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1. Introduction

The determinant polynomial is ubiquitous, its properties have been extensively stud-
ied. However basic questions regarding its complexity are still not understood. Lower 
bounds for the (symmetric) border rank of a polynomial provide a measurement of its 
complexity and, as such, have become an area of growing interest. In this paper we use 
techniques developed in [12] to explore this question. We prove a new lower bound for 
the symmetric border rank of the n × n determinant.

Definition 1.1. Let V be a vector space and let SdV denote homogeneous degree d
polynomials on V ∗. Given P ∈ SdV , define its symmetric rank Rs(P ) by
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Rs(P ) = min
{
r ∈ N : P =

r∑
i=1

(vi)d, vi ∈ V

}
.

Symmetric rank is not semi-continuous under taking limits or Zariski closure, so we 
introduce symmetric border rank.

Definition 1.2. Let P ∈ SdV . Define the symmetric border rank of P , Rs(P ) to be

Rs(P ) = min
{
r ∈ N : P ∈ {T : Rs(T ) = r}

}
where the overline denotes Zariski closure.

Theorem 1.3. For n ≥ 5, the following are lower bounds on the symmetric border rank 
of the determinant, Rs(detn).

For n even:

Rs(detn) ≥
(
1 + 8(−8+6n2+n3)

(−1+n)(2+n)(4+n)2(−2+n2)

)(
n
n
2

)2

.

For n odd:

Rs(detn) ≥
(
1 + 16(9+8n+n2)

(3+n)(5+n)2(−2+n2)

)(
n

n−1
2

)2

.

Remark 1.4. Previously known lower bounds were

Rs(detn) ≥
(
n
n
2

)2
for n even, and

Rs(detn) ≥
(

n
n−1

2

)2
for n odd.

Remark 1.5. Asymptotically, our bound is

Rs(detn) � 22n+1

π·n + 22n+1

π·n4

whereas the previous lower bounds are approximately Rs(detn) � 22n+1

π·n .

Theorem 1.6. Rs(det4) ≥ 38.

Remark 1.7. The previous bound was Rs(det4) ≥ 36.

Using a Macaulay2 [8] package developed by Steven Sam [14], we also show
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Theorem 1.8.

Rs(det3) ≥ 14

and

Rs(perm3) ≥ 14.

Remark 1.9. The previous bounds were

Rs(det3) ≥ 9

and

Rs(perm3) ≥ 9.

Definition 1.10. Let P ∈ SdV . We define the Chow rank of P , rankChow(P ), as

rankChow(P ) = min{k : P =
k∑

i=1
�i1 . . . �id | �ij ∈ V }.

In [9] it is shown that rankChow(perm3) = 4. Prior to this it was known that 
rankChow(perm3) ≤ 4 [13,7]. Given rankChow(perm3) = 4, results from [2] and [1] proving 
Rs(x1 · · ·xd) ≤ 2d−1 show Rs(perm3) ≤ 16. In summary:

Corollary 1.11. 14 ≤ Rs(perm3) ≤ 16.

We may compare these lower bounds with known bounds on other ranks. Rs(detn) ≥(
n

�n
2 �
)2 +n2 − (�n

2 � +1)2 shown in [11], and for cactus rank, krank(detn) ≥
(2n
n

)
−
(2n−2
n−1

)
shown in [4] and before this it was known that krank(detn) ≥ 1

2
(2n
n

)
[15]. Known upper 

bounds for symmetric rank of detn are Rs(detn) ≤
(5

6
)�n/3� 2n−1n! [3] which also serve 

as upper bounds for symmetric border rank since Rs(T ) ≤ Rs(T ) for any symmetric 
tensor.

2. Background

Throughout this paper Young flattenings, a tool developed and used by Landsberg 
and Ottaviani [12], will be used extensively. The irreducible polynomial representations 
of the general linear group, GL(V ), are parametrized by partitions π, where π has at 
most dimV parts, see, e.g. [5,6]. It is helpful to record these partitions visually by Young 
diagrams, which are left aligned diagrams consisting of boxes such that the ith row of 
the diagram has πi many boxes.
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Example 2.1. The Young diagram corresponding to the partition (4, 3, 1) of 8 is

Proposition 2.2 (Pieri Formula). (See e.g. [6,10].) Let SπV be an irreducible represen-
tation of GL(V ). Then as a GL(V )-module

SπV ⊗ S(d)V =
⊕
μ

�(μ)≤dim V

SμV

where the partitions μ are obtained by adding d boxes to π so that no two boxes are added 
to the same column.

Definition 2.3. Let partitions λ and μ be such that SμV ⊂ SλV ⊗S(d)V . Given P ∈ S(d)V

we obtain a linear map Fλ,μ(P ) : SλV → SμV called a Young Flattening via projecting 
the Pieri product SλV ⊗ P to SμV .

Proposition 2.4. (See Proposition 4.1 of [12].) Let [xd] ∈ vd(PV ) and assume that 
rank(Fλ,μ(xd)) = t. If Rs(P ) ≤ r, then rank(Fλ,μ(P )) ≤ rt.

3. A preliminary result

A preliminary result will be presented to make the method clear and prove the bound 
in the case n = 4. By Proposition 2.4, to find a high lower bound for Rs(detn), we need to 
define a flattening such that rank(Fλ,μ(detn)) is big and rank(Fλ,μ(xn)) is small. Given 
n dimensional vector spaces A and B, and α ∈ Sd(A ⊗ B)∗, we will write α¬ detn to 
denote the tensor contraction of α and detn.

Remark 3.1. If α is a minor of the determinant in the dual space (A ⊗B)∗, then α¬ detn
is a minor on the complementary indices in the primal space.

For a tensor β ∈ Sn−d(A ⊗B), let β̂ ∈ (A ⊗B) ⊗ Sn−d−1(A ⊗B) be the image of β
under partial polarization. Let Xi

j := ai ⊗ bj and for I, J ⊂ [n] with |I| = |J | = n − d, 
let ΔI

J denote the (n − d) × (n − d) minor on the indices in I and J .

Remark 3.2. Δ̂I
J =

∑
i∈I
j∈J

(−1)i+jXi
j ⊗ ΔI�{i}

J�{j}.

Remark 3.3. The “standard” flattening of the determinant is detd,n−d : Sd(A ⊗B)∗ −→
Sn−d(A ⊗ B) defined by α 
→ α

¬ detn. Then Im(detd,n−d) is spanned by the (n − d) ×
(n − d) minors of the determinant.
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Define the Young flattening

det∧1
d,n−d :

∧n−d
A⊗

∧n−d
B ⊗ (A⊗B) −→

∧n−d−1
A⊗

∧n−d−1
B ⊗

∧2(A⊗B)

ΔI
J ⊗ v 
→

∑
i∈I
j∈J

(−1)i+jXi
j ∧ v ⊗ Δ[n−d]�{i}

[n−d]�{j}

and extend linearly.

Lemma 3.4. Im(det∧1
d,n−d) is contained in

S2,1n−d−1A⊗ S1n−d+1B ⊕ S1n−d+1A⊗ S2,1n−d−1B

⊕S2,1n−d−1A⊗ S2,1n−d−1B. (∗)

Proof. Decomposing 
∧n−d

A ⊗
∧n−d

B ⊗A ⊗B as a GLn × GLn-module we get

S2,1n−d−1A⊗ S1n−d+1B ⊕ S1n−d+1A⊗ S2,1n−d−1B

⊕S2,1n−d−1A⊗ S2,1n−d−1B ⊕ S1n−d+1A⊗ S1n−d+1

and 
∧n−d−1

A ⊗
∧n−d−1

B ⊗
∧2(A ⊗B) as GLn × GLn-module decomposes as

S1n−d+1A⊗ S3,1n−d−2B ⊕ S2,1n−d−1A⊗ S3,1n−d−2B

⊕S2,2,1n−d−3A⊗ S3,1n−d−2B ⊕ S1n−d+1A⊗ S2,1n−d−1B

⊕ (S2,1n−d−1A⊗ S2,1n−d−1B)⊕2 ⊕ S2,2,1n−d−3A⊗ S2,1n−d−1B

⊕S3,1n−d−2A⊗ S1n−d+1B ⊕ S3,1n−d−2A⊗ S2,1n−d−1B

⊕S3,1n−d−2A⊗ S2,2,1n−d−3B ⊕ S2,1n−d−1A⊗ S1n−d+1B

⊕S2,1n−d−1A⊗ S2,2,1n−d−3B

The irreducible modules in Lemma 3.4 are the only irreducible modules appearing in 
both decompositions. By Schur’s lemma, we conclude that the module (∗) must contain 
Im(det∧1

d,n−d). �
It must now be verified for each irreducible module in (∗), that det∧1

d,n−d is not the 
zero map on the module. Since each irreducible module appears with multiplicity 1, then 
for a given irreducible module with highest weight π, finding any highest weight vector 
v ∈

∧n−d
A ⊗

∧n−d
B ⊗ (A ⊗B) of weight π such that det∧1

d,n−d(v) �= 0 proves det∧1
d,n−d

is nonzero on the entire module.

Lemma 3.5. det∧1
d,n−d is an isomorphism on the irreducible module S2,1n−d−1A ⊗

S2,1n−d−1B.
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Proof. Consider a1 ∧ . . . ∧ an−d ⊗ a1 ⊗ b1 ∧ . . . ∧ bn−d ⊗ b1, a highest weight vector of 
the irreducible module S2,1n−d−1A ⊗S2,1n−d−1B. Its projection into (A ⊗B) ⊗

∧n−d
A ⊗∧n−d

B is a nonzero multiple of

X1
1 ⊗ Δ[n−d]

[n−d].

Then

det∧1
d,n−d(X1

1 ⊗ Δ[n−d]
[n−d])

=
∑

i∈[n−d]
j∈[n−d]

(−1)i+jX1
1 ∧Xi

j ⊗ Δ[n−d]�{i}
[n−d]�{j}.

Note that the term X1
1 ∧X1

2 ⊗ Δ[n−d]�{1}
[n−d]�{2} will not cancel in the sum. �

Lemma 3.6. det∧1
d,n−d is an isomorphism on the irreducible modules S2,1n−d−1A ⊗S1n−d+1B

and by symmetry S1n−d+1A ⊗ S2,1n−d−1B is not in the kernel.

Proof. Consider a1 ∧ . . . ∧ an−d ⊗ a1 ⊗ b1 ∧ . . . ∧ bn−d+1, a highest weight vector of the 
irreducible module S2,1n−d−1A ⊗S1n−d+1B. Its projection into (A ⊗B) ⊗

∧n−d
A ⊗

∧n−d
B

is a nonzero multiple of

∑
j∈[n−d+1]

(−1)jX1
j ⊗ Δ[n−d]

[n−d+1]�{j}.

Then

det∧1
d,n−d(

∑
j∈[n−d+1](−1)jX1

j ⊗ Δ[n−d]
[n−d+1]�{j})

=
∑

j∈[n−d+1]

∑
i∈[n−d]

k∈[n−d+1]�{j}

(−1)j(−1)i+k̃X1
j ∧Xi

k ⊗ Δ[n−d]�{i}
[n−d+1]�{j,k}

where

k̃ :=
{
k, k < j

k − 1, j < k.

Note that X1
1 ∧X1

2 ⊗ Δ[n−d]�{1}
[n−d+1]�{1,2} does not cancel in the sum. �

Finding a value of d with respect to n that maximizes the rank of det∧1
d,n−d and dividing 

by the rank of [xn]∧1
d,n−d we demonstrate the following theorem.
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Theorem 3.7. For n ≥ 3, the following are lower bounds on the symmetric border rank 
of the determinant, Rs(detn).

For n even:

Rs(detn) ≥
(

1 + 4
(−1 + n)(2 + n)2

)(
n
n
2

)2

For n odd:

Rs(detn) ≥
(

1 + 8
(−1 + n)(3 + n)2

)(
n

n−1
2

)2

.

4. Proof of main theorem

To prove the main theorem, we use the map

det∧2
d,n−d :

∧n−d
A⊗

∧n−d
B ⊗

∧2(A⊗B) −→
∧n−d−1

A⊗
∧n−d−1

B ⊗
∧3(A⊗B)

defined by

ΔI
J ⊗ v ∧ w 
→

∑
i∈I
j∈J

(−1)i+jXi
j ∧ v ∧ w ⊗ Δ[n−d]�{i}

[n−d]�{j}

and extended linearly. It remains to find the rank of det∧2
d,n−d.

Lemma 4.1. Im(det∧2
d,n−d) is contained in

S3,1n−d−1A⊗ S1n−d+2B ⊕ S1n−d+2A⊗ S3,1n−d−1B ⊕ S3,1n−d−1A⊗ S2,1n−dB

⊕S2,1n−dA⊗ S3,1n−d−1B ⊕ S3,1n−d−1A⊗ S2,2,1n−d−2B

⊕S2,2,1n−d−2A⊗ S3,1n−d−1B ⊕ S2,1n−d+1A⊗ S2,1n−d+1B

⊕S2,1n−d+1A⊗ S2,2,1n−d−1B ⊕ S2,2,1n−d−1A⊗ S2,1n−d+1B

Proof. Decomposing 
∧n−d

A ⊗
∧n−d

B⊗
∧2(A ⊗B) and 

∧n−d−1
A ⊗

∧n−d−1
B⊗

∧3(A ⊗
B) as GLn×GLn-modules, one sees that only the irreducibles listed in the lemma appear 
in both decompositions and that the minimum multiplicity each appears with is 1. By 
Schur’s Lemma, no other irreducible may be in the image. �

The above lemma gives us an idea as to the largest lower bound that this particular 
flattening could achieve. However, we are not guaranteed that this is the image. To 
proceed, for each irreducible module in the lemma we must find a highest weight vector 
and compute det∧2

d,n−d on this vector. Note since each module appears with multiplicity 1, 
finding a single highest weight vector of the correct highest weight on which the flattening 
is nonzero is sufficient.
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Lemma 4.2. det∧2
d,n−d is an isomorphism on the irreducible module S3,1n−d−1A ⊗S1n−d+2B

and by symmetry on S1n−d+2A ⊗ S3,1n−d−1B.

Proof. Consider a1 ∧ . . .∧ an−d ⊗ a1 ⊗ a1 ⊗ b1 ∧ . . .∧ bn−d+2, a highest weight vector of 
the irreducible module S3,1n−d−1A ⊗S1n−d+2B. Its projection into 

∧2(A ⊗B) ⊗
∧n−d

A ⊗∧n−d
B is a multiple of

∑
1≤i<j≤n−d+2

(−1)i+jX1
i ∧X1

j ⊗ Δ[n−d]
[n−d+2]�{i,j}.

Then

det∧2
d,n−d

( ∑
1≤i<j≤n−d+2

(−1)i+jX1
i ∧X1

j ⊗ Δ[n−d]
[n−d+2]�{i,j}

)

=
∑

1≤i<j≤n−d+2

(
n−d∑
h=1

∑
k∈[n−d+2]�{i,j}

(−1)k̃+h(−1)i+jX1
i ∧X1

j ∧Xh
k ⊗ Δ[n−d]�{h}

[n−d+2]�{i,j,k}

)

where

k̃ :=

⎧⎪⎪⎨⎪⎪⎩
k, k < i < j

k − 1, i < k < j

k − 2, i < j < k.

Then note that the term X1
1 ∧X1

2 ∧X1
3 ⊗Δ[n−d]�{1}

[n−d+2]�{1,2,3} does not cancel in the sum. �
Lemma 4.3. det∧2

d,n−d is an isomorphism on the irreducible module S3,1n−d−1A ⊗S2,1n−dB

and by symmetry on S2,1n−dA ⊗ S3,1n−d−1B.

Proof. Consider a1∧. . .∧an−d⊗a1⊗a1⊗b1∧. . .∧bn−d+1⊗b1, a highest weight vector of the 
irreducible module S3,1n−d−1A ⊗S2,1n−dB. Its projection to 

∧2(A ⊗B) ⊗
∧n−d

A ⊗
∧n−d

B

is a multiple of

n−d+1∑
i=2

(−1)iX1
1 ∧X1

i ⊗ Δ[n−d]
[n−d+1]�{i}.

Then

det∧2
d,n−d

(
n−d+1∑
i=2

(−1)iX1
1 ∧X1

i ⊗ Δ[n−d]
[n−d+1]�{i}

)
=

n−d∑
k=1

n−d+1∑
i=2

∑
j∈[n−d+1]�{i}

(−1)i(−1)j̃+kX1
1 ∧X1

i ∧Xk
j ⊗ Δ[n−d]�{k}

[n−d+1]�{i,j}

where
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j̃ :=
{
j, j < i

j − 1, i < j.

The observation that X1
1 ∧X1

3 ∧X1
2 ⊗ Δ[n−d]�{1}

[n−d+1]�{2,3} does not cancel demonstrates the 
lemma. �
Lemma 4.4. det∧2

d,n−d is an isomorphism on the irreducible module S3,1n−d−1A ⊗
S2,2,1n−d−2B and by symmetry on S2,2,1n−d−2A ⊗ S3,1n−d−1B.

Proof. Consider a1 ∧ . . . ∧ an−d ⊗ a1 ⊗ a1 ⊗ b1 ∧ . . . ∧ bn−d ⊗ b1 ∧ b2, a highest weight 
vector of the irreducible module S3,1n−d−1A ⊗ S2,2,1n−d−2B. Its projection to 

∧2(A ⊗
B) ⊗

∧n−d
A ⊗

∧n−d
B is a multiple of

X1
1 ∧X1

2 ⊗ Δ[n−d]
[n−d].

Then

det∧2
d,n−d

(
X1

1 ∧X1
2 ⊗ Δ[n−d]

[n−d]

)
=

n−d∑
i,j=1

(−1)j+iX1
1 ∧X1

2 ∧Xi
j ⊗ Δ[n−d]�{i}

[n−d]�{j}.

We may see this is not zero since the term X1
1 ∧X1

2 ∧X1
3 ⊗ Δ[n−d]�{1}

[n−d]�{3} appears in the 
sum only once. �
Lemma 4.5. det∧2

d,n−d is an isomorphism on the irreducible module S2,1n−dA ⊗ S2,1n−dB.

Proof. Consider a1∧. . .∧an−d+1⊗a1⊗b1∧. . .∧bn−d+1⊗b1, a highest weight vector of the 
irreducible module S2,1n−dA ⊗S2,1n−dB. Its projection to 

∧2(A ⊗B) ⊗
∧n−d

A ⊗
∧n−d

B

is a multiple of

n−d+1∑
i=1

n−d+1∑
j=2

(−1)i+jX1
1∧Xi

j⊗Δ[n−d+1]�{i}
[n−d+1]�{j}+

n−d+1∑
i=1

n−d+1∑
j=2

(−1)i+jXi
1∧X1

j ⊗Δ[n−d+1]�{i}
[n−d+1]�{j}.

Then

det∧2
d,n−d

(
n−d+1∑
i=1

n−d+1∑
j=2

(−1)i+jX1
1 ∧Xi

j ⊗ Δ[n−d+1]�{i}
[n−d+1]�{j}

+
n−d+1∑
i=1

n−d+1∑
j=2

(−1)i+jXi
1 ∧X1

j ⊗ Δ[n−d+1]�{i}
[n−d+1]�{j}

)

=
n−d+1∑
i=1

n−d+1∑
j=2

∑
k∈[n−d+1]�{i}
l∈[n−d+1]�{j}

(−1)i+j(−1)k̃+l̃X1
1 ∧Xi

j ∧Xk
l ⊗ Δ[n−d+1]�{i,k}

[n−d+1]�{j,l}

+
n−d+1∑
i=1

n−d+1∑
j=2

∑
k∈[n−d+1]�{i}

(−1)i+j(−1)k̃+l̃Xi
1 ∧X1

j ∧Xk
l ⊗ Δ[n−d+1]�{i,k}

[n−d+1]�{j,l}
l∈[n−d+1]�{j}
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where

k̃ :=
{
k, k < i

k − 1, i < k

and

l̃ :=
{
l, l < j

l − 1, j < l.

Since X1
1 ∧X1

2 ∧X2
1 ⊗ Δ[n−d+1]�{1,2}

[n−d+1]�{2,1} does not cancel the lemma is proven. �
Lemma 4.6. det∧2

d,n−d is an isomorphism on the irreducible module S2,2,1n−d−2A ⊗S2,1n−dB

and by symmetry on S2,1n−dA ⊗ S2,2,1n−d−2B.

Proof. Consider a1∧ . . .∧an−d⊗a1∧a2⊗b1∧ . . .∧bn−d+1⊗b1, a highest weight vector of 
the irreducible module S2,2,1n−d−2A ⊗S2,1n−dB. Its projection to 

∧2(A ⊗B) ⊗
∧n−d

A ⊗∧n−d
B is a multiple of

n−d+1∑
i=1

(−1)iX1
1 ∧X2

i ⊗ Δ[n−d]
[n−d+1]�{i} +

n−d+1∑
i=1

(−1)iX1
i ∧X2

1 ⊗ Δ[n−d]
[n−d+1]�{i} .

Then

det∧2
d,n−d

(
n−d+1∑
i=1

(−1)iX1
1 ∧X2

i ⊗ Δ[n−d]
[n−d+1]�{i} +

n−d+1∑
i=1

(−1)iX1
i ∧X2

1 ⊗ Δ[n−d]
[n−d+1]�{i}

)
=

n−d∑
k=1

n−d+1∑
i=1

∑
j∈[n−d+1]�{i}

(−1)i(−1)j̃+kX1
1 ∧X2

i ∧Xk
j ⊗ Δ[n−d]�{k}

[n−d+1]�{i,j}

+
n−d∑
k=1

n−d+1∑
i=1

∑
j∈[n−d+1]�{i}

(−1)i(−1)j̃+kX1
i ∧X2

1 ∧Xk
j ⊗ Δ[n−d]�{k}

[n−d+1]�{i,j}

where

j̃ :=
{
j, j < i

j − 1, i < j.

Observing that X1
1 ∧X2

1 ∧X1
2 ⊗ Δ[n−d]�{1}

[n−d+1]�{1,2} does not cancel proves the lemma. �
Lemma 4.7. The image of det∧2

d,n−d consists of all of the irreducible modules in the de-
composition in Lemma 4.1.

Proof. This is demonstrated by the preceding lemmas. �
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Lemma 4.8. dim(Im(det∧2
d,n−d)) has a maximum at d = �n

2 �.

Proof. Begin by factoring dim(Im(det∧2
d,n−d)) into the form f(n, d)

(
n
d

)2, where f(n, d) is 
a rational function of n and d. In particular

f(n, d) := (n + 2)(n + 1)(n− d)(d)(d− 1)
(n− d + 2)2(n− d + 1) + (n + 2)(n + 1)2(n− d)(d)

(n− d + 2)2

+ (n + 2)(n + 1)2(n− d)(n)(n− d− 1)
2(n− d + 2)(n− d + 1) + (n + 1)2(n)(n− d− 1)(d)

(n− d + 1)(n− d + 2)

+ (n + 1)2(d)2

(n− d + 2)2

Then consider

f(n, d)
(
n

d

)2

− f(n, d + 1)
(

n

d + 1

)2

and rewrite it as (
f(n, d) − f(n, d + 1)(n− d)2

(d + 1)2

)(
n

d

)2

.

Notice that f(n, d) −f(n, d +1) (n−d)2
(d+1)2 < 0 for d = �n

2 � −1 and f(n, d) −f(n, d +1) (n−d)2
(d+1)2 >

0 for d = �n
2 � and conclude the lemma. �

Remark 4.9. The requirement for n ≥ 5 in the main theorem, is so that the length of all 
partitions S1n−d+2A, S2,1n−dA, S3,1n−d−1A, and S2,2,1n−d−2A (respectively B) does not 
exceed dim(A) = dim(B) = n. Hence, all of the irreducible modules in the decomposition 
in Lemma 4.1 occur when d = �n

2 �.

Remark 4.10. rank([(Xi
j)

n]∧2
d,n−d) =

(
n2−1

2
)
. Which may be verified easily by noticing 

the image of contracting α ∈ Sd(A ⊗ B)∗ with (Xi
j)n is in the span of (Xi

j)n−d and 
̂(Xi
j)n−d is in the span of (Xi

j)n−d−1 ⊗ Xi
j . Hence Im([(Xi

j)
n]∧2

d,n−d)) are of the form 
(Xi

j)n−d−1 ⊗Xi
j ∧ v ∧ w, where v and w cannot be in the span of Xi

j .

The main theorem follows by substituting �n
2 � into f(n, d) from the proof of 

Lemma 4.8, dividing by 
(
n2−1

2
)

which is the rank from Remark 4.10, and simplifying.

5. 3 × 3 Determinant and permanent

Define the partitions πn = ((n − 1)n+1, (n − 2)n+1, . . . , 1n+1) and π̃n = (n, πn). For 
example, π3 = (24, 14) and let π̃3 = (3, 24, 14). Note that dim(Sπ3C

9) = dim(Sπ̃3C
9) =

1050. For a polynomial φ ∈ S3C9, define the Young flattening
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Fπ3,π̃3(φ) : Sπ3C
9 → Sπ̃3C

9

by the labeled Pieri product restricted to shape π̃3

Tπ3 ⊗ φ =
∑

cTπ3 ,T̃π̃3
T̃π̃3

where Tπ3 and T̃π̃3 are semi-standard fillings of tableaux of shape π3 and π̃3 respectively 
and where cTπ3 ,T̃π̃3

is obtained by adding boxes to π3 such as to obtain a tableau of 
shape π̃3 and for each monomial in φ, label the boxes with the variable names in all 
permutations and straighten. cTπ3 ,T̃π̃3

is the coefficient of T̃π̃3 .
Consider the polynomial (x3,3)3 ∈ S3C9, we immediately see that if Tπ3 has any box 

labeled x3,3, then Fπ3,π̃3((x3,3)3) = 0. Since this is the only restriction of tableaux,

dim Im(Fπ3,π̃3((x3,3)3)) = dimSπ3C
8 = 70.

By Proposition 2.4, if [x3] ∈ v3(PC9) has rank(Fμ,ν(x3)) = p, then for [φ] ∈ PS3C9 with 
rank r, rank(Fμ,ν(φ)) ≤ rp. Thus the maximum lower bound on symmetric border rank 
on polynomial φ ∈ S3C9 this method may achieve is

Rs(φ) ≥ 15

This being when dim Im(Fπ3,π̃3(φ)) = 1050. Applying this flattening to det3 and perm3
and using the Macaulay2 [8] package PieriMaps developed by Steven Sam [14] we get

dim Im(Fπ3,π̃3(det3)) = 950

and

dim Im(Fπ3,π̃3(perm3)) = 934.

These give the following lower bounds

Rs(det3) ≥ 14

and

Rs(perm3) ≥ 14.

This is an improvement from the classical lower bound for the determinant of 9 and the 
bound obtained from the Koszul–Young flattening det∧2

1,2 of 12.
The following code is used to complete the above computations.
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loadPackage"PieriMaps"
A=QQ[x_(0,0)..x_(2,2)]
time MX = pieri({3,2,2,2,2,1,1,1,1},{1,5,9},A);
rank diff(x_(0,0)^3,MX)
f = det genericMatrix(A,x_(0,0), 3,3)
rank diff(f,MX)
g =x_(0,2)*x_(1,1)*x_(2,0)+x_(0,1)*x_(1,2)*x_(2,0)+

x_(0,2)*x_(1,0)*x_(2,1)+x_(0,0)*x_(1,2)*x_(2,1)+
x_(0,1)*x_(1,0)*x_(2,2)+x_(0,0)*x_(1,1)*x_(2,2)

rank diff(g,MX)
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