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Let B be a real 2-block of a finite group G . A defect couple of B is
a certain pair (D, E) of 2-subgroups of G , such that D is a defect
group of B , and D � E . The block B is principal if E = D; otherwise
[E : D] = 2. We show that (D, E) determines which B-subpairs are
real.
The involution module of G arises from the conjugation action of G
on its involutions. We outline how (D, E) influences the vertices of
components of the involution module that belong to B .
These results allow us to enumerate the Frobenius–Schur indicators
of the irreducible characters in B , when B has a dihedral defect
group. The answer depends both on the decomposition matrix of B
and on a defect couple of B . We also determine the vertices of the
components of the involution module of B .

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper G is a finite group. We adopt the standard notation and results for the
representation theory of G , as expounded in [22]. In particular O is a complete discrete valuation
ring of characteristic 0 with residue field k := O/ J (O) of characteristic p > 0. Mostly, but not ex-
clusively, p = 2. We assume that frak(O) and k are splitting fields for all subgroups of G . We write
N(X) = NG(X) for the normalizer and C(X) = CG(X) for the centralizer of a subset X of a G-set. If n is
a natural number, we use ν(n) for the highest power of 2 that divides n, and Sn, for the symmetric
group and An for the alternating group of degree n.

Let B be a p-block of G . There is a corresponding primitive idempotent eB of the centre Z(kG)

of the group algebra kG and a k-algebra map ωB : Z(kG) → k such that ωB(eB) = 1k . Attached to B
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is a set Irr(B) of irreducible characters and a set IBr(B) of irreducible Brauer characters of G . As is
standard, k(B) = |Irr(B)| and l(B) = |IBr(B)|.

The notion of vertex of a module, admissible block and induced block are as in [22]. Suppose
that M is an indecomposable module for H � G and that C(V ) � H , for some vertex V of M . Then
M belongs to an admissible p-block b of H . Green’s vertex theorem [13, (3.7a)] states that if L is an
indecomposable kG-module such that M is a component of the restriction L↓H then L belongs to bG .

A B-subsection is a pair (x,b), where x is a p-element of G and b is a block of the central-
izer C(x) of x in G such that bG = B . If θ ∈ IBr(b), we call (x, θ) a column of B . For χ ∈ Irr(B)

and y a p′-element in C(x) we have χ(xy) = ∑
(x,b)

∑
θ∈IBr(b) d(x)

χθ θ(y), where d(x)
χθ are algebraic in-

tegers called generalized decomposition numbers. The group G acts by conjugation on subsections and
columns; (x, θ)g = (xg, θ g), for all g ∈ G . We say that (x, θ) is real if (x, θ)g = (x−1, θ), for some g ∈ G .
Now identify conjugate B-subsections and columns. Brauer [1] showed:

k(B) =
∑
(x,b)

l(b), where (x,b) ranges over the B-subsections.

Lemma 1.1. The number of real irreducible characters in B equals the number of real columns in B.

Proof. Let χ ∈ Irr(B) and let (x, θ) be a column of B . Then

d(x)
χθ =

∑
〈χ ↓CG (x),ψ〉ψ(x)

ψ(1)
dψθ ,

where ψ runs over the irreducible characters of CG(x). Thus

d(x−1)

χθ
=

∑
〈χ ↓CG (x),ψ〉ψ(x−1)

ψ(1)
dψθ = d(x)

χθ .

The generalized decomposition matrix [d(x)
χθ ] is non-singular. It then follows from the previous

paragraph and Brauer’s permutation lemma that the number of χ ∈ Irr(B) with χ = χ equals the
number of Brauer subsections (x, θ) such that (x, θ) is conjugate to (x−1, θ). �

The extended centralizer of g ∈ G is C∗(g) = C∗
G(g) := N({g, g−1}). So [C∗(g) : C(g)] � 2. We use

Cl(g) = ClG(g) to denote the G-conjugacy class of g .
Now let char(k) = 2 and let B be a real 2-block of G . As noted by R. Gow [11], there is a real con-

jugacy class C of G , necessarily 2-regular, so that C is contained in the support of eB , and ωB(C+) 	= 0.
Here C+ = ∑

c∈C c in Z(kG). Any such C is called a real defect class of B .

Definition 1.2. A defect couple of a real 2-block B is a pair (D, E), where E is a Sylow 2-subgroup
of C∗(c), D = CE(c) is a Sylow 2-subgroup of C(c), and c is an element of a real defect class of B .

As D is a defect group of B , it is unique up to G-conjugacy. Gow [12] showed that E is also unique
up to G-conjugacy. He referred to E as an extended defect group of B . In fact, the pair (D, E) is unique
up to G-conjugacy. This can be deduced from Proposition 14 in [20].

Note that if β is an admissible real 2-block of H � G with defect couple (D1, E1), then by [21, 2.1]
there is a defect group D2 of βG such that D1 � D2 and (D2, D2 E1) is a defect couple of βG .

The Frobenius–Schur (FS)-indicator ε(χ) of a character χ of G is the average value of χ(g2), as
g ranges over G . If χ is irreducible, it is known that ε(χ) = 0,+1,−1, depending on whether χ is
non-real, afforded by a real representation, or real-valued but not afforded by a real representation,
respectively. The following is Corollary 2.5 in [21]:
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Lemma 1.3. Let (D, E) be a defect couple of B and let x ∈ D. Then

∑
χ∈Irr(B)

ε(χ)χ(x) � 0,

with > 0 if and only if E = D〈e〉, where e2 is G-conjugate to x.

The columns of B , weighted by FS-indicators, are locally determined, as Brauer has shown:

Lemma 1.4. Let (x, θ) be a column of B, with θ ∈ IBr(b). Then

∑
χ∈Irr(B)

ε(χ)d(x)
χ,θ =

∑
ψ∈Irr(b)

ε(ψ)d(x)
ψ,θ .

The value of these sums is non-negative if l(b) = 1.

Proof. The equality is Theorem (4A) of [2]. This holds even if B is a p-block, with p odd. Suppose
that l(b) = 1. Then

∑
ψ∈Irr(b)

ε(ψ)d(x)
ψ,θ θ(1) =

∑
ψ∈Irr(b)

ε(ψ)ψ(x) � 0, by Lemma 1.3. �

The following elementary lemma is useful for computing these sums.

Lemma 1.5. Let m be an odd integer. Then for each integer d > 0 with |m| < 2d, there is a unique d-tuple
(ε0, . . . , εd−1) of signs such that

d−1∑
j=0

ε j2
j = m.

We will use [M : I] to denote the multiplicity with which an irreducible module I occurs in a
composition series of a module M . Then [M : I] is well defined, by the Jordan–Hölder theorem.

Lemma 1.6. Let M be a self-dual indecomposable reducible module and let I be a self-dual irreducible sub-
module of M. Then [M : I] � 2.

Proof. We have I ⊆ soc(M) ⊆ rad(M) and, by duality I ⊆ M/ rad(M). �
The set of involutions in G , and the identity element, form the G-set

I = IG := {
g ∈ G

∣∣ g2 = 1G
}
,

under conjugation. Suppose that char(k) = 2. Then we call the permutation module kI the involution
module of G . The involution module of B is the sum kIB of all submodules of kI that belong to B .
We showed in [20] that kIB 	= 0 if and only if B is strongly real i.e. B is real and has a defect couple
(D, D〈t〉), for some t ∈ I.

If N � G and X ⊆ G , we use X = {Nx | x ∈ X} to denote the image of X in the quotient group
G := G/N .
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Lemma 1.7. Let Q � G be a 2-group and let (D, E) be a defect couple of B. Then there is a real 2-block B of G,
that is dominated by B, and that has defect couple (D, E).

Proof. Write x ∈ kG for the image of x ∈ kG , under the natural k-algebra projection kG → kG . Let
B1, . . . , Br be the blocks of G that are dominated by B . The dual blocks Bo

i are also dominated by B .
Let C be a real defect class of B . Then C is a conjugacy class of G and C+ appears in the support

of eB = ∑
eBi

, but not in the support of eBi
+ eo

Bi
, for any i. It follows that we may choose i such

that B := Bi is real and C+ appears in the support of eB . As moreover ωB(C+) = ωB(C+) 	= 0, we
deduce that C is a real defect class of B . Choose c ∈ C such that E is a Sylow 2-subgroup of C∗(c) and
D = E ∩ C(c). Then c is the unique element of odd order in c. So C∗

G(c) = C∗
G
(c). It follows that (D, E)

is a defect couple of B . �
In the context of the lemma, it is known that if G = Q C(Q ), then B is the only block of G

dominated by B .
Suppose that N � G and b is a block of N . Then N(b) denotes the stabilizer of b in G , and N∗(b)

the stabilizer of {b,bo} in G , all under the conjugation action of G on the blocks of N . So N(b) � N∗(b)

and [N∗(b) : N(b)] � 2. We call N∗(b) the extended stabilizer of b.

Lemma 1.8. Let N � G and let b be an admissible 2-block of N such that bG is real and G = N∗(b). Let (D, E)

be a defect couple of bG .

(i) If b = bo then (D ∩ N, E ∩ N) is a defect couple of b.
(ii) If b 	= bo, then G = E N(b) and D ∩ N is a defect group of b.

(iii) Let F � E with E = D F . Then (D ∩ N F , E ∩ N F ) is contained in a defect couple of the real block bN F .

Proof. Write eb = ∑
n∈N βnn, where βn ∈ k, for each n. As b is admissible, each real defect class C

of bG is contained in N . Let c ∈ C have defect couple (D, E) in G .
Assume the hypothesis of (i). Then b is G-invariant and hence eb is the primitive idempotent

in Z(kG) corresponding to bG . Decompose C = C1 ∪ · · · ∪ Ct into a union of conjugacy classes of N ,
where c ∈ C1. Now G permutes the Ci transitively among themselves. It follows that ωb(C+

i ) =
ωb(C+

1 ), for all i. So 0 	= ωbG (C+) = tωb(C+
1 ). In particular ωb(C+

1 ) 	= 0. So C1 is a real defect class of b.
Then (i) follows from the fact that E ∩ N is a Sylow 2-subgroup of CN (c) and D ∩ N = (E ∩ N)∩ CN (c).

Suppose in addition the hypothesis of (iii). Now F � C∗(c) and C1 is a real class of N . It follows
that C1 is a real conjugacy class of N F . But eb is the block idempotent of bN F . So C1 is a real defect
class of bN F . As (D ∩ N F , E ∩ N F ) is contained in a defect couple of c in N F , it is also contained in a
defect couple of bN F .

Assume the hypothesis of (ii). Then [G : N(b)] = 2 and eb + eo
b is the primitive idempotent in Z(kG)

corresponding to bG . Regard eb as the block idempotent of a non-real block of N(b). As c appears with
non-zero multiplicity in eb + eo

b , we have βc + βc−1 	= 0. But β is a class function of N(b). So c is not
conjugate to c−1 in N(b), and in particular G = E N(b). It is a standard fact that D ∩ N is a defect
group of b.

Suppose in addition the hypothesis of (iii). Then b and bo are conjugate in N F . So bN F is a real
block. We may write C = (C1 ∪· · ·∪ Ct)∪(C o

1 ∪· · ·∪ C o
t ) into a union of non-real conjugacy classes of N ,

where C1 ∪ · · · ∪ Ct is a single conjugacy class of N(b). As before ωb(C+
i ) = ωb(C+

1 ) and ωb(C o+
i ) =

ωb(C o+
1 ), for all i. Thus 0 	= ωbG (C+) = tωb((C1 ∪ C o

1)+). Now C1 ∪ C o
1 is a real conjugacy class of N F ,

and eb + eo
b is the block idempotent of bN F . We deduce that C1 ∪ C o

1 is a real defect class of bN F .
As (D ∩ N F , E ∩ N F ) is contained in a defect couple of c in N F , it is contained in a defect couple
of bN F . �

We now describe the rest of the paper. In Sections 2 and 3 our only assumptions are that p = 2,
B is a real 2-block of G , and (D, E) is a defect couple of B . We prove a number of results on the
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Brauer category of B in Section 2. Our main result, Theorem 2.7, shows how (D, E) determines the
reality of each B-subpair.

Suppose that T is a conjugacy class of involutions in G . Let kT B denote the sum of the components
of the associated permutation module that belong to B . In Section 3 we show how (D, E) influences
the vertices of the components of kT B: Theorem 3.2 gives a connection between these vertices and
the centralizers in D of elements of T ∩ E .

From Section 4 onwards, we assume that B is a real 2-block that has a dihedral defect group D .
We first enumerate the possible isomorphism types of an extension E of D with [E : D] = 2. Table 1
describes the E-conjugacy classes in E\D for each of these types.

In Section 5, we determine, for each type of E , the real subpairs of B (Lemma 5.5), and the real
irreducible characters in B that have positive height (Theorem 5.7).

Section 6 reviews known results on the Morita equivalence classes of 2-blocks with dihedral defect
groups. In particular, Lemma 6.1 partially describes the generalized decomposition matrices.

In Sections 7 through 11 we determine the FS-indicators of the irreducible characters in B , and
the vertices of the components of kIB , according to the isomorphism type of the extended defect
group E , and the Morita equivalence class of B .

Our results for blocks with dihedral defect group are summarized in Table 2. We believe that the
methods of this paper could be applied to all blocks with tame representation type (i.e. dihedral,
semi-dihedral or quaternion defect group) in order to determine the Frobenius–Schur indicators of
the irreducible characters and the vertices of components of the involution module.

2. Real subpairs

The purpose of this section is to show how a defect couple of a real 2-block determines the reality
of its subpairs. We assume that B is a real 2-block of G , and let (D, E) be a defect couple of B .

A B-subpair consists of (Q ,bQ ) where Q is a 2-subgroup of G and bQ is a 2-block of Q C(Q ) such
that bG

Q = B . By abuse of notation N(bQ ) and N∗(bQ ) denote the stabilizer and extended stabilizer
of bQ in N(Q ). A B-subpair of the form (D,bD) is known as a Sylow B-subpair (or a root of B). Brauer
showed that all Sylow B-subpairs (D,bD) are N(D)-conjugate, and also that [N(bD) : C(D)D] is odd.

The set of B-subpairs is a poset. Containment � is generated by normal containment: (Q ,bQ ) �

(R,bR) if R � N(bQ ) and bR C(Q )
R = bR C(Q )

Q . Given a B-subpair (Q ,bQ ), there is a Sylow B-subpair
(D,bD) such that (Q ,bQ ) � (D,bD). For each Sylow B-subpair (D,bD) and Q � D , there is a unique
B-subpair (Q ,bQ ) such that (Q ,bQ ) � (D,bD). We will refer to this as the uniqueness property of
subpairs. Some of our notation and terminology was inspired by [7].

Lemma 2.1. Suppose that (Q ,bQ ) and (R,bR) are B-subpairs such that bR is real and (Q ,bQ ) � (R,bR).
Then bQ is real.

Proof. We have (Q ,bQ ) � (R,bR), and (Q ,bo
Q ) � (R,bo

R) = (R,bR). So bo
Q = bQ , by the uniqueness

property of subpairs. �
We now examine the relationship between the extended defect groups of B and the extended

stabilizers of its Brauer subpairs.

Lemma 2.2. The following hold:

(i) If (D,bD) is a Sylow B-subpair, then there is a defect couple (D, E) of B such that bE C(D)
D is real with

defect couple (D, E).
(ii) If (D, E) is a defect couple of B then there is a Sylow B-subpair (D,bD) such that bE C(D)

D is real with defect
couple (D, E).

Proof. Suppose first that bD is real, with defect couple (D, E). Then (D, E) is a defect couple of B .
Moreover, E C(D) = D C(D). Suppose then that bD is not real. As (D,bD) and (D,bo

D) are Sylow B-
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subpairs, they are conjugate in N(D), and hence in N∗(bD). Set b = bN∗(bD )
D . Then each defect couple

(D, E) of b is a defect couple of B . Lemma 1.8 implies that bE C(D)
D is real with defect couple (D, E).

Now let (D, E) be a defect couple for B , and let (D,bD) be any Sylow B-subpair. By part (i) there
exists a defect couple (D, E1) for B such that bE C(D)

D is real with defect couple (D, E1). But the defect
couples of B are conjugate in G . So there exists x ∈ G such that (D, E) = (D, E1)

x . Now replace bx
D

by bD . Then (D,bD) is a Sylow B-subpair such that bE C(D)
D is real with defect couple (D, E). �

A B-subtriple consists of (Q ,bQ , R) where:

• (Q ,bQ ) is a B-subpair;

• R � N∗(bQ ) and b∗
Q := bR C(Q )

Q is real;
• R is an extended defect group of b∗

Q .

We say that this is a Sylow B-subtriple if Q is a defect group of B . For two B-subtriples an inclusion
(Q ,bQ , R) � (S,bS , T ) occurs if (Q ,bQ ) � (S,bS ), in the sense of B-subpairs, and T = R S . We write
(Q ,bQ , R) � (S,bS , T ) if in addition Q � S . Note that if (Q ,bQ ) is a real B-subpair and if R is an
extended defect group of bQ , then b∗

Q = bQ and (Q ,bQ , R) is a B-subtriple.

Lemma 2.3. Suppose that (D,bD , E) is a Sylow B-subtriple and that Q � D. Then bo
Q = be−1

Q e , for all e ∈ E
such that E = D〈e〉.

Proof. We have De = D and be
D = bo

D . So (Q e,beo
Q ) � (De,beo

D ) = (D,bD). Then bQ e = beo
Q , by the

uniqueness property of subpairs. The lemma follows from this. �
Lemma 2.4. All Sylow B-subtriples are conjugate in G.

Proof. Let (D1,b1, E1) and (D2,b2, E2) be Sylow B-subtriples. Then (Di,bi) are Sylow B-subpairs. So
(D2,b2)

x = (D1,b1), for some x ∈ G . Now (D1,b1, Ex
2) is a Sylow B-subtriple. In particular (D1, Ex

2)

is a defect couple of b∗
1 regarded as a block of N∗(b1). But (D1, E1) is another defect couple of this

block. So there exists y ∈ N∗(b1) such that (D1, Ex
2)

y = (D1, E1). Now by
1 = b1 or bo

1. In the former
case set z := 1. Suppose we have the latter case. Then there exists z ∈ E1 C(D1) such that (bo

1)
z = b1.

Then (D2,b2, E2)
g = (D1,b1, E1), with g = xyz. �

Let (Q ,bQ , R) be a B-subtriple. So b∗
Q is a real block of R C(Q ). We can choose a defect cou-

ple (S, T ) of b∗
Q , regarded as a block of N∗(bQ ), such that T = R S . Then S is a defect group

of bQ , regarded as a block of N(bQ ). Lemma 2.2 implies that there is a Sylow b∗
Q -subpair (S,bS )

in N∗(bQ ) such that bT C(S)
S is a real block with defect couple (S, T ). Moreover, bS C(Q )

S covers bQ

or bo
Q , so by switching to bo

S , if necessary, we may assume that (Q ,bQ ) � (S,bS ). It follows that
(S,bS , T ) is a B-subtriple and (Q ,bQ , R) � (S,bS , T ). We call any such B-subtriple a normalizer-
subtriple of (Q ,bQ , R).

Set (Q 1,b1, R1) := (Q ,bQ , R) and inductively choose (Q i+1,bi+1, Ri+1) to be a normalizer sub-
triple of (Q i,bi, Ri), for i = 1,2, . . . . Since (Q i+1,bi+1) is a normalizer-subpair of (Q i,bi), it follows
that the sequence (Q 1,b1, R1) � (Q 2,b2, R2) � (Q 3,b3, R3) � · · · terminates at a Sylow B-subtriple
(D,bD , E), where (D, E) is a defect couple of B . In this case E = R1 D . We say that Q is really well
placed in D with respect to (D,bD , E) if such a sequence exists.

Lemma 2.5. Let (D,bD , E) be a Sylow B-subtriple and let (Q ,bQ , R) be any B-subtriple such that (Q ,bQ ) �
(D,bD). Then there exists g ∈ G such that Q g is really well placed in D with respect to (D,bD , E) and
(Q ,bQ , R)g � (D,bD , E).
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Proof. By the discussion above, there is a Sylow B-subtriple (D1,b1, E1) that contains (Q ,bQ , R),
such that Q is really well placed in D1 with respect to (D1,b1, E1). By Lemma 2.4 there exists g ∈ G
such that (D1,b1, E1)

g = (D,bD , E). The lemma follows from this. �
Our next lemma is concerned with strongly real B-subpairs.

Lemma 2.6. Let (D,bD , E) be a Sylow B-subtriple and let (Q ,bQ ) � (D,bD) be such that E = D CE (Q ).
Then bQ is real and has a defect couple containing (Q CD(Q ), Q CE(Q )). In particular, if E = D〈t〉, for some
t ∈ IC(Q ) , then bQ is strongly real.

Proof. If Q = D , the result follows from Lemma 1.8. So we may assume that Q < D . Set bQ , D0 := Q
and inductively Di := ND(Di−1) and Ei := NE (Di−1), for i > 0. Then [Ei : Di] � 2 and E = D Ei . For
each positive i there is a unique subpair (Q ,bQ ) � (Di,bi) � (D,b). Let t be the smallest positive
integer such that Dt = D and Et = E .

We use downwards induction on i to prove that b∗
i := bEi C(Di)

i is real with a defect couple
containing (Di, Ei). The base case i = t follows from the hypothesis. Assume the result for i + 1.
Set b∗∗

i+1 := b
Ei+1 C(Di)

i+1 . Then b∗∗
i+1 = (b∗

i+1)
Ei+1 C(Di) . So b∗∗

i+1 is real with a defect couple containing
(Di+1, Ei+1). Part (iii) of Lemma 1.8, applied with N = Di C(Di), b = bi , G = Ei+1 C(Di) and F = Ei ,
gives the inductive step.

The previous paragraph shows that b∗
1 is a real block of NE (Q )C(Q ) that covers the block bQ

of Q C(Q ). We apply part (iii) of Lemma 1.8, with N = Q C(Q ), b = bQ , G = NE(Q )C(Q )

and F = CE (Q ). Then N F = Q C(Q ). So bQ is a real block with a defect couple containing
(Q CD(Q ), Q CE (Q )). �

We use ∼ for G-conjugacy. Our main result on real subpairs is:

Theorem 2.7. Let (D,bD , E) be a Sylow B-subtriple. Set

R(D,bD , E) := {
(Q ,bQ ) � (D,bD)

∣∣ E = D C
E
(Q )

}
.

Then a B-subpair (R,bR) is real if and only if (R,bR) ∼ (Q ,bQ ), for some (Q ,bQ ) ∈ R(D,bD , E). Moreover,
(R,bR) is strongly real if and only if (R,bR) ∼ (Q ,bQ ), where E = D〈t〉, for some t ∈ IC(Q ) .

Proof. Suppose first that (Q ,bQ ) ∈ R(D,bD , E). Then by Lemma 2.2 we can choose e ∈ CE (Q ) such
that boe

D = bD . Then (Q ,bo
Q ) = (Q ,bo

Q )e � (D,bo
D)e = (D,bD). But (Q ,bQ ) is the unique B-subpair

involving Q and contained in (D,bD). So (Q ,bo
Q ) = (Q ,bQ ), whence bQ is real. Now suppose that

x ∈ G and (Q ,bQ )x � (D,bD). Then (bx
Q )o = (bo

Q )x = bx
Q . So (Q ,bQ )x is a real B-subpair contained

in (D,bD). If in addition E = D〈t〉, for some t ∈ IC(Q ) , then bQ is strongly real, by Lemma 2.6. This
completes the ‘if’ part of the theorem.

The ‘only if’ statement follows from Lemma 2.5. �
3. The involution module

In this section we survey known facts about the involution module kI of G , and prove a number
of new results about the vertices of its components. As in the previous section, B is a real 2-block
of G that has defect couple (D, E). Fix a conjugacy class T ⊆ I of G .

Suppose that I is an irreducible B-module, with Brauer character θ . The projective character of G
associated with θ is 
 = ∑

χ∈Irr(B) dχθχ . Here the dχθ are non-negative integers called decomposition
numbers. Lemma 1 of [23] implies that

ε(
) = [kI : I]. (1)
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Now suppose that I is also self-dual and projective. Then D = 〈1G 〉 and 
 is the unique irreducible
character in B . So [kI : I] = ε(
) = +1. Conversely, by [19], each projective component of kI is self-
dual and irreducible and belongs to a real 2-block with a trivial defect group.

Let M be a component of kT B and let V be a vertex of M . As M has a trivial source, the Green
correspondent P of M with respect to (G, V ,N(V )) is a component of k CT (V ). In particular, P is
projective as N(V )/V -module. Clifford theory shows that P↓V C(V ) = m

∑
Rn , where m > 0, R is in-

decomposable with vertex V and n ranges over a set of representatives for the cosets of the stabilizer
of R in N(V ). Moreover, R is projective as V C(V )/V -module, and is a component of k CT (V )↓V C(V ) .

Let bV be the block of V C(V ) that contains R . Then (V ,bV ) is a B-subpair and P belongs to bN(V )
V .

Given V , R is uniquely determined up to N(V )-conjugacy. We call (V ,bV ) a vertex B-subpair and R a
bV -root of M . These notions are set out in a more general context in [16].

Lemma 3.1. Suppose that D is non-trivial and (V ,bV ) is a vertex B-subpair of a component of kT B. Then there
is an involution v ∈ V , and a B subsection (v,b), such that some component of k CT (v)b has vertex b-subpair
(V ,bV ).

Proof. The hypothesis on D , and the discussion prior to the lemma, implies that V 	= {1G}. Choose an
involution v ∈ Z(V ). Then V C(V ) � C(v). Let M be a component of kT B that has vertex B-subpair
(V ,bV ). Then some component of M↓C(v) has vertex subpair (V ,bV ). Green’s vertex theorem implies
that this module belongs to a block b such that (v,b) is a B-subsection. �

Our main result in this section sharpens Theorem 1.5 of [21]:

Theorem 3.2. The following hold:

(i) If kT B 	= 0 and M is a component of kT B, then there exists t ∈ T such that E = D〈t〉 and CD(t) contains
a vertex of M.

(ii) Suppose that E = D〈t〉, with t ∈ T , but CD(t) ≮G CD(s) for any s ∈ T ∩ Dt. Then some component of kT B
has vertex CD(t).

Proof of (i). For both parts we use induction on |D|. The base case |D| = 1 is dealt with by The-
orem 19 of [20]. So we may assume that |D| > 1. Let V be a vertex of M and set H := V C(V ).
Then V 	= {1G }. Let (V ,b) be a vertex B-subpair and let R be a b-root of M . So R is a component
of k CT (V )b. Choose t ∈ CT (V ) such that R is a component of kClH (t).

Set H := H/Z , where Z � Z(V ) has order 2. By Lemma 1.7, there is a unique block b of H that
is dominated by b. Now NH (t) is the preimage of CH (t) in H and [NH (t) : CH (t)] � 2. So either
kNH (t)↑H = kClH (t) or there is a short exact sequence of kH-modules

0 → kNH (t)↑H → kClH (t) → kNH (t)↑H → 0.

In any event each composition factor of R is a composition factor of kClH (t)b. As b has a smaller de-
fect group than B , the inductive hypothesis implies that b has a defect couple of the form (D1, D1〈t〉).
Lemma 1.7 now shows that b has a defect couple (D1, D1〈t〉). As bG = B , we may assume that D is
chosen so that D1 � D and (D, D〈t〉) is a defect couple of B . Thus also V � CD(t). �
Proof of (ii). Set V := CD(t) and H := V C(V ). Let BrV : Z(kG) → Z(k C(V )) be the Brauer homomor-
phism with respect to V . Then BrV (eB) = ∑

eb , where b ranges over the 2-blocks of H such that
bG = B . Note that (bo)G = bG , as B is real. Choose c in a real defect class of B such that D〈t〉 is
a Sylow 2-subgroup of C∗(c) and ct = c−1. In particular c, t ∈ H . Set C := ClH (c). Then C+ is a real
conjugacy class of H that appears in BrV (eB). As eb + eo

b is supported on the non-real classes of H ,
for each block b of H , it follows that there exists a real block b of H such that C+ appears in eb and
bG = B . Theorem 3.3 of [18] implies that b has a defect couple of the form (D1, D1〈t〉).



J. Murray / Journal of Algebra 322 (2009) 489–513 497
Lemma 1.7 implies that b dominates a real block b of H := H/V such that b has defect couple
(D1, D1〈t〉). As |D1| < |D1| � |D|, the inductive hypothesis implies that kClH (t)b 	= 0. The inflation of
this module to H is a quotient module of kClH (t)b. So kClH (t)b 	= 0.

Let M1 be a component of kClH (t)b. Then V is contained in each vertex of M1. Let M be a com-
ponent of kT such that M1 is a component of M↓H . Then M belongs to B and V is contained in
some vertex V 1 of M . Now from part (i) of this theorem V 1 �G CD(s), for some s ∈ T ∩ Dt . Since
CD(t) � V 1 �G CD(s), it follows from the hypothesis that V = V 1 is a vertex of M . �
Corollary 3.3. Suppose that t is an involution in O2(G). Then every component of kCG (t)↑G belongs to the
principal 2-block of G.

Proof. Let B be a 2-block of G such that kCG (t)↑G B 	= 0. Then each defect group D of B con-
tains O2(G). In particular t ∈ D . But then D = D〈t〉 is an extended defect group of B . It follows from
this that B has a real defect class in I. Since a defect class is necessarily 2-regular, the class {1G} is a
defect class of B . As B is real, it follows from this that B is the principal 2-block of G . �

We take the opportunity to correct an error in the hypothesis of Lemma 2.11 of [21]. We also
strengthen the conclusion. Fortunately, we only used that lemma in its correct form.

Lemma 3.4. Suppose that D � G and E = D × 〈e〉. Then there is a self-dual irreducible B-module I , such that
I has vertex D and

⊕
i�0

I ⊗ radi(kIZ(D))/ radi+1(kIZ(D))

is the sum of all components of kIB that have vertex D.

Proof. By hypothesis e2 = 1 and e ∈ C(D). This is what we needed, and used, in the proof of
Lemma 2.11 of [21]. So that proof gives all but the last statement.

We make a very general remark. Let H be a finite group, and let M be an indecomposable kH-
module that has vertex V and source kV . Set f M as the Green correspondent of M with respect
to (H, V ,NH (V )). Suppose that V � W � NH (V ). Then f M↓W is the sum of all components of M↓W
that have vertex V .

We can now prove the last statement of the lemma. Adopt the notation of Lemma 2.11 of [21].
We apply the previous paragraph with H = G � �, M = B , V = �D × � and W = �G × �. Then by
Lemma 2.9 of [21], B(V )↓�G can be identified with the sum of all components of kIBFr that have
vertex D . We get the equivalent result for kIB using Lemma 2.8 of [21]. �
4. Extensions of dihedral 2-groups

We need to describe the index 2-extensions of D , where D is a dihedral group of order 2d . Fix a
presentation D = 〈s, t | s2d−1

, t2, (st)2〉. We shall adopt the following notation for subgroups of D . The
maximal cyclic subgroup S := 〈s〉 of D has order 2d−1 and the centre Z(D) = 〈s1〉 has order 2. Also
X1 := 〈t〉 and Y1 := 〈st〉 are subgroups of order 2. Set si := s2d−1−i

, for i = 1, . . . ,d − 1. Then Si := 〈si〉
is a cyclic group of order 2i . Moreover, X2 := 〈s1, t〉 and Y2 := 〈s1, st〉 are Klein-four groups, while
Xi := 〈si−1, t〉 and Yi := 〈si−1, st〉 are dihedral groups of order 2i , for i � 3. In particular, Xd−1 and
Yd−1 are maximal subgroups of G that are dihedral of order 2d−1.

Proposition 4.1. There are 4 isomorphism classes of index 2 extensions of D8 . There are 5 isomorphism classes
of index 2 extensions E = D〈e〉 of D ∼= D2d , for d � 4. These are:

(a) E = D × 〈e〉 where e ∈ C(D) and e2 = 1;
(b) E = D〈e〉 where e ∈ C(D) and e2 = s1;
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(c) E = D2d+1 , a dihedral group of order 2d+1;
(d) E = S D2d+1 , a semi-dihedral group of order 2d+1;
(e) E = D � 〈e〉 where e2 = 1, se = s1s, te = t.

Proof. Set q = 2d−1. The additive group of the ring Zq of integers modulo q is cyclic, while its group
of units Uq is isomorphic to the direct product Z2 × Z2d−3 . The Z2 factor is generated by −1 and the
involutions in Uq are 1,−1,2d−2 − 1,2d−2 + 1. Form the semi-direct product Uq � Zq . So Uq acts by
multiplication on Zq . We define an action of Uq � Zq on D via

s(a,b) := sa, t(a,b) := s−bt, for a ∈ Uq, b ∈ Zq.

In this way Uq � Zq can be identified with the automorphism group of D . The group of inner auto-
morphisms of D is I := 〈−1〉 � 2Zq . So the outer automorphism group is isomorphic to Z2d−3 × Z2.
It follows that the image of E in the automorphism group of D is generated, modulo I by one
of (1,0), (−1,1), (2d−2 + 1,0) or (2d−2 − 1,1). We set the image of e to be one of these four ele-
ments, in turn. The action of e on D determines the coset e2 Z(D). As Z(D) has order 2, we get two
possibilities for E in each case.

Suppose that the image of e is (1,0). Then e2 ∈ Z(D) and E is the group of type (a) if e2 = 1, or
the group of type (b) if e2 = s1.

Suppose that the image of e is (−1,1). Then e2 ∈ {1, s1} and E is a dihedral group if e2 = 1, or a
semi-dihedral group, if e2 = s1.

From now on assume that d � 4. Suppose that the image of e is (2d−2 + 1,0). Then e2 = 1 or s1.
In either case we obtain a group which is isomorphic to one of type (e).

We claim that the image of e cannot equal (2d−2 − 1,1). For suppose otherwise. Then se = s1s−1.
So e inverts s2 ∈ 〈s2〉. On the other hand e2 = s2 or s−1

2 . So e centralizes s2. This contradiction proves
our claim. �
Corollary 4.2. E : D is non-split if and only if E is semi-dihedral. In all cases E/D ′ splits over D/D ′ .

Proof. The first statement follows from the third column of Table 1, below. For E\D contains no
involution if and only if E is of type (d). The second statement follows from the fact that if E is
semi-dihedral then D/D ′ ∼= Z2

2 and E/D ′ ∼= D8. �
Corollary 4.3. Let B be a 2-block with a dihedral defect group. Then all real height zero irreducible characters
in B have FS-indicator +1.

Proof. This follows from Theorem 5.6 of [11] and the corollary above. �
From now on, char(k) = 2 and B is a real 2-block that has a defect group D ∼= D2d . R. Brauer [3]

showed that B has 2d−2 + 3 irreducible characters. Four of these, denoted χ1,χ2,χ3,χ4, have
height 0. The remaining 2d−2 − 1 irreducible characters have height 1, and fall into d − 2 disjoint
families F0, . . . , Fd−3. The family Fi consists of 2i irreducible characters, all of whom are 2-conjugate
(i.e. conjugate via Galois automorphisms that fix all 2-power roots of unity).

Choose χ( j) ∈ F j , and set ε( j) = ε(χ( j)), for j = 0, . . . ,d − 3. Note that ε( j) does not depend on the
choice of χ( j) in F j , as Galois conjugation preserves FS-indicators. Also set εi = ε(χi), for i = 1,2,3,4.

We also fix a defect couple (D, E) of B . If B is principal, then E = D and we abuse notation by
saying that E is of type (a). Otherwise [E : D] = 2 and E is of type (a), (b), (c), (d) or (e), as in
Proposition 4.1.

We give representatives x for the E conjugacy classes in E\D in Table 1. We also indicate when
x is an involution.
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Table 1

E x ∈ E\D o(x) = 2 CD (x)

(a) or (b) e (a) D
s1e (a) D
si e,1�i�2d−2−1 s2e if (b) S
te (a) X2

ste (a) Y2

(c) or (d) site,0�i�2d−2−1 never S
e (c) S1

(e) e (e) Xd−1
s2e never Yd−1

si e,1�i�2d−3−1 never Sd−2
te (e) X2

ss2te never Y2

5. Local structure and real characters

We first enumerate the real subpairs and the real irreducible characters of height 1, in a 2-block
with dihedral defect group. Fix a Sylow B-subpair (D,bD), such that E � N∗(bD). So (D, E) is a defect
couple of bE C(D)

D .
For each Q � D , there is a unique subpair (Q ,bQ ) � (D,bD). The notation bQ is compatible with

that used in [3]. We use ∼ or ∼G to denote G-conjugacy of subpairs.

Lemma 5.1. Let Q � D, Q � S with |Q | = 2i . If Q � Xd−1 , then (Q ,bQ ) ∼D (Xi,bXi ). If Q � Yd−1 ,
then (Q ,bQ ) ∼D (Yi,bYi ). Along with these, the following generate all G-conjugacies among the B-subpairs
contained in (D,bD):

(i) If N(bX2 )/C(X2) ∼= S3 then (〈t〉,b〈t〉) ∼ (S1,bS1 ).
(ii) If N(bY2 )/C(Y2) ∼= S3 then (〈st〉,b〈st〉) ∼ (S1,bS1 ).

Following Brauer, case (aa) is the simultaneous occurrence of (i) and (ii); case (ab) is the occur-
rence of (i) but not (ii); case (ba) is the occurrence of (ii) but not (i); case (bb) is the occurrence of
neither (i) nor (ii). Then B has 3, 2 or 1 irreducible modules according as case (aa), (ab) (or (ba))
or (bb) occurs. Moreover, B is a nilpotent block in case (bb).

Lemma 5.2. If E is of type (c) or (d) then l(B) 	= 2.

Proof. There exists f ∈ E\D such that X f
2 = Y2. So C(X2)

f = C(Y2). But (X2,bX2 )
f = (Y2,bo

Y2
),

by Lemma 2.3. Thus N(bX2 )
f = N(bo

Y2
) = N(bY2 ). The conclusion now follows, as N(bX2 )/C(X2) ∼=

N(bY2 )/C(Y2). �
The following three lemmas can be proved by careful applications of Theorem 2.7, using the infor-

mation in Table 1. We omit the proofs.

Lemma 5.3. (D,bD) is real if and only if E is of type (a) or (b).

Lemma 5.4. (S1,bS1 ) is real. Moreover, it is strongly real if and only if E is not of type (d).

Lemma 5.5. Suppose that 1 < Q < D. Then (Q ,bQ ) is real if and only if one of the following holds:

• E is of type (a) or (b).
• E is of type (c) or (d) and (Q ,bQ ) ∼ (Si,bYi ) for some i.
• E is of type (e) and (Q ,bQ ) 	= (S,bS ).
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Of these, (Q ,bQ ) is strongly real in the following cases:

• E is of type (a).
• E is of type (b) and (Q ,bQ ) ∼ (Si,bSi ), for some i.
• E is of type (c) and (Q ,bQ ) ∼ (S1,bS1 ).
• E is of type (e) and (Q ,bQ ) ∼ (Si,bSi ) or (Xi,bXi ) for some i.

For d ∈ D we set bd := b〈d〉 . So (〈d〉,bd) � (D,bD) is a B-subsection. According to [3], if d 	= 1

then bd has a unique irreducible Brauer character θ . We use the notation d(d)
χθ for the generalized

decomposition number associated with χ ∈ Irr(B) i.e. we suppress the dependence of θ on d. The
associated B-column is (d, θ).

Lemma 5.6. The following generate all D-conjugacies among B-subsections:

• (d,bd) ∼ (d−1,bd), for all d ∈ D.
• If d ∈ Xn−1\S1 then (d,bd) ∼ (t,bt).
• If d ∈ Yn−1\S1 then (d,bd) ∼ (st,bst).

Together with D-conjugacies, the following generate all G-conjugacies among B-subsections:

(i) If N(bX2 )/C(X2) ∼= S3 then (t,bt) ∼ (s1,bs1 ).
(ii) If N(bY2 )/C(Y2) ∼= S3 then (st,bst) ∼ (s1,bs1 ).

Proof. Suppose that d ∈ S\S1. Then D � N(bx) and dt = d−1. So (d,bd)
t = (d−1,bd). The first state-

ment follows from this. This was already proved by Brauer in [3, (4.16)]. The next two statements
follow from the discussion before Lemma 5.1. The remaining statements follow from Proposition (4A)
of [3]. �

Brauer showed in [3] that B has 2d−2 + 3 columns. Exactly 5 of these are 2-rational, namely those
of the form (d, θ), with d = 1, s1, s2, t or st and θ ∈ IBr(C(d)). There are d − 2 families, with repre-
sentatives {(si, θ) | i = 2, . . . ,d − 1}. The family of (si, θ) contains the 2i−2 columns {(sr

i , θ) | 1 � r �
2i−1 − 1, r odd}, which form a single 2-conjugate orbit. Recall the notation χi,χ

(i) for the irreducible
characters in B . The 5 irreducible characters which are 2-rational are χ1,χ2,χ3,χ4, and χ(0) .

We can now prove the main result of this section.

Theorem 5.7. The number of real 2-rational irreducible characters in B equals the number of real 2-rational
columns in B. For d � 4, all irreducible characters in F0, . . . , Fd−4 are real, while all irreducible characters
in Fd−3 are real if and only if E is not of type (e).

Proof. The first statement is trivial if d = 3. So we assume that d � 4.
Let m be the largest odd divisor of |G| and let ω be a primitive (2d−1m)-th root of unity. Then

ω = ω2ω2′ , where ω2 is a primitive 2d−1th root of unity and ω2′ is a primitive mth root of unity.
Let γ ,σ ∈ Gal(Q(ω)/Q) be such that ωγ = ω5

2ω2′ and ωσ = ω. Then γ has order 2d−3 and σ is an

involution. Set τ := γ 2d−4
. So τ is the unique involution in 〈γ 〉.

Set G := 〈γ 〉 × 〈σ 〉 and let α ∈ G . There is an integer (α) such that ωα = ω(α) . For g ∈ G , set
gα := g(α) . If θ is a character (ordinary or Brauer) of a subgroup of G , define θα by θα(g) := θ(gα),
for all g in the domain of θ . Then set (d, θ)α := (dα, θα). In this way G acts on the ordinary irreducible
characters and on the columns of B . Note that a character is 2-rational if it is fixed by γ , and real if
it is fixed by σ .

It can be checked that d(xα)
χαθα = d(x)

χθ , for all α ∈ G . As the generalized decomposition matrix is non-
singular, it follows that the characters of G acting on the irreducible characters and on the columns
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coincide. We cannot use Brauer’s permutation lemma to deduce that the permutation actions are
isomorphic, as G is not cyclic. However, we can prove this fact using a careful case-by-case analysis.

Let i = 1, . . . ,d − 1. Lemmas 5.5 and 5.6 imply that (si, θ) is not real if and only if E is of type (e)
and i = d − 1. In particular the 2-rational columns (s1, θ) and (s2, θ) are necessarily real. Moreover,
B has at least one real irreducible Brauer character (this holds for any real block).

We distinguish 5 cases:
Case (I) is that E is not of type (e) and all 2-rational columns are real. Then all columns are real.

We conclude from Lemma 1.1 that all irreducible characters in B are real.
Case (II) is that E is not of type (e) and two 2-rational columns are non-real. Then there are two

non-real columns. We deduce from Lemma 1.1 that there are two non-real irreducible characters.
Consider the action of 〈γ σ 〉 on columns and on irreducible characters. The stabilizer of a non-real
column is 〈γ 2〉. The remaining 2-rational columns are fixed by γ σ . For i = 3, . . . ,d − 1, the stabilizer

of (si, θ) is 〈γ 2i−2 〉. We deduce that exactly two orbits on the columns have stabilizer 〈γ 2〉. It then
follows from Brauer’s permutation lemma that two orbits on the irreducible characters have stabi-
lizer 〈γ 2〉. A 2-rational orbit has stabilizer 〈γ 2〉 if and only if it is non-real. There is at most one such
orbit. Suppose that a family Fi has stabilizer 〈γ 2〉, for i � 2. Then |Fi | � [〈γ 〉 : 〈γ 2〉] = 2. So i = 2. We
conclude that there is a pair of non-real 2-rational characters in B . Moreover, F1 has stabilizer 〈γ 2〉,
whence it is real.

Case (III) is that E is of type (e) and all 2-rational columns are real. Then there are exactly 2d−3

non-real columns, namely the 2-conjugates of (s, θ). We deduce from Lemma 1.1 that there are 2d−3

non-real irreducible characters. As 〈σ 〉 acts non-trivially on the 2-conjugates of (s, θ), this column
has stabilizer 〈τσ 〉 in G . All other columns are fixed by τσ . So by Brauer’s permutation lemma all
irreducible characters are 〈στ 〉-invariant. Let χ ∈ Fd−3. Then χσ = χτ 	= χ . So Fd−3 is a non-real
family of characters. This accounts for all non-real irreducible characters in B .

Case (IV) is that d = 4, E is of type (e) and exactly two 2-rational columns are non-real. Thus B has
two non-real 2-rational columns and 2 non-real 2-irrational columns. It then follows from Lemma 1.1
that B has 4 non-real irreducible characters. As B has 4 irreducible characters of height 0 and 3 of
height 1, it follows that B has a pair of non-real characters of height 0 and another pair of height 1.
The latter belong to F1.

Case (V) is that d > 4, E is of type (e) and exactly two 2-rational columns are non-real. So B has
2d−3 + 2 non-real columns and hence 2d−3 + 2 non-real irreducible characters. We consider the ac-
tion of 〈γ σ 〉 on columns and on irreducible characters. Just as in case (II), there are two orbits on the
columns whose stabilizer is 〈γ 2〉 (as d > 4, the stabilizer 〈τσ 〉 of (sd−1, θ) in 〈γ σ 〉 has trivial inter-
section with 〈γ σ 〉). Again just as in case (II), we conclude that there is a pair of non-real 2-rational
characters in B . Suppose that some character in Fi has a trivial stabilizer. Then |Fi | � |〈γ σ 〉| = 2d−3.
So Fi = Fd−3. Let χ ∈ Fi . Then χσ = χγ −1 	= χ . So Fd−3 contains 2d−3 non-real characters. As we
have accounted for all 2d−3 + 2 non-real irreducible characters in B , the proof is complete. �
6. Morita equivalence classes

Karin Erdmann classified the possible blocks with dihedral defect group, up to Morita equivalence,
in [8]. Her results are summarized in the table on [8, pp. 294–296]. It is not known if each of the
possible 8 Morita equivalence classes occur for all dihedral groups.

Let B be a 2-block with a dihedral defect group D , where |D| = 2d . Then by [3] k(B) = 2d−2 + 3
and l(B) � 3. If l(B) = 1 then B is a nilpotent block. In particular B is Morita equivalent to kD . This
corresponds to Brauer’s case (bb). The case l(B) = 3 corresponds to Brauer’s case (aa). Then there
are three possible Morita equivalence classes. The principal 2-blocks of the groups L2(q) with q ≡ 1
or 3 mod 4, and the principal block of the alternating group A7 provide examples of each class. As
Erdmann remarks on p. 293 of [8], her proof in [9] that d = 3 for the last class is erroneous. On the
other hand, there are no known examples (at least to this author) of such blocks with d > 3.

Finally we consider when l(B) = 2, which corresponds to Brauer’s cases (ab) and (ba). Then there
are quivers Q 1, Q 2, a parameter c = 0,1, and ideals Ii(c) � kQ i , i = 1,2 inside the ideal of paths of
length � 2, such that B is Morita equivalent to exactly one of the 4 algebras kQ i/Ii(c). By [10], the
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case kQ 2/I2(0) occurs for the principal blocks of certain quotients of the unitary groups GU2(q), when
q ≡ 3 mod 4. The preprint [15] claims that both kQ 1/I1(1) and kQ 2/I2(1) occur for the principal
blocks of PGL2(q), corresponding to q ≡ 1 or −1 mod 8, respectively. Note that in these cases d � 4.
It turns out that in all cases the decomposition matrix of B depends on Q i , but not on c. For this
reason, we will refer to B as being of type PGL2(q), with q ≡ 1 mod 4, for Q 1, or q ≡ 3 mod 4, for Q 2.

The papers [3–6,9] give more information on the decomposition matrices and modules of these
blocks. Derived equivalences between the block algebras are discussed in [14,17].

We obtain the form of the generalized decomposition matrices given in the next lemma using [3,
5,9]. In particular, we make use of the parameters δ1, δ2, δ3, δ4 introduced in Proposition (6C) of [3],
and the further information given by Theorem 5 and Propositions (6H) and (6I) of [3]. The δi are
evaluated when l(B) = 2 in [5] (implicitly) and when l(B) = 3 in [9]. Entries that we don’t care to
specify are denoted by ∗.

Lemma 6.1. For d � 3, a block B with a dihedral defect group of order 2d has one of 6 possible generalized
decomposition matrices. Allowing i to range over 0, . . . ,d − 4, and j over 2, . . . ,d − 2, there are signs ε, ε′, ε j

such that this matrix has the form:

(i) B is nilpotent and has one irreducible module M1 .

M1 s1 t st s j s

χ1 1 ε 1 ε′ ε j 1
χ2 1 ε −1 −ε′ ε j 1
χ3 1 ε 1 −ε′ ε j −1
χ4 1 ε −1 ε′ ε j −1
χ(i) 2 2ε 0 0 ∗ ∗
χ(d−3) 2 −2ε 0 0 ∗ ∗

(ii) B has two irreducible modules M1, M2 and is of type PGL(2,q) with q ≡ 1 mod 4.

M1 M2 s1 t s j s
χ1 1 0 ε 1 ε j 1
χ2 1 1 ε −1 ε j 1
χ3 1 0 ε −1 ε j −1
χ4 1 1 ε 1 ε j −1
χ(i) 2 1 2ε 0 ∗ ∗
χ(d−3) 2 1 −2ε 0 ∗ ∗

(iii) B has two irreducible modules M1, M2 and is of type PGL(2,q) with q ≡ 3 mod 4.

M1 M2 s1 t s j s
χ1 1 0 −ε 1 −ε j −1
χ2 1 1 ε −1 ε j 1
χ3 1 0 −ε −1 −ε j 1
χ4 1 1 ε 1 ε j −1
χ(i) 0 1 2ε 0 ∗ ∗
χ(d−3) 0 1 −2ε 0 ∗ ∗
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(iv) B has 3 irreducible modules M1, M2, M3 . If d = 3, then B is Morita equivalent to the principal block
of A7 .

M1 M2 M3 s1 s j s
χ1 1 0 0 −ε −ε j −1
χ2 1 1 0 ε ε j 1
χ3 1 1 1 ε ε j −1
χ4 1 0 1 −ε −ε j 1
χ(i) 0 1 0 2ε ∗ ∗
χ(d−3) 0 1 0 −2ε ∗ ∗

(v) B has 3 irreducible modules M1, M2, M3 and is Morita equivalent to the principal block of PSL(2,q), with
q ≡ 1 mod 4.

M1 M2 M3 s1 s j s
χ1 1 0 0 ε ε j 1
χ2 1 1 1 ε ε j 1
χ3 1 1 0 ε ε j −1
χ4 1 0 1 ε ε j −1
χ(i) 2 1 1 2ε ∗ ∗
χ(d−3) 2 1 1 −2ε ∗ ∗

(vi) B has 3 irreducible modules M1, M2, M3 and is Morita equivalent to the principal block of PSL(2,q), with
q ≡ 3 mod 4.

M1 M2 M3 s1 s j s
χ1 1 0 0 −ε −ε j −1
χ2 1 1 1 ε ε j 1
χ3 0 1 0 ε ε j −1
χ4 0 0 1 ε ε j −1
χ(i) 0 1 1 2ε ∗ ∗
χ(d−3) 0 1 1 −2ε ∗ ∗

Proof. Brauer showed in [3] that d(s1)
χ,θ = ±1 or ±2, depending on whether χ has height 0 or 1.

Moreover, d(s1)
χ,θ is constant on each of the families of 2-conjugate characters F1, . . . , Fd−3. If B is of

type (bb) or (ab), and x = t, st , then d(x)
χ,θ = ±1 or 0, depending on whether χ has height 0 or 1. The

columns for s1, t, st, s j, s can then be recovered, up to the signs ε, ε′, ε j , and possible rearranging of
the χi , using orthogonality with the columns of the decomposition matrix of B . �
Corollary 6.2. Suppose that B has a dihedral defect group of order at least 16 and that all height 1 irreducible
characters in B are real-valued. Then at least one of these characters has FS-indicator +1.

Proof. The multiplicity of an irreducible B-module M in kIB is given by
∑

χ∈Irr(B) ε(χ)dχ,M . In par-
ticular this sum is non-negative. The hypothesis on the defect group implies that B has at least 3
irreducible characters of height 1. We assume that all irreducible characters in B of height 1 have
FS-indicator −1, and derive a contradiction.

Suppose that B is nilpotent. So M = M1. The contribution of the height zero characters to the
above sum is at most +4. On the other hand, the height 1 characters contribute an integer � −6,
whence the sum is negative.
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Suppose that B is not nilpotent. Take M = M2. The contribution of the height zero characters to
the above sum is at most +2. On the other hand, the height 1 characters contribute an integer � −3,
whence the sum is negative. �

We will use the following rather technical result:

Lemma 6.3. Let f be a C-valued function on Irr(B) that is constant on each of F1, . . . , Fd−3 . Then

∑
χ∈Irr(B)

f (χ)d(s2)
χ,θ =

4∑
i=1

f (χi)d
(s2)
χi ,θ

+ f (χ(0))d(s2)

χ(0),θ
.

Proof. Let 1 � r � d − 3. Then ζ + ζ−1 takes on 2r−1 different values as ζ ranges over the primitive
2r+1th roots of unity. A careful reading of Section 6 of [3] shows that for each ζ there are exactly

two irreducible characters χ ∈ Fr with d(s2)
χ,θ = ζ + ζ−1. Now f (χ) is constant on Fr . So the net

contribution of the two characters associated with each of ζ and −ζ to
∑

χ∈Irr(B) f (χ)d(s2)
χ,θ is 0. The

lemma follows from this. �
7. Type (a): Totally split extended defect groups

In this section E = D ×〈e〉 i.e. e ∈ C(D) and e2 = 1G . This includes the principal 2-block case, when
e = 1G . By Theorem 5.7, all height 1 irreducible characters in B are real-valued. Using Lemma 5.5 and
Theorem 5.7, we can show that if B is nilpotent then all its irreducible characters are real valued. This
also follows from Lemma 2.2 of [21].

Lemma 7.1. There is an indecomposable B-module MD such that MD has vertex D and MD ⊕ MD is the sum
of all components of kIB that have vertex D. Moreover ν(dim(MD)) = ν[G : D].

Proof. Let b be the 2-block of N(D) that is the Brauer correspondent of B . Then b is real and has
defect couple (D, E). Now N(D) acts trivially on Z(D). So by Lemma 3.4, there is a self-dual irre-
ducible b-module I , such that the sum of all components of kIN(D)b that have vertex D is isomorphic
to I ⊕ I . Set MD as the Green correspondent of I , with respect to (G, D,N(D)). Then the sum of all
components of kIB that have vertex D is isomorphic to MD ⊕ MD .

As I is irreducible and projective as N(D)/D-module, ν(dim(I)) = ν[N(D) : D]. Now I↑G =
MD ⊕ W , where every component of W has a vertex that is a proper subgroup of D . In particu-
lar ν(dim(W )) > ν[G : D]. We conclude that ν(dim(MD)) = ν[G : D]. �
Lemma 7.2. There are indecomposable B-modules M X2 , MY2 such that M X2 ⊕ MY2 is the sum of all compo-
nents of kIB that have vertex X2 or Y2 . Here MV has vertex B-subpair (V ,bV ), for V = X2, Y2 .

Proof. Recall that X2 is a Klein-four subgroup of D . Set N := N(X2) and C := C(X2). Then bX2 is real,
with defect couple (X2, X2 × 〈e〉). As bX2 is nilpotent, Theorem 1.7 of [21] implies that kIC bX2

∼= R4,
where R is the unique irreducible bX2 -module. Let N(R) denote the common inertia group of bX2

and R in N .
Set b := bN

X2
. Then b is real, with defect couple (X3, X3 × 〈e〉). By Lemma 7.1, there is an inde-

composable b-module M X3 such that M X3 ⊕ M X3 is the sum of all components of kIN b that have
vertex X3. We note that kIC b is the sum of all components of kIN b that have vertex X2 or X3.

Suppose first that N(R)/C ∼= Z2. Then R has a unique extension to N(R) and b is nilpotent. Let I be
the unique irreducible b-module. Then R occurs once in the semi-simple module I↓C . As kIC bX2

∼= R4,
it follows that [kIC : I] = 4. Now ν(dim(M X3 )) = ν[N : X3] = ν(dim(I)). So [M X3 : I] is odd. The only
possibility is that M X3

∼= I . We may now write kIC b ∼= I ⊕ I ⊕ W , where [W : I] = 2, and every com-
ponent of W has vertex X2. As I does not itself have vertex X2, it follows that W is indecomposable.
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Suppose then that N(R)/C ∼= S3. Then two irreducible N(R)-modules lie over R . So b has two
irreducible modules I1 and I2. We may assume that I1 has vertex X3 and I1↓C ∼= R , while I2 has
vertex X2 and I2↓C ∼= R ⊕ R . By considering the Clifford theory of the ordinary characters of b, we
see that b is Morita equivalent to the principal 2-block of PGL(2,3) ∼= S4. Arguing as in the previous
paragraph, M X3

∼= I1 and kIC b ∼= I1 ⊕ I1 ⊕ W , where W is indecomposable with vertex X2. With more
work, we can even show that W ∼= I2.

Regardless of the structure of N(R)/C , let M X2 denote the Green correspondent of W . Then M X2 is
the unique component of kIB that has vertex B-subpair (X2,bX2 ). Analogous arguments show that
kIB has a unique component MY2 that has vertex B-subpair (Y2,bY2 ). But Lemma 5.1 shows that
(X2,bX2 ) � (Y2,bY2 ). So M X2 � MY2 . �
Theorem 7.3. kIB ∼= MD ⊕ MD ⊕ M X2 ⊕ MY2 . If B is nilpotent then all its irreducible characters have FS-
indicator +1, MD is irreducible and M X2 , MY2 are each of composition length 2d−2 .

Proof. Suppose first that B is nilpotent, with unique irreducible module M1. Let θ be the Brauer
character of M1. From the discussion in Section 1, M1 occurs with multiplicity

∑
ε(χ)dχ,θ in kIB .

By part (i) of Lemma 6.1, this is at most 4 + 2
∑d−3

j=0 2 j = |D|/2 + 2. Now [MD : M1] � 1 and by con-
sideration of vertices, |D|/4 divides both [M X2 : M1] and [MY2 : M1]. It then follows from Lemmas 7.1
and 7.2 that [kIB : M1] � |D|/2 + 2. All statements of the theorem now follows for nilpotent B .

Now let B be of arbitrary Morita equivalence type and let (V ,bV ) be a vertex B-subpair of a
component of kIB . Lemmas 3.1 and 5.1 imply that (V ,bV ) is a vertex bx-subpair of a component
of kIC(x)bx , where x = s1, t or st . Now bs1 is real and nilpotent, with defect couple (D, D × 〈e〉).
So by the previous paragraph, (V ,bV ) is conjugate to (D,bD), (X2,bX2 ) or (Y2,bY2 ), if x = s1. The
block bt is real with defect couple (X2, X2 × 〈e〉) and Sylow B-subpair (X2,bX2 ). As X2 is a Klein-
four group, Theorem 1.7(i) of [21] implies that (V ,bV ) is conjugate to (X2,bX2), if x = t . In the same
way, (V ,bV ) is conjugate to (Y2,bY2 ), if x = st . The first statement of the Theorem now follows from
Lemmas 7.1 and 7.2. �
Theorem 7.4. Let χ ∈ Irr(B). Then ν(χ) = +1, unless B is of type (vi) and χ = χ3 or χ4; in that case χ3 = χ4 .

Proof. As bs1 is nilpotent, real, and has defect couple (D, D ×〈e〉), Theorem 7.3 shows that ε(ψ) = +1,

for all ψ ∈ Irr(bs1 ). From our knowledge of d(s1)
ψ,θ , and the positivity assertion in Lemma 1.4, we get

∑
ψ∈Irr(bs1 )

ε(ψ)d(s1)
ψ,θ = ±(

4 + 2
(
2d−3 − 1

) − 2 . 2d−3) = 2. (2)

Let d � 4. Then bs2 is real, with defect couple (S, S × 〈e〉). Theorem 1.6 of [21] shows that bs2 has
two real-valued irreducible characters, ψ1 and ψ2. Moreover, ε(ψi) = +1, for i = 1,2. It follows that

∑
ψ∈Irr(bs2 )

ε(ψ)d(s2)
ψ,θ = ±ε(ψ1) ± ε(ψ2)

= +2, by Lemma 1.3, as s2 = (se)2. (3)

Suppose first that B has type (ii) or (v). Lemma 6.1 gives the form of the generalized decomposition
matrix of B . Applying Lemma 1.4 to the column d(s1)

χθ , equality (2) gives

2 =
∑

χ∈Irr(B)

ε(χ)d(s1)
χ,θ = ε

(
4∑

i=1

εi + 2
d−4∑
j=0

ε( j)2 j − 2ε(d−3)2d−3

)
.
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In particular
∑4

i=1 εi ≡ 0 mod 4. It then follows from Corollary 4.3 that εi = 1, for i = 1,2,3,4. Then
the above equation rearranges to

d−4∑
j=0

ε( j)2 j − ε(d−3)2d−3 = ε − 2 ∈ {−1,−3}.

By Lemma 1.5 the two solutions: ε = +1 and ε( j) = +1, for j � 0, or ε = −1, ε(0) = −1 and ε( j) = +1
for j > 0, are the only ones. We claim that the latter solution does not occur. For, taking f (χ) = d(s1)

χ,θ

in Lemma 6.3, we get
∑

χ∈Irr(B) d(s1)
χ,θd(s2)

χ,θ = 4εεd−2 + 2εd(s2)

χ(0),θ
. This sum is zero, by column orthogo-

nality. So d(s2)

χ(0),θ
= −2εd−2. Now

2 =
∑

ψ∈Irr(bs2 )

ε(ψ)d(s2)
ψ,θ =

∑
χ∈Irr(B)

ε(χ)d(s2)
χ,θ = εd−2

(
4 − 2ε(0)

)
,

by (3), Lemma 1.4, and an application of Lemma 6.3, with f (χ) = ε(χ). Thus εd−2 = +1 and
ε(0) = +1, which proves the claim.

Suppose then that B has type (iii), (iv) or (vi). Then from the decomposition matrices given in
Lemma 6.1, we have

∑4
i=1 εid

(s1)
χ,θ = 0,±2. However, just as above, this sum is ≡ 0 modulo 4. So

it must equal 0. If B is of type (iii) or (iv), we get εi = +1, for all i; if B is of type (vi), we get
ε1 = ε2 = +1 and ε3 = ε4 = 0.

From knowledge of d(s1)
χ,θ , Lemmas 1.4, (2) and the work above give

2ε

(
d−4∑
j=0

ε( j)2 j − ε(d−3)2d−3

)
= +2.

Thus ε( j) = −ε = ∓1, for all j = 0, . . . ,d − 3.
We claim that ε = −1 and ε( j) = +1, for all j. If |D| � 16, this is a consequence of Corollary 6.2.

So from now on we assume that |D| = 8 and ε(0) = −1, and argue to a contradiction.
Recall that kIB = M2

D ⊕ M X2 ⊕ MY2 . Moreover, M X2 � MY2 , as (X2,bX2 ) � (Y2,bY2 ). So M X2 and
MY2 are self-dual. Also [MD : M1] is odd. We claim that MD ∼= M1. Otherwise MD is reducible,
whence by Lemma 1.6, M2

D has a composition factor that occurs with multiplicity � 4. Using (1),
and Lemma 6.1, [kI : M1] � 4, [kI : M2] = 1 and [kI : M3] � 2. So [MD : M1] = 2. This contradiction
proves our claim.

If B is of type (iii), then [M X2 + MY2 : M1] = 2 and [M X2 + MY2 : M2] = 1, using (1) and Lemma 6.1.
We choose notation so that M X2 is irreducible. So M X2

∼= M2. Now the O-lift of M X2 has char-
acter χ(0) . So χ(0) appears with multiplicity 1 in the permutation character of OI. But then
ε(χ(0)) = +1, contrary to hypothesis.

If B is of type (iv), then [M X2 + MY2 : M1] = 2, [M X2 + MY2 : M2] = 1 and [M X2 + MY2 : M2] = 2,
using (1) and Lemma 6.1. Choose notation so that [M X2 : M3] 	= 0. Then χ3 or χ4 occurs in the
character of the O-lift of M X2 . So [M X2 : M1] 	= 0. As M X2 is reducible, Lemma 1.6 implies that
[M X2 : M1] = 2. Then [MY2 : M1] = 0, whence [MY2 : M3] = 0. Thus MY2

∼= M2, leading to the con-
tradiction as in the previous paragraph.

Finally, if B is of type (vi), then [M X2 + MY2 : M1] = 0, [M X2 + MY2 : M2] = 1 and
[M X2 + MY2 : M2] = 1, by (1) and Lemma 6.1. We may choose notation so that M X2

∼= M2 and
MY2

∼= M3. But χ3 = χ4. So M∗
2

∼= M3. We deduce that M X2
∼= M∗

X2
∼= MY2 , which is a contradic-

tion. �
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8. Type (b) extended defect groups

In this section E = D〈e〉, where e2 = s1 and e ∈ C(D). Table 1 shows that the involutions in E\D
form a single E-class, consisting of {s2e, s−1

2 e}. Theorem 5.7 shows that all height 1 irreducible char-
acters in B are real. We require the following subsidiary result:

Lemma 8.1. Let b be a real nilpotent 2-block of a finite group H that has defect couple (Q , Q × 〈r〉), where
Q is a Klein-four or dihedral group. Suppose that ClH (r) ∩ Q r = {r}. Then kClH (r)b is irreducible.

Proof. We prove the result for the case that Q ∼= Z2
2. The case that Q is dihedral follows from similar

arguments. Theorem 1.7 of [21] implies that kIH b ∼= I4, where I is the unique irreducible b-module.
So it is enough to show that kClH (r)b is indecomposable. Then by the Green correspondence theorem,
we may assume that H = NH (Q ).

Let b1 be a block of C := CH (Q ) that is covered by b. Then b1 is nilpotent, real, and has defect
couple (Q , Q × 〈r〉). So kIC b1 ∼= I4

1, where I1 is the unique irreducible b1-module. The hypothesis
implies that Q r meets 4 distinct conjugacy classes of involutions of C . Using Theorem 3.2, we deduce
that kClC (qr)b1 = I1, for each q ∈ Q .

As NH (b1) = C , we have I = I1↑H and hence [I↓C : I1] = 1. We then conclude from the previous
paragraph that kClH (r)b = I . �

Let X/Y /Z denote a module with successive Loewy factors X, Y , Z .

Theorem 8.2. B is of type (i), (ii) or (v) and kIB is indecomposable with vertex S. All 2d−3 irreducible charac-
ters in Fd−3 have FS-indicator −1 and the remaining 2d−3 +3 irreducible characters in B have FS-indicator +1.
Moreover by the type of B we have:

(i) kIB ∼= M1/M1 .
(ii) kIB ∼= M1/M2/M1 .
(v) kIB ∼= M1/(M2 ⊕ M3)/M1 .

Proof. Suppose that (t,bt) � (s1,bs1 ). Then [3] shows that bt = bC(t)
X2

and both bX2 and bt have defect
group X2. Lemma 5.5 implies that bX2 is real, with defect couple (X2, X2〈e〉). Then by the results in
Section 1, bt is real, and also has defect couple (X2, X2〈e〉). As X2〈e〉 does not split over X2, it follows
from Theorem 3.2 that kIC(t)bt = 0. Similarly (st,bst) ∼ (s1,bs1 ) or kIC(st)bst = 0.

Set H := C(s1). Then the first paragraph implies that bs1 is the unique 2-block of H such that
kIH bs1 	= 0 and bG

s1
= B .

Table 1 shows that there is a single E-class of involutions in E\D , consisting of {s2e, s−1
2 e}. It

then follows from Theorem 3.2 that kIB = kClG(s2e)B . Moreover, as S = CD(s2e), each component
of kIB has vertex Si , for some i > 0, and at least one component has vertex S . As N(Si) � H , Green
correspondence induces a bijection between the components of kIB that have vertex Si , and the
components of kClH (s2e)bs1 that have vertex Si .

Now bs1 is nilpotent and real, and has defect couple (D, D〈e〉). Let I be the unique irreducible bs1 -
module and set H := H/〈s1〉. Now bs1 dominates a unique block b of H , and b is nilpotent. Moreover,
Lemma 1.7 implies that b is real, and has defect couple (D, D × 〈e〉). Table 1 shows that e, s2e, te
and ste represent the distinct E-classes of involutions in E\D . Of these, only s2e is the image of an
involution in H . We conclude from Lemma 8.1 that kClH (s2e)b ∼= I .

Now [NH (s2e) : CH (s2e)] = 2, and NH (s2e) is the preimage of CH (s2e) in H . Then as kClH (s2e)b ∼= I ,
we get an exact sequence:

0 → I → kIH b → I → 0, as kH-modules.
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We cannot have kIH b ∼= I ⊕ I , as I has no vertex contained in S . So kIH bs1 is indecomposable, with
vertex S . We conclude from Lemma 3.1 that kIB is indecomposable, has vertex S , and is in Green
correspondence with kIH bs1 .

We have [kIH bS1 : I] = 2. Let θ be the Brauer character of I . We temporarily apply the FS-indicator
notation εi, ε

( j) to Irr(bs1 ). Then from (1) and the decomposition matrix of bs1 we get

∑
ψ∈Irr(bs1 )

ε(ψ)dψ,θ =
4∑

i=1

εi + 2
d−3∑
j=0

ε( j)2 j = 2.

The only solution is εi = 1, for i = 1,2,3,4, ε( j) = 1, for j = 0, . . . ,d − 4 and ε(d−3) = −1. In fact, all
irreducible characters in b have FS-indicator 1, and these account for all characters in Irr(bs1 ) that do
not belong to the family Fd−3. We now use Lemma 6.1 to compute

∑
ψ∈Irr(bs1 )

ε(ψ)d(s1)
ψ,θ = ±(

4 + 2
(
2d−3 − 1

) − (−1)2 . 2d−3) = ±(
2d−1 + 2

)
.

It then follows from Lemma 1.3, and the fact that s1 = e2, that

∑
χ∈Irr(B)

ε(χ)d(s1)
χ,θ = 2d−1 + 2. (4)

We claim that B is not of type (iii). For otherwise εi = +1, for i = 1,2,3,4, and we use the
decomposition matrix of B to compute

∑
χ∈Irr(B)

ε(χ)d(s1)
χφ = 2ε

d−3∑
j=0

ε( j)2 j < 2d−1.

This contradicts (4), proving our claim. Similar contradictions rule out the Morita types (iv) and (vi).
Now suppose that B is of type (i), (ii) or (v). Then from the decomposition matrix of B , and (4)

we get

ε

(
4∑

i=1

εi + 2
d−4∑
j=0

ε( j)2 j − 2ε(d−3)2d−3

)
=

∑
χ∈Irr(B)

ε(χ)d(s1)
χφ = 2d−1 + 2.

In particular
∑

εi ≡ 0 mod 4. As εi � 0, we get εi = +1, for i = 1,2,3,4. Substituting these values
into the equation above, we get

d−4∑
j=0

ε( j)2 j − ε(d−3)2d−3 =
{

2d−2 − 1 if ε = +1;
−2d−2 − 3 if ε = −1.

As the left-hand side has absolute value < 2d−2, we deduce that ε = +1. The resulting equation has
the unique solution ε( j) = +1, for j = 0, . . . ,d − 4 and ε(d−3) = −1.

Let θ1 be the Brauer character of M1. Then (1) gives

[kI : M1] =
∑

χ∈Irr(B)

ε(χ)dχ,θ1 = 4 + 2
(
2d−3 − 1

) − 2 . 2d−3 = 2.

It follows from this that kIB = M1/M1, if B is nilpotent.
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Now suppose that B has type (ii) or (v). Let θ2 be the Brauer character of M2. Using (1) and the
decomposition matrix of B , we have

[kIB : M2] =
∑

χ∈Irr(B)

ε(χ)dχ,θ2 = 2 + (
2d−3 − 1

) − 2d−3 = 1.

In the same way [kIB : M3] = 1, if B is of Morita type (v). We deduce the structure of the successive
Loewy layers of kIB from these facts. �
9. Type (c): Dihedral extended defect groups

In this section B is a real non-principal 2-block with a dihedral defect group D and a dihedral
extended defect group E = D〈e〉, where e has order 2 and s = (te)2. We denote the projective cover
of a module M by P (M).

By Theorem 5.7, all height 1 irreducible characters in B are real-valued. Now s1 is not the square
of an element of E\D . It then follows from Lemma 1.3 that

∑
χ∈Irr(B)

ε(χ)d(s1)
χθ = 0. (5)

Lemma 9.1. B is not of type (ii), (iii) or (iv).

Proof. Lemma 5.2 implies that B is not of type (ii) or (iii).
Suppose that B is of type (iv). An examination of the decomposition matrix of B shows that

all three irreducible B-modules are self-dual. It then follows from Theorem 5.7 that all irreducible
characters in B are real-valued. Corollary 4.3 shows that εi = +1, for i = 1,2,3,4. We can now use
the decomposition matrix of B to compute

∑
χ∈Irr(B)

ε(χ)d(s1)
χθ = 2ε

(
d−4∑
j=0

ε( j)2 j − ε(d−3)2d−3

)
≡ 2 mod 4.

This contradiction of (5) completes the proof. �
Theorem 9.2. kIB is indecomposable, has vertex Z(D), and is isomorphic to its Heller translate. Moreover, by
the Morita type we have:

(i), (v) Without loss of generality χ3 = χ4 . All other irreducible characters in B have FS-indicator +1 and
P (kIB) ∼= P (M1);

(vi) All irreducible characters in B have FS-indicator +1, and P (kIB) ∼= P (M1) ⊕ P (M2) ⊕ P (M3).

Proof. There is a single E-conjugacy class of involutions in E\D , with representative e. Now CD(e) =
Z(D) = 〈s1〉 is cyclic of order 2. So by Theorem 3.2, all components of kIB have vertex Z(D).

Suppose first that B is nilpotent. Lemmas 5.5 and 5.6 show that (t,bt) and (st,bst) are not real.
Then by Theorem 5.7, B has two non-real irreducible characters of height zero. We choose nota-
tion so that χ3 = χ4. Let θ1 be the Brauer character of M1 and let M be a component of kIB .
Now dim(M) = [M : M1]dim(M1), and ν dim(M1) = ν[G : D]. So ν dim(M) = ν[M : M1] + ν[G : D].
As M has vertex Z(D), we have ν dim(M) � ν[D : Z(D)] + ν[G : D]. We deduce that 2d−1 = [D : Z(D)]
divides [M : M1]. On the other hand, [kIB : M1] = ∑

χ∈Irr(B) ε(χ)dχ,θ1 , which is � 2d−1 + 2, from the

decomposition matrix of B . We conclude that [M : M1] = 2d−1, that kIB = M is indecomposable, and
that all irreducible characters in B , apart from χ3,χ4, have FS-indicator +1. It is easy to see that kIB
is the unique B-module that has vertex Z(D). So kIB coincides with its Heller translate �(kIB). Now
from the Cartan matrix of B , we have [P (M1) : M1] = 2d . It follows that P (kIB) ∼= P (M1).
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Suppose that B is of type (v) or (vi). Then (t,bt) ∼ (s1,bs1 ) and (st,bst) ∼ (s1,bs1 ). So bs1 is the
unique 2-block of H := C(s1) with bG

s1
= B . The Green correspondence theorem establishes a bijection

between the components of kIB and the components of kIH bs1 . Applying the previous paragraph
to bs1 , we see that kIH bs1 is indecomposable and kIH bs1 = �(kIH bs1 ). So kIB is indecomposable
and kIB = �(kIB). We write P (kIB) ∼= P (M1)

a ⊕ P (M2)
b ⊕ P (M3)

c , where a,b, c � 0.
We now specialize to the case that B has Morita type (v). We see from the decomposition matrix

of B , and (5) that

4∑
i=1

εi + 2
d−4∑
j=0

ε( j)2 j − 2ε(d−3)2d−3 = 0.

The only solution is ε1 = ε2 = 1, χ3 = χ4, and ε( j) = 1, for j = 0, . . . ,d − 3. As �(kIB) = kIB , we can
compute [kIB : Mi] in terms of the unknown exponents a,b, c, and compare these with the values
given by (1):

M1 M2 M3∑
ε(χ)dχ,Mi 2d−1 2d−2 2d−2

P (IB) 2d−1(a + (b+c)
2 ) 2d−2(a + (b+c)

2 ) + b
2 2d−2(a + (b+c)

2 ) + c
2

The only solution is a = 1, b = c = 0. So P (kIB) ∼= P (M1).
Finally, we consider the case that B is of Morita type (vi). We see from the decomposition matrix

of B , and (5) that

−ε1 + ε2 + ε3 + ε4 + 2
d−4∑
j=0

ε( j)2 j − 2ε(d−3)2d−3 = 0.

In this case the only solution is εi = ε( j) = +1, for all i, j. Proceeding as in the previous paragraph,
we get the following table involving a,b, c:

M1 M2 M3∑
ε(χ)dχ,Mi 2 2d−2 + 1 2d−2 + 1

P (IB) a + (b+c)
2 2d−3(b + c) + a+b

2 2d−3(b + c) + a+c
2

Thus a = b = c = 1, whence P (kIB) ∼= P (M1) ⊕ P (M2) ⊕ P (M3). �
10. Type (d): Semi-dihedral extended defect groups

In this section B is a real non-principal 2-block with a dihedral defect group D and a semi-
dihedral extended defect group E = D〈e〉, where e2 = s1 and s1s = (te)2. By Theorem 5.7, all height 1
irreducible characters in B are real-valued. As E does not split over D , Theorem 3.2 implies that
kIB = 0. If Mi is an irreducible B-module, we use θi to denote its Brauer character. Then by (1) we
have ∑

χ∈Irr(B)

ε(χ)dχ,θi = 0. (6)

Theorem 10.1. B is of Morita type (i) or (v). We may choose notation so that χ3 = χ4; the irreducible charac-
ters in Fd−3 have FS-indicator −1; all other irreducible characters have FS-indicator +1.

Proof. Lemma 5.2 implies that B is not of type (ii) or (iii).
Suppose that B is of Morita type (iv). Then from the decomposition matrix

∑
χ∈Irr(B) ε(χ)dχ,θ1 =∑4

i=1 εi > 0. This contradicts (6). So B is not of type (iv). A similar argument shows that B is not of
type (vi).
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Assume from now on that B is of Morita type (i) or (v). Taking i = 1 in (6), the decomposition
matrix of B shows that

d−3∑
j=0

ε( j)2 j = −
4∑

i=1

εi/2.

Now the left-hand side is odd and εi � 0, for i = 1,2,3,4. So without loss of generality ε1 = ε2 = 1
and χ3 = χ4. We then get the unique solution ε( j) = +1, for j = 0, . . . ,d − 4 and ε(d−3) = −1. �
11. Type (e) extended defect groups

In this section B is a real non-principal 2-block with extended defect group E = D〈e〉, where
|D| � 16, e2 = 1, se = s1s and te = t . By Theorem 5.7, no character in Fd−3 is real, but the remaining
characters of height 1 in F0, . . . , Fd−4 are real.

Theorem 11.1. B is of type (i), (ii) or (v). Let χ ∈ Irr(B). Then χ is non-real, if χ ∈ Fd−3 . Otherwise
ε(χ) = +1. We may write kIB = M Xd−1 ⊕ M X2 , where M Xi is an indecomposable module with vertex Xi ,

for i = d − 1,2. If B is nilpotent then [M Xi : M1] = 2d−i .

Proof. By Table 1, there are two E-conjugacy classes of involutions in E\D , with representatives e
and te. Now CD(e) = Xd−1 and CD(te) = X2. So part (ii) of Theorem 3.2 implies that kClG(e)B has at
least one component M Xd−1 that has vertex Xd−1.

Set b2 := bN(X2)
X2

. Then b2 is real and nilpotent, and has defect couple (X3, X3 × 〈e〉). As X3 ∼= D8,

Theorem 7.3 implies that kIN(X2)b2 has one component with vertex X2. Set M X2 as its Green cor-
respondent with respect to (G, X2,N(X2)). Then M X2 is the unique component of kIB that has
vertex B-subpair (X2,bX2 ).

Suppose that B is nilpotent. This holds for example if G = C(s1). Then B is real and has defect
couple (D, E). Let 
 be the unique principal indecomposable character of B . Then from (1) and the
decomposition matrix of B , we have [kI : M1] = ε(
) � 2d−2 + 2. On the other hand, 2 = [D : Xd−1]
divides [M Xd−1 : M1], and 2d−2 = [D : X2] divides [M X2 : M1]. We deduce that kIB = M Xd−1 ⊕ M X2 .
Moreover, ε(
) = 2d−2 + 2. So ε(χ) = +1, if χ is an irreducible character in B that does not belong
to Fd−3. The last statement of the theorem also follows.

We now remove the nilpotency assumption on B . The last paragraph applies to bs1 , allowing us to
compute

∑
ψ∈Irr(bs1 )

ε(ψ)d(s1)
ψ,θ = 2d−2 + 2. (7)

Set bd−1 := b
N(Xd−1)

Xd−1
. Then bd−1 is real and nilpotent, and has defect couple (D, E). The last paragraph

shows that kIN(Xd−1)bd−1 has one component with vertex Xd−1. Set M Xd−1 as its Green correspondent
with respect to (G, Xd−1,N(Xd−1)). Then M Xd−1 is the unique component of kIB that has vertex B-
subpair (Xd−1,bXd−1).

Now let (V ,bV ) be a vertex B-subpair of a component of kIB . Lemmas 3.1 and 5.1 imply that
(V ,bV ) is a vertex B-subpair of a component of kIC(x)bx , where x = s1, t or st . Now bst is real with
vertex pair (Y2, Y2〈s2e〉). As Y2〈s2e〉 does not split over Y2, Theorem 3.2 implies that kIC(st)bst = 0.
Our work above shows that every component of kIC(s1)bs1 has vertex B-subpair (Xi,bXi ), for i =
d − 1,2. Theorem 1.7(i) of [21] shows that every component of kIC(t)bt has vertex B-subpair (X2,bX2 ).
We deduce from this that kIB = M Xd−1 ⊕ M X2 . This proves one statement of the theorem.

Suppose for the sake of contradiction that B is of type (iii). Then all irreducible characters of
height 0 are real, whence they have FS-indicator +1. From the decomposition matrix of B , we
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compute

∑
χ∈Irr(B)

ε(χ)d(s1)
χφ = 2

d−4∑
j=0

ε( j)2 j < 2d−2.

This contradicts Lemma 1.4 and (7). We can show that B is not of Morita type (iv) or (vi), using
similar arguments.

Now suppose that B is of type (ii) or (v). Then we compute

ε

(
4∑

i=1

εi + 2
d−4∑
j=0

ε( j)2 j

)
=

∑
χ∈Irr(B)

ε(χ)d(s1)
χθ = 2d−2 + 2,

using Lemma 1.4 and (7). Considering this equality modulo 4, and using the fact that εi ∈ {0,1}, we
see that εi = +1, for i = 1,2,3,4. Substituting these values, we get two possibilities

d−4∑
j=0

ε( j)2 j =
{

2d−3 − 1 if ε = +1;
−2d−3 − 3 if ε = −1.

As the left-hand side has absolute value < 2d−3, we deduce that ε = +1. The resulting equation has
the unique solution ε( j) = +1, for j = 0, . . . ,d − 4. This completes the proof. �
12. Summary of results for blocks with dihedral defect groups

We summarize the results of Sections 7 through 11 in Table 2. Recall that MV is an indecompos-
able module that has vertex V .

Table 2
Summary of results.

Block type E type εi

1 � i � 4
ε( j)

0 � j � d − 4
ε(d−3) kIB

Nilpotent (a) + + ++ + + M2
1 ⊕ M X2 ⊕ MY2

(b) + + ++ + − MS = M1/M1

(c) + + 00 + + M Z(D)

(d) + + 00 + − –
(e) + + ++ + 0 M Xd−1 ⊕ M X2

PGL(2,q) (a) + + ++ + + M2
D ⊕ M X2 ⊕ MY2

q ≡ 1 (mod 4) (b) + + ++ + − MS = M1/M2/M1

(e) + + ++ + 0 M Xd−1 ⊕ M X2

PGL(2,q) (a) + + ++ + + M2
D ⊕ M X2 ⊕ MY2

q ≡ 3 (mod 4)

A7 (a) + + ++ + + M2
D ⊕ M X2 ⊕ MY2

(a) + + ++ + + M2
D ⊕ M X2 ⊕ MY2

PSL(2,q) (b) + + ++ + − MS = M1/(M2 ⊕ M3)/M1

q ≡ 1 (mod 4) (c) + + 00 + + M Z(D)

(d) + + 00 + − –
(e) + + ++ + 0 M Xd−1 ⊕ M X2

PSL(2,q) (a) + + 00 + + M2
D ⊕ M X2 ⊕ MY2

q ≡ 3 (mod 4) (c) + + ++ + + M Z(D)
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