lemma 2.19). (In the x direction I ∗ has normal generators
(y2, xy, x4) of partition (4,1), the same partition as for I .) Also, holding a constant, we have

I ∗ = lim
β→0

I,

so P ′ = (2,1,1,1) occurs in the closure of the orbit of B (Theorem 2.20(ii)).
Here dimGH = 1: a graded ideal of Hilbert function H must satisfy

∃L ∈ R1 | I = (
xL,yL,M4),

so GH
∼= P1, and I ∈ GH is determined by the choice of the linear form L, here L = y. The fiber

of ZH over a point of GH is determined here by the choice of a, β , so has dimension two.

Theorem 2.16. Assume A,B are commuting n × n nilpotent matrices with B in Jordan form
and suppose dimK K[A,B] = n. Let H = H(K[A,B]) be the Hilbert function. Let K be an
algebraically closed field of characteristic zero, or of characteristic p > j the socle degree of H .
Then for a generic λ ∈ P1, the Jordan block sizes of the action of A + λB both on K[A,B] ∼=
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R/I and on the associated graded algebra GrM K[A,B] ∼= GrM(R/I), are given by the parts
of P(H). We have P(H) � P in the POS of (1.4).

Proof. By [Br] in the case charK = 0 or [I2] when charK = p > j , there is an open dense
set of λ ∈ A1, such that the ideal I has normal basis in the direction x′ = x + λy. Replacing x

in (2.12) by x′, so considering the standard basis f0, . . . , fν−1 there, and considering the action
of mx′ = ×x′ on the cyclic K[x′] subspaces of R/I generated by 1, g1, . . . , gν−1, we see that the
Jordan partition of mx′ is just P(mx′) = (k0, . . . , kν−1). This is P(H) since the basis is normal.

The standard basis for the associated graded ideal is given by the initial ideal In I , satisfying

In I = (
In(fν), . . . , In(f1), f0

)
,

where here Inf denotes the lowest degree graded summand of f . So the Jordan partition for the
action of mx on R/I ∗ is also P(H). �

We thank G. McNinch for comments and a discussion that led to the following corollary. The
corollary implies the special case of his result [McN, Theorem 26] where (A,B) is assumed to
have a cyclic vector, and also K is algebraically closed of suitable characteristic.

Corollary 2.17. Assume that A,B and the field K satisfy the hypotheses of Theorem 2.16. Then
for generic t , A and B are in the Jacobson radical of Ct , the commutator algebra of A + tB .

Proof. The Jordan partition Pt given by the blocks of A+ tB for t generic is strictly decreasing,
as it has the form P(H). That the partition Pt has distinct parts is equivalent to the semisimple
quotient Ct /Jt of the commutator algebra Ct ⊂ EndV of A + tB satisfying Ct /JT being an étale
algebra—a product of fields K , one copy for each distinct part of Pt [Bas2, Lemma 2.3]. Thus A

and B , being nilpotent, are in the Jacobson radical of Ct . �
The following example communicated to us by G. McNinch shows that the restriction on

charK in Theorem 2.16 is sharp.

Example 2.18. Let d be a positive integer. Let V1 be a d-dimensional K-vector space, let V2 be
a 2-dimensional K-vector space, and let V be the tensor product V = V1 ⊗ V2. Let A = Jd ⊗ I2,
where Jd is a Jordan block of size d in the V1 factor and I2 the identity. So the partition
of A is (d, d). And let B = Id ⊗ J2. Then A and B commute. The algebra K[A,B] is iso-
morphic to K[x, y]/(xd, y2), and has vector space dimension n = 2d . Its Hilbert function is
H = (1,2,2, . . . ,2,2,1) of socle degree d , so P(H) = (d + 1, d − 1). (This is the answer one
expects from the rule for computing tensor products of representations of the Lie algebra sl(2).)
If the integer d is invertible in K, the partition of A + tB is indeed (d + 1, d − 1) for all t not
zero. But in characteristic p dividing d , the Jordan block partition of A + tB is (d, d) for all t

[McN, Example 22].

We isolate a result that can be concluded simply from [IY, Definition 3.9,Theorem 3.12] or
from Gröbner basis theory. We use the notation from Definition 2.12.

Lemma 2.19. Let A be a graded Artinian algebra quotient A = R/I of R, so A = ⊕j

0 Ai . Then
we have:
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(i) Let x ∈A1. Then I has a standard basis in the direction x.
(ii) The partition P ′ given by the Jordan blocks of the action of x on A satisfies P ′ =

(k0, . . . , kν−1) from (2.12), and has diagonal lengths H = H(A).

Proof. The initial monomial ideal E(I) in the x-direction certainly has a basis as in (2.12),
for some sequence of integers k0, . . . , kν−1: to show a standard basis we must show that the
sequence is non-increasing. However, if ku > ku−1 then multiples of yfu−1 could be used to
eliminate yuxku from the initial ideal E(I).

Then (ii) follows from (2.12), since A is the internal direct sum of the k[X] modules generated
by 1, g1, . . . , gν−1 ∈A. �

Recall that UB is the open dense subset of NB for which dimK K[A,B] = n. Now using the
connection between ZH and HH (n,K) we have

Theorem 2.20. Let B be nilpotent with Jordan partition P , let A ∈ UB , and let H =
H(K[A,B]). Suppose that K is as in Theorem 2.16. Then:

(i) For generic λ ∈ P1 the Jordan block sizes of the action of A + λB on K[A,B] are given by
the parts of P(H).

(ii) The closure of the Gln orbit of B contains a nilpotent matrix having partition P ′ whose
diagonal lengths are given by H .

Proof. We may assume that B is in Jordan form. It follows from the assumptions and The-
orem 2.16 that Cλ = A + λB for λ generic satisfies, P(Cλ) = P(H). Since the algebra A =
AA,B = K[A,B] is a deformation of the associated graded algebra A∗, the multiplication my

on A is a deformation of the action my on A∗, so the orbit P ′ of the latter is in the closure of the
orbit of P . By Lemma 2.19(ii) P ′ has diagonal lengths H . �
Theorem 2.21. Let B be nilpotent of partition P , and denote by Q(P ) the partition giving the
Jordan block decomposition for a generic element A ∈ NB . Suppose that K is algebraically
closed and that charK = 0 or charK > n. Then Q(P ) has decreasing parts and is the greatest
P(H) that occurs for Hilbert functions of length n algebras A = K[A,B], with A ∈ NB :

Q(P ) = sup
{
P(H)

∣∣ ∃A ∈ UB, H = H
(
K[A,B])}.

Proof. By the irreducibility of NB (Lemma 1.5), there is an orbit Q(P ) whose closure contains
each other orbit occurring in UB . By Theorem 2.20 Q(P ) has the form P(H) for some H . Since
the closure of its orbit contains each other orbit, this P(H) = Q(P ) is greater than every other
P(H ′) for a sequence H ′ among {H(K[A,B]),A ∈ UB}. �

We recall the natural order (2.8) on the set H(n) of Hilbert functions of length m. The open-
ness on Hilbn(R) of the condition

dimK I ∩ Mu+1 > s

shows that

ZH ∩ ZH ′ �= ∅ ⇒ H � H ′. (2.15)
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We denote by WB the fiber over projection on the first factor of W from (2.1): thus WB is
isomorphic to pairs (A,v) with v a cyclic vector for (B,A); and it is acted on by the units
G = CB

∗ of the commutator CB of B by: g ∈ G ⇒ g(A,v) = (gAg−1, g(v)). Recall that B = JP ,
and that i(Q(P )) is its largest part.

Lemma 2.22. We have the following:

(i) Let (A,v), (A′, v′) ∈ WB satisfy, the closure of the G orbit of (A,v), contains that of (A′, v).
Then H(K[A,B]) � H(K[A′,B]).

(ii) Let (A,v) ∈ WB satisfy PA = Q(P ), and let K satisfy, charK = 0 or charK > n. Then
H(K[A,B]) = HQ(P), the diagonal lengths of Q(P ).

Proof. The claim (i) follows from π :WB → H [n] being a morphism, and (2.15). Concern-
ing (ii), let A have partition Q(P ), and let H = H(K[A,B]). By Theorem 2.20, for generic
λ ∈ P1 the Jordan block sizes of the action of A+λB on K[A,B] are given by the parts of P(H).
Since mA+λB specializes to mA, we have Q(P ) � P(H). But Q(P ) is the partition of the generic
element A ∈ NB , which is irreducible, so Q(P ) � P(H), implying equality. By Lemma 2.10(i)
H = HQ(P). �

Note that an analogous result to Lemma 2.22(ii) would hold for any irreducible subset N
of NB , satisfying A ∈ N ⇒ the general element of the pencil A + tB ⊂ N , t ∈ K .

Theorem 2.23. Let B be Jordan of partition P and let charK = 0 or charK > n. Then

Q(P ) = P
(
Hmin(P )

)
, where Hmin(P ) = min

{
H

∣∣ ∃A ∈ UB

∣∣ H
(
K[A,B]) = H

}
.

Proof. By Lemma 2.10(i) the bijection H → PH from Hilbert functions to partitions with de-
creasing parts, is order-reversing. The assertion thus follows from Theorem 2.21. �

Note that Lemma 2.22(i) may be used in place of Lemma 2.10 in the above proof.

Remark 2.24. P. Oblak has shown a formula for the index i(Q(P )), which is the largest part
of Q(P ). This was proven in [Ob1] for charK = 0, but can be shown valid in all characteris-
tics [Bas-I]. For a Hilbert function H , the index i(P (H)) is by definition one greater than the so-
cle degree j of H . This suggests that Theorems 2.21 and 2.23 might hold for charK � i(Q(P )).

T. Košir and P. Oblak have recently resolved the question we asked in [I4, p. 3] whether Q(P )

is stable (Theorem 2.27). We give a short summary in order to comment on the relation of their
result to the Hilbert scheme. An insight they had was that the question about stability is closely
related to the case e = 2 of the following classical result about height two ideals.

Lemma 2.25. Let K be an infinite field and A = R/I , R = K{x, y} be an Artinian quotient.

(i) Then A satisfies dimK(0 : m) = e − 1 if and only if the ideal I has e generators in a minimal
generating set.
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(ii) Let I have e generators in a minimal generating set. Then the Hilbert function H(A) satis-
fies,

i � ν(I ) ⇒ hi−1 − hi � e − 1.

In particular, if I is a complete intersection (e = 2) then hi−1 − hi � 1.

Comment on proof. The result (i) is shown by F.H.S. Macaulay in [Mac2] following earlier ar-
ticles [Mac1,Scott], that were incomplete. The case e = 2 is that an Artinian ring A is Gorenstein
of codimension two if and only if A is a complete intersection (CI). The usual proof given now
uses the Hilbert Burch theorem about minimal resolutions for I (see [E, Theorem 20.15ff]).

The result (ii) appears to be shown for at least e = 2 in [Mac2]. The general case follows when
charK = 0 or charK = p > n from considering normal bases [Br,I2], or in all characteristics
from considering “weak normal” bases [I2, Theorem 4.3]. Underlying the numerical result when
e = 2 is that a graded CI such as C = R/(xa, yb), a � b has Hilbert function

H(C) = (1,2, . . . , a, a, . . . , a, a − 1, . . . ,1).

When A is CI of codimension two then A∗ has a unique filtration by graded modules whose
successive quotients are shifted CI’s [I3]. �
Remark 2.26. When H(A) satisfies hi−1 − hi � 1 for i � ν, then P(H) has decreasing parts
that differ pairwise by at least two. For example, when H = (1,2,3,4,3,3,2,1), P(H) =
(8,6,4,1).

The following is the main result of [KoOb]. Recall that B = JP , the Jordan nilpotent matrix
of partition P . Recall that K is algebraically closed.

Theorem 2.27 (T. Košir and P. Oblak). Let A be generic in NB . Then K[A,B] is Gorenstein.
When K is algebraically closed and charK = 0 or charK > n then Q(P ) is stable.

Proof idea. Their key step is to extend V. Baranovsky’s result that A generic in NB implies
K[A,B] is cyclic [Bar, Lemma 3], to show that K[A,B] is also cocyclic (Gorenstein). Since
height two Gorenstein Artinian algebras are CI [Mac3], it follows that for A generic in NB ,
that P(H) for H = H(K[A,B]) has parts that differ pairwise by at least two. They conclude
using Theorem 2.21 and Theorem 1.12 that Q(P ) = P(H) and is stable. �
Remark 2.28. The Košir–Oblak theorem gives an alternative route to the conclusion of the first
step in J. Briançon’s proof of his irreducibility theorem, in which he “vertically” deforms an ideal
to a complete intersection ([Br], see also [I2, p. 81ff]). Conversely, J. Briançon’s proof joined
with V. Baranovsky’s cyclicity result appears to give, for K algebraically closed of charK = 0
or charK = p > n, an alternative, if indirect, approach to the cocyclicity step of the Oblak–Košir
result, since

(a) the vertical deformation preserves the Jordan partition of mx [I2, (5.2) and §5AI.3];
(b) a deformation of a complete intersection remains a CI, and NB is irreducible (Lemma 1.5).
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J. Briançon’s proof of the irreducibility of H [n] requires a specific step to deform the CI
(xy, xp + yq) to an order one ideal. It would be interesting to know the order νQ(P ) of H(Q(P ))

(the diagonal lengths of Q(P )) in terms of P . This order of H(Q) is just the largest ν such that
Qi � ν + 1 − i for each i,1 � i � ν.

Question. What is the closure of Uν,n in H(n,K)? (See Corollary 2.6.)
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