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Our published paper contains an incorrect statement of a result
due to Artin and Zhang. This corrigendum gives the correct
statement of their result and includes a new result that allows us
to use the correct version of Artin and Zhang’s Theorem to prove
our main theorem. Thus the main theorem of our published paper
is correct as stated but its proof must be modified.
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1. The error

1.1. We retain the notation and definitions in our published paper [2].

1.2. Proposition 2.1 in [2] is stated incorrectly. It should be replaced by the following statement.
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Proposition 1.1. (See [1, Prop. 2.5].) Let A and B be N-graded k-algebras such that dimk Ai < ∞ and
dimk Bi < ∞ for all i. Let φ : A → B be a homomorphism of graded k-algebras. If kerφ and cokerφ belong to
Fdim A, then − ⊗A B induces an equivalence of categories

QGr A → Gr B

TA

where

TA = {M ∈ Gr B | M A ∈ Fdim A}.

1.3. As in our published paper, A is a finitely presented connected monomial algebra and kQ is
the path algebra of its Ufnarovskii graph, Q . Proposition 3.3 in [2] proved the existence of a homo-
morphism f̄ : A → kQ of graded k-algebras and [2, Prop. 4.1] showed that ker f̄ and coker f̄ belong
to Fdim A. Therefore Proposition 1.1 implies that − ⊗A kQ induces an equivalence of categories

QGr A → GrkQ

TA
.

Thus to prove our main theorem, [2, Thm. 4.2] and [2, Thm. 1.1], which says that −⊗A kQ induces
an equivalence of categories

QGr A ≡ QGrkQ = GrkQ

FdimkQ
,

we must prove that FdimkQ = TA . We do this in Proposition 2.3 below.

2. Corrected proof

2.1. The algebra A has a distinguished set of generators called letters and its relations are generated
by a finite set of words in those letters. The vertices in Q are certain words, the arrows in Q are also
words, and the arrow corresponding to a word w is labeled by the first letter of w . The details are
in [2, Sect. 3.3].

Lemma 2.1. The arrows in Q have the following properties.

(1) Different arrows ending at the same vertex have different labels.
(2) Different arrows having the same label end at different vertices.

Proof. (1) Let a and a′ be different arrows ending at the vertex v . By definition, there are words w
and w ′ such that a = aw and a′ = aw ′ , and letters x and x′ such that w = xv and w ′ = x′v . But a 	= a′
so w 	= w ′ and therefore x 	= x′ . But a is labeled x and a′ is labeled x′ .

(2) This is obviously equivalent to (1). �
2.2. The homomorphism f̄ : A → kQ is defined as follows: if x is one of the letters generating A,

then

f̄ (x) :=
{

the sum of all arrows labeled x,

0 if there are no arrows labeled x.
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Lemma 2.2. Let f̄ : A → kQ be the homomorphism above and write An(kQ ) for the right ideal of kQ gener-
ated by f̄ (An). For all n � 0,

An(kQ ) = kQ �n.

Proof. Write B = kQ .
We will prove that An B0 = Bn for all n � 0. This is certainly true for n = 0.
We will now show that A1 B0 = B1. To prove this, let a be an arrow in Q that begins at vertex u

and ends at vertex v . Then there are letters x and y such that a = aw and w = uy = xv . The arrow
a is therefore labeled x and f̄ (x) = · · · + a + · · · . By Lemma 2.1, a is the only arrow labeled x that
ends at v; hence, if ev is the trivial path at vertex v , then f (x)ev = aev = a. Hence a ∈ A1 B0. Thus
B1 ⊂ A1 B0. It is clear that A1 B0 ⊂ B1 so this completes the proof that A1 B0 = B1.

We now argue by induction on n. If An−1 B0 = Bn−1, then

An B0 = (A1)
n B0 = A1(A1)

n−1 B0 = A1 Bn−1 = A1 B0 Bn−1 = B1 Bn−1 = Bn.

This completes the proof that An B0 = Bn for all n � 0. It follows that An B = B�n . �
Proposition 2.3. TA = FdimkQ .

Proof. Every kQ -module is an A-module so a right kQ -module that is the sum of its finite
dimensional kQ -submodules is also the sum of its finite dimensional A-submodules. Therefore
FdimkQ ⊂ TA .

To prove the reverse inclusion, let M ∈ GrkQ and suppose M is in TA ; i.e., M is the sum of its
finite dimensional A-submodules. Let m be a homogeneous element in M . Then dimk(mA) < ∞ so
mA�n = 0 for n � 0. In particular, mAn = 0 so

m(kQ �n) = mAn(kQ ) = 0.

Hence m(kQ ) is isomorphic to a quotient of kQ /kQ �n and therefore finite dimensional. In particular,
m belongs to the sum of the finite dimensional kQ -submodules of M . Hence M ∈ FdimkQ .

Thus, TA ⊂ FdimkQ and the claimed equality follows. �
This completes the proof of [2, Thm. 4.2] and [2, Thm. 1.1].
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