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POWER SERIES OVER NOETHERIAN DOMAINS, NAGATA

RINGS, AND KRONECKER FUNCTION RINGS

GYU WHAN CHANG

Abstract. Let D be a Noetherian domain, ∗ be a star operation on D, X be

an indeterminate over D, D[[X]] be the power series ring over D, c(f) be the

ideal of D generated by the coefficients of f ∈ D[[X]], and N∗ = {f ∈ D[[X]] |
c(f)∗ = D}. Moreover, if ∗ is e.a.b., then we let Kr((D, ∗)) = { f

g
| f, g ∈

D[[X]], 0 �= g, and c(f) ⊆ c(g)∗}. In this paper, we show that N∗ is a saturated

multiplicative set and Kr((D, ∗)) is a Bezout domain. We then study some

ring-theoretic properties of D[[X]]N∗ and Kr((D, ∗)). For example, we prove

that every invertible ideal of D[[X]]N∗ is principal; dim(Kr((D, b))) = dimv(D);

and if V is a valuation overring of D, then V̂ = { f
g
| f, g ∈ D[[X]], g �= 0, and

c(f)V ⊆ c(g)V } is a valuation overring of D[[X]]; and Kr((D, ∗)) = ⋂{V̂ | V is

a ∗-valuation overring of D}.

0. Introduction

Let D be an integral domain, qf(D) be the quotient field of D, {Xα} be a

nonempty set of indeterminates over D, and D[{Xα}] be the polynomial ring over

D. For indeterminates X1, . . . , Xk over D, let D[[X1, . . . , Xk]] be the power series

ring over D, and let D[[{Xα}]]1 =
⋃

D[[{Xαi}]], where {Xαi} runs over all finite

subsets of {Xα}. Clearly, D[[{Xα}]]1 is an integral domain such that D[{Xα}] �
D[[{Xα}]]1 and D[[{Xα}]]1 = D[[{Xα}]] when {Xα} is finite. For f ∈ D[[{Xα}]]1, let
cD(f) (simply, c(f)) denote the ideal of D generated by the coefficients of f .

Let ∗ be a star operation on D. (Definitions related to star operations will be

reviewed in Section 1.) There are two purposes of this paper. One of them is to

generalize the Nagata ring to power series rings over a Noetherian domain. This also

generalizes the results of [11] that if {Xα} is infinite, then N∗f
:= {f ∈ D[[{Xα}]]1 |

c(f)∗f = D} is a saturated multiplicative set such that Max((D[[{Xα}]]1)N∗f ) =

{(P [[{Xα}]]1)N∗f | P ∈ ∗f -Max(D)}; every invertible ideal of (D[[{Xα}]]1)N∗f is

principal; and D is a Krull domain if and only if (D[[{Xα}]]1)N∗f is a Prüfer domain.

The other is to study the power series ring analog of Kronecker function rings.

Precisely, in Section 1, we review basic facts on star operations, Nagata rings,

and Kronecker function rings. Let ∗ be a star operation on a Noetherian domain

D, D[[{Xα}]] = D[[{Xα}]]1, and N∗ = {f ∈ D[[{Xα}]]
∣∣ c(f)∗ = D}. In Section

2, we show that (i) N∗ is a saturated multiplicative set and Max(D[[{Xα}]]N∗)

= {P [[{Xα}]]N∗ | P ∈ ∗-Max(D)}; (ii) D[[{Xα}]]N∗ is a Noetherian domain with
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dim(D[[{Xα}]]N∗) = ∗w-dim(D); (iii) if 0 �= f ∈ D[[{Xα}]], then c(f) is ∗-invertible
if and only if fD[[{Xα}]]N∗ = c(f)D[[{Xα}]]N∗ ; and (iv) every invertible ideal of

D[[{Xα}]]N∗ is principal.

We in Section 3 introduce the notion of Kronecker function rings of the power

series ring over a Noetherian domain. Let ∗ be an e.a.b. star operation on a Noe-

therian domain, K = qf(D), X be an indeterminate over D, and

Kr((D, ∗)) = { f
g | f, g ∈ D[[X]], 0 �= g, and c(f) ⊆ c(g)∗}.

We show that (v) Kr((D, ∗)) is a Bezout domain such that Kr((D, ∗)) ∩ K = D,

Kr((D, ∗)) ∩K(X) = Kr(D, ∗), and IKr((D, ∗)) ∩K = I∗ for all nonzero ideals I of

D; (vi) for a valuation overring V of D, if we let

V̂ = { f
g | f, g ∈ D[[X]], g �= 0, and c(f)V ⊆ c(g)V },

then V̂ is a valuation domain such that V̂ ∩K(X) = V (X), dim(V̂ ) = dim(V ), and

V is discrete if and only if V̂ is discrete; (vii) Kr((D, ∗)) = ⋂{V̂ | V is a ∗-valuation
overring of D}; and (viii) Kr((D, b)) = D((X)) if and only if dim(D) = 1, if and only

if Kr((D, b)) = Kr((D, v)).

1. Star operations, Nagata rings and Kronecker function rings

Let D be an integral domain with quotient field K. Let F (D) (resp., f(D))

be the set of nonzero (resp., nonzero finitely generated) fractional ideals of D; so

f(D) ⊆ F (D), and f(D) = F (D) if and only if D is Noetherian. A star operation

∗ on D is a mapping ∗ : F (D) → F (D), I �→ I∗ such that for all I, J ∈ F (D)

and 0 �= x ∈ K, (i) (xD)∗ = xD and (xI)∗ = xI∗, (ii) I ⊆ I∗, and I ⊆ J implies

I∗ ⊆ J∗, and (iii) (I∗)∗ = I∗. Given a star operation ∗ on D, one can construct

two new star operations ∗f and ∗w on D by setting I∗f =
⋃{J∗ | J ⊆ I and

J ∈ f(D)} and I∗w = {x ∈ K | xJ ⊆ I for some J ∈ f(D) with J∗ = D} for

all I ∈ F (D). We say that ∗ is of finite type if ∗f = ∗. Clearly, ∗f and ∗w are

of finite type. Also, if I ∈ f(D), then I∗ = I∗f , and thus every star operation on

a Noetherian domain is of finite type. An I ∈ F (D) is called a ∗-ideal if I∗ = I,

while a ∗-ideal is a maximal ∗-ideal if it is maximal among proper integral ∗-ideals.
Let ∗-Max(D) be the set of maximal ∗-ideals of D. It is well known that if ∗ = ∗f
or ∗w, then ∗-Max(D) �= ∅ when D is not a field; each maximal ∗-ideal is a prime

ideal; D =
⋂

P∈∗-Max(D) DP ; and ∗f -Max(D) = ∗w-Max(D) [4, Theorem 2.16]. Let

∗-dim(D) = sup{n | P1 � P2 � · · · � Pn is a chain of prime ∗-ideals of D}. Hence,
d-dim(D) (resp., d-Max(D)) is just the (Krull) dimension dim(D) (resp., Max(D),

the set of maximal ideals) of D. Also, ∗w-dim(D) = sup{htP | P ∈ ∗w-Max(D)}
because P ∗w � D implies P ∗w = P for all nonzero prime ideals P of D.

The most well known examples of star operations include the v-, t-, w-, and

d-operations. For I ∈ F (D), let I−1 = {x ∈ K | xI ⊆ D}; so I−1 ∈ F (D). The

v-operation is defined by Iv = (I−1)−1, the t-operation (resp., w-operation) is given

by t = vf (resp., w = vw), and the d-operation is the identity function on F (D),

i.e., Id = I for all I ∈ F (D); so df = dw = d. Let ∗1 and ∗2 be star operations on

D. We say that ∗1 ≤ ∗2 if I∗1 ⊆ I∗2 for all I ∈ F (D). It is known that if ∗ is a

star operation, then ∗w ≤ ∗f ≤ ∗, d ≤ ∗ ≤ v, ∗f ≤ t, and ∗w ≤ w.
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An I ∈ F (D) is said to be ∗-invertible if (II−1)∗ = D. We say that D is a Prüfer

∗-multiplication domain (P∗MD) if each I ∈ f(D) is ∗f -invertible. Let Inv∗(D) be

the group of ∗-invertible fractional ideals of D under I×J = (IJ)∗, and let Prin(D)

be its subgroup of principal fractional ideals. Then the ∗-class group of D is an

abelian group Cl∗(D) = Inv∗(D)/Prin(D). In particular, Cld(D) is the Picard

group Pic(D) of D. Clearly, Pic(D) ⊆ Cl∗(D) ⊆ Clt(D) for any star operation ∗ on

D, Cl∗(D) = {0} if and only if each ∗-invertible ideal of D is principal, and if D is

a Krull domain, then Clt(D) is the usual divisor class group. Also, a Prüfer (resp.,

Krull) domain D is a Bezout domain (resp., UFD) if and only if Clt(D) = {0}.
1.1. Nagata rings. Let ∗ be a star operation on D and N∗ = {f ∈ D[{Xα}] |
c(f)∗ = D}. The Dedekind-Mertens Lemma says that if f, g ∈ D[{Xα}], then

there exists an integer n = n(f, g) ≥ 1 such that c(f)n+1c(g) = c(f)nc(fg). Hence,

c(f)∗ = c(g)∗ = D if and only if c(fg)∗ = D, and thus N∗ is a saturated mul-

tiplicative subset of D[{Xα}] such that N∗ = N∗f
= N∗w . The ring D[{Xα}]N∗

is called the (∗-)Nagata ring of D (with respect to ∗), and hence D[{Xα}]Nd
is

just the Nagata ring D({Xα}) of D. Recall from [19] that Max(D[{Xα}]N∗) =

{P [{Xα}]N∗ | P ∈ ∗f -Max(D)}; a nonzero ideal I of D is ∗f -invertible if and only

if ID[{Xα}]N∗ is invertible; for 0 �= f ∈ D[{Xα}], c(f) is ∗f -invertible if and only

if c(f)D[{Xα}]N∗ = fD[{Xα}]N∗ ; every invertible ideal of D[{Xα}]N∗ is principal;

and D is a P∗MD if and only if D[{Xα}]N∗ is a Prüfer domain. It is obvious that

if ∗1 and ∗2 are star operations with (∗1)f ≤ (∗2)f , then Nd ⊆ N∗1 ⊆ N∗2 ⊆ Nv.

Lemma 1.1. The following statements are equivalent for star operations ∗1 and

∗2 on D.

(1) N∗1 = N∗2 .

(2) D[{Xα}]N∗1 = D[{Xα}]N∗2 .

(3) (∗1)f -Max(D) = (∗2)f -Max(D).

(4) (∗1)w = (∗2)w.
Proof. (1) ⇔ (2) This follows from the fact that N∗i is saturated for i = 1, 2.

(1) ⇒ (3) Let M ∈ (∗1)f -Max(D). If M (∗2)f = D, then there is a nonzero

finitely generated ideal I ⊆ M such that I∗2 = D. So if we choose f ∈ D[{Xα}]
with c(f) = I, then c(f)∗2 = D. Hence, f ∈ N∗1 = N∗2 , and thus D = c(f)∗1 ⊆
M∗1 = M , a contradiction. Thus, M (∗2)f � D. A similar argument shows that

(M (∗2)f )(∗1)f � D, and therefore, M (∗2)f = M and M ∈ (∗2)f -Max(D). Thus,

(∗1)f -Max(D) ⊆ (∗2)f -Max(D), and by a symmetric argument, we have equality.

(3) ⇒ (4) If I ∈ F (D), then I(∗1)w =
⋂

P∈(∗1)f -Max(D) IDP =
⋂

P∈(∗2)f -Max(D) IDP

= I(∗2)w [4, Corollary 2.10]. Thus, (∗1)w = (∗2)w.
(4) ⇒ (1) Since ∗f -Max(D) = ∗w-Max(D) for any star operation ∗ on D,

c(f)∗w = D if and only if c(f)∗f = D for all 0 �= f ∈ D[{Xα}]. Hence, c(f)∗1 = D

if and only if c(f)∗2 = D, and thus, N∗1 = N∗2 . �

Corollary 1.2. If each maximal ideal of D is a t-ideal (e.g., dim(D) = 1), then

D[{Xα}]N∗ = D({Xα}) for every star operation ∗ on D.

Proof. This follows directly from Lemma 1.1 because Max(D) = t-Max(D) (and

hence d = ∗w = w) by assumption. �
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It is shown that if D is a Noetherian domain with finitely many star operations,

then dim(D) = 1 [16, Theorem 2.1], and hence each maximal ideal of D is a t-ideal.

Thus, D[{Xα}]N∗ = D({Xα}) for any star operation ∗ on D.

1.2. Kronecker function rings. A star operation ∗ on D is said to be endlich

arithmetisch brauchbar (e.a.b.) if, for A,B,C ∈ f(D), (AB)∗ ⊆ (AC)∗ implies

B∗ ⊆ C∗. Clearly, ∗ is e.a.b. if and only if ∗f is e.a.b.. We know that if D admits

an e.a.b. star operation, then D is integrally closed [15, Corollary 32.8]. Conversely,

if D is integrally closed, then the map b : F (D) → F (D) defined by Ib =
⋂{IV | V

is a valuation overring of D} is an e.a.b. star operation on D.

Lemma 1.3. [15, Theorem 32.12] Let ∗ be an e.a.b. star operation of finite type on

an integrally closed domain D. Then there exists a set {Vα} of valuation overrings

of D such that I∗ =
⋂

α IVα for all I ∈ F (D).

If ∗ is an e.a.b. star operation on D, then

Kr(D, ∗) = { f
g | f, g ∈ D[{Xα}], g �= 0, and c(f) ⊆ c(g)∗},

called the Kronecker function ring of D (with respect to ∗), is a Bezout domain

such that D[{Xα}]N∗ ⊆ Kr(D, ∗), fKr(D, ∗) = c(f)Kr(D, ∗) for f ∈ D[{Xα}], and
D is a P∗MD if and only if D[{Xα}]N∗ = Kr(D, ∗).
Lemma 1.4. [15, Remark 32.7] Let ∗1 and ∗2 be e.a.b. star operations on D. Then

Kr(D, ∗1) = Kr(D, ∗2) if and only if (∗1)f = (∗2)f .
We recall that if D is an integrally closed Noetherian domain, then D is a Krull

domain, and hence each maximal t-ideal of D is of height-one, i.e., t-Max(D) =

X1(D), where X1(D) is the set of height-one prime ideals of D.

Let eS(D) (resp., wS(D)) be the set of e.a.b. star operations of finite type (resp.,

star operations ∗ with ∗w = ∗) on D. Then, by Lemmas 1.1 and 1.4, the cardinality

of the set of Nagata rings (resp., Kronecker function rings) of D is equal to |wS(D)|
(resp., |eS(D)|). We next study how many Nagata rings and Kronecker functions

rings there are when D is an integrally closed Noetherian domain.

Proposition 1.5. Let D be an integrally closed Noetherian domain and let X(D)

be the set of height-two prime ideals of D. Then 2|X(D)| ≤ |wS(D)| ≤ |eS(D)|, and
hence if dim(D) ≥ 3, then eS(D) and wS(D) are both uncountable.

Proof. Let Λ be a set of height-two prime ideals of D, i.e., Λ ⊆ X(D), and let

Δ = {P ∈ X1(D) | P � Q for all Q ∈ Λ}. Then D =
⋂

P∈Λ∪Δ DP , and so if we let

I∗Λ =
⋂

P∈Λ∪Δ IDP for all I ∈ F (D), then ∗Λ is a star operation on D [3, Theorem

1] and ∗Λ-Max(D) = Λ ∪ Δ (Proof. If P ∈ Λ ∪ Δ, then, clearly, P ∗Λ = P . Also,

if M is a prime ideal of D with P � M , then M∗Λ = D. Hence, P is a maximal

∗Λ-ideal. Conversely, if P0 is a maximal ∗Λ-ideal, then P0 ⊆ P for some P ∈ Λ∪Δ,

and since P is a maximal ∗Λ-ideal by the previous sentence, we have P0 = P .).

Hence, if Λ1 and Λ2 are two distinct sets of height-two prime ideals of D, then

(∗Λ1)w �= (∗Λ2)w by Lemma 1.1. Thus, 2|X(D)| ≤ |wS(D)|. Next, recall from [8,

Lemma 3.1] that if ∗ is a star operation of finite type, then we can construct an

e.a.b. star operation ∗c such that ∗w ≤ ∗c and ∗-Max(D) = ∗c-Max(D). This means

that |wS(D)| ≤ |eS(D)|. Finally, note that if dimD ≥ 3, then |X(D)| = ∞ [20,

Theorem 144], and thus eS(D) and wS(D) are both uncountable. �
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For more on Kronecker function rings and Nagata rings, see Fontana-Loper’s

interesting survey article [13] or [15, Section 32].

2. Nagata Rings

Let D be an integral domain, qf(D) = K, ∗ be a star operation on D, {Xα} be

a nonempty set of indeterminates over D,

D[[{Xα}]] = D[[{Xα}]]1 and N∗ = {f ∈ D[[{Xα}]]
∣∣ c(f)∗ = D}.

Let I be a nonzero ideal of D. Then I[[{Xα}]] = {f ∈ D[[{Xα}]] | c(f) ⊆ I}, and
hence I[[{Xα}]] is an ideal of D[[{Xα}]] such that ID[[{Xα}]] ⊆ I[[{Xα}]]; equality
holds when I is finitely generated; and I is a prime ideal if and only if I[[{Xα}]] is
a prime ideal.

Lemma 2.1. Let D be a Noetherian domain.

(1) N∗ = D[[{Xα}]] \
⋃

P∈∗-Max(D) P [[{Xα}]]. Hence, N∗ is a saturated multi-

plicative subset of D[[{Xα}]].
(2) Max(D[[{Xα}]]N∗) = {P [[{Xα}]]N∗ | P ∈ ∗-Max(D)}.

Proof. (1) f ∈ N∗ ⇔ c(f)∗ = D, ⇔ c(f) � P for all P ∈ ∗-Max(D), ⇔ f �∈
P [[{Xα}]] for all P ∈ ∗-Max(D), ⇔ f ∈ D[[{Xα}]] \

⋃
P∈∗-Max(D) P [[{Xα}]].

(2) Let A be an ideal of D[[{Xα}]] such that A � P [[{Xα}]] for all P ∈ ∗-Max(D).

By [15, Proposition 4.8], it suffices to show that there is an f ∈ A such that

f �∈ P [[{Xα}]] for all P ∈ ∗-Max(D); equivalently, c(f)∗ = D. Note that ∗f = ∗; so
we can choose some f1, . . . , fn ∈ A such that (c(f1)+ · · ·+ c(fn))

∗ = D. Since D is

Noetherian, we can choose a polynomial gi ∈ D[{Xα}] such that c(gi) = c(fi) and

fi − gi does not have a monomial of degree ≤ deg(gi). Let X ∈ {Xα} and

f = f1 + f2X
μ(g1)+1 + f3X

μ(g1)+μ(g2)+2 + · · ·+ fnX
μ(g1)+···+μ(gn−1)+n−1,

where μ(gi) = deg(gi) for i = 1, . . . , n− 1. Then f ∈ A and c(f)∗ = D. �

As in the polynomial ring case, we call D[[{Xα}]]N∗ the (∗-)Nagata ring of D with

respect to ∗. In particular, we denote by D(({Xα})) the Nagata ring D[[{Xα}]]N∗
when ∗ = d. The next corollary with Proposition 1.5 shows that a Noetherian

domain D has at least 2|X(D)| Nagata rings, where X(D) is the set of height-two

prime ideals of D.

Corollary 2.2. Let ∗1, ∗2, and ∗ be star operations on a Noetherian domain D.

(1) Nd ⊆ N∗ ⊆ Nv.

(2) D[[{Xα}]]N∗1 = D[[{Xα}]]N∗2 if and only if N∗1 = N∗2 , if and only if ∗1-
Max(D) = ∗2-Max(D), if and only if (∗1)w = (∗2)w.

(3) If each maximal ideal of D is a t-ideal, then D[[{Xα}]]N∗ = D(({Xα})).
Proof. By Lemma 2.1, N∗ is a saturated multiplicative set of D[[{Xα}]]. Hence, the
result can be proved by an argument similar to the proof of Lemma 1.1. �

We next give the Noetherian property of D[[{Xα}]]N∗ that is already known when

|{Xα}| = ∞ and ∗ = d [11, Theorem 2.6].
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Proposition 2.3. If D is a Noetherian domain, then D[[{Xα}]]N∗ is a Noether-

ian domain and dim(D[[{Xα}]]N∗) = ∗w-dim(D). In particular, D(({Xα})) is a

Noetherian domain with dim(D(({Xα}))) = dim(D).

Proof. Let P ∈ ∗-Max(D). If |{Xα}| = ∞, then ht(P [[{Xα}]]) = htP < ∞
and every prime ideal of D[[{Xα}]] contained in P [[{Xα}]] is finitely generated [11,

Lemma 2.4]. Also, if |{Xα}| < ∞, then D[[{Xα}]] is Noetherian [7, Theorem 7] and

ht(P [[{Xα}]]) = htP < ∞. Thus, D[[{Xα}]]N∗ is Noetherian and dim(D[[{Xα}]]N∗)

= ∗w-dim(D) by Lemma 2.1(2). �

The next result is the power series ring analog of [19, Theorem 2.12] that if

0 �= f ∈ D[X], then c(f) is ∗f -locally principal, i.e., c(f)DP is principal for every

maximal ∗f -ideal P of D if and only if fD[X]N∗ = c(f)D[X]N∗ , if and only if

c(f)D[X]N∗ is principal.

Proposition 2.4. Let D be a Noetherian domain. Then the following statements

are equivalent for all 0 �= f ∈ D[[{Xα}]].
(1) c(f) is ∗-invertible.
(2) c(f) is ∗-locally principal.

(3) fD[[{Xα}]]N∗ = c(f)D[[{Xα}]]N∗ .

(4) c(f)D[[{Xα}]]N∗ is principal.

(5) c(f)D[[{Xα}]]N∗ is locally principal.

Proof. (1) ⇔ (2) This follows from [19, Proposition 2.6] because D is Noetherian

(hence ∗ = ∗f and c(f) is finitely generated).

(2) ⇒ (3) Let P ∈ ∗-Max(D) and c(f)DP = aDP for some a ∈ D. Since c(f)

is finitely generated, there is an s ∈ D \ P such that s · c( fa ) = s
a · c(f) ⊆ D.

Also, by [15, Propostion 7.4], we may assume that a is a coefficient of f . Hence,
f
a ∈ D[[{Xα}]]P [[{Xα}]] \ P [[{Xα}]]P [[{Xα}]], and thus

(fD[[{Xα}]]N∗)P [[{Xα}]]N∗ = fD[[{Xα}]]P [[{Xα}]]
= aD[[{Xα}]]P [[{Xα}]]
= c(f)D[[{Xα}]]P [[{Xα}]]
= (c(f)D[[{Xα}]]N∗)P [[{Xα}]]N∗ .

Thus, by Lemma 2.1 and [15, Theorem 4.10],

fD[[{Xα}]]N∗ =
⋂

P∈∗-Max(D)

fD[[{Xα}]]P [[{Xα}]]

=
⋂

P∈∗-Max(D)

c(f)D[[{Xα}]]P [[{Xα}]]

= c(f)D[[{Xα}]]N∗ .

(3) ⇒ (4) ⇒ (5) Clear.

(5) ⇒ (2) Let P ∈ ∗-Max(D). Then PD[[{Xα}]]N∗ is a maximal ideal of

D[[{Xα}]]N∗ by Lemma 2.1, and hence c(f)D[[{Xα}]]P [[{Xα}]] = aD[[{Xα}]]P [[{Xα}]]
for some a ∈ c(f) [15, Proposition 7.4]. Thus, c(f)DP = c(f)D[[{Xα}]]P [[{Xα}]] ∩K

= aD[[{Xα}]]P [[{Xα}]] ∩K = aDP . �
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Let ∗ be a star operation on D. Then Pic(D[X]N∗) = {0} [19, Theorem 2.14].

This was generalized to power series rings as follows: Let {Xα} be an infinite

set of indeterminates over D, and let N∗f
= {f ∈ D[[{Xα}]] | c(f)∗f = D}. Then

Pic(D[[{Xα}]]N∗f ) = {0}, i.e., every invertible ideal of D[[{Xα}]]N∗f is principal [11,

Proposition 3.6]. However, we don’t know if this result holds when {Xα} is finite.

We next in Theorem 2.7 show that if D is Noetherian, then Pic(D[[{Xα}]]N∗) = {0}
for any set {Xα} of indeterminates. To do this, we first need two lemmas.

Lemma 2.5. Let y be an indeterminate over D[[{Xα}]] and N = {f ∈ D[[{Xα}]][y] |
cD(f)∗ = D}. If |{Xα}| < ∞, then

(1) N is a multiplicative subset of D[[{Xα}]][y] and
(2) (D[[{Xα}]]N∗)(y) = (D[[{Xα}]][y])N .

Proof. (1) Note that D[[{Xα}]][[y]] = D[[{Xα}∪{y}]] [15, Exercise 11 on page 11] and

D[[{Xα}]][y] ⊆ D[[{Xα}]][[y]]. Hence if we set N ′ = {f ∈ D[[{Xα}]][[y]] | cD(f)∗ = D},
then N ′ is a multiplicative set by Lemma 2.1 and N = N ′ ∩D[[{Xα}]][y]. Thus, N
is a multiplicative set.

(2) (⊆) Let u ∈ (D[[{Xα}]]N∗)(y). Then

u = (
g0 + g1y + · · ·+ gmym

h
)/(

f0 + f1y + · · ·+ fny
n

h′ )

= h′(g0 + g1y + · · ·+ gmym)/h(f0 + f1y + · · ·+ fny
n),

where h, h′ ∈ N∗ and gi, fj ∈ D[[{Xα}]] such that (f0, f1, . . . , fn)D[[{Xα}]]N∗ =

D[[{Xα}]]N∗ . Note that (c(f0) + c(f1) + · · · + c(fn))
∗ = D by Lemma 2.1(2) and

cD(f0+f1y+ · · ·+fny
n) = c(f0)+ c(f1)+ · · ·+ c(fn); so f0+f1y+ · · ·+fny

n ∈ N .

Thus, by (1), h(f0 + f1y + · · ·+ fny
n) ∈ N , and hence u ∈ (D[[{Xα}]][y])N .

(⊇) Let h = h0 + h1y + · · ·+ hky
k ∈ N , where hi ∈ D[[{Xα}]]. Clearly, cD(h) =

c(h0) + c(h1) + · · · + c(hk), and hence (c(h0) + c(h1) + · · · + c(hk))
∗ = D. Thus,

h ∈ (D[[{Xα}]]N∗)[y] \
⋃

P∈∗-Max(D)(P [[{Xα}]]N∗)[y], and since Max(D[[{Xα}]]N∗) =

{P [[{Xα}]]N∗ | P ∈ ∗-Max(D)} by Lemma 2.1(2), 1
h ∈ (D[[{Xα}]]N∗)(y). Therefore

D[[{Xα}]][y]N ⊆ (D[[{Xα}]]N∗)(y). �

Lemma 2.6. Let V be a valuation domain, {Xα} be a nonempty set of indetermi-

nates over V , and 0 �= f, g ∈ V [[{Xα}]]. If cV (f) and cV (g) are finitely generated,

then cV (fg) = cV (f)cV (g).

Proof. Let c(h) = cV (h) for h = f, g. Then c(f) = aV and c(g) = bV for some

0 �= a, b ∈ V because c(f) and c(g) are finitely generated. Hence c( fa ) = V and

c( gb ) = V ; equivalently, f
a ,

g
b ∈ V [[{Xα}]] \M [[{Xα}]], where M is the maximal ideal

of V . Note that V [[{Xα}]] \ M [[{Xα}]] is a multiplicative subset of V [[{Xα}]]; so
f
a · gb ∈ V [[{Xα}]]\M [[{Xα}]], and thus c( fa · gb ) = V . Therefore c(fg) = ab ·c( fa · gb ) =
(aV )(bV ) = c(f)c(g). �

Theorem 2.7. Let D be a Noetherian domain. Then Pic(D[[{Xα}]]N∗) = {0}, i.e.,
every invertible ideal of D[[{Xα}]]N∗ is principal.

Proof. By [11, Proposition 3.6], we may assume that |{Xα}| < ∞. Let A =

(f0, f1, . . . , fn)D[[{Xα}]]N∗ be an invertible ideal ofD[[{Xα}]]N∗ , where fi ∈ D[[{Xα}]].
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Let y be an indeterminate over D[[{Xα}]] and g = f0 + f1y + · · ·+ fny
n. Then, by

[2, Theorem 1], A(y) = g(D[[{Xα}]]N∗)(y).

Note that if we setN = {f ∈ D[[{Xα}]][y] | cD(f)∗ = D}, then (D[[{Xα}]]N∗)(y) =

D[[{Xα}]][y]N by Lemma 2.5. Also, note that c(f0) is finitely generated; hence there

is an integer k1 ≥ 1 such that c(f0 + f1X
k1) = c(f0) + c(f1), where X ∈ {Xα}.

Repeating this process, there are positive integers k2, . . . , kn such that if we let

f = f0 + f1X
k1 + · · · + fnX

kn , then c(f) = c(f0) + c(f1) + · · · + c(fn) and

fD[[{Xα}]][y]N ⊆ A(y) = gD[[{Xα}]][y]N .

Let h ∈ N and h1 ∈ D[[{Xα}]][y] be such that f = g · h1

h or fh = gh1. We

claim that cD(h1)
∗ = D. If not, there is a P ∈ ∗-Max(D) with cD(h1) ⊆ P .

Let (V,M) be a valuation overring of D with M ∩ D = P [15, Theorem 19.6];

so cV (h1) = cD(h1)V ⊆ M . However, note that cV (h) = V and cV (f) = cV (g);

hence cV (f) = cV (f)cV (h) = cV (fh) = cV (gh1) = cV (g)cV (h1) = cV (f)cV (h1)

by Lemma 2.6, and since cV (f) is finitely generated, we have cV (h1) = V , a

contradiction. Thus cD(h1)
∗ = D and so f(D[[{Xα}]]N∗)(y) = A(y). Therefore

fD[[{Xα}]]N∗ = f(D[[{Xα}]]N∗)(y)∩qf(D[[{Xα}]]N∗) = A(y)∩qf(D[[{Xα}]]N∗) = A

[15, Proposition 33.1(4)]. �

Let ∗ be a star operation on D. A ∗-quasi-Prüfer domain D is an integral domain

in which if Q is a prime ideal in D[{Xα}] and Q ⊆ P [{Xα}], for some prime ∗-ideal
P of D, then Q = (Q∩D)D[{Xα}]. As in [6], we say that an ideal A of D[[{Xα}]]N∗
is formally extended from D if A = I[[{Xα}]]N∗ for some ideal I of D. Finally, D

is said to be of finite t-character if each nonzero nonunit of D is contained in only

finitely many maximal t-ideals of D. It is known that integral domains on which

t = v (e.g., Noetherian domains and Krull domains) are of finite t-character [17,

Theorem 1.3].

Proposition 2.8. The following statements are equivalent for a Noetherian domain

D.

(1) D is a ∗-quasi-Prüfer domain.

(2) Every prime ∗-ideal of D is a maximal ∗-ideal, i.e., ∗-dim(D) = 1.

(3) Every prime ideal of D[[{Xα}]]N∗ is formally extended from D.

Proof. (1) ⇒ (2) It is known that D is a ∗-quasi-Prüfer domain if and only if

D is t-quasi-Prüfer and ∗w = w [9, Theorem 2.16]. Also, a Notherian domain

is a t-quasi-Prüfer domain if and only if t-dim(D) = 1 [18, Theorem 3.7]. Thus,

∗-dim(D) = 1.

(2) ⇒ (3) If M is a nonzero prime ideal of D[[{Xα}]]N∗ , then M is maximal by

Proposition 2.3, and thus M = P [[{Xα}]]N∗ for some P ∈ ∗-Max(D) by Lemma 2.1.

(3) ⇒ (1) Let P be a maximal ∗-ideal of D. If Pt = D, then we can choose

a, b ∈ P so that (a, b)v = D because Noetherian domains are of finite t-character.

Let Q be a prime ideal of D[[{Xα}]] such that Q ⊆ P [[{Xα}]] and Q is minimal over

a+ bX where X ∈ {Xα}. Clearly, Q is a t-ideal, and since Q = P1[[{Xα}]] for some

prime ideal P1 of D by assumption, Q = Qt = (P1[[{Xα}]])t ⊇ ((a, b)D[[{Xα}]])v =

(a, b)v[[{Xα}]] = D[[{Xα}]], a contradiction (see [12, Proposition 2.1] for the fourth

equality). Hence, Pt � D, and so Pt = P because ∗ ≤ t. Thus, each maximal

∗-ideal is a t-ideal, and therefore ∗w = w.
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Next, if htP = n, then there are a1, . . . , an ∈ P such that P is minimal over

(a1, . . . , an) [20, Theorem 153]. Let f = a1X+ · · ·+anX
n and let Q0 be a minimal

prime ideal of fD[[{Xα}]] such that Q0 ⊆ P [[{Xα}]]. Then Q0 = (Q0 ∩D)[[{Xα}]]
by assumption, and hence (a1, . . . , an) ⊆ Q0 ∩ D ⊆ P . Since P is minimal over

(a1, . . . , an), we have Q0 = P [[{Xα}]]. Also, since D[[{Xα}]] is Noetherian, 1 ≤ n =

htP ≤ ht(P [[{Xα}]]) = htQ0 ≤ 1. Hence, htP = 1, and therefore, t-dim(D) = 1.

Thus, D is a ∗-quasi-Prüfer domain (see the proof of (1) ⇒ (2)). �

It is well known that an integrally closed Noetherian domain D is a Krull domain

[15, Theorem 43.4], and hence t-dim(D) = 1.

Corollary 2.9. Let D be an integrally closed Noetherian domain.

(1) Every prime ideal of D[[{Xα}]]N∗ is formally extended from D if and only

if ∗ = v on D.

(2) D[[{Xα}]]Nv
is a principal ideal domain (PID).

Proof. (1) (⇒) The proof of (1) ⇒ (2) of Proposition 2.8 shows that ∗w = w.

Therefore, ∗ = v because ∗w ≤ ∗ ≤ v and w = t = v on a Krull domain. (⇐) Since

D is a Krull domain, ∗-dim(D) = t-dim(D) = 1. Thus, the result follows from

Proposition 2.8.

(2) Note that D[[{Xα}]] is a Krull domain [14, Theorem 2.1], and so integrally

closed. Hence, D[[{Xα}]]Nv is a one-dimensional integrally closed Noetherian do-

main by Proposition 2.3, and so a Dedekind domain [15, Theorem 37.8]. Thus, by

Theorem 2.7, D[[{Xα}]]Nv is a PID. �

3. Kronecker Function Rings

Let D be an integral domain with quotient field K, X be an indeterminate over

D, and D[[X]] be the power series ring over D. Let ∗ be an e.a.b. star operation on

D; in this case, D is integrally closed, and so if D is Noetherian, then D is a Krull

domain and t-Max(D) = X1(D).

Let D be an integrally closed Noetherian domain. In this section, we use an

e.a.b. star operation ∗ on D to generalize the Kronecker function ring Kr(D, ∗) to
the power series ring Kr((D, ∗)). It is noteworthy that the results of this section can

be extended to D[[{Xα}]]1 and their proofs are the same as in the case of D[[X]].

Also, if R is an overring of D, then R[[X]] ⊆ qf(D[[X]]) if and only if D = R [22,

Theorem 3.4].

Lemma 3.1. Let ∗ be an e.a.b. star operation on a Noetherian domain D.

(1) cD(fg)∗ = (cD(f)cD(g))∗ for all 0 �= f, g ∈ D[[X]].

(2) For A,B,C ∈ F (D), if (AB)∗ ⊆ (AC)∗, then B∗ ⊆ C∗.
(3) The v-operation on D is an e.a.b. star operation.

Proof. (1) Clearly, ∗ is of finite type, and hence there exists a family {Vα} of

valuation overrings of D such that I∗ =
⋂

α IVα for all I ∈ F (D) [15, Theorem

32.12]. Note that cVα(h) = cD(h)Vα for all h ∈ D[[X]]; so cVα(f) and cVα(g) are

finitely generated. Hence cVα(fg) = cVα(f)cVα(g) for all α by Lemma 2.6, and

therefore cD(fg)∗ = (cD(f)cD(g))∗.
(2) This follows because A,B,C are finitely generated.
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(3) Since D admits an e.a.b. star operation, D is integrally closed, and thus D

is a Krull domain. Hence, every nonzero fractional ideal of D is v-invertible. Thus,

v is an e.a.b. star operation. �

In [5, Theorem 2.13], the authors introduced the power series ring analog of the

Kronecker function ring for an integral domain D satisfying c(fg)v = (c(f)c(g))v

for all 0 �= f, g ∈ D[[X]] as follows:

Dv̂ = { f
g | f, g ∈ D[[X]] with 0 �= g and f = 0 or c(f)v ⊆ c(g)v}.

They then showed that Dv̂ is a completely integrally closed Bezout domain.

Theorem 3.2. Let D be an integrally closed Noetherian domain, ∗ be an e.a.b.

star operation on D, and

Kr((D, ∗)) = {f
g
| f, g ∈ D[[X]], 0 �= g, and cD(f) ⊆ cD(g)∗}.

(1) Kr((D, ∗)) is a Bezout domain with D[[X]]N∗ ⊆ Kr((D, ∗)) ⊆ qf(D[[X]]).

(2) Kr((D, ∗)) ∩K = D and Kr((D, ∗)) ∩K(X) = Kr(D, ∗).
(3) fKr((D, ∗))∩K = c(f)∗ and fKr((D, ∗)) = c(f)∗Kr((D, ∗)) = c(f)Kr((D, ∗))

for all 0 �= f ∈ D[[X]].

(4) If I is a nonzero ideal of D, then IKr((D, ∗)) ∩K = I∗.
(5) Kr((D, b)) ⊆ Kr((D, ∗)) ⊆ Kr((D, v)).

Proof. (1) Claim 1. Kr((D, ∗)) is well-defined. (Proof. Let 0 �= f, g, h, k ∈ D[[X]]

be such that c(f) ⊆ c(g)∗ and f
g = k

h . Then fh = gk, and hence (c(g)c(k))∗ =

c(gk)∗ = c(fh)∗ = (c(f)c(h))∗ ⊆ (c(g)c(h))∗. Thus, c(k)∗ ⊆ c(h)∗.)
Claim 2. Kr((D, ∗)) is an integral domain. (Proof. Assume that f

g and k
h are

nonzero elements of Kr((D, ∗)). Then c(fh + gk)∗ ⊆ (c(fh) + c(gk))∗ = (c(fh)∗ +
c(gk)∗)∗ = ((c(f)c(h))∗ + (c(g)c(k))∗)∗ ⊆ (c(g)c(h))∗ = c(gh)∗. Hence f

g + k
g =

fh+gk
gh ∈ Kr((D, ∗)). Also, c(fk)∗ = (c(f)c(k))∗ ⊆ (c(g)c(h))∗ = c(gh)∗, and hence

f
g · k

h = fk
gh ∈ Kr((D, ∗)).)

Claim 3. Kr((D, ∗)) is a Bezout domain. (Proof. It suffices to show that

(f, g)Kr((D, ∗)) is principal for all 0 �= f, g ∈ D[[X]]. Since D is Noetherian, c(f) is

finitely generated, and so there is an integer n ≥ 1 such that if we let h = f + gXn,

then c(h) = c(f) + c(g). Clearly, h ∈ (f, g)Kr((D, ∗)). Also, f
h ,

g
h ∈ Kr((D, ∗)), and

hence (f, g)Kr((D, ∗)) ⊆ hKr((D, ∗)).)
Claim 4. D[[X]]N∗ ⊆ Kr((D, ∗)) ⊆ qf(D[[X]]). (Proof. This is clear.)

(2) Clearly, D ⊆ Kr((D, ∗)) ∩K. For the reverse containment, let 0 �= u = f
g ∈

Kr((D, ∗)) ∩ K, where f, g ∈ D[[X]] with c(f)∗ ⊆ c(g)∗. Then ug = f , and so

uc(g)∗ = c(f)∗ ⊆ c(g)∗. Hence, u ∈ uD ⊆ D, and thus Kr((D, ∗)) ∩K ⊆ D. Also,

it is obvious that Kr((D, ∗)) ∩K(X) = Kr(D, ∗).
(3) If α ∈ c(f)∗, then α

f ∈ Kr((D, ∗)), and hence α ∈ fKr((D, ∗)). Thus, c(f)∗ ⊆
fKr((D, ∗)) ∩ K. Conversely, assume 0 �= u ∈ fKr((D, ∗)) ∩ K. Then there are

some 0 �= g, h ∈ D[[X]] such that c(h)∗ ⊆ c(g)∗ and u = f · h
g . Hence, ug =

fh, and so uc(g)∗ = (c(f)c(h))∗ ⊆ (c(f)c(g))∗. Thus, u ∈ uD ⊆ c(f)∗. Thus,

fKr((D, ∗)) ∩K = c(f)∗. This also proves the second result because c(f) is finitely

generated.
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(4) This is an immediate consequence of (3) because we can choose a power series

f ∈ D[[X]] such that I = c(f).

(5) This follows because b ≤ ∗ ≤ v. �

Corollary 3.3. If ∗1 and ∗2 are e.a.b. star operations on a Noetherian domain D

such that Kr((D, ∗1)) = Kr((D, ∗2)), then ∗1 = ∗2.
Proof. Let I be a nonzero fractional ideal of D. If I ⊆ D, then there is an f ∈ D[X]

such that c(f) = I, and hence I∗1 = c(f)∗1 = fKr((D, ∗1))∩K = fKr((D, ∗2))∩K =

c(f)∗2 = I∗2 by Theorem 3.2. Next, if I � D, then there is a 0 �= d ∈ D with

dI ⊆ D. Hence, dI∗1 = (dI)∗1 = (dI)∗2 = dI∗2 , and thus I∗1 = I∗2 . Therefore,

∗1 = ∗2. �

Remark 3.4. Let D be an integrally closed Noetherian domain. Then D is a

Krull domain, and hence the v-operation is an e.a.b. star operation. Note that

b-Max(D) = Max(D) and t-dim(D) = 1. Hence, b = v if and only if dim(D) = 1,

and in this case, Kr((D, b)) = Kr((D, v)) is a PID (see Corollaries 2.9 and 3.13).

Thus, if dim(D) ≥ 2, then D has at least two distinct e.a.b. star operations b and

v, and by Corollary 3.3, Kr((D, b)) � Kr((D, v)). More precisely, by Proposition 1.5

and Corollary 3.3, there are at least 2|X(D)| Kronecker function rings of D, where

X(D) is the set of height-two prime ideals of D.

Let v be a valuation on K, associated with V , and let X be an indeterminate

over V . For each f = a0+a1X+· · · anXn ∈ V [X], let v∗(f) = inf{v(ai)}. Then v∗

is a valuation on K(X), called the trivial extension of v to K(X), and its valuation

ring is V (X); so V (X) = { f
g | f, g ∈ D[X], g �= 0, and c(f)V ⊆ c(g)V }. Clearly,

the value group of v∗ is equal to that of v.

Let M be the maximal ideal of V . Then V (X) = V [X]M [X] and V ((X)) =

V [[X]]M [[X]]. Hence V (X) is a valuation domain, while V ((X)) is a valuation domain

if and only if V is a rank one DVR [1, Theorems 1 and 2].

Proposition 3.5. Let V be a valuation overring of a Noetherian domain D, v be

the valuation of V , and V̂ = { f
g | f, g ∈ D[[X]], g �= 0, and c(f)V ⊆ c(g)V }.

(1) V̂ is a valuation domain such that V̂ ∩K(X) = V (X).

(2) If M is the maximal ideal of V , then M̂ = { f
g | f, g ∈ D[[X]], g �= 0, and

c(f)V � c(g)V } is the maximal ideal of V̂ .

(3) If f ∈ D[[X]], then c(f)V = aV for some coefficient a of f .

(4) For f ∈ D[[X]], let v∗(f) = v(a), where a ∈ D with c(f)V = aV by (2).

Then v∗ is a valuation on qf(D[[X]]), associated with V̂ , and its value group

is the same as that of v.

(5) dim(V̂ ) = dim(V ).

(6) V is discrete if and only if V̂ is discrete.

Proof. (1) Let 0 �= f, g, h, k ∈ D[[X]] be such that cV (f) ⊆ cV (g) and f
g = k

h .

Then fh = gk, and hence, by Lemma 2.6, cV (g)cV (k) = cV (gk) = cV (fh) =

cV (f)cV (h) ⊆ cV (g)c(h). Note that cV (g) is finitely generated, and so principal.

Hence, cV (h) ⊆ cV (k). This shows that V̂ is well-defined and V̂ ∩K(X) = V (X).
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Next, to show that V̂ is a valuation domain, let 0 �= f, g, h1, h2 ∈ D[[X]] be

such that f
h1
, g
h2

∈ V̂ . Then, by Lemma 2.6, c(fg)V = cV (fg) = cV (f)cV (g) ⊆
cV (h1)cV (h2) = cV (h1h2) = c(h1h2)V , and thus f

h1
· g
h2

∈ V̂ . Again, by Lemma

2.6, c(fh2 + gh1)V = cV (fh2 + gh1) ⊆ cV (fh2) + cV (gh1) = cV (f)cV (h2) +

cV (g)cV (h1) ⊆ cV (h1)cV (h2) = cV (h1h2), and hence f
h1

+ g
h2

∈ V̂ . Thus, V̂ is

an integral domain because V̂ ⊆ qf(D[[X]]). Also, since V is a valuation domain,

either c(f)V ⊆ c(g)V or c(g)V ⊆ c(f)V for all 0 �= f, g ∈ D[[X]]. Hence f
g ∈ V̂ or

g
f ∈ V̂ , and therefore V̂ is a valuation domain.

(2) Let 0 �= f, g ∈ D[[X]]. Then f
g is a unit of V̂ if and only if c(f)V = c(g)V ,

and since V̂ is quasi-local by (1), M̂ is the maximal ideal of V̂ .

(3) This follows because c(f) is finitely generated.

(4) Let 0 �= f, g ∈ D[[X]], and let c(f)V = aV and c(g)V = bV . Note that

c(fg)V = cV (fg) = cV (f)cV (g) = (aV )(bV ) = abV by Lemma 2.6; hence v∗(fg) =
v(ab) = v(a) + v(b) = v∗(f) + v∗(g). Note also that c(f + g) = (ai + bi)V for some

ai ∈ c(f) and bi ∈ c(g) by (3). Hence v∗(f + g) = v(ai + bi) ≥ min{v(ai), v(bi)} ≥
min{v(a), v(b)} = min{v∗(f), v∗(g)}. Thus, v∗ is a valuation on qf(D[[X]]) whose

value group is the same as that of v. Next, f
g ∈ V̂ ⇔ aV = c(f)V ⊆ c(g)V = bV ,

⇔ v(ab ) ≥ 0, ⇔ v∗(g) = v(b) ≤ v(a) = v∗(f), ⇔ v∗( fg ) ≥ 0. Therefore, V̂ is the

valuation ring of v∗.
(5) It is known that if G is the value group of v, then the rank of G (as a totally

ordered abelian group) is equal to dim(V ) [21, Theorem 5.17]. Thus, by (4), dim(V̂ )

= dim(V ).

(6) This follows from [15, Exercise 22 on p. 205], because the value group of v∗

is the same as that of v by (4). �

A valuation overring V of D is called a ∗-valuation overring of D if I∗ ⊆ IV

for all I ∈ f(D). It is known that if ∗ is e.a.b., then Kr(D, ∗) = ⋂{V (X) | V is a

∗-valuation overring of D} [13, Proposition 13].

Lemma 3.6. Let ∗ be an e.a.b. star operation on a Noetherian domain D. Then

V is a ∗-valuation overring of D if and only if V̂ is an overring of Kr((D, ∗)).
Proof. Assume that V is a ∗-valuation overring of D, and let 0 �= f, g ∈ D[[X]] with
f
g ∈ Kr((D, ∗)). Then c(f)V = c(f)∗V ⊆ c(g)∗V = c(g)V because c(f) and c(g)

are finitely generated, and hence f
g ∈ V̂ . Thus Kr((D, ∗)) ⊆ V̂ . For the reverse

implication, it suffices to show that if 0 �= h ∈ D[X], then c(h)∗ ⊆ c(h)V . Recall

that c(h)∗ = hKr((D, ∗)) ∩ K by Theorem 3.2(3); so if we let h1 ∈ D[X] with

c(h1) = c(h)∗ (note that c(h)∗ is finitely generated), then c(h1)
∗ = c(h)∗, and thus

h1

h ∈ Kr((D, ∗)) ⊆ V̂ . Thus c(h)∗ ⊆ c(h)∗V = c(h1)V ⊆ c(h)V . �

We say that D has valuative dimension n, denoted by dimv(D) = n, if each

valuation overring of D has dimension at most n and if there is a valuation overring

V of D with dim(V ) = n. It is known that if D is an n-dimensional Noetherian

domain, then dimv(D) = n [15, Corollary 30.10]. Let v be a valuation on K, where

K is the quotient field of a Noetherian domain D, associated with V , and let v∗

be the valuation on qf(D[[X]]), associated with V̂ . Then, as in the polynomial ring
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case, we will say that v∗ is the trivial extension of v to qf(D[[X]]) (equivalently, V̂

is called the trivial extension of V to qf(D[[X]])).

Corollary 3.7. Let ∗ be an e.a.b. star operation on a Noetherian domain D, W

be a valuation overring of Kr((D, ∗)), and V = W ∩K.

(1) W is the trivial extension of V to qf(D[[X]]), i.e., W = V̂ .

(2) V is a ∗-valuation overring of D.

(3) dim(Kr((D, b))) = dimv(D).

Proof. (1) Let v∗ be the valuation on qf(D[[X]]) associated with W , and let v be

the restriction of v∗ to K. Let 0 �= f ∈ D[[X]]. Then c(f)V = aV for some a ∈ D

by Proposition 3.5(3). Also, since c(f)Kr((D, ∗)) = fKr((D, ∗)) by Theorem 3.2(3),

aW = c(f)W = fW because Kr((D, ∗)) ⊆ W . Thus, v∗(f) = v∗(a) = v(a). So if

0 �= f, g ∈ D[[X]], then f
g ∈ W ⇔ v∗(f) ≥ v∗(g) ⇔ c(f)V ⊆ c(g)V ⇔ f

g ∈ V̂ . Thus,

W = V̂ .

(2) This follows from (1) and Lemma 3.6.

(3) Since Kr((D, b)) is a Bezout domain by Theorem 3.2(1), the result follows

directly from (1), Lemma 3.6 and Proposition 3.5(5). �

Corollary 3.8. Let ∗ be an e.a.b. star operation on a Noetherian domain D. Then

Kr((D, ∗)) = ⋂{V̂ | V is a ∗-valuation overring of D}.
Proof. This follows from Lemma 3.6 and Corollary 3.7 because Kr((D, ∗)) is inte-

grally closed and so the intersection of valuation overrings [15, Theorem 19.8]. �

It is known that if P is a height-one prime ideal of an integrally closed Noetherian

domain D, then DP is a rank-one DVR, and hence IDP = (IDP )
v = IvDP for all

I ∈ F (D); so DP is a v-valuation overring of D.

Corollary 3.9. If D is an integrally closed Noetherian domain, then Kr((D, v)) is

a PID and Kr((D, v)) = D[[X]]Nv .

Proof. By Corollary 2.9, it suffices to show that Kr((D, v)) = D[[X]]Nv . Note

that D[[X]]Nv =
⋂

P∈X1(D) D[[X]]P [[X]], because Max(D[[X]]Nv ) = {P [[X]]Nv | P ∈
X1(D)} by Lemma 2.1. Let P ∈ X1(D). Then DP and D[[X]]P [[X]] are both

rank-one DVRs. Also, obviously, D[[X]]P [[X]] ⊆ D̂P because c(f)DP = DP for all

f ∈ D[[X]] \ P [[X]], and thus D[[X]]P [[X]] = D̂P . So, by Theorem 3.2 and Corol-

lary 3.8, Kr((D, v)) ⊆ ⋂{D̂P | P ∈ X1(D)} = D[[X]]Nv ⊆ Kr((D, v)). Thus,

Kr((D, v)) = D[[X]]Nv . �

Corollary 3.10. Let ∗ be an e.a.b. star operation on a Noetherian domain D. If

T is an overring of Kr((D, ∗)), then T =
⋂

α V̂α for some set {Vα} of ∗-valuation
overrings of D containing T ∩K.

Proof. Clearly, T is integrally closed because T is an overring of a Bezout domain.

Hence, if we let {Wα} be the set of valuation overrings of T , then T =
⋂

α Wα. Put

Vα = Wα ∩K. Then Vα is a ∗-valuation overring of D containing T ∩K such that

Wα = V̂α by Corollary 3.7. Thus, T =
⋂

α V̂α. �
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It is known that {Vα} is a set of valuation overrings of D, then
⋂

Vα(X) is a

Bezout domain (cf. [15, Theorem 32.11]).

Corollary 3.11. Let {Vα} be a set of valuation overrings of a Noetherian domain

D, and let T =
⋂
V̂α. Then T is a Bezout domain.

Proof. Let R =
⋂

α Vα, and let R̂ = { f
g | f, g ∈ D[[X]], g �= 0, and c(f)Vα ⊆ c(g)Vα

for all α}. Then R̂ is a Bezout domain by an argument similar to the proof of

Theorem 3.2(1). Clearly, T = R̂, and thus T is a Bezout domain. �

Corollary 3.12. Let R be an integrally closed overring of a Noetherian domain D,

{Vα} be the set of valuation overrings of R, and

R̂ = { f
g | f, g ∈ D[[X]], g �= 0, and c(f)Vα ⊆ c(g)Vα for all α}.

Then R̂ is a Bezout domain such that R̂ ∩K = R and D((X)) ⊆ R̂ ⊆ qf(D[[X]]).

Proof. Clearly, R̂ =
⋂

V̂α and D((X)) ⊆ R̂ ⊆ qf(D[[X]]). Hence, R̂ is a Bezout

domain by Corollary 3.11 and R̂ ∩ K = (
⋂
V̂α) ∩ K =

⋂
(V̂α ∩ K(X) ∩ K) =⋂

(Vα(X) ∩K) =
⋂

Vα = R by Proposition 3.5(1). �

Corollary 3.13. The following statements are equivalent for an integrally closed

Noetherian domain D.

(1) D is a Dedekind domain.

(2) Kr((D, b)) = D((X)).

(3) D((X)) is a Prüfer domain.

(4) dim(D) = 1.

(5) Kr((D, b)) = Kr((D, v)).

Proof. (1) ⇒ (2) This follows from Corollary 3.9, because a Dedekind domain is a

Krull domain on which d = t = v.

(2) ⇒ (3) This is an immediate consequence of Theorem 3.2(1).

(3) ⇒ (1) [10, Corollary 7].

(1) ⇔ (4) Recall that an integrally closed Noetherian domain is a Krull domain;

hence the result follows from the fact that a Krull domain is a Dedekind domain if

and only if it is of dimension one.

(1) ⇒ (5) This follows because b = d = v on a Dedekind domain.

(5) ⇒ (4) Let M be a maximal ideal of D. If htM ≥ 2, then Mt = D, and so

there is a nonzero subideal I of M such that Iv = D. Since I is finitely generated,

there is a polynomial f ∈ D[X] such that c(f) = I. Clearly, f ∈ Nv, and so 1
f ∈

Kr((D, b)) by (5) and Corollary 3.9. Hence, c(f) = c(f)b = D, a contradiction.

Thus, htM = 1, and so D is one-dimensional. �

Acknowledgement. The author would like to thank the referee for careful reading

and several valuable comments.

References

[1] J. Arnold and J.W. Brewer, When (D[[X]])P [[X]] is a valuation ring, Proc. Amer. Math. Soc.,

37 (1973), 326-332.



POWER SERIES OVER NOETHERIAN DOMAINS 15

[2] D.D. Anderson, Some remarks on the ring R(X), Comment. Math. Univ. St. Paul. 26 (1977),

137-140.

[3] D.D. Anderson, Star-operations induced by overrings, Comm. Algebra 16 (1988), 2535-2553.

[4] D.D. Anderson and S.J. Cook, Two star-operations and their induced lattices, Comm. Algebra

28 (2000), 2461-2475.

[5] D.D. Anderson and B.G. Kang, Content formulas for polynomials and power series and

complete integral closure, J. Algebra 181 (1996), 82-94.

[6] D.D. Anderson and B.G. Kang, Formally integrally closed domains and the rings D((X)) and

D{{X}}, J. Algebra 200 (1998), 347-362.

[7] J.W. Brewer, Power Series over Commutative Rings, Dekker, New York, 1981.
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