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said property, and a partial converse is proved for a ring
satisfying (ii). Using the above mentioned classification, it is
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satisfy these opposite injectivity conditions are characterized.
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1. Introduction and preliminaries

There is an extensive literature on the injectivity of modules and rings, a considerable
amount of which involves notions derived from relative injectivity, i.e. that of a module
with respect to a fixed module, inspired by Baer’s criterion. Introduced in a similar vein,
the kind of injectivity (namely, subinjectivity) and the opposite of injectivity induced
by it (namely, indigence), as discussed by Aydoǧdu and López-Permouth in [3], seem
to offer a new perspective on the topic and to be abundant with interesting questions:
Let R be an associative ring with identity and M and N be unital right R-modules.
M is said to be N -subinjective if every homomorphism N → M can be extended to
some homomorphism E(N) → M , where E(N) is the injective hull of N . The class of all
modules N such that M is N -subinjective is called the subinjectivity domain of M , and
is denoted by In−1(M). If N is injective, then M is vacuously N -subinjective. So, the
smallest possible subinjectivity domain is the class of injective modules. A module with
such a subinjectivity domain is defined in [3] to be indigent. The existence of indigent
modules for an arbitrary ring is unknown, but an affirmative answer is known for some
rings such as Z and Artinian serial rings (see [3]).

In this paper, we address some questions raised by and studied in [3]. The first question
considered here is the following: What is the structure of a ring over which every right
module is indigent or injective? In order to approach this problem, we use the following
notion, which is a sort of dual to the notion of indigence: We call a module M a test for
injectivity by subinjectivity (t.i.b.s.) if the only modules which are M -subinjective are
the injective ones. Such modules exist over any ring (Proposition 1). An easy observation
shows that the rings in question are precisely those whose modules are injective or t.i.b.s.
(Proposition 2). We then prove that such a ring is isomorphic to the direct product of a
semisimple Artinian ring and an indecomposable ring T such that (i) T is a hereditary
Artinian serial ring with J2 = 0; or, (ii) T is a QF-ring isomorphic to a matrix ring over
a local ring (Theorem 3). An example of each case exists. Conversely, the condition (i)
is a sufficient one for an indecomposable ring (Proposition 10), and we have a partial
converse for the case (ii), which yields a characterization of QF-rings that are isomorphic
to a matrix ring over a local ring (Theorem 14).

Next, we mention the connection between rings whose right modules are injective or
indigent and fully saturated rings of Trlifaj [14]. Using Theorem 3 (see the preceding
paragraph), it is shown that the two types of rings coincide when the underlying ring
is not semisimple or a von Neumann regular ring (Theorem 16). It follows as a conse-
quence that nonsemisimple rings of the former type is in fact a subclass of the latter
(Corollary 17).
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We show that, for a ring R, RR is a t.i.b.s. if and only if R is a right hereditary and
right Noetherian ring (Theorem 19). Hence, a commutative domain is Dedekind if and
only if it is a t.i.b.s. as a module (Corollary 20).

Abelian groups that are t.i.b.s. (respectively, indigent) are completely characterized
in Theorem 26 (respectively, Theorem 27).

Aydoǧdu and López-Permouth also investigate when semisimple modules over a ring
are indigent, and they use the indigence of the direct sum, say S, of representatives of
simples. We extend their results proving that a commutative domain is Dedekind if and
only if S is indigent, and a right perfect ring is right Harada if and only if S is indigent.

As a by-product of our results the answer to another question raised in [3] is obtained:
There do exist poor modules (i.e. modules injective relative only to semisimples, see [1]
and [7]) which are not indigent, in particular over a PCI-domain which is not a division
ring (Remark 9).

For a module M , soc(M), Z(M) and rad(M) denote the socle, the singular submodule
and the Jacobson radical of M , respectively. For any ring in our discussion, J will stand
for the Jacobson radical of that ring. The composition length of a module M will be
denoted by cl(M). For two modules M and N over a ring R, Ext(M,N) will stand
for Ext1R(M,N). A ring R is called a right SI-ring if every singular right R-module is
injective. Such rings were completely characterized by Goodearl in [10]. For all other
basic or background material, we refer the reader to [11].

2. Rings whose modules are injective or indigent

Definition 1. A module N is said to be a test for injectivity by subinjectivity (t.i.b.s.) if
the only N -subinjective modules are injective modules.

Proposition 1. Every ring has a t.i.b.s.

Proof. Let R be a ring and N =
⊕

I, where I ranges among (proper) essential right
ideals of R, and assume that X is an N -subinjective module. Let A be a right ideal of R,
and f : A → X be any homomorphism. We may assume, without loss of generality, that
A is essential in RR. Then, the copy of A in N that is a direct summand of N is essential
in an injective submodule, say Q, of E(N). So, there is an embedding φ : RR → Q

fixing A. Since X is N -subinjective, f(φ−1)|A (here, A is the copy in N) extends to some
h : E(N) → X. Thus, hφ is the desired extension of f to R → X. �

If a ring R has an injective module which is also a t.i.b.s., then R is clearly semisimple
Artinian. Thus, it is natural to ask the following question:

Question. What is the structure of a ring over which every right module is injective or
a t.i.b.s.?
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It turns out that such rings coincide with rings whose modules are injective or indi-
gent. The following proposition states this obvious fact without proof. We will use this
proposition freely in the sequel.

Proposition 2. The following conditions are equivalent for a ring R:

(i) Every right R-module is injective or a t.i.b.s.;
(ii) Every right R-module is injective or indigent;
(iii) If A,B ∈ Mod-R and A is B-subinjective, then A or B is injective.

In this case, the class of indigent modules and that of t.i.b.s. modules coincide.

For convenience, we will define the following condition for a ring R:

(P): R satisfies the equivalent conditions of Proposition 2.

The main theorem of this section classifies rings satisfying (P).

Theorem 3. Let R be a ring satisfying the condition (P). Then R ∼= S × T , where S

is a semisimple Artinian ring and T is an indecomposable ring satisfying one of the
following conditions:

(i) T is a hereditary Artinian serial ring with J2 = 0;
(ii) T is a QF-ring isomorphic to Mn(Γ ) for some local ring Γ .

Before proving the theorem, we will first give some lemmas.

Lemma 4. If R is a ring satisfying (P), then R is a right SI-ring or R ∼= S × T , where
S is a semisimple Artinian ring and T is a ring such that Z(TT ) is essential in TT .

Proof. If R is not right SI, then there is a noninjective singular (right R-)module C,
which belongs to the subinjectivity domain of any nonsingular module, implying that
nonsingular modules are (semisimple and) injective [3, Proposition 4.11]. Let D be a com-
plement in RR of Z2(RR). Then, by what is said above, D is semisimple and injective, so
that RR = D ⊕ Z2(RR). This is clearly a ring direct sum. Put S = D and T = Z2(RR).
Then S is a semisimple Artinian ring and Z(TT ) is essential in TT . �
Lemma 5. If R is a ring satisfying (P), then either R is a right semiartinian ring or it
is a right Noetherian right V -ring.

Proof. Assume that R is not right semiartinian. Then, there exists a nonzero mod-
ule A with soc(A) = 0. Then every submodule of A is S-subinjective for any semisimple
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module S. Since soc(A) = 0, A must have a noninjective submodule, say B. By the as-
sumption of (P) and the above argument, all semisimple modules are injective, meaning
that R is right Noetherian and right V . �
Lemma 6. Let R be a right Artinian ring with homogeneous right socle and Z(RR) essen-
tial in RR. If every simple right R-module is injective or indigent, then R is a QF-ring
isomorphic to a matrix ring over a local ring.

Proof. In this situation, R =
⊕n

i=1 eiR, where ei form a complete set of orthogonal
primitive idempotents, and no eiR is simple. Now we will see that each eiR is either
injective or small in its injective hull: Fix i ∈ {1, ..., n} and assume that eiR is not
injective. Pick any k ∈ {1, ..., n} and let J stand for the Jacobson radical of R. If
ekR
ekJ

does not embed in soc(eiR), then Hom(ekR, soc(eiR)) = 0, whence soc(eiR) is
ekR-subinjective. This implies, by our assumption, that ekR is injective. In particular,
eiR
eiJ

must embed in soc(eiR). Now let E be the injective hull of eiR and assume that
eiR + K = E for some K ⊆ E. Put V = eiR

eiJ
. We will show that, in this situation, V is

eiR-subinjective: Let f : eiR → V be any nonzero homomorphism. Then Ker(f) = eiJ .
Note that K ∩ eiR ⊆ eiJ , so that the zero map K → V and f agree on K ∩ eiR. Thus,
f extends to the map g : E → V via g(eir + k) = f(eir) (r ∈ R, k ∈ K), showing that
V is eiR-subinjective. But since V is not injective, eiR must be injective by assumption,
contradicting our hypothesis. Therefore, we cannot have such a module as K above, and
hence eiR is small in its injective hull. Also, by these arguments, if etR is not injective,
then etR

etJ
∼= eiR

eiJ
, implying that etR ∼= eiR.

Now let k be such that ekR is injective, pick any proper submodule X of ekR, and
let eiR be as chosen in the preceding paragraph. Now, ekR

ekJ
∼= eiR

eiJ
(= V ) would im-

ply eiR ∼= ekR, a contradiction. So, we clearly have Hom(ekRX , V ) = 0, so that V is
ekR
X -subinjective. Recall that V embeds in soc(eiR), so it is not injective. This implies,

by our hypothesis, that ekR
X is injective, hence uniform. In particular, ekR is uniserial

because all of its nonzero factors are uniform. Now, let Y = soc(ekR) and assume that
soc( ekRY ) ∼= V . As soc(RR) is homogeneous by assumption, and V embeds in soc(eiR),
we have E(V ) ∼= ekR. Then, ekR

Y , being uniform, would embed in ekR, which would yield
a contradiction because ekR

Y is nonzero injective. So, we must have soc( ekRY ) � V . Then
V is soc( ekRY )-subinjective as well as not injective, implying that soc( ekRY ) is injective,
whence equal to ekR

Y . Thus, cl(ekR) = 2. This argument shows that every injective ekR

has composition length = 2 (under the assumption of the existence of a noninjective
principle indecomposable, namely eiR).

Next, we will see that the E (= E(eiR)) defined above is isomorphic to one of the
etR: First, E = E1 ⊕ ...⊕ Em for some indecomposable injective modules Ek (they are
finitely many since eiR is essential in E). Since R is right Artinian, for each k = 1, ...,m,
rad(Ek) is a small submodule of Ek. Ek is a sum of homomorphic images of the modules
etR. However, since any map φ : etR → Ek extends to some φ′ : E(etR) → Ek, we have
φ(etR) = φ′(etR) ⊆ φ′(rad(E(etR))) ⊆ rad(Ek) whenever etR is small in its injective
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hull. Since rad(Ek) is small in Ek, this means that Ek is the sum of the images of some
injective etR. This implies, in particular, that there exists at least one injective etR.
Recall from the previous paragraph that, whenever etR is injective, then all factors of
it are injective. Thus, Ek is isomorphic to a factor of some injective etR. Now let, for
each l, πl : E1 ⊕ ...⊕Em → El be the obvious projection. Since eiR is not singular, there
exists some l such that πl(eiR) is not singular; this is because eiR ⊆

⊕m
t=1 πt(eiR).

In this case El must be isomorphic to some injective ekR. Since cl(El) = 2 by the
preceding paragraph and soc(El) is singular, we must have πl(eiR) = El

∼= ekR. But
then, by projectivity, we obtain eiR ∼= ekR, contradicting our choice of eiR at the
beginning. This shows that we cannot have a noninjective eiR. Thus, R is clearly a
QF-ring. And since R has homogeneous socle, all etR are pairwise isomorphic, yielding
that R ∼= Mn(Γ ), where Γ ∼= EndR(etR) is local. Clearly R has a unique simple right
module. �
Remark 7. For the purposes of Theorem 3 only, one does not need the full strength of
Lemma 6 above: By an easy argument, [3, Proposition 2.9] implies that a ring R with (P)
is either right hereditary or right self-injective. However, we need Lemma 6 to also prove
Theorem 14.

A right PCI-ring R is one whose cyclic right modules, except possibly R itself, are all
injective (see [9]). Such a ring is right Noetherian by a result of Damiano [5].

Lemma 8. A right PCI-domain satisfying (P) is a division ring.

Proof. Let R be a right PCI-domain with property (P). So, it is right Noetherian. As-
sume, contrarily, that R is not a division ring. Then R is not right Artinian. Hence,
E(RR) is not Noetherian. Let A be a nonzero proper right ideal of R. Since R is a right
PCI domain, R

A is injective, hence it splits in E(RR)
A . So, there exists a submodule G

of E(RR) such that R + G = E(RR) and G ∩ R = A. In particular, G �= E(RR).
Furthermore, G is not finitely generated, because otherwise so would be E(RR), con-
tradicting the above observation. This implies that Hom(G,RR) = 0 (since R is a right
PCI-domain), so that RR is G-subinjective, which is a contradiction since neither G nor
RR is injective. The conclusion now follows. �
Remark 9. In [3, Section 5], Aydoǧdu and López-Permouth raise the question whether
there are any poor modules which are not indigent. Lemma 8 and [7, Proposition 5]
imply an affirmative answer to this question: There do exist such modules, in particular
over right PCI-domains.

Now we can prove our theorem.

Proof of Theorem 3. Assume that R satisfies the condition (P). Since any direct sum
of injective modules is sub-injective relative to any cyclic module, by our assumption,
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either all cyclics are injective or any direct sum of injectives is injective. The former
implies, by the well-known Osofsky-Theorem (see [13]), that R is semisimple Artinian.
So, in any case, R is right Noetherian.

Take any two semisimple modules A and B which are orthogonal (i.e. they do not have
nonzero isomorphic submodules). Since Hom(A,B) = 0, either A or B must be injective.
So, there is at most one homogeneous component of soc(RR) which is not injective.
Since R is right Noetherian, the sum of the injective homogeneous components, call S,
is injective. Thus, we have a ring direct sum R = S⊕ T , where S is semisimple Artinian
and T has homogeneous right socle. Again by Noetherianity, we have a ring direct sum
T = R1 ⊕ ...⊕Rk, where Rk are indecomposable rings satisfying (P). Also, for i �= j, all
right ideals of Ri are vacuously subinjective relative to all right ideals of Rj as T -modules.
So, either all right ideals of Ri are injective or those of Rj are injective, whence either Ri

or Rj is semisimple Artinian. This means that at most one of Ri can be nonsemisimple
(in fact, it implies that k is at most 2, as T has homogeneous right socle). Adjoining now
all the semisimple parts of the above decomposition to S, we can assume in the rest of
the proof, without loss of generality, that T is ring-indecomposable and nonsemisimple.

Case 1: Assume T is not right SI. Then, by Lemma 4, there is a ring direct sum
T = T1⊕T2, where T1 is semisimple Artinian and Z(T2T2) is an essential right ideal of T2.
However, since T is now an indecomposable and nonsemisimple ring by the preceding
paragraph, T = T2, so that Z(TT ) is essential in TT .

Assume that T is not right semiartinian. Then, T is a right Noetherian and right
V -ring by Lemma 5. However, such a ring decomposes into simple rings by Faith–
Ornstein Theorem (see [8, 3.20]). Since T is indecomposable, T must then be simple,
contradicting that Z(TT ) is essential in TT . So this case is not possible.

So, now, T is right semiartinian. Then, T is right Artinian because of Noetherianity.
Thus, T is a ring satisfying the hypotheses of Lemma 6. Thus, Lemma 6 yields the
case (ii).

Case 2: Now assume that T is a right SI-ring. As in the preceding paragraph, by
Lemma 5 and right Noetherianity of T , T is either right Artinian or right Noetherian
and right V . By [10, Theorem 3.11], there is a ring direct sum T = T ′⊕T1⊕...⊕Tl, where

T ′

soc(T ′) is semisimple and Ti are Morita equivalent to right SI-domains (equivalently, right
PCI-domains). Since T is now ring-indecomposable and nonsemisimple, all except one of
the rings in that decomposition must be zero. Assume T is right Noetherian and right V .
Then, T ′ is semisimple Artinian, hence zero. This implies that T is Morita equivalent to a
right PCI-domain. But since (P) is Morita invariant (follows routinely from Proposition 2
and [3, Lemma 2.2]), T must then be semisimple Artinian by Lemma 8, contradicting
our assumption above. So, this situation is not possible.

Then now, T is right Artinian, so that T1 ⊕ ... ⊕ Tl is semisimple, hence zero. Then,
T

soc(TT ) is semisimple. In this case TT =
⊕n

i=1 eiT , where {ei : i = 1, ..., n} is a com-
plete set of primitive orthogonal idempotents. Let i ∈ {1, ..., n}. Assume that eiT is
not simple. Then eiT

soc(eiT ) is local, semisimple (and injective, because it is now singu-
lar), whence it is simple. Thus, eiJ(T ) = soc(eiT ). Also, since, by nonsingularity of TT ,
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Hom(eiT, soc(eiT )) = 0, soc(eiT ) is vacuously eiT -subinjective but not injective, whence
eiT must be injective by assumption. So, if eiT is not simple, then by the above argu-
ments, eiT is injective with soc(eiT ) = eiJ(T ), implying that cl(eiT ) = 2. So T is a
direct sum of right ideals which are simple or injective with composition length 2. Then,
by [6, 13.5] and since right SI-rings are right hereditary we obtain (i). �

We will now consider the converse of Theorem 3:

Proposition 10. A hereditary Artinian serial ring R which is indecomposable (or has
homogeneous right socle) with J2 = 0 satisfies (P).

Proof. In any case, R has homogeneous right socle, and it is right SI by [10, Theo-
rem 3.11]. Assume that A and B are right R-modules such that A is B-subinjective.
Also let B be noninjective. Since R is Artinian, B = B′ ⊕ D for some injective mod-
ule B′ and a module 0 �= D which does not contain any nonzero injective submodules.
By the SI condition and our assumption, Z(D) = 0. Now, E(D) =

⊕
j∈I Ej , where Ej

are indecomposable injective modules.
Let RR =

⊕n
j=1 ejR, where ej are a complete set of orthogonal primitive idempotents.

By our assumptions, any nonsimple ejR is injective. Let eiR be injective. Then, since
R has homogeneous socle, eiR is the injective hull of the only nonsingular simple right
R-module.

Now take any t ∈ I and let πt :
⊕

j∈I Ej → Et be the obvious projection. By
the preceding paragraph, Et

∼= eiR, so that it is projective. As D does not contain
a nonzero injective submodule, πt(D) �= Et, whence πt(D) = soc(Et). By projectivity
of the latter (as this ring is hereditary), it turns out that D has a direct summand
isomorphic to S = soc(eiR). Since R is right SI, A = A′⊕C, where A′ is singular injective
and C is nonsingular. Assume that C �= 0. Now, by nonsingularity of C, soc(C) =⊕

α∈Ω Sα, where Sα
∼= S for all α ∈ Ω. C is S-subinjective. Thus, for each α, the

isomorphism S → Sα extends to some monomorphism fα : E(S) → C. Clearly, C =⊕
α∈Ω fα(E(S)), implying that C is injective. Therefore A is injective, proving that R

has the property (P). �
Example 11. R =

(
D D
0 D

)
(D a division ring) satisfies (P) by Proposition 10.

Example 12. Any Artinian chain ring satisfies (P) and is as in Theorem 3, by [3, Theo-
rem 5.1].

We do not know precisely which QF-rings (isomorphic to a matrix ring over a lo-
cal ring) satisfy the condition (P). As we will see in the next section, this question is
equivalent to a long standing open question raised in the work of Trlifaj, namely that of
determining those fully saturated rings that are QF. The next proposition is related to
this question and is a partial converse for the case (ii) of Theorem 3; another one will
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be given by Theorem 14. Before we proceed, let us note that a QF ring R is isomorphic
to a matrix ring over a local ring if and only if it has homogeneous socle.

Proposition 13. Let R be a serial QF ring with homogeneous socle. Then R satisfies (P).

Proof. Here, R ∼= (eR)k, for some primitive idempotent e of R. Let A and B be two
right R-modules such that A is B-subinjective. Since R is Artinian serial, every module
is a direct sum of cyclic uniserial modules. Assume, contrarily, that neither A nor B is
injective. Then each of these modules has a noninjective cyclic uniserial direct summand.
So, we can assume without loss of generality that A and B are both cyclic uniserial. It
follows from our assumptions that for each n ∈ N, there exists, up to isomorphism, at
most one cyclic uniserial module of length n, and it embeds in eR.

Now, if cl(B) � cl(A), then B embeds in A via some monomorphism, say, f . By
assumption, f extends to some monomorphism g : E(B) → A, contradicting our as-
sumption that A is not injective. Else, if cl(B) > cl(A), then, by uniqueness (up to
isomorphism) of a module of the same length as A, there is an epimorphism t : B → A.
However, t cannot be extended to an element of Hom(E(B), A), since B ⊆ rad(E(B)).
Thus, either case leads to a contradiction, yielding the conclusion. �

Lemma 6 inspires the following characterization of QF-rings which are isomorphic
to a matrix ring over a local ring. Notice that it also provides a partial answer to the
sufficiency of the condition Theorem 3 (ii) for the condition (P).

Theorem 14. The following conditions are equivalent for a ring R:

(i) R is a nonsemisimple QF-ring that is isomorphic to a matrix ring over a local ring;
(ii) R is right Artinian with homogeneous right socle containing Z(RR) essentially, and

every simple right module is indigent or injective;
(iii) The left-hand version of (ii).

In this case, there is a unique simple right module and it is indigent.

Proof. (ii) ⇒ (i) is by Lemma 6, and (i) ⇔ (iii) will follow by symmetry and (i) ⇔ (ii).
So, we only prove (i) ⇒ (ii), and it suffices to see the last part only:

In this case, RR
∼= (eR)n for some primitive idempotent e of R, and there is a unique

simple right R-module, say V . We claim that V is indigent. Let V be A-subinjective
for some right module A. Since R is QF, we can split a maximal injective submodule
off A and assume, without loss of generality, that A is a nonzero module that contains
no nonzero injective submodules. Since R is Artinian, rad(A) is small in A, so that A

has a simple image, which, by assumption, must be isomorphic to V . So, let f : A → V

be an epimorphism. Pick a cyclic submodule C of A such that f(C) = V . Since V is
A-subinjective, f extends to some g : E(A) → V . Clearly, C +Ker(g) = E(A). Let E′ be



R. Alizade et al. / Journal of Algebra 409 (2014) 182–198 191
an injective submodule of E(A) essentially containing C. Then C + (Ker(g) ∩E′) = E′.
Now, since R is Artinian and E′ essentially contains a cyclic module (namely C), and
since each indecomposable injective is the hull of the same simple, E′ = E1 ⊕ ... ⊕ Et

for some Ek
∼= eR. Let πi : E1 ⊕ ...⊕Et → Ei be the obvious projection, for each i ∈ I.

Since A (hence C) does not contain a nonzero injective submodule and Ei are projective,
πi(C) ⊆ rad(Ei). Thus, C ⊆

⊕t
i=1 πi(C) ⊆ rad(E′). However, this implies that Ker(g)

contains E′, a contradiction. The conclusion now follows. �
3. Fully saturated rings and the condition (P)

In [14], Trlifaj defined what he called a Whitehead test module for injectivity
(i-test module) as follows: A module M is an i-test module if N is injective whenever
Ext(M,N) = 0. He also considered nonsemisimple rings whose non-projective modules
are i-test, named such a ring fully saturated, and showed that they fall into three classes.
First, let us point out that the notions of i-test and t.i.b.s. are related: It can easily be
seen that if M is a t.i.b.s. then E(M)

M is an i-test module. Trlifaj showed in [14, Theo-
rem 6.15], using homological and set theoretic techniques, that a fully saturated ring is
the direct sum of a semisimple ring and an indecomposable ring which is isomorphic to a
full matrix ring over a local QF-ring, or is Morita equivalent to a 2× 2 upper triangular
matrix ring over a division ring, or is a simple von Neumann regular ring with all right
ideals countably generated and with a unique simple right module.

In this section we will show, using Theorem 3, that a ring that is not von Neumann
regular is fully saturated if and only if it satisfies (P). As a consequence, it follows that
a nonsemisimple ring with (P) is fully saturated.

Lemma 15. Let R be a nonsemisimple QF ring. Then R is fully saturated if and only if
R satisfies (P). In this case, the classes of non-projective modules, noninjective modules,
t.i.b.s. modules and i-test modules coincide.

Proof. Assume R is fully saturated. Let A and B be two modules such that A is
B-subinjective. Assume that B is not injective. We claim that A is injective: Consider
the exact sequence

0 → B → E(B) → E(B)
B

→ 0.

Then, we have the following long exact sequence

0 → Hom
(
E(B)
B

,A

)
→ Hom

(
E(B), A

)
→ Hom(B,A)

→ Ext
(
E(B)

, A

)
→ Ext

(
E(B), A

)
→ ...
B
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Now, by the QF assumption, E(B) is projective, so that Ext(E(B), A) = 0. Fur-
thermore, since A is B-subinjective, Hom(E(B), A) → Hom(B,A) is an epimorphism,
implying that Ext(E(B)

B , A) = 0. Since B is not injective, E(B)
B is not projective, whence,

by assumption of fully saturated, A must be injective. This shows that R satisfies the
condition (P).

Conversely, assume that R satisfies (P), and let B be a non-projective module. Let
Ext(B,N) = 0 for some module N . Consider the exact sequence

0 → A → P → B → 0,

where P is projective (hence injective). In a similar way to the above argument, one can
obtain the exactness of

0 → Hom(B,N) → Hom(P,N) → Hom(A,N) → 0,

implying, by [3, Lemma 2.2] and since P is injective, that N is A-subinjective. But
since P is injective–projective, and B is noninjective, A cannot be injective. Thus, by
assumption, N is injective. Therefore R is fully saturated. �
Theorem 16. Let R be a ring which is not von Neumann regular. R is fully saturated if
and only if R satisfies (P).

Proof. Let R be a fully saturated ring which is not regular. Note that the direct product
of a semisimple Artinian ring and a ring satisfying (P) satisfies (P). So, by [14, The-
orem 6.15], we can assume, without loss of generality, that R is either QF or Morita
equivalent to a 2 × 2 upper triangular matrix ring over a division ring. In the former
case, R satisfies (P) by Lemma 15. In the latter one, a 2×2 upper triangular matrix ring
over a division ring has (P) by Example 11. Since (P) is a Morita invariant property,
R satisfies (P) as well.

Conversely, let R be a nonregular ring satisfying (P). By Theorem 3, R ∼= S × T ,
where S is semisimple Artinian and T is an indecomposable ring which is either QF
or hereditary Artinian serial with J2 = 0. In the former case, R is QF as well, so
that it is fully saturated by Lemma 15. So, assume the latter case and let M be a
nonprojective right T -module, and N be a right T -module such that Ext(M,N) = 0.
Note that TT =

⊕n
i=1 eiT , where {ei : i = 1, ..., n} is a complete set of primitive

orthogonal idempotents and each eiT is either injective with composition length 2, or
simple; and furthermore, TT has homogeneous socle. We will assume T is not semisimple
Artinian, so that there exists some e = ei such that eT has composition length 2. In this
case, both M and N are direct sums of cyclic uniserial modules, and each cyclic uniserial
module is isomorphic to one of eT , soc(eT ), and eT

soc(eT ) , where all except soc(eT ) are
injective modules. Since M is not projective, it has a cyclic uniserial direct summand,
say A, which is isomorphic to eT

soc(eT ) . We want to show that N is injective. Assume,
contrarily, that it is not. Then N has a cyclic uniserial direct summand, say B, which is
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isomorphic to soc(eT ). Then, we have Ext(A,B) = 0, whence Ext( eT
soc(eT ) , soc(eT )) = 0.

However, the exact sequence

0 → soc(eT ) → eT → eT

soc(eT ) → 0

is not split, yielding a contradiction. Thus, N must be injective. Therefore T is fully
saturated, and hence so is R. This completes the proof. �
Corollary 17. A nonsemisimple ring R satisfying (P) is fully saturated.

Proof. If R is nonsemisimple and regular with property (P), then R is right Noetherian
by the first paragraph of the proof of Theorem 3, whence it is semisimple Artinian by
regularity. So, in the von Neumann regularity case, R is fully saturated. The conclusion
follows by Theorem 16. �
Remark 18. Notice that in order to obtain the result (P) ⇒ fully saturated for a non-
semisimple ring, we have used Theorem 3. We do not know a direct (homological)
proof of this fact that is independent from Theorem 3 and its techniques. Such a proof
would help make a route to reach the conclusion of Theorem 3 through Trlifaj’s result
[14, Theorem 6.15]. However, that route would be an arduous as well as a more indirect
one, considering the homological and set theoretical machinery involved in [14], whereas
our methods are based on basic ring and module theory.

To the best of our knowledge, the existence of a nonsemisimple fully saturated simple
von Neumann regular ring is not known. If such an example does not exist, then, by
Theorem 16, fully saturated rings and rings with property (P) will coincide.

Our construction of a t.i.b.s. (Proposition 1) and Trlifaj’s construction of an i-test
[14, Proposition 1.2] are the same module (in fact, one could obtain the existence of a
t.i.b.s. from the existence of an i-test module), showing that every ring has a module
which is both a t.i.b.s. and an i-test. However, in general, they do not coincide, as there
may exist projective modules that are t.i.b.s. over nonsemisimple Artinian rings (see
Theorem 19).

Finally, note that a nonsemisimple serial QF ring with homogeneous socle is fully
saturated, by Proposition 13 and Lemma 15. Such a ring is necessarily indecomposable.

4. When the ring is a t.i.b.s.

Theorem 19. The following are equivalent for a ring R:

(i) RR is a t.i.b.s.;
(ii) R is right hereditary and right Noetherian.
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Proof. Any direct sum of injectives is RR-subinjective. So, the condition (i) implies that
any such sum is injective, hence R is right Noetherian. Furthermore, R is right hereditary
by [3, Proposition 2.9].

Conversely, let R be right hereditary and right Noetherian. Assume that A is a mod-
ule which is RR-subinjective. Then, for any a ∈ A, the map RR → A determined by
left multiplication by a extends to some ha : E(RR) → A. By hereditary assumption,
ha(E(RR)) is an injective module containing aR. Thus, ha(E(RR)) contains an essen-
tial (injective) extension, call Ea, of aR. By Zorn’s lemma, one can choose a maximal
independent family Λ of cyclic submodules of A. Then,

⊕
a∈Λ aR is essential in A. By

Noetherianity,
⊕

a∈Λ Ea = A, proving that A is injective, and hence RR is a t.i.b.s. �
Corollary 20. A commutative domain R is Dedekind if and only if it is a t.i.b.s.

Theorem 19 inspires the question whether every nonzero projective module over a
right hereditary right Noetherian ring is a t.i.b.s. However, this is not correct as the
following example shows:

Example 21. Let

R =

⎛
⎝F F F

0 F F

0 0 F

⎞
⎠ ,

where F is a field. Then, for

I =

⎛
⎝ 0 0 0

0 F F

0 0 0

⎞
⎠ and S =

⎛
⎝ 0 0 0

0 0 0
0 0 F

⎞
⎠ ,

S is I-subinjective as Hom(I, S) = 0, whereas S is not injective, showing that I is not a
t.i.b.s.

Since, over a right hereditary ring, every projective right module is isomorphic to a
direct sum of right ideals, we have the following result, which follows from Theorem 19.

Corollary 22. The following are equivalent for a ring R:

(i) Every nonzero projective right R-module is t.i.b.s;
(ii) Every nonzero right ideal of R is a t.i.b.s.

Proposition 23. The following are equivalent for a ring R:

(i) R is semisimple Artinian;
(ii) R is a ring as described in Corollary 22 and soc(RR) �= 0.
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Proof. (i) ⇒ (ii) is immediate.
(ii) ⇒ (i) In this case, R is right hereditary and right Noetherian by Theorem 19. Let

S be a simple right ideal of RR. If S is injective, then, by assumption, R is semisimple
Artinian, proving the claim. Else, assume that S is not injective. Since S is projective,
RR = I1⊕S1 for some right ideals I1 and S1 ∼= S. If I1 is injective, then we are done. So,
assume that I1 is not injective. Then, I1 �= 0, whence it is a t.i.b.s. Again by assumption,
S is not I1-subinjective, so that Hom(I1, S) �= 0, and thus I1 = I2 ⊕ S2, where S2 ∼= S.
Since R is right Noetherian, this process will stop when In is injective and thus R is
semisimple Artinian. �

The condition soc(RR) �= 0 is not redundant as the next example shows:

Example 24. Every nonzero ideal I of Z is a t.i.b.s. by Theorem 19 and the fact that
I ∼= Z.

In the same vein as the above results, it is natural to ask what happens if all nonzero
cyclic modules are t.i.b.s. We close this section with the following result.

Proposition 25. Every nonzero cyclic right R-module is a t.i.b.s. if and only if R is
semisimple Artinian.

Proof. It is enough to verify one direction only. Assume that every nonzero cyclic right
R-module is a t.i.b.s. By Theorem 19, R is then right hereditary and right Noetherian.
If a cyclic right module is injective, the conclusion immediately follows. So, we assume,
without loss of generality, that no cyclic is injective. Then, there is a unique simple
right R-module, say S, upto isomorphism. Then, Hom(S,RR) �= 0, so that R contains a
copy of S. Since R is right hereditary, this implies that S is projective. However, since
by our assumption R is not semisimple Artinian, R contains an essential right ideal I,
so that R

I is a simple singular right R-module. This contradicts the uniqueness of S

upto isomorphism. Thus, the assumption that no cyclic is injective is false, whence R is
semisimple Artinian. �
5. When abelian groups are indigent or t.i.b.s.

Theorem 26. An abelian group G is a t.i.b.s. if and only if G has a direct summand
isomorphic to Z.

Proof. Suppose G is a t.i.b.s. Then Hom(G,Z) �= 0. Let f : G → Z be a nonzero
homomorphism. Then G

Ker(f)
∼= nZ is projective. So that G = Ker(f) ⊕G′ with G′ ∼= Z.

Conversely, if G = A ⊕ A′ with A′ ∼= Z, then G is a t.i.b.s. since Z is a t.i.b.s. by
Theorem 19. �
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For an abelian group G, let T (G) and Tp(G) denote the torsion and the p-torsion
parts of G, respectively. Then T (G) =

⊕
Tp(G), where p ranges over the prime integers.

Every abelian group G can be written in the form G = D ⊕ B, where D is divisible
(= injective), and B contains no nonzero divisible subgroups (it is easy to see that D is
unique, and B is unique upto isomorphism). Note that a group G is divisible if and only
if pG = G for each prime p. If D = 0, then G is called reduced.

It is shown in [3] that the group
⊕

p
Z

pZ (p ranges over all primes) is indigent. The
next result characterizes indigent abelian groups.

Theorem 27. The following are equivalent for an abelian group G.

(i) G is indigent.
(ii) Tp(G) �= pTp(G) for each prime p.
(iii) The reduced part of T (G) contains a submodule isomorphic to

⊕
p

Z

pZ , where p

ranges over all primes.

Proof. (ii) ⇒ (iii) is clear.
(i) ⇒ (ii) Suppose pTp(G) = Tp(G) for some prime p. On the other hand, for a prime

q �= p, we always have qTp(G) = Tp(G). Hence Tp(G) is divisible, and so injective. Now
it is straightforward to check that G is Z

pZ -subinjective, obtaining a contradiction.
(iii) ⇒ (i) Suppose G is N -subinjective for some abelian group N . We will show that

N is injective, equivalently, that qN = N for every prime q. Assume, contrarily, that
pN �= N for some prime p. Since N

pN is nonzero semisimple, N has a factor isomorphic
to Z

pZ .
Now G = D⊕B, where D is divisible and B is reduced. Then T (G) = T (D)⊕ T (B),

where T (D) is clearly divisible and T (B) is reduced. So, by assumption, T (B) contains
a copy of Z

pZ . Then, there is a nonzero map f : N → T (B), which, by assumption
of N -subinjectivity, extends to some g : E(N) → G. Thus, Im(g) is divisible. Let π :
D ⊕ B → B be the obvious projection. If Im(g) were not contained in D, π(Im(g))
would be a nonzero divisible module contained in B, a contradiction. But then, Im(f) ⊆
Im(g) ∩B = 0, again a contradiction. Now the conclusion follows. �
Corollary 28. An abelian group G is indigent if and only if its torsion part is indigent.

6. Rings with semisimple indigent modules

In [3], Aydoǧdu and López-Permouth investigate when a ring has a semisimple indigent
module. They show that this is the case when R is the ring of integers [3, Corollary 4.5],
or when R is Artinian serial with J(R)2 = 0. In either case, they prove that the direct
sum S of a complete set of representatives of simple right modules is indigent. Here, we
extend those results:
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Proposition 29. Let R be a commutative domain and S be the direct sum of a complete set
of representatives of simple right R-modules. R is Dedekind if and only if S is indigent.

Proof. If R is a Dedekind domain, a module M is injective if and only if rad(M) = M

by [2, Lemma 4.4]. Then S is indigent by the proof of [3, Proposition 4.4].
Conversely, assume that S is indigent and take any divisible module D. Also assume,

without loss of generality that R is not a division ring. Let A be any maximal sub-
module of D. Then, by commutativity of D, D

A is annihilated by some maximal ideal I
of R. However, since I is nonzero by assumption, DI = D by divisibility of D, and
hence (DA )I = D

A , contradicting our choice of A. Thus rad(D) = D. Then, S is clearly
D-subinjective, so that D is injective. Thus, divisible modules are injective, proving that
D is Dedekind. �

A ring is called a right Harada ring if it is a perfect ring over which every nonsmall
right module contains a nonzero injective submodule (see [4]). This is equivalent to the
condition that any injective right module is supplemented and supplement submodules
are injective (see [4, Theorem 3.1.12] and [12, Proposition 4.8]). An Artinian serial ring
with J2 = 0 is a two-sided Harada ring.

Lemma 30. Let R be right perfect and A be a right R-module. If every simple right
R-module is A-subinjective, then rad(A) = A ∩ rad(E(A)).

Proof. Let x ∈ A ∩ rad(E(A)) and assume, contrarily, that x /∈ rad(A). Then there is a
maximal submodule B of A with x /∈ B. Since A

B is A-subinjective by assumption, the
obvious projection f : A → A

B with Ker(f) = B extends to some g : E(A) → A
B . Thus,

A+Ker(g) = E(A). Since Ker(g)∩A = B and xR+B = A, we have xR+Ker(g) = E(A),
contradicting the choice of x. This yields the conclusion. �
Lemma 31. The following are equivalent for a module A over a right perfect ring R:

(i) Every simple right R-module is A-subinjective;
(ii) A is a supplement in E(A).

Proof. Assume (i). By perfectness assumption, E(A)
rad(E(A)) is semisimple, implying by

Lemma 30 that A + B = E(A) for some submodule B of E(A) with A ∩ B ⊆
rad(E(A)) ∩ A = rad(A). Since R is right perfect, rad(A) is small in A, showing that
A is a supplement in E(A).

Conversely, assume (ii). Let V be any simple right R-module. Let f : A → V be
a nonzero map. By assumption, A + B = E(A) for some submodule B of E(A) such
that A ∩ B is small in A. Thus, Ker(f) contains A ∩ B. Define g : A + B → V with
g(a+ b) = f(a) for a ∈ A and b ∈ B. Then g is clearly well-defined and it extends f . �



198 R. Alizade et al. / Journal of Algebra 409 (2014) 182–198
Proposition 32. Let R be a right perfect ring and S be the direct sum of a complete set
of representatives of simple right R-modules. R is a right Harada ring if and only if S is
indigent.

Proof. Assume that R is right perfect and S is indigent. Next, let E be injective. Then E

is supplemented. Let A be a supplement in E. Clearly, A is then a supplement in E(A) as
well. Note that S is finitely generated here. Then, by Lemma 31 and [3, Proposition 2.4],
S is A-subinjective, implying, by assumption, that A is injective. Hence, R is right
Harada.

Conversely, let R be a right Harada ring. Assume that S is A-subinjective and put
E = E(A). Again by Lemma 31, A is a supplement in E. So, by assumption, A is
injective, showing that S is indigent. �
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per to their attention and contributing Lemma 15. They thank the referee for a careful
reading of the paper.

References

[1] A.N. Alahmadi, M. Alkan, S.R. López-Permouth, Poor modules: The opposite of injectivity, Glasg.
Math. J. 52A (2010) 7–17.

[2] R. Alizade, G. Bilhan, P.F. Smith, Modules whose maximal submodules have supplements, Comm.
Algebra 29 (6) (2001) 2389–2405.
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