
Journal of Algebra 320 (2008) 4020–4029
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Testing isomorphism of modules

Peter A. Brooksbank a,∗, Eugene M. Luks b

a Department of Mathematics, Bucknell University, Lewisburg, PA 17837, USA
b Computer and Information Science Department, University of Oregon, Eugene, OR 97403, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 April 2008
Available online 13 August 2008
Communicated by Derek Holt

Keywords:
Matrix algebras
Modules
Polynomial-time algorithm
Weakly-closed set

We present a new deterministic algorithm to test constructively
for isomorphism between two given finite-dimensional modules of
a finitely generated algebra. The algorithm uses only basic field
operations; for arbitrary fields, this is not possible with the existing
methodology. Furthermore, the number of field operations used
by the algorithm is bounded by a polynomial in the length of
the input. The algorithm has been implemented in the computer
algebra system Magma and we report on its performance. Our
approach has applications to other problems concerning decompo-
sitions of modules.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we present algorithms to solve certain fundamental problems in computational rep-
resentation theory. We are concerned principally with the theoretical complexity of these problems,
but we also demonstrate the practicability of the algorithms we present to solve them.

Our algorithms assume an arithmetic model, wherein the fundamental steps are basic field op-
erations and computational complexity is determined by counting the number of these operations. In
particular, an algorithm runs in polynomial time if this number is bounded by a polynomial in the
input length. Of course, for finite fields the arithmetical steps run in polynomial time in the usual
sense. One advantage of an arithmetic model is its great generality: in principle, our methods apply
to arbitrary fields.

Our main result is a new deterministic, polynomial-time algorithm to test for isomorphism be-
tween two given finite-dimensional modules. This problem arises naturally in a variety of algorithmic
settings, and has been studied extensively.

* Corresponding author.
E-mail addresses: pbrooksb@bucknell.edu (P.A. Brooksbank), luks@cs.uoregon.edu (E.M. Luks).
0021-8693/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2008.07.014

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:pbrooksb@bucknell.edu
mailto:luks@cs.uoregon.edu
http://dx.doi.org/10.1016/j.jalgebra.2008.07.014

P.A. Brooksbank, E.M. Luks / Journal of Algebra 320 (2008) 4020–4029 4021
In [CIK], Chistov, Ivanyos and Karpinski present a polynomial-time solution to the isomorphism
problem over a finite field or a number field. Their algorithm requires the computation of the Jacobson
radical of the underlying matrix algebra. However, it is observed in [CIW] that construction of the
Jacobson radical over fields of characteristic of p requires computation of pth roots in the base field
and, by a result of Frölich and Shepardson [FS], these cannot be computed using basic field operations.

We actually prove the following more general result.

Theorem 3.5. Given nontrivial modules M1 and M2 , defined over an arbitrary field, in polynomial time
one can find maximal summands of M1 and M2 that are isomorphic. Moreover, one can construct f ∈
HomΩ(M1, M2) inducing an isomorphism between these summands.

The approach we take relies on a classical result that any weakly-closed subset (see Section 2.1)
of a non-nilpotent matrix algebra contains a non-nilpotent element [Ja, Chapter II]. In Theorem 2.4
we present a constructive proof of this fact. Presented in this generality, the algorithm provides an
efficient method to construct non-nilpotent elements in Lie algebras and Jordan algebras. However,
the application to module isomorphism requires only the following consequence.

Corollary 2.5. Given a set X of matrices whose enveloping algebra is not nilpotent, in polynomial time one can
find a non-nilpotent element of this algebra as a product of elements of X .

The ability to construct non-nilpotent elements in this manner has further applications to finding
direct sum decompositions of a given module. In particular, we prove the following.

Theorem 3.6. Given a module M and nontrivial submodule T , in polynomial time one can find a minimal
direct summand of M containing T . (The minimal summand is unique up to isomorphism.)

Using this result, we also propose a divide-and-conquer approach to computing the socle of a
module (Proposition 3.9).

In the case where the defining field is finite and one of the modules is known to be irreducible, the
improvement due to Holt and Rees [HR] (see also [IL]) of Parker’s Meat-Axe algorithm can be adapted
to construct an isomorphism between two given modules. Efficient computer implementations of the
resulting randomized isomorphism test are distributed with the GAP and Magma systems. We con-
clude the paper by reporting on a Magma implementation of our own algorithms.

2. Non-nilpotent matrices

This section is concerned with the construction of non-nilpotent elements in matrix algebras. Our
applications rely on a solution to the following:

Problem. Given a set of matrices generating a non-nilpotent algebra, construct a non-nilpotent ele-
ment of the algebra as a product of elements from the given set.

That such an element exists follows from the results presented in [Ja, Chapter II]. In fact, motivated
by Jacobson’s treatment we are able more generally to construct a non-nilpotent element in any
weakly-closed subset of the given algebra.

In Section 2.1 we introduce the relevant notions and terminology. In Section 2.2 we present a basic
version of our algorithm, which we use to establish polynomial timing. Finally, in Section 2.3, we give
an alternative version of our algorithm that is more suitable for computer implementation.

2.1. Preliminaries

Let F be a field and let Md(F) be the algebra of all d × d matrices over F . We refer to subalgebras
of Md(F) as linear algebras. An algebra A is nilpotent if An = 0 for some positive integer n. It is easy
to see that A � Md(F) is nilpotent if and only if Ad = 0; then x ∈ A is nilpotent if xd = 0.

4022 P.A. Brooksbank, E.M. Luks / Journal of Algebra 320 (2008) 4020–4029
For X ⊂ Md(F), denote by X the semigroup generated by X . The enveloping algebra generated by X
is spanF (X), the F -linear span of X : we denote this linear algebra by Env(X).

Let Vd(F) denote the d-dimensional F -space of row vectors. Then A � Md(F) acts on Vd(F) by
right multiplication. If W � Vd(F) is invariant under A, then AW is the algebra induced by A on W .

Lemma 2.1. Given X ⊂ Md(F), and Env(X)-invariant subspace W of Vd(F), in polynomial time one can test
whether or not Env(X)W is nilpotent.

Proof. Let X = {x1, . . . , xk} and denote by W X the space W x1 + W x2 + · · · + W xk . Initialize U ← W
and proceed as follows:

while U X �= U do
U ← U X

Clearly Env(X)W is nilpotent if and only if U = 0 on termination. There are at most d iterations of
the loop, and each test U X = U requires O (|X |d3) field operations. (In case Env(X)W is nilpotent,
the subspaces obtained in the loop comprise a flag in Vd(F) upon whose quotients Env(X) acts triv-
ially.) �
Remark 2.2. Strictly speaking, the complexity of the test U X = U above is O (|X |dω), where ω is
the exponent of matrix multiplication [CW]. Similar remarks apply to the complexity estimates of
other parts of our algorithm. However, since our principal objective is to devise algorithms having
polynomial time complexity, we will not concern ourselves with precise statements of this type. Fur-
thermore, this is not a useful practical distinction, since computer algebra systems use variations of
classical methods for linear algebra.

Let δ : A × A → F be any function. Then Δ ⊆ A is weakly closed with respect to δ if xy +
δ(x, y)yx ∈ Δ for all x, y ∈ Δ. We say simply that Δ ⊆ A is weakly closed if the specific δ is un-
derstood. The closure of X ⊆ A with respect to δ, denoted clδ(X), is the smallest subset of A containing
X that is weakly closed with respect to δ. In case δ is identically 0, one has clδ(X) = X .

2.2. Basic algorithm

A proof of the following result can be extracted from [Ja, Chapter II].

Theorem 2.3. Let A be a linear algebra, and let X ⊆ A with Env(X) not nilpotent. Then every weakly-closed
subset of A containing X has a non-nilpotent element.

In this section we prove a constructive version of this result using the algorithm below. The input
is a subset X = {x1, . . . , xk} of a linear algebra A such that Env(X) is not nilpotent, and a computable
function δ : A × A → F . The output is a non-nilpotent element of clδ(X). For convenience we define
a binary operation �δ on A, where y �δ z = yz + δ(y, z)zy for all y, z ∈ A.

Algorithm1 (X, δ)

1 m ← min{i: Env({x1, . . . , xi}) is not nilpotent}
2 Y ← {x1, . . . , xm−1}
3 z ← xm

4 while z is nilpotent do
5 find y ∈ Y such that y �δ z /∈ Env(Y)

6 if Env(Y ∪ {y �δ z}) is nilpotent then
7 Y ← Y ∪ {y �δ z}
8 else
9 z ← y �δ z

10 return z

P.A. Brooksbank, E.M. Luks / Journal of Algebra 320 (2008) 4020–4029 4023
Theorem 2.4. Given X ⊆ Md(F) such that Env(X) is not nilpotent, and any computable function δ, Algo-
rithm1 returns a non-nilpotent element of clδ(X). If δ is computable in polynomial time, then the algorithm
runs in polynomial time.

Proof. First note that the following are all invariants of the while loop beginning on line 4: Env(Y)

is nilpotent; Env(Y ∪ {z}) is not nilpotent; and z ∈ clδ(X). In view of the latter, it suffices to show that
the loop terminates in polynomial time.

Consider a fixed iteration of the loop (in which z is assumed nilpotent). Let

Ai = spanF

(⋃
j+k�i

z j Y k
)

⊂ Md(F) for positive integers i.

Since A1 �= 0 and A2d = 0 (the latter since z and Env(Y) are nilpotent),

A1 � A2 � A3 � · · · � A2d−1 � A2d = 0

is a nontrivial flag in the F -space Md(F). Clearly Ai Y ⊆ Ai+1 so Env(Y) acts (by right multiplication)
trivially on the quotients of the flag.

The successful execution of the iteration depends only on the existence of y ∈ Y such that y �δ z /∈
Env(X) (line 5). Suppose, to the contrary, that Y �δ z ⊆ Env(Y), so that

Y z ⊆ spanF (zY) + Env(Y).

It follows that Ai z ⊆ Ai , and hence that Env(Y ∪ {z}) acts on the flag. Since z is nilpotent, it acts
trivially on the quotients of some refinement of the flag. Then, however, Env(Y ∪ {z}) acts trivially on
those quotients, which is absurd since Env(Y ∪ {z}) is not nilpotent.

It remains only to establish polynomial timing. First note that the loop terminates after at most(d
2

)
iterations. For, adding y �δ z to Y (line 7) increases the dimension of Env(Y), which, since Env(Y)

is nilpotent, can occur at most
(d−1

2

)
times, while z can be reassigned to y �δ z (line 9) at most d − 1

times for the same reason.
Finally, each iteration requires a polynomial number of field operations: up to |Y | elements y �δ z

are constructed in line 5, each in polynomial time; the test y �δ z /∈ Env(Y) is a membership test in
an F -space of dimension less than d2; and the nilpotence or otherwise of Env(Y ∪ {y �δ z}) is decided
using Lemma 2.1. �

The following consequence of Theorem 2.4 is central to our applications.

Corollary 2.5. Given X ⊂ Md(F) such that Env(X) is not nilpotent, in polynomial time one can find z ∈ X not
nilpotent and write z = xz′ with x ∈ X and z′ ∈ X ∪ {1}.

Proof. Apply Theorem 2.4 to X , taking δ to be the trivial function, to construct a suitable z ∈ X .
Recording how z is constructed from X in Algorithm1, one readily obtains a suitable factoriza-
tion. �
2.3. Practical alternative

We now present an alternative version of the algorithm that is more suitable for computer im-
plementation. Indeed our own Magma implementation, which we discuss in Section 4, contains a
function based on the following description.

4024 P.A. Brooksbank, E.M. Luks / Journal of Algebra 320 (2008) 4020–4029
Algorithm2 (X, δ)

1 m ← min{i: Env({x1, . . . , xi−1}) is not nilpotent}
2 Y ← {x1, . . . , xm−1}
3 z ← xm

4 W ← Vd(F)

5 while z is nilpotent do
6 while dim(W Y + W z) < dim W do
7 W ← W Y + W z
8 find y ∈ Y such that W (y �δ z) /∈ W Y
9 if Env(Y ∪ {y �δ z})W is nilpotent then

10 Y ← Y ∪ {y �δ z}
11 else
12 z ← y �δ z
13 return z

Theorem 2.6. Given X ⊆ Md(F) such that Env(X) is not nilpotent, and any function δ, Algorithm2 returns
a non-nilpotent element of clδ(X). If δ is computable in polynomial time, then the algorithm runs in polynomial
time.

Proof. The outer loop beginning on line 5 has the following invariants: W is Y ∪ {z}-invariant;
Env(Y)W is nilpotent; and Env(Y ∪ {z})W is not nilpotent. In view of the latter, the inner loop begin-
ning on line 6 terminates with W �= 0 and W = W Y + W z.

Once again we must establish the existence of a suitable y ∈ Y in line 8. Suppose, to the contrary,
that W (Y �δ z) ⊆ W Y . Since W is invariant under Y ∪ {z}, we have W Y z ⊆ W Y . But then W z =
(W Y + W z)z ⊆ W Y + W z2 and, inductively, W ⊆ W Y + W zi for all integers i � 1. Since z is nilpotent,
we have W ⊆ W Y , contradicting the nilpotence of Env(Y)W .

To establish polynomial timing, note that W can be reassigned at most d − 1 times (line 7). If Y
is reassigned to Y ∪ {y �δ z} (line 10), then the dimension of W Y increases; this can occur at most
dim(W) times for fixed W . The value of z can be reassigned to y �δ z (line 12) at most d − 1 times,
as in the basic version. �
Remark 2.7. Although both Algorithm1 and Algorithm2 perform O (d2) iterations in the worst
case, the tests performed within each iteration of the former are more expensive than their coun-
terparts in the latter. For example, Algorithm1 tests membership in Env(Y), of dimension O (d2),
whereas Algorithm2 tests membership in a space of dimension at most d.

3. Applications to modules

Throughout this section Ω will denote a finitely generated algebra over an arbitrary field F . An
Ω-module M is specified by the action of a fixed set {ω1, . . . ,ωn} of generators for Ω on some finite-
dimensional vector space over F . Thus M is input via {a1, . . . ,an} ⊂ Md(F), where d = dimF (M).

A fundamental component of the algorithms in this section is the construction of the space of all
homomorphisms between two given modules. For given Ω-modules M1 and M2, of dimensions d1
and d2 respectively, we regard HomΩ(M1, M2) as a subspace of Md1×d2 (F), the space of all d1 × d2
matrices with entries in F . In this way, HomΩ(M1, M2) is easily expressed as the solution space
of a system of linear equations. In particular, using standard linear-algebraic techniques we have the
following.

Lemma 3.1. Given Ω-modules M1 and M2 , in polynomial time one can compute an F -basis for
HomΩ(M1, M2).

Remark 3.2. Although the construction of HomΩ(M1, M2) is elementary from a complexity view-
point, it is a substantial bottleneck in practical implementations. We will discuss this issue further in
Section 4.

P.A. Brooksbank, E.M. Luks / Journal of Algebra 320 (2008) 4020–4029 4025
3.1. Splitters

Key to our various applications is the ability to construct isomorphisms between direct summands
of two given Ω-modules if such exist. If N1 is a submodule of M1 and f ∈ HomΩ(M1, M2), then
we denote by N1 f the f -image of N1 in M2. We say that M1 = N1 ⊕ K1 is an f -decomposition if
N1 �= 0, ker(f) � K1, and N1 f a direct summand of M2. If M1 has an f -decomposition then we
say that f is a splitter.

Lemma 3.3. Let f ∈ HomΩ(M1, M2). Then f is a splitter if and only if there exists g ∈ HomΩ(M2, M1)

such that f g ∈ EndΩ(M1) is not nilpotent.

Proof. First suppose that f is a splitter and write Mi = Ni ⊕ Ki (i = 1,2), where 0 �= N1 ∼=
N1 f = N2. If α : N1 → N2 is the isomorphism induced by f , let g be the element of HomΩ(M2, M1)

inducing α−1 on N2 and 0 on K2. Then f g ∈ EndΩ(M1) is the identity on N1 and hence is not
nilpotent.

Conversely, let g be any element of HomΩ(M2, M1) such that f g is not nilpotent. Let s = f g
and t = g f . Then M1 = M1sd ⊕ ker(sd) and M2 = M2td ⊕ ker(td) are Ω-module decompositions of
M1 and M2, where d = max{dim(M1),dim(M2)}. Furthermore M1sd �= 0, (M1sd) f = M2td and
ker(f) � ker(sd). �

This result provides the basis of an elementary test for whether a given homomorphism is a split-
ter.

Lemma 3.4. Given Ω-modules M1 and M2 , and f ∈ HomΩ(M1, M2), in polynomial time one can decide
whether or not f is a splitter. If it is, moreover, one can find an f -decomposition of M1 .

Proof. Use Lemma 3.1 to compute a basis, C , for HomΩ(M2, M1). Now use Lemma 2.1 to decide
whether or not Env(f C) � EndΩ(M1) is nilpotent.

Observe that f · HomΩ(M2, M1) = spanF (f C) = Env(f C). Thus, if Env(f C) is nilpotent, by
Lemma 3.3, f is not a splitter.

On the other hand, if Env(f C) is not nilpotent, use Corollary 2.5 to construct a non-nilpotent
s ∈ f C , so that s = f g for some g ∈ HomΩ(M2, M1). Hence, by Lemma 3.3 and its proof, M1 =

M1sd ⊕ ker(sd) is an f -decomposition of M1. �
3.2. Testing isomorphism

Our first application of Lemma 3.4 is a polynomial-time, constructive test for isomorphism between
Ω-modules. In fact, we prove the following stronger result.

Theorem 3.5. Given nontrivial Ω-modules M1 and M2 , in polynomial time one can find maximal sum-
mands of M1 and M2 that are isomorphic. Moreover, one can construct f ∈ HomΩ(M1, M2) inducing an
isomorphism between these summands.

Proof. The existence of the isomorphic summands is a consequence of the Krull–Schmidt theorem
for modules [AF, Theorem 12.9], which also establishes the uniqueness of such summands up to
isomorphism. Initialize M∗

1 ← 0, f ← 0, L1 ← M1, L2 ← M2, B ← basis for HomΩ(L1, L2), and
proceed as follows.

1 while ∃ a splitter b ∈ B do
2 write L1 = N1 ⊕ K1 and L2 = N1b ⊕ K2
3 M∗

1 ← M∗
1 ⊕ N1 and f ← f ⊕ restriction of b to N1

4 L1 ← K1 and L2 ← K2
5 B ← basis for HomΩ(L1, L2)

6 return f , M∗.
1

4026 P.A. Brooksbank, E.M. Luks / Journal of Algebra 320 (2008) 4020–4029
Note that the control of the loop is tested in line 1 using Lemma 3.4, which also produces the de-
compositions of L1 and L2 in line 2.

It is clear that M∗
1 is a summand of M1, and that M∗

1 f is a summand of M2 isomorphic to M∗
1.

It remains to show that M∗
1 is maximal.

First note that M1 = M∗
1 ⊕ L1 is an invariant of the loop. Suppose, at the start of some iteration

of the loop, that L1 has a nontrivial summand, S1, isomorphic to a summand, S2, of L2. It suffices to
show that any basis for HomΩ(L1, L2) contains a splitter.

Let B∗ be any basis for HomΩ(L1, L2) and C∗ any basis for HomΩ(L2, L1). Let s be an element
of HomΩ(L1, L2) inducing an isomorphism S1 → S2, and let t be an element of HomΩ(L2, L1)

inducing an isomorphism S2 → S1. Then

st ∈ HomΩ(L1, L2) · HomΩ(L2, L1) = spanF (B∗) · spanF (C∗) � Env(B∗C∗)

is nonsingular on S1, and hence is not nilpotent. Therefore, by Corollary 2.5, there exists z = (b∗c∗)z′
not nilpotent, with b∗ ∈ B∗ , c∗ ∈ C∗ and z′ ∈ B∗C∗ ∪ {1}. Hence z = b∗ g for some g ∈ HomΩ(L2, L1),
whence b∗ is a splitter by Lemma 3.3. �
3.3. Decomposing modules

The problem of computing a nontrivial direct sum decomposition of a given module (or establish-
ing that the module is indecomposable) is considered, for example, in [CIK]. There, a polynomial-time
Las Vegas algorithm is given that solves this problem for finite fields and certain algebraic number
fields.

As a further application of Proposition 3.4, we present a deterministic algorithm (which again
applies to arbitrary fields) to solve a related decomposition problem.

Theorem 3.6. Given an Ω-module M and nontrivial submodule T , in polynomial time one can find a minimal
direct summand of M containing T .

Proof. Let π : M → M/T be the natural map. If M = N ⊕ K with N �= 0 and T = ker(π) � K, we
have M/T = N π ⊕ (K/T), so that π ∈ HomΩ(M, M/T) is a splitter. Thus one may obtain some
proper summand K containing T by applying Lemma 3.4 to π . A minimal such summand is obtained
by iteration. �

The minimal summand constructed in the theorem need not be unique, as one can see with the
Z-module M = Z4 ⊕ Z2. Here, (1,0) and (1,1) generate distinct subgroups of order 4 (and hence
distinct direct summands of M) that both contain the submodule generated by (2,0), which has no
complement. However, we note the following.

Theorem 3.7. Let M be an Ω-module and let T be a nontrivial submodule. If K1 and K2 are summands
of M, both minimal with respect to containing T , then there is an automorphism of M sending K1 to K2 .

Proof. Suppose, for i = 1,2, that M = Ni ⊕ Ki , where Ki is minimal with respect to containing T . Let
f i ∈ HomΩ(M, K3−i) be projection onto K3−i , and let gi ∈ HomΩ(Ki, K3−i) be the restriction of f i
to Ki . Then gi is the identity on T so that gi g3−i ∈ EndΩ(Ki) is not nilpotent. Hence Ki(gi g3−i)

dim M

is a direct summand of Ki containing T . By minimality Ki = Ki(gi g3−i)
dim M , whence g1 : K1 → K2

is an isomorphism. It follows that N1 and N2 are also isomorphic, and g1 can be extended to an
automorphism of M. �
Remark 3.8. Using the same ideas one can derive a variation of this result for groups. For a finite
group G and subgroup A, let

SG,A = {S: A � S � G and G = N � S with N a normal subgroup of G}.

P.A. Brooksbank, E.M. Luks / Journal of Algebra 320 (2008) 4020–4029 4027
If S1 and S2 are minimal elements of SG,A , then S1 ∼= S2 (though this isomorphism does not neces-
sarily extend to an automorphism of G).

As one application of Theorem 3.6 we propose a divide-and-conquer approach to computing the
socle of a module.

Proposition 3.9. Let M be an Ω-module and let T be any proper submodule. Given Soc(T) and
Soc(M/Soc(T)), in polynomial time one can compute Soc(M).

Proof. Let S0 = Soc(T) and S1/S0 = Soc(M/S0), so that S0 � Soc(M) � S1. Use Lemma 3.6 to write
S1 = N ⊕ K, where K is minimal with respect to containing S0. We claim that S0 ⊕ N = Soc(M).

Let π : S1 → S1/S0 be the natural map, so that S1/S0 = (N π)⊕ (K/S0). Since S1/S0 is semisim-
ple, N π ∼= N is semisimple. Hence

Soc(M) = Soc(S1) = Soc(N) ⊕ Soc(K) = N ⊕ Soc(K).

It suffices to show that S0 = Soc(K). Suppose, to the contrary, that S0 is a proper summand of
Soc(K), say Soc(K) = S0 ⊕ N ∗ . Since K/S0 is semisimple, there exists a proper submodule K∗ of K,
containing S0, such that K/S0 = (K∗/S0)⊕(Soc(K)/S0). Hence K = K∗ +Soc(K) = K∗ +(S0 ⊕ N ∗) =
K∗ ⊕ N ∗ , with S0 � K∗ , contradicting the minimality of K. �

This yields a Las Vegas algorithm to compute the socle of a module defined over a finite field
(see [LW] for another approach to this problem).

Theorem 3.10. Let M be an Ω-module defined over a finite field F . Then Soc(M) can be computed in poly-
nomial time using a Las Vegas algorithm.

Proof. Use [Ró] to test whether M is irreducible (this test is Las Vegas polynomial time for large
finite fields). If it is, then M = Soc(M) and we are done. If it is not, then [Ró] yields a proper
submodule T . Recursively compute Soc(T) and Soc(M/Soc(T)), and then use Proposition 3.9 to
construct Soc(M). �
Remark 3.11. For a practical version of Theorem 3.10, one should instead use the algorithm of Holt
and Rees [HR] to test for irreducibility. Their algorithm is also Las Vegas, but has better asymptotic
complexity than Rónyai’s algorithm; in addition there are several highly effective implementations of
their algorithm available.

4. Implementation

The various algorithms presented in Sections 2 and 3 have been implemented in Magma [BCP]
and are publicly available. In this section we briefly discuss some practical issues pertaining to the
implementation.

4.1. Computing HomΩ(M1, M2)

This appears to be the most formidable obstacle from a practical viewpoint.
Let di = dimF (Mi) for i = 1,2, and suppose that Mi is generated by sets of n matrices from

Mdi (F). Then we seek the solution to a linear system of size O (nd1d2) in d1d2 unknowns. If d1 �
d2 = d, computation of the solution space of this system costs O (nd6) field operations (cf. Remark 2.2),
which is prohibitive even for moderate values of d. Furthermore the space required to store elements
of an arbitrary field may increase rapidly throughout such a computation.

In the case of finite fields there are efficient methods to handle such computations. The Magma

function AHom, implemented by Steel, is very effective and our implementation uses it wherever

4028 P.A. Brooksbank, E.M. Luks / Journal of Algebra 320 (2008) 4020–4029
Table 1
SummandIsomorphism versus IsIsomorphic for modules over GF(2)

b m ModuleIso IsIsomorphic

24 2 0.042 0.028
16 3 0.046 0.028
12 4 0.055 0.031

8 6 0.073 0.038
4 12 0.095 0.093
3 16 0.120 0.490
2 24 0.144 832.592

possible. The methods underlying this function were developed by Leedham-Green and Steel, but
remain unpublished. An alternative approach to the problem by Lux and Szöke is described in [LS].
Steel recently extended the functionality of AHom so that it can now be applied to modules defined
over the rationals.

4.2. Testing isomorphism

We now describe a series of tests carried out with our implementation of the algorithm to
construct an isomorphism between summands of two modules. We henceforth refer to this imple-
mentation via its function name SummandIsomorphism.

Irreducible modules over finite fields. As noted in the introduction, if one of the input isomorphic
modules is known to be irreducible, then an isomorphism can be readily constructed using standard
Meat-Axe machinery [HR]. Although we did not anticipate that SummandIsomorphism would be
competitive with the Magma default function IsIsomorphic in this special case, we do not come
away too badly even here.

We compared the two functions by constructing invariant forms for symplectic groups Sp(d,q)

for various values of d and q. This is equivalent to computing an isomorphism between the natural
module V = Vd(GF(q)) for G and its dual module V ∗ . To define V we took matrix generators for
a random conjugate of the standard Magma copy of Sp(d,q); to define V ∗ we took the inverse-
transposes of these generators. In a variety of tests conducted with symplectic groups of degree up
to 1000 defined over fields of moderate size, IsIsomorphic constructed the desired form roughly
twice as quickly as SummandIsomorphism. (This is to be expected, since SummandIsomorphism
essentially computes two spaces of homomorphisms rather than one.)

General modules over finite fields. There is a randomized method to construct an isomorphism
M1 → M2 from a basis for HomΩ(M1, M2). Namely, construct random elements of HomΩ(M1, M2)

until a nonsingular element is found.
This naïve approach performs badly in situations where the proportion of invertible elements in

HomΩ(M1, M2) is small. To construct instances of such module pairs, one may proceed as follows.

1. Fix positive integers b and m and a finite field F = GF(q).
2. Write out a set of matrices, X , generating the simple algebra Mb(F).
3. Set Y ← {diag(x, x, . . . , x): x ∈ X} ⊂ Mbm(F).
4. Define M1 using the set Y , and define M2 using a random conjugate of Y .

Then EndΩ(M1) ∼= GF(q)m , so the probability that an element of HomΩ(M1, M2) is nonsingular is
(1 − 1/q)m .

Using this construction, we fixed d = 48 and q = 2 and compared the performance of Summand-
Isomorphism with that of IsIsomorphic for various choices of input parameters (b,m) with
bm = 48. Using an Intel Xeon computer with two 2.2 GHz processors and 2GB main memory, the
average of 20 runs for each implementation was taken and recorded in Table 1. As expected, the
results indicate that our implementation performs comparatively better as m increases.

Naturally, there are many other performance comparisons that one could run (we have, for ex-
ample, conducted tests with a variety of permutation modules). However, we do not expect that our

P.A. Brooksbank, E.M. Luks / Journal of Algebra 320 (2008) 4020–4029 4029
implementation will perform significantly better than the Magma default for arbitrary modules over
finite fields.

Modules over infinite fields. We have used SummandIsomorphism to construct isomorphisms be-
tween modules defined over the rationals, and also between modules defined over infinite fields of
positive characteristic. In the former case, the AHom function in Magma works very well, and we have
successfully tested isomorphism between rational modules in dimension up to 100 in reasonable time.
For other infinite fields HomΩ(M1, M2) is presently obtained as the solution to a linear system by
brute force. In order for this to be practical one must carefully manage linear algebraic computations
in order to avoid integer explosions. We have thus far succeeded with such examples only in very
modest dimensions.

Acknowledgments

The authors benefited from useful correspondence with G. Ivanyos, L. Rónyai and A. Steel.

References

[AF] F.W. Anderson, K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, 1992.
[BCP] W. Bosma, J. Cannon, C. Playoust, The magma Algebra System I: The user language, J. Symbolic Comput. 24 (1997) 235–

265.
[CIK] A. Chistov, G. Ivanyos, M. Karpinski, Polynomial-time algorithms for modules over finite dimensional algebras, in: Pro-

ceedings Int. Symp. on Symbolic and Algebraic Computation (ISSAC), 1997, pp. 68–74.
[CIW] A. Cohen, G. Ivanyos, D. Wales, Finding the radical of an algebra of linear transformations, J. Pure Appl. Algebra 117/118

(1997) 177–193.
[CW] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comput. 9 (1990) 251–280.
[FS] A. Frölich, J.C. Shepardson, Effective procedures in field theory, R. Soc. Lond. Philos. Trans. A 248 (1955–1956) 407–432.
[HR] D.F. Holt, S. Rees, Testing modules for irreducibility, J. Austral. Math. Soc. Ser. A 57 (1994) 1–16.
[Ja] N. Jacobson, Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, 1962.
[IL] G. Ivanyos, K. Lux, Treating the exceptional cases of the Meat-axe, Experiment. Math. 9 (3) (2000) 373–381.
[LS] K. Lux, M. Szöke, Homomorphism spaces between modules over finite dimensional algebras, Experiment. Math. 12 (2003)

91–98.
[LW] K. Lux, M. Wiegelmann, Determination of socle series using the condensation method, in: Computational Algebra and

Number Theory, Milwaukee, WI, 1996, J. Symbolic Comput. 31 (2001) 163–178.
[Ró] L. Rónyai, Computing the structure of finite algebras, J. Symbolic Comput. 9 (1990) 355–373.

	Testing isomorphism of modules
	Introduction
	Non-nilpotent matrices
	Preliminaries
	Basic algorithm
	Practical alternative

	Applications to modules
	Splitters
	Testing isomorphism
	Decomposing modules

	Implementation
	Computing HomOmega (M1,M2)
	Testing isomorphism

	Acknowledgments
	References

