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A subgroup H of a group G is called weakly c-permutable in G
if there exists a subgroup T of G such that G = H T and H ∩ T
is completely c-permutable in G . In this paper, we obtain some
results about the weakly c-permutable subgroups and use them
to determine the structures of some groups. In particular, we give
some new characterizations of supersolvability and p-nilpotency of
a group (and, more general, a group belonging to a given formation
of finite groups) by using the weakly c-permutability of some
primary subgroups. As application, we generalize a series of known
results.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In [10,11], Guo, Shum and Skiba introduced the concept of conditionally permutable subgroup and
completely c-permutable subgroup: Let H , K be subgroups of a group G . H is said to be conditionally
permutable (or in brevity, c-permutable) with T if there exists some x ∈ G such that H T x = T x H . H is
said to be completely c-permutable with T if there exists some x ∈ 〈H, T 〉 such that H T x = T x H . If H
is c-permutable (completely c-permutable) with all subgroups of G , then H is said to be c-permutable
(completely c-permutable, respectively) in G . The new idea has been used to prove a series of elegant
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results on the structure of groups (see [8–12]). As a development of the above research, we now
introduce the following new concept of weakly c-permutable subgroups:

Definition 1.1. Let H be a subgroup of a group G . H is said to be weakly c-permutable in G if there
exists a subgroup T of G such that G = H T and H ∩ T is completely c-permutable in G .

Obviously, all permutable subgroups and all completely c-permutable subgroups are weakly c-
permutable subgroups. However the converse is not true. For example, in the symmetric group S5 =
C5 A4 of degree 5, C5 is not completely c-permutable in S5 because C5 cannot permute with any
subgroup of S5 with order 3, but C5 is weakly c-permutable in S5 since C5 ∩ A5 = 1.

Recently, Wang introduced the concept of c-normal subgroup [27] and Ballester-Bolinches, Guo
and Wang introduced the notion of c-supplemented subgroup [3] (also see [28]): a subgroup H of a
group G is said to be a c-supplemented (c-normal) if there exists a subgroup (normal subgroup) T of
G such that G = H T and H ∩ T � HG , where HG is the largest normal subgroup of G contained in H .
Note that the condition H ∩ T � HG in the concepts is actually equivalent to the condition H ∩ T = HG
(see [33, Lemma 2.2(1)]). We also see that many interesting results have been obtained by using the
c-normal subgroups and the c-supplemented subgroups (see [17–32]).

It is easy to know that all normal subgroups, c-normal subgroups and c-supplemented subgroups
are all also weakly c-permutable in G . But the following examples show that the converse is not true.

Example 1. Let G = [C5]C4, where C5 is a cyclic group of order 5 and C4 is an automorphism group
of C5. Then it is easy to see that the subgroup C2 of C4 of order 2 is weakly c-permutable in G , but
it is not c-supplemented in G .

Example 2. Let G = 〈x, y | x16 = y4 = 1, xy = x3〉. Then Φ(G) = 〈x2, y2〉 = 〈x2〉 × 〈y2〉. It is easy to
see that H = 〈y2〉 is permutable in G and consequently H is weakly c-permutable in G , but H is not
c-supplemented (see [31]).

The analysis above shows that the set of all weakly c-permutable subgroups is wider than the set
of all permutable subgroups, the set of all completely c-permutable subgroups, the set of all c-normal
subgroups and than the set of all c-supplemented subgroups. In [24], Skiba introduced the notion of
weakly s-supplemented subgroup and the notion of weakly s-permutable subgroup: a subgroup H is
said to be weakly s-supplemented (weakly s-permutable) in G if G has a subgroup (a subnormal sub-
group) T such that H T = G and T ∩ H � HsG . We also note that our weakly c-permutable subgroup is
different from the weakly s-supplemented subgroup and so is different from the weakly s-permutable
subgroup. For example, let G = [C5]C4, where C5 is a cyclic group of order 5 and C4 is an automor-
phism group of C5. Then the subgroup C2 of C4 of order 2 is weakly c-permutable in G . But C2 is
not weakly s-supplemented in G . In fact, if C2 is weakly s-supplemented in G , then G has a subgroup
T such that G = C2T and C2 ∩ T � (C2)sG . Obviously, either (C2)sG = 1 or (C2)sG = C2. If (C2)sG = 1,
then C2 has a complement T in G . This implies that C2 has also a complement in C4, which is impos-
sible since C4 is a cyclic group. If (C2)sG = C2, then C2 is s-permutable and consequently C2 � O 2(G)

(see [24, Lemma 2.5(6) and Lemma 2.6(3)]), which contradicts O 2(G) = 1. Thus, C2 is not weakly
s-supplemented in G and therefore it is not also weakly s-permutable in G . In connection with this,
naturally there is a question: Whether can we characterize the structure of finite groups by using the weak
c-permutability of subgroups? The purpose of this paper contributes to this. Our main results are as
follows:

Theorem 1.1. Let F be a saturated formation containing U and G a group. Then G ∈ F if and only if there exists
a soluble normal subgroup H such that G/H ∈ F and all maximal subgroups of all Sylow subgroups of F (H)

are weakly c-permutable in G.

Theorem 1.2. Let F be an S-closed saturated formation containing N and G a group. Then G ∈ F if and only
if there exists a normal subgroup N of G such that G/N ∈ F and every cyclic subgroup of GF with order 4 is
weakly c-permutable in G and every minimal subgroup of GF is contained in ZF(G).
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Theorem 1.3. Let F be a saturated formation containing U and G a group. Then G ∈ F if and only if there exists
a soluble normal subgroup H such that G/H ∈ F and all cyclic subgroups of any non-cyclic Sylow subgroup
of F (H) with prime order or 4 (if the Sylow 2-subgroup of F (H) is a non-abelian 2-group) are weakly c-
permutable in G.

Theorem 1.4. Let G be a finite group and p a prime divisor of |G| such that (|G|, p2 − 1) = 1. Then G is p-
nilpotent if and only if there exists a normal subgroup N in G such that G/N is p-nilpotent and every subgroup
of N of order p2 is weakly c-permutable in G.

As applications, we generalize a series of known results (see Corollaries 5.1–5.24).
Throughout this paper, all groups are assumed to be finite groups. The reader is referred to the

monographs of [5,7] or [15] for the notations and terminologies not mentioned in this paper.

2. Preliminaries

For the sake of convenience, we list here some notions and basic results which are needed in this
paper.

We denote M < ·G to indicate that M is a maximal subgroup of a group G . For a class F of
groups, a chief factor H/K of a group G is called F-central if [H/K ](G/CG(H/K )) ∈ F (see [7, Defi-
nition 2.4.3]). The symbol ZF(G) denotes the F-hypercenter of a group G , that is, the product of all
such normal subgroups H of G whose G-chief factors are F-central. A subgroup H of G is said to be
F-hypercentral in G if H � ZF(G).

Recall that (see [5] or [7]) a class F of groups is said to be a formation if it is closed under ho-
momorphic image and every group G has a smallest normal subgroup (called F-residual and denoted
by GF) with quotient is in F. A formation F is said to be saturated if it contains every group G
with G/Φ(G) ∈ F. A formation F is said to be S-closed if every subgroup of a group G belongs to F

whenever G ∈ F.
We use N, U and S to denote the classes of all nilpotent groups, supersoluble groups and sol-

uble groups, respectively. It is well known that the classes N, U and S are all S-closed saturated
formations.

Lemma 2.1. (See [10,11].) Let G be a group, K � G and H � G. Then:

(1) If K � T � G and H is completely c-permutable with T in G, then H K/K is completely c-permutable with
T /K in G/K . In particular, if H is completely c-permutable in G, then H K/K is completely c-permutable
in G/K ;

(2) If K � H and H/K is completely c-permutable in G/K , then H is completely c-permutable in G;
(3) If T � M � G, H � M and H is completely c-permutable with T in G, then H is completely c-permutable

with T in M;
(4) If T � G and H is completely c-permutable with T in G, then Hx is completely c-permutable with T x in

G for every x ∈ G.

Lemma 2.2. Let G be a group. Then:

(1) If H is weakly c-permutable in G and H � M � G, then H is weakly c-permutable in M;
(2) Let N � G and N � H. Then H is weakly c-permutable in G if and only if H/N is weakly c-permutable in

G/N;
(3) Let π be a set of primes. Let N be a normal π ′-subgroup of G and H a π -subgroup of G. If H is weakly

c-permutable in G, then H N/N is weakly c-permutable in G/N.

Proof. (1) If G = H K and H ∩ K is completely c-permutable in G , then M = M ∩ G = M ∩ H K =
H(M ∩ K ) and H ∩ (M ∩ K ) = H ∩ K is completely c-permutable in M by Lemma 2.1(3). Hence, H is
weakly c-permutable in M .
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(2) Suppose that H/N is weakly c-permutable in G/N . Then there exists a subgroup K/N of G/N
such that G/N = (H/N)(K/N) and H/N ∩ K/N = (H ∩ K )/N is completely c-permutable in G/N . It
follows from Lemma 2.1(2) that G = H K and H ∩ K is completely c-permutable in G .

Conversely, if H is weakly c-permutable in G , then there exists a subgroup T of G such that
G = H T and H ∩ T is completely c-permutable in G . Then G = (H/N)(T N/N) and H/N ∩ T N/N =
N(H ∩ T )/N . By Lemma 2.1(1), N(H ∩ T )/N is completely c-permutable in G/N . Thus, H/N is weakly
c-permutable in G/N .

(3) If H is weakly c-permutable in G , then there exists a subgroup K of G such that G = H K and
H ∩ K is completely c-permutable in G . Since |G|π ′ = |K |π ′ = |K N|π ′ , we have that |K ∩N|π ′ = |N|π ′ =
|N|. Hence N � K . Clearly G/N = (H N/N)(K/N) and H N/N ∩ K/N = (H ∩ K )N/N is completely c-
permutable in G/N by Lemma 2.1(1). Hence H N/N is weakly c-permutable in G/N . �
Lemma 2.3. (See [21, Lemma 2.5].) Let G be a finite group and p the prime divisor of |G| such that
(|G|, p2 − 1) = 1. If G/L is p-nilpotent and p3 � |L|, then G is p-nilpotent.

Lemma 2.4. (See [7, Theorem 1.8.17].) Let N be a soluble normal subgroup of a group G. If N ∩Φ(G) = 1, then
the Fitting subgroup F (N) of N is a direct product of some abelian minimal normal subgroups of G.

Lemma 2.5. (See [26, Lemma 2.8].) Let M be a maximal subgroup of G and P a normal Sylow p-subgroup of
G such that G = P M, where p is a prime. Then:

(1) P ∩ M is a normal subgroup of G;
(2) If p > 2 and all minimal subgroups of P are normal in G, then M has index p in G.

Lemma 2.6. (See [24, Lemma 2.16].) Let F be a saturated formation containing U and G a group with a normal
subgroup E such that G/E ∈ F. If E is cyclic, then G ∈ F.

Lemma 2.7. (See [24, Lemma 2.20].) Let A be a p′-automorphisms of a p-group P , where p is an odd prime.
Assume that every subgroup of P with prime order is A-invariant. Then A is cyclic.

Lemma 2.8. (See [13, Lemma 5].) Let F be S-closed local formation and H a subgroup of G. Then H ∩ ZF(G) ⊆
ZF(H).

3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. It is clear that the condition is necessary. We only need to prove that it is
sufficient. Assume that the assertion is false and let (G, H) be a counterexample with |G||H| is min-
imal. Let P be an arbitrary Sylow p-subgroup of F (H). Clearly P � G . We proceed the proof by the
following steps.

(1) P ∩ Φ(G) = 1.
If not, then 1 	= P ∩ Φ(G) � G . Let R = P ∩ Φ(G). We show that G/R satisfies the hypothesis. In

fact, (G/R)/(H/R) ∼= G/H ∈ F. Let F (H/R) = T /R . Then, obviously, F (H)/R = F (H/R). Let P1/R be
a maximal subgroup of P/R . Then P1 is a maximal subgroup of P . By hypothesis, P1 is weakly c-
permutable in G . Hence, by Lemma 2.2, P1/R is weakly c-permutable in G/R . Let Q̄ 1 be a maximal
subgroup of the Sylow q-subgroup Q̄ of F (H)/R , where q 	= p. Then, clearly, there exists a Sylow
q-subgroup Q of F (H) such that Q̄ = Q R/R and Q̄ 1 = Q 1 R/R with Q 1 is a maximal subgroup of Q .
By hypothesis, Q 1 is weakly c-permutable in G and so Q 1 R/R is weakly c-permutable in G/R by
Lemma 2.2(3). This shows that (G/R, H/R) satisfies the hypothesis. The minimal choice of (G, H)

implies that G/R ∈ F. Since R ⊆ Φ(G) and F is a saturated formation, G ∈ F, a contradiction. Thus (1)
holds.

(2) P = R1 × R2 × · · · × Rm , where Ri (i = 1,2, . . . ,m) is some minimal normal subgroup of G of
prime order.
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Since P � G and P ∩ Φ(G) = 1, P = R1 × R2 × · · · × Rm , where Ri (i = 1,2, . . . ,m) is an abelian
minimal normal subgroup of G by Lemma 2.4. We now prove that |Ri | = p.

Since Ri � Φ(G), there exists a maximal subgroup M of G such that G = Ri M and Ri ∩ M = 1. Let
M p be a Sylow p-subgroup of M and G p = M p Ri . Then G p is a Sylow p-subgroup of G . Let P1 be a
maximal subgroup of G p containing M p and P2 = P1 ∩ P . Then |P : P2| = |P : P1 ∩ P | = |P P1 : P1| =
|G p : P1| = p and so P2 is a maximal subgroup of P . We also have that P2M p = (P1 ∩ P )M p =
P1 ∩ P M p = P1 ∩ G p = P1 and P2 ∩ M p = P ∩ P1 ∩ M = P ∩ M p . By hypothesis, P2 is weakly c-
permutable in G . Hence there exists a subgroup T of G such that G = P2T and P2 ∩ T is completely
c-permutable in G . Then, for an arbitrary Sylow q-subgroup Q of G with q 	= p, there exists an
element α ∈ 〈P2 ∩ T , Q 〉 such that (P2 ∩ T )Q α = Q α(P2 ∩ T ). Hence P2 ∩ T = (P2 ∩ T )(P ∩ Q α) =
P ∩ (P2 ∩ T )Q α � (P2 ∩ T )Q α . It follows that Q α � NG(P2 ∩ T ). On the other hand, P ∩ T � T and
P ∩ T � P since P is abelian. Hence P ∩ T � P T = G and consequently P2 ∩ T = P1 ∩ P ∩ T � P1. It
follows that P2 ∩ T � P1 P = G p . This shows that both G p and Q are contained in NG(P2 ∩ T ). The
arbitrary choice of q implies that P2 ∩ T � G and so P2 ∩ T � (P2)G . Assume that P2 ∩ T < (P2)G and
let N = (P2)G T . Then G = P2T = P2(P2)G T = P2N and P2 ∩N = P2 ∩(P2)G T = (P2)G(P2 ∩T ) = (P2)G .
This shows that there always exists a subgroup K of G such that G = P2 K and P2 ∩ K = (P2)G .

Since P is abelian, P2(P ∩ M) � P . Thus P2(P ∩ M) = P or P2(P ∩ M) = P2. If P2(P ∩ M) = P , then
G = P M = P2(P ∩ M)M = P2M and so P = P ∩ P2M = P2(P ∩ M) = P2(P ∩ P1 ∩ M) = P2(P2 ∩ M) =
P2, a contradiction. Hence P2(P ∩ M) = P2 and so P ∩ M � P2. Since P ∩ M � G by Lemma 2.5,
P ∩ M � (P2)G = P2 ∩ K .

Assume that K < G . Let K1 be a maximal subgroup of G containing K . Then P ∩ K1 � G by
Lemma 2.5. Hence (P ∩ K1)M is a subgroup of G . Since M < ·G , (P ∩ K1)M = G or (P ∩ K1)M = M . If
(P ∩ K1)M = G = P M , then P = P ∩ (P ∩ K1)M = (P ∩ K1)(P ∩ M) = P ∩ K1 since P ∩ M � (P2)G =
P2 ∩ K � P ∩ K1. It follows that P � K1 and hence G = P K � P K1 = K1, a contradiction. If (P ∩ K1)M =
M , then P ∩ K1 � M and so P2 ∩ K � P ∩ K � P ∩ K1 = P ∩ K1 ∩ M � P ∩ M � P2 ∩ K . Hence
P2 ∩ K = P ∩ K . Since G = P K = P2 K , |G : P | = |P K : P | = |K : (P ∩ K )| = |K : (P2 ∩ K )| = |P2 K : P2| =
|G : P2|, which is impossible. Thus K = G . It follows that P2 ∩ K = P2 = P2G � G . Consequently,
P2 ∩ Ri � G . But since G p = Ri M p = Ri P1 and P1 is a maximal subgroup of G p containing M p ,
we have Ri � P2 = P1 ∩ P . The minimal normality of Ri implies that P2 ∩ Ri = 1. Hence |Ri | =
|Ri : (P2 ∩ Ri)| = |Ri P2 : P2| = |Ri(P ∩ P1) : P2| = |(P ∩ Ri P1) : P2| = |P ∩ G p : P2| = |P : P2| = p.
Therefore Ri is a cyclic group of order p.

(3) Final contradiction.
Let Ri ⊆ H and C0 = C H (Ri). We claim that the hypothesis holds for (G/Ri, C0/Ri). Indeed, since

G/CG (Ri) � Aut(Ri) is abelian, G/CG (Ri) ∈ F. Consequently, G/C0 = G/(H ∩CG (Ri)) ∈ F. Besides, since
Ri � Z(C0) and F (H) � C0, we have F (H) = F (C0). Thus F (C0/Ri) = F (H)/Ri . Let P/Ri be a Sylow
p-subgroup of F (H)/Ri , where P is a Sylow p-subgroup of F (H) and P1/Ri is a maximal subgroup
of P/Ri . Then P1 is a maximal subgroup of P . By hypothesis, P1 is weakly c-permutable in G . Hence
P1/Ri is weakly c-permutable in G/Ri by Lemma 2.2. Now assume that Q Ri/Ri is the Sylow q-
subgroup of F (H)/Ri , where q 	= p and Q is the Sylow q-subgroup of F (H). Then every maximal
subgroup of Q Ri/Ri is of the form of Q 1 Ri/Ri , where Q 1 is a maximal subgroup of Q . By hypothesis
and Lemma 2.2, we see that Q 1 Ri/Ri is weakly c-permutable in G/Ri . This shows that (G/Ri, C0/Ri)

satisfies the condition of the theorem. The minimal choice of (G, H) implies that G ∈ F by Lemma 2.6.
The final contradiction completes the proof. �

We need a preliminary to give the proof of Theorem 1.2.

Lemma 3.1. Let G be a group. If every minimal subgroup of G is contained in Z∞(G) and every cyclic subgroup
of G with order 4 is weakly c-permutable in G, then G is nilpotent.

Proof. Suppose that the assertion is false and let G be a counterexample of minimal order. Then by
Lemma 2.2 and Lemma 2.8, we see that the hypothesis holds for every proper subgroups of G . The
minimal choice of G implies that G is a minimal non-nilpotent group. Then by [7, Theorem 3.4.11],
we can see that G has the following properties: (i) G = P Q , where P is a normal Sylow p-subgroup
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of G and Q a non-normal cyclic Sylow q-subgroup of G; (ii) P/Φ(P ) is a chief factor of G; (iii) If P
is abelian, then P is an elementary abelian subgroup; (iv) If p > 2, the exponent of P is a prime p; if
p = 2, then the exponent of P is 2 or 4.

If P is abelian or p > 2, then the exponent of P is prime. Hence by hypothesis, P � Z∞(G). It
follows that G is nilpotent. This contradiction shows that the exponent of P is 4.

Suppose that there exists an element x ∈ P \ Φ(P ) such that |x| = 2. Let T = 〈x〉G . Then T � P and
T Φ(P )/Φ(P ) is normal in G/Φ(P ). Since P/Φ(P ) is a chief factor of G , P = T , which is impossible
since the exponent of P is 4. Therefore, for all x ∈ P\Φ(P ), we have that |x| = 4.

Now we claim that every cyclic subgroup H of P is completely c-permutable in G . In fact, since
H is weakly c-permutable in G , there exists a subgroup T of G such that G = H T and H ∩ T is
completely c-permutable in G . Let P1 = P ∩ T . Then P1 � T and hence P1Φ(P )/Φ(P ) is normal in
T Φ(P )/Φ(P ). Since P/Φ(P ) is an elementary abelian p-group, P1Φ(P )/Φ(P ) is normal in P/Φ(P ).
Therefore P1Φ(P )/Φ(P ) is normal in G/Φ(P ). Since P/Φ(P ) is a chief factor of G , P1Φ(P )/Φ(P ) = 1
or P1Φ(P )/Φ(P ) = P/Φ(P ). If P1Φ(P )/Φ(P ) = 1, then P1 � Φ(P ) and so P = P ∩ H T = H(P ∩ T ) =
H P1 = H . This means that H is normal in G and consequently H is completely c-permutable in G . If
P1Φ(P )/Φ(P ) = P/Φ(P ), then G = P T = T and thereby H = H ∩ T is completely c-permutable in G .
Thus, our claim holds.

Let x ∈ P\Φ(P ). Then as above we see that |x| = 4 and 〈x〉 is completely c-permutable in G . Hence
there exists an element α ∈ 〈〈x〉, Q 〉 such that 〈x〉Q α = Q α〈x〉 and so 〈x〉Q α is a subgroup of G . Then
since 〈x〉 = 〈x〉(Q α ∩ P ) = 〈x〉Q α ∩ P � 〈x〉Q α , Q α � NG(〈x〉). On the other hand, since P/Φ(P ) is
abelian, 〈x〉Φ(P )/Φ(P ) � P/Φ(P ). This implies that 1 	= 〈x〉Φ(P )/Φ(P ) � G/Φ(P ). However, since
P/Φ(P ) is chief factor of G , 〈x〉Φ(P ) = P and consequently 〈x〉 = P , a contradiction. Thus the proof is
completed. �
Proof of Theorem 1.2. It is clear that the condition is necessary. We only need to prove that it is
sufficient.

Suppose that the assertion is false and let G be a counterexample of minimal order. Let M be
a proper subgroup of G . Since M/N ∩ M ∼= MN/N � G/N ∈ F and F is S-closed, we have that
M/N ∩ M ∈ F. Since M/M ∩ GF = MGF/GF � G/GF , M/M ∩ GF ∈ F and so MF � M ∩ GF � GF . Thus
by hypothesis and Lemma 2.8, every minimal subgroup of MF is contained in ZF(G) ∩ M ⊆ ZF(M).
Besides, every cyclic subgroup of MF with order 4 is weakly c-permutable in M by Lemma 2.2. This
shows that M satisfies the hypothesis and hence G is a minimal non-F-group. By Lemma 3.1, GN is
nilpotent. Hence by [7, Theorem 3.4.2], G has the following properties:

(a) GF is a p-group, for some prime p.
(b) GF/Φ(GF) is a minimal normal subgroup of G/GF .
(c) If GF is abelian, then GF is an elementary abelian p-group.
(d) If p > 2, then exp(GF) = p; if p = 2, then exp(GF) = 2 or 4.

If GF is abelian, then GF is an elementary abelian subgroup by (c). Hence, by hypothe-
sis, we have that GF ⊆ ZF(G). It follows that G ∈ F. This contradiction shows that GF is non-
abelian. If exp(GF) = p, then GF ⊆ ZF(G) by hypothesis and consequently G ∈ F, a contradic-
tion again. Thus, GF is a non-abelian 2-group and exp(GF) = 4. Let x be an arbitrary element
of GF \ Φ(GF). Then |x| = 4. Indeed, suppose that there exists an element x ∈ GF \ Φ(GF)

such that |x| = 2. Let T = 〈x〉G . Then T � GF and T Φ(GF)/Φ(GF) is normal in G/Φ(GF). Since
GF/Φ(GF) is a chief factor of G , GF = T , which contradicts the fact that exp(GF) = 4. Then
by hypothesis, 〈x〉 is weakly c-permutable in G . Hence there exists a subgroup K of G such
that G = 〈x〉K and 〈x〉 ∩ K is completely c-permutable in G . If K = G , then 〈x〉 is completely
c-permutable in G . Let Φ = Φ(GF). Obviously, GF/Φ � Φ(G/Φ). Thus, there exists a maximal
subgroup M/Φ of G/Φ such that G/Φ = (GF/Φ)(M/Φ). Since GF/Φ is abelian, it is easy to
see that GF/Φ ∩ M/Φ = 1. Hence G/Φ = [GF/Φ](M/Φ). Since 〈x〉 is completely c-permutable
in G , 〈x〉Φ/Φ is completely c-permutable in G/Φ by Lemma 2.1. Hence there exists an element
α ∈ 〈〈x〉Φ/Φ, M/Φ〉 such that (〈x〉Φ/Φ)(MαΦ/Φ) � G/Φ . Clearly, GF/Φ ∩ MαΦ/Φ = 1. Hence
〈x〉Φ/Φ = (〈x〉Φ/Φ)(GF/Φ ∩ MαΦ/Φ) = (GF/Φ) ∩ (〈x〉Φ/Φ)(MαΦ/Φ) � (〈x〉Φ/Φ)(MαΦ/Φ). It fol-
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lows that MαΦ/Φ � N(G/Φ)(〈x〉Φ/Φ). On the other hand, since 〈x〉Φ/Φ � GF/Φ , 〈x〉Φ/Φ � G/Φ .
This shows that 〈x〉Φ � G . Therefore 〈x〉Φ/Φ = GF/Φ or 〈x〉Φ/Φ = 1 since GF/Φ is a chief fac-
tor of G . Obviously, 〈x〉Φ/Φ 	= 1 by the choice of x. Hence 〈x〉Φ/Φ = GF/Φ and so GF = 〈x〉Φ =
〈x〉, a contradiction. Thus we may assume that K < G . Let P∗ = GF ∩ K . Then P∗ � K and
P∗ < GF .

Assume that P∗ = 1. Then |GF| = |G : K | = |〈x〉| since G = 〈x〉K = GFK . Consequently 〈x〉 = GF ,
which contradicts the fact that GF is not abelian.

Hence P∗ 	= 1. Since K � NG(P∗) and P∗ < NGF(P∗), |G : NG(P∗)| = |GFNG(P∗) : NG(P∗)| =
|GF : NG(P∗) ∩ GF| = |GF : NGF(P∗)| < |GF : P∗| = |GF : GF ∩ K | = |GFK : K | = |〈x〉K : K | =
|〈x〉 : 〈x〉 ∩ K | � 4. Hence |G : NG(P∗)| = 2 or |G : NG(P∗)| = 1.

If |G : NG(P∗)| = 2, then NG(P∗) � G . Let P1 = NG(P∗) ∩ GF . Then P1 � G . If P1 � Φ(GF), then
GF = GF ∩ 〈x〉K = GF ∩ 〈x〉NG(P∗) = 〈x〉(GF ∩ NG(P∗)) = 〈x〉, a contradiction. If P1 � Φ(GF), then
1 	= P1GF/GF � G/Φ(GF). It follows from (b) that GF = P1Φ(GF) = P1 = GF ∩ NG(P∗). Thus GF �
NG(P∗) and thereby G = 〈x〉K = GFNG(P∗) = NG(P∗), which contradicts |G : NG(P∗)| = 2.

If G = NG(P∗), then P∗ � G . It follows that P∗Φ(GF)/Φ(GF) � G/Φ(GF). Hence by (b),
P∗Φ(GF) = Φ(GF) or P∗Φ(GF) = GF . If P∗Φ(GF) = Φ(GF), then P∗ � Φ(GF) and consequently
GF = GF ∩ 〈x〉K = 〈x〉(GF ∩ K ) = 〈x〉P∗ = 〈x〉, a contradiction. If GF = P∗Φ(GF) = P∗ = GF ∩ K , then
GF � K , which contradicts the fact that K < G .

The contradiction completes the proof. �
4. Proofs of Theorems 1.3 and 1.4

Lemma 4.1. A group G is supersoluble if and only if there exists a normal subgroup N of G such that G/N is
supersoluble and every cyclic subgroup of N with prime order or 4 is weakly c-permutable in G.

Proof. It is clear that the condition is necessary. We only need to prove that it is sufficient.
Suppose that the assertion is false and let G be a counterexample of minimal order. Let H be

a proper subgroup of G . Since G/N is supersoluble, H/(H ∩ N) ∼= H N/N is also supersoluble. By
Lemma 2.2, every minimal subgroup of H ∩ N and every cyclic subgroup of H ∩ N of order 4 are
weakly c-permutable in H . This means that H (with respect to H ∩ N) satisfies the hypothesis. The
minimal choice of G implies that H is supersoluble. This shows that G is a minimal non-supersoluble
group. Hence by [7, Theorem 3.4.2 and 3.11.8], G has a non-cyclic normal Sylow p-subgroup P = GU

for some prime p such that P/Φ(P ) is chief factor of G/Φ(P ) and the exponent of P is p or 4. Since
G/N is supersoluble, P � N .

Let x ∈ P\Φ(P ). Then |x| = p or 4. By hypothesis, 〈x〉 is weakly c-permutable in G . Hence
there exists a subgroup K of G such that G = 〈x〉K and 〈x〉 ∩ K is completely c-permutable in G .
Assume that K < G . Since P/Φ(P ) is abelian, (P ∩ K )Φ(P )/Φ(P ) � P K/Φ(P ) = G/Φ(P ). Since
P/Φ(P ) is a chief factor of G , P ∩ K � Φ(P ) or P = (P ∩ K )Φ(P ) = P ∩ K . If P ∩ K � Φ(P ),
then P = P ∩ G = P ∩ 〈x〉K = 〈x〉(P ∩ K ) = 〈x〉, a contradiction. If P ∩ K = P , then P � K and hence
G = 〈x〉K = K , a contradiction again. Hence we may assume that K = G . Then 〈x〉 is completely
c-permutable in G . Since P is a normal Sylow p-subgroup of G , P has a complement D in G
by Shur–Zassenhaus theorem. Since 〈x〉 is completely c-permutable in G , there exists an element
g ∈ 〈〈x〉, D〉 such that 〈x〉D g = D g〈x〉. Hence 〈x〉 = 〈x〉(D g ∩ P ) = 〈x〉D g ∩ P � 〈x〉D g . Consequently,
D g ⊆ NG(〈x〉). On the other hand, since P/Φ(P ) is abelian, 〈x〉Φ(P )/Φ(P ) � P/Φ(P ). This im-
plies that 〈x〉Φ(P )/Φ(P ) � G/Φ(P ). However, since P/Φ(P ) is a chief factor of G and x /∈ Φ(P ),
〈x〉Φ(P ) = P and consequently 〈x〉 = P , a contradiction again. The final contradiction completes the
proof. �
Lemma 4.2. Suppose that P is a minimal normal p-subgroup of G. If every minimal subgroup of P is com-
pletely c-permutable in G, then P is a cyclic subgroup of order p.

Proof. Let D be a Sylow p-subgroup of G . Then P ∩ Z(D) 	= 1. Suppose that L is a subgroup of
P ∩ Z(D) of order p. Then L � P and so L is completely c-permutable in G . Let Q be an arbi-
trary Sylow q-subgroup of G with q 	= p. By hypothesis, there exists an element α ∈ 〈L, Q 〉 such that
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L Q α = Q α L � G . Therefore L = P ∩ L Q α � L Q α and so Q α � NG(L). The arbitrary choice of q im-
plies that L � G . But, since P is a minimal normal subgroup of G , we have that P = L. This completes
the proof. �
Theorem 4.3. Let F be a saturated formation containing U and G a group. Then G ∈ F if and only if there
exists a normal subgroup H such that G/H ∈ F and every cyclic subgroup of any non-cyclic Sylow subgroup of
H with prime order or 4 (if the Sylow 2-subgroup of H is a non-abelian 2-group) is weakly c-permutable in G.

Proof. It is clear that the condition is necessary. We only need to prove that it is sufficient. Suppose
that the assertion is false and let (G, H) be a counterexample for which |G||H| is minimal. Then:

(1) If T is a normal Hall subgroup of H , then the hypothesis holds for (T , T ) and for
(G/T , H/T ).

Let P be an arbitrary non-cyclic Sylow subgroup of T . By hypothesis, every cyclic subgroup N of P
with prime order or 4 is weakly c-permutable in G . Then by Lemma 2.2(1), N is weakly c-permutable
in T . Thus (T , T ) satisfies the hypothesis.

Obviously, (G/T )/(H/T ) ∈ F. Let R∗/T be a non-cyclic Sylow r-subgroup of H/T where r | |H/T |
and R a Sylow r-subgroup of R∗ such that R∗ = RT . Then R is a non-cyclic Sylow r-subgroup of H .
Assume that K/T is a cyclic subgroup of R∗/T with prime order or 4. Then, obviously, K/T = 〈x〉T /T ,
where 〈x〉 is a subgroup of R with prime order or 4 since T is a normal Hall subgroup of H . By
hypothesis, 〈x〉 is weakly c-permutable in G . Then by Lemma 2.2(3), we see that K/T is also weakly
c-permutable in G/T . Thus (G/T , H/T ) satisfies the hypothesis.

(2) If T is a non-identity normal Hall subgroup P of H , then T = H .
Since T char H , T � G . Then by (1), the hypothesis is true for (G/T , H/T ). Hence G/T ∈ F. It

is easy to see that the hypothesis is still true for (G, T ). The minimal choice of (G, H) implies that
T = H .

(3) If p is the smallest prime of |H| and P is a Sylow p-subgroup of H , then P is not cyclic.
Indeed, if P is cyclic, then by [15, IV, Theorem 2.8], H is p-nilpotent. Hence by (2), H = P is cyclic.

It follows from Lemma 2.6 that G ∈ F, a contradiction.
(4) H is soluble.
Let K be an arbitrary proper subgroup of H . Then |K | < |G| and K/K is supersoluble. Let 〈x〉 be a

cyclic subgroup of any non-cyclic Sylow subgroup of K with prime order or 4. Then, clearly, 〈x〉 is also
a cyclic subgroup of a non-cyclic Sylow subgroup of H with prime order or 4. By hypothesis, 〈x〉 is
weakly c-permutable in G and so 〈x〉 is weakly c-permutable in K by Lemma 2.2(1). This implies that
the hypothesis is still true for (K , K ). The minimal choice of (G, H) implies that K is supersoluble
(since we can consider F = U). Hence H is a minimal non-supersoluble group and consequently H is
soluble (see [7, Theorem 3.11.8]).

(5) G is a minimal non-F-group.
Since F is a saturated formation, GF � Φ(G). Hence there exists a maximal subgroup M such that

G = MGF . Since G/GF ∼= M/(M ∩ GF) ∈ F and G/H ∈ F, MF ⊆ GF ⊆ H . By Lemma 2.2, we see that
(M, GF) satisfies the hypothesis. The minimal choice of G implies that M ∈ F. This shows that G is a
minimal non-F-group. By (4), we also see that GF is soluble.

(6) G has the following properties: (a) GF is a p-group for some prime p; (b) GF/Φ(GF) is a
chief factor of G; (c) If p > 2, then exp(GF) = p. If p = 2, then exp(GF) = 2 or 4.

It follows directly from (4), (5) and [7, Theorem 3.4.2].
(7) Final contradiction.
Let x ∈ GF\Φ(GF). Then by (6), |x| is a prime or 4. Since GF ⊆ H , by hypothesis, we can see

that 〈x〉 is weakly c-permutable in G . Hence there exists a subgroup T � G such that G = 〈x〉T and
〈x〉∩ T is completely c-permutable in G . Assume that T < G . By (6), we see that GF/Φ(GF) is abelian
and consequently (GF ∩ T )Φ(GF)/Φ(GF) � G/Φ(GF). Since GF/Φ(GF) is a chief factor of G , GF ∩
T � Φ(GF) or GF = (GF ∩ T )Φ(GF) = GF ∩ T . If GF ∩ T � Φ(GF), then 〈x〉 = GF � G . It follows
from Lemma 2.6 that G ∈ F, a contradiction. Thus we may assume that GF ∩ T = GF . Then GF � T
and hence G = 〈x〉T = T . This contradiction shows that T = G and so 〈x〉 = 〈x〉 ∩ T is completely
c-permutable in G . By Lemma 2.1, 〈x〉Φ(GF)/Φ(GF) is also completely c-permutable in G/Φ(GF).
Since GF/Φ(GF) is an elementary abelian group, by Lemma 4.2, GF/Φ(GF) is a cyclic group. Hence
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G/Φ(GF) ∈ F by Lemma 2.6. This implies that G ∈ F since F is a saturated formation. The final
contradiction completes the proof. �
Proof of Theorem 1.3. It is clear that the condition is necessary. We only need to prove that it is
sufficient. Suppose that the assertion is false and let (G, H) be a counterexample for which |G||H| is
minimal. Let p be the smallest prime divisor of |F (H)| and P the Sylow p-subgroup of F (H). Then
P � G . Now we proceed with our proof as follows:

(1) F (H) 	= H and CG(F (H)) � F (H).
If F (H) = H , then G ∈ F by Theorem 4.3, a contradiction. Obviously, CG(F (H)) � F (H) since G is

soluble.
(2) Let V /P = F (H/P ) and Q be a Sylow q-subgroup of V , where q | |V /P |. Then q 	= p and either

Q � F (H) or p > q and C Q (P ) = 1.
Since V /P is nilpotent, Q P/P char V /P and so Q P � H . Then, it is easy to see that p 	= q. By

Lemma 4.1, P Q is supersoluble. If q > p, then Q � P Q and so Q � F (H). Now assume that p > q.
Then p > 2. Since p is the minimal prime of |F (H)|, F (H) is a q′-group. Let R be a Sylow r-subgroup
of F (H) where r 	= p. Then r 	= q and so [R, Q ] � P . Assume that for some x ∈ Q , we have x ∈ C H (P ).
Since V /P is nilpotent, [R, 〈x〉] = [R, 〈x〉, 〈x〉] = 1 by [6, Chapter 5, Theorem 3.6]. Hence x ∈ CG(F (H)).
By (1), C H (F (H)) � F (H) and so C Q (P ) = 1.

(3) p > 2.
If p = 2, then by (2), we see that F (H/P ) = F (H)/P and 2 � |F (H/P )|. This implies that if 〈x〉P/P is

an arbitrary minimal subgroup of F (H)/P , then |x| = r, where r 	= 2. By Lemma 2.2(3), every minimal
subgroup of F (H/P ) is weakly c-permutable in G/P . Hence (G/P , H/P ) satisfies the hypothesis. The
minimal choice of (G, H) implies that G/P ∈ F. Hence by Theorem 4.3, G ∈ F, a contradiction. Thus,
(3) holds.

(4) Final contradiction.
Let V /P = F (H/P ) and Q be a Sylow q-subgroup of V , where q | |V /P |. Then by (2), either

Q � F (H) or p > q and C Q (P ) = 1. In the second case, Q is cyclic by (3) and Lemma 2.7. Hence ev-
ery Sylow subgroup of F (H/P ) either is cyclic or is contained in F (H). Moreover by (2), p � |F (H/P )|.
Let K/P be a cyclic subgroup of a non-cyclic Sylow subgroup of F (H/P ) with prime order. Then it
is easy to see that K/P = 〈x〉P/P , where 〈x〉 is a cyclic subgroup of some non-cyclic Sylow subgroup
of F (H) with prime order. By hypothesis, 〈x〉 is weakly c-permutable in G . Hence 〈x〉P/P is weakly
c-permutable in G/P by Lemma 2.2(3). This shows that (G/P , H/P ) satisfies the hypothesis. The min-
imal choice of (G, H) implies that G/P ∈ F. Therefore, G ∈ F by Theorem 4.3. The final contradiction
completes the proof. �
Proof of Theorem 1.4. It is clear that the condition is necessary. We only need to prove that it is
sufficient. Suppose that the assertion is false and let G be a counterexample of minimal order. Then:

(1) Every proper subgroup of G is p-nilpotent.
By Lemma 2.3, we see that |N p| > p2. Let L be a proper subgroup of G . Since L/(L ∩ N) ∼= LN/N �

G/N , L/(L ∩ N) is p-nilpotent. If |L ∩ N|p � p2, then L is p-nilpotent by Lemma 2.3. If |L ∩ N|p > p2,
then every subgroup of L ∩ N of order p2 is weakly c-permutable in L by Lemma 2.2(1). Hence L is
p-nilpotent by the choice of G . This shows that G is a minimal non-p-nilpotent group.

(2) G has the following properties: (i) G = P Q , where P = GN is a normal Sylow p-subgroup of
G and Q is a non-normal cyclic Sylow q-subgroup of G; (ii) P/Φ(P ) is a minimal normal subgroup
of G/Φ(P ); (iii) If p > 2, then the exponent of P is p; if p = 2, then the exponent of P is 2 or 4;
(iv) Φ(P ) � Z(P ); (v) p3 dividing the order of P ; (vi) P � N .

By (1) and [15, Theorem IV. 5.4], G is a minimal non-nilpotent group. Hence (i)–(iv) follow directly
from [7, Theorem 3.4.2]. (v) follows from Lemma 2.3. (vi) is clear since P = GN is the p-nilpotent
residual of G and G/N is p-nilpotent.

(3) P is not cyclic.
Suppose that P is cyclic. If exp(P ) = p, then |P | = p and so |Aut(P )| = p − 1. If exp(P ) = 4,

then |P | = 4 and so |Aut(P )| = 2. Since NG(P )/CG(P ) is isomorphic to some subgroup of Aut(P ) and
(|G|, p − 1) = 1, NG(P )/CG(P ) = 1. Hence, by Burnside’s theorem, G is p-nilpotent, a contradiction.

(4) If H is a subgroup of P of order p2, then H is completely c-permutable in G .
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By hypothesis, H is weakly c-permutable in G . Hence there exists a subgroup T of G such that
G = H T and H ∩ T is completely c-permutable in G . If T < G , then T is nilpotent by (2). Since
p3 | |P | by (2), p | |T |. Let T p be a Sylow p-subgroup of T . Then T p � T and so T � NG(T p). Then
since |H| = p2, G = NG(T p) or |G : NG(T p)| = p or |G : NG(T p)| = p2. Assume that G = NG(T p).
Then T p � G . Obviously, p3 � |G/T p | and (G/T p)/(G/T p) = 1 is p-nilpotent. By Lemma 2.3, G/T p

is p-nilpotent. Hence P � T p and so P = T p . It follows that G = T , a contradiction. Suppose that
|G : NG(T p)| = p and let P1 = P ∩ NG(T p). Since |P : P1| = |P : (P ∩ NG(T p))| = |P NG(T p) : NG(T p)| =
|P T : NG(T p)| = |G : NG(T p)| = p, P1 is a maximal subgroup of P and so P1 � P . It follows that
P1 � G = P NG(T p). If P1 ⊆ Φ(P ), then P = P ∩ H NG(T p) = H(P ∩ NG(T p)) = H P1 = H , a con-
tradiction. Hence we can assume that P1 � Φ(P ). Since P/Φ(P ) is a minimal normal subgroup
of G/Φ(P ), P1Φ(P )/Φ(P ) = P/Φ(P ). This implies that P = P1, a contradiction. Now assume that
|G : NG(T p)| = p2. Since p2 = |G : NG(T p)| � |G : T | = |H T : T | = |H : (H ∩ T )| � p2, we have that
H ∩ T = 1. Hence, |P : T p | = |H T p : T p | = |H : (H ∩ T p)| = p2, which means that T p is a 2-maximal
subgroup of P . Therefore, there exists a maximal subgroup P2 of P such that T p is a maxi-
mal subgroup of P2. Then T p � P2 and so P2 � NG(T p). Hence |G : NG(T p)| = |H T : NG(T p)| =
|P NG(T p) : NG(T p)| = |P : (P ∩ NG(T p))| � |P : P2| = p, a contradiction. These contradictions show
that T = G . Thus, H = H ∩ T is completely c-permutable in G .

(5) There exists a subgroup H of P such that |H| = p2 which is not contained in Φ(P ).
If Φ(P ) = 1, then it is clear. Hence we may assume that Φ(P ) 	= 1. If |P | = p3, then clearly P has

a maximal subgroup of order p2. Since P is not cyclic by (3), P has at least two different maximal
subgroups P1 and P2. If P1 and P2 are all contained in Φ(P ), then P = P1 P2 ⊆ Φ(P ), a contradiction.
Hence, we can assume that |P | > p3. Let x ∈ P\Φ(P ) and a ∈ Φ(P ) where |a| = p. Since Φ(P ) �
Z(P ), 〈x〉〈a〉 � G . By (2), we see that |x| = p or 4. If |x| = 4, we can choose H = 〈x〉. If |x| = p, then
|〈x〉〈a〉| � p2. If |〈x〉〈a〉| = p, then 〈x〉 = 〈a〉, a contradiction. Hence |〈x〉〈a〉| = p2. Therefore (5) holds.

(6) Final contradiction.
By (2), G = [P ]Q . By (5), there exists a subgroup H of P with order p2 such that H � Φ(P ).

Then by (4), H is completely c-permutable in G . Hence there exists an element g ∈ 〈H, Q 〉 such that
H Q g = Q g H . Then H = H(Q g ∩ P ) = H Q g ∩ P � H Q g . It follows that Q g ⊆ NG(H). On the other
hand, since P/Φ(P ) is abelian, HΦ(P )/Φ(P ) � P/Φ(P ). This implies that HΦ(P )/Φ(P ) � G/Φ(P ).
However, since P/Φ(P ) is chief factor of G , we obtain that HΦ(P ) = P and consequently H = P , a
contradiction. Thus the proof is completed. �
5. Some applications

Our theorems have many corollaries. We here list such special cases of them which can be found
in the literature.

Theorem 1.1 immediately implies:

Corollary 5.1. (See Ramadan [22].) Let G be a soluble group and E a normal subgroup of G such that G/E is
supersoluble. If all maximal subgroups of every Sylow subgroup of F (E) are normal, then G is supersoluble.

Corollary 5.2. (See Wei [25, Theorem 1].) Let F be a saturated formation containing U. Suppose that G is a
group with a soluble normal subgroup H such that G/H ∈ F. If all maximal subgroups of all Sylow subgroups
of F (H) are c-normal in G, then G ∈ F.

Corollary 5.3. (See Wang, Wei and Li [26, Theorem 4.5].) Let F be a saturated formation containing U. Suppose
that G is a group with a soluble normal subgroup H such that G/H ∈ F. If all maximal subgroups of all Sylow
subgroups of F (H) are c-supplemented in G, then G ∈ F.

Corollary 5.4. (See Li and X. Guo [18, Theorem 2].) Let G be a group and E a soluble normal subgroup of G
such that G/E is supersoluble. If all maximal subgroups of the Sylow subgroups of F (E) are c-normal in G,
then G is supersoluble.
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Corollary 5.5. (See Li and X. Guo [19, Theorem 1.2].) Suppose that G is a soluble group with a normal subgroup
H such that G/H is supersoluble. If all maximal subgroups of every Sylow subgroup of F (H) are complement
in G, then G is supersoluble.

Corollary 5.6. (See X. Guo and Shum [14, Theorem 1.6].) Let F be a saturated formation containing U. Let H be
a soluble normal subgroup of a group G such that G/H ∈ F. If all maximal subgroups of every Sylow subgroup
of F (H) are complemented in G, then G ∈ F.

From Theorem 1.2 we obtain:

Corollary 5.7. (See Lam, Shum and Guo [16].) If p is an odd prime and every minimal subgroup of G is con-
tained in Z∞(G), then G is p-nilpotent.

Corollary 5.8. (See Ballester-Bolinches and Wang [2, Theorem 3.1].) Let F be a saturated formation such that
N ⊆ F. Let G be a group such that every cyclic of GF with order 4 is c-normal in G. Then G belongs to F if and
only if 〈x〉 lies in the F-hypercenter ZF(G) of G for every minimal subgroup 〈x〉 of GF .

Corollary 5.9. (See Zhong and Li [32, Theorem 2.5].) Suppose that p is a prime and K = GN the nilpotent
residual of G. Then G is p-nilpotent if every minimal subgroup of K is contained in Z∞(G) and every cyclic 〈x〉
of K with order 4 is c-supplemented in G.

Corollary 5.10. (See Wang [29, Theorem 2.4].) Let G be a finite group and K = GN be the nilpotent residual
of G. Then G is nilpotent if and only if every minimal subgroup 〈x〉 of K lies in the hypercenter Z∞(G) of G and
every cyclic element of P with order 4 is c-normal in G.

Corollary 5.11. (See Wang, Li and Wang [30, Theorem 4.4].) Let F be a saturated formation such that N ⊆ F.
Let G be a group such that every element of GF with order 4 is c-supplemented in G. Then G belongs to F if
and only if every element 〈x〉 with prime order lies in the F-hypercenter ZF(G) of G.

As immediate corollaries of Theorem 4.3, we have the following:

Corollary 5.12. (See Buckley [4].) Let G be group of odd order. If all subgroups of G of prime order are normal
in G, the G is supersoluble.

Corollary 5.13. (See Wang [27, Theorem 4.2].) If all cyclic subgroups of G with prime order and order 4 are
c-normal in G, then G is supersoluble.

Corollary 5.14. (See Li and X. Guo [17, Theorem 3.4].) Let N be a normal subgroup of a group G such that G/N
is supersoluble. If every minimal subgroup of N is c-normal in G and for 2 | |N| either every Sylow 2-subgroup
of N is an abelian group or every cyclic subgroup of N of order 4 is c-normal in G, then G is supersoluble.

Corollary 5.15. (See Ballester-Bolinches and Wang [2, Theorem 3.4].) Let F be a saturated formation contain-
ing U. If all minimal subgroups and all cyclic subgroups with order 4 of GF are c-normal in G, then G ∈ F.

Corollary 5.16. (See Ballester-Bolinches and Pedraza-Aguilera [1].) Let F be a saturated formation containing
U and G a group with normal subgroup E such that G/E ∈ F. Assume that a Sylow 2-subgroup of G is abelian.
If all minimal subgroups of E are permutable in G, then G ∈ F.

Corollary 5.17. (See Ramadan, Mohamed and Heliel [23, Theorem 3.9].) Let F be a saturated formation con-
taining U and G be a group. Then G ∈ F if and only if there exists a normal subgroup H of G such that G/H ∈ F

and the subgroups of prime order or order 4 of H are c-normal in G.
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Corollary 5.18. (See Wang, Li and Wang [30, Theorem 4.2].) Let F be a saturated formation containing U.
Assume G is a group with normal subgroup N such that G/N ∈ F. If all minimal subgroups and cyclic subgroups
with order 4 of N is c-supplemented in G, then G ∈ F.

Corollary 5.19. (See Ballester-Bolinches, Wang and X. Guo [3, Theorem 4.1].) Let G be a group and let H be
the supersoluble residual of G. If all minimal subgroups and all cyclic subgroups with order 4 of H are c-
supplemented in G, then G is supersoluble.

Corollary 5.20. (See Zhong and Li [32, Theorem 3.1].) Let G be a group and N a normal subgroup of a group
G such that G/N is supersoluble. If every minimal subgroup of E is c-supplemented in G and if every cyclic
subgroup of order 4 of N is c-normal in G, then G is supersoluble.

From Theorem 1.3 we obtain:

Corollary 5.21. (See Li and X. Guo [18, Theorem 3].) Let G be a group and E a soluble normal subgroup of
G such that G/E is supersoluble. If all minimal subgroups and all cyclic subgroups with order 4 of F (E) are
c-normal in G, then G is supersoluble.

Corollary 5.22. (See Wei [25, Theorem 2].) Let F be a saturated formation containing U. Suppose that G is a
group with a soluble normal subgroup H such that G/H ∈ F. If all minimal subgroups and all cyclic subgroups
with order 4 of F (H) are c-normal in G, then G ∈ F.

Corollary 5.23. (See Li [20, Theorem 3].) Let F be a saturated formation containing U and G be a group. Then
G ∈ F if and only if there is a normal soluble subgroup H in G such that G/H ∈ F and the subgroups of prime
order or order 4 of F (H) are c-normal in G.

Corollary 5.24. (See Wang, Wei and Li [26, Theorem 4.1].) Let F be a saturated formation containing U. Suppose
that G is a group with a soluble normal subgroup H such that G/H ∈ F. If all minimal subgroups and all cyclic
subgroups with order 4 of F (H) are c-supplemented in G, then G ∈ F.
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