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We show that a nonempty family of n-generated subgroups 
of a pro-p group has a maximal element. This suggests that 
‘Noetherian Induction’ can be used to discover new features of 
finitely generated subgroups of pro-p groups. To demonstrate 
this, we show that in various pro-p groups Γ (e.g. free pro-p
groups, nonsolvable Demushkin groups) the commensurator 
of a finitely generated subgroup H �= 1 is the greatest 
subgroup of Γ containing H as an open subgroup. We also 
show that an ascending chain of n-generated subgroups of a 
limit group must terminate (this extends the analogous result 
for free groups proved by Takahasi, Higman, and Kapovich–
Myasnikov).

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Chain conditions play a prominent role in Algebra. A good example is the variety of 
results on Noetherian rings and their modules. In this work we consider chain conditions 
on profinite groups. All the group-theoretic notions considered for these groups should 
be understood in the topological sense, i.e. subgroups are closed, homomorphisms are 
continuous, generators are topological, etc. Fix once and for all a prime number p. The 
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ascending chain condition on finitely generated subgroups does not hold for pro-p groups 
in general, and our first result is some kind of remedy for this.

Proposition 1.1. Let n ∈ N, let Γ be a pro-p group, and let F �= ∅ be a family of 
n-generated subgroups of Γ. Then F has a maximal element with respect to inclusion.

As illustrated in the sequel, this simple result unveils new properties of pro-p groups 
and their finitely generated subgroups. An example is the following theorem, for which 
we need some definitions. We say that a pro-p group Γ has a Hereditarily Linearly 
Increasing Rank (the word ‘rank’ is to be understood in the sense of a minimal number 
of generators) if for every finitely generated subgroup H ≤c Γ there exists an ε > 0 such 
that for any open subgroup U ≤o H we have

d(U) ≥ max{d(H), ε(d(H) − 1)[H : U ]} (1.1)

where d(K) stands for the smallest cardinality of a generating set for the pro-p group K. 
That is, our definition says that the minimal number of generators of finite index sub-
groups of H grows monotonically, and linearly (unless H is procyclic) as a function of 
the index. Examples of groups with this property include free pro-p groups, nonsolv-
able Demushkin groups, and groups from the class L all of whose abelian subgroups are 
procyclic (see [30]).

The linear growth of the number of generators of subgroups of H as a function of 
their index means that the rank gradient of H, defined by

inf
U≤oH

d(U) − 1
[H : U ] (1.2)

is positive. The rank gradient is at the focus of much recent research in both profinite 
and abstract group theory, as can be seen, for instance, from [1,2,7,15,19,22,24,28,29].

Let us introduce some more definitions and notation. Subgroups H1, H2 of a profinite 
group Γ are said to be commensurable if H1 ∩ H2 is open in both H1 and H2. Given 
a subgroup H ≤c Γ, the commensurator of H in Γ, that is, the set of γ ∈ Γ for which 
H and γHγ−1 are commensurable, is denoted by CommΓ(H). The commensurator is 
an abstract subgroup of Γ. We define the family of ‘finite extensions’ of H in Γ by 
F := {R ≤c Γ | H ≤o R}. Following [26], we say that M ∈ F is the root of H (and write 
M =

√
H) if M is the greatest element in F with respect to inclusion. Note that F may 

fail to have a greatest element, so H does not necessarily have a root.

Theorem 1.2. Let Γ be a pro-p group with a hereditarily linearly increasing rank, and let 
1 �= H ≤c Γ be a finitely generated subgroup. Then CommΓ(H) =

√
H, and the action 

of any 
√
H �c L ≤c Γ by multiplication from the left on L/H is faithful.

In particular, there are only finitely many subgroups of Γ that contain H as an open 
subgroup (and CommΓ(H) is one of these). Thus, H is also an open subgroup of its 
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normalizer in Γ. Furthermore, given finitely generated commensurable H1, H2 ≤c Γ we 
can apply Theorem 1.2 to H1∩H2 and conclude that it is an open subgroup of 〈H1∪H2〉. 
Note also that if [Γ : H] is infinite, then by taking L = Γ we find that H contains no 
nontrivial normal subgroup of Γ.

Results analogous to these assertions are abundant in the literature, where the group 
Γ is replaced by:

1. Free groups – [13, Corollary 8.8, Proposition 8.9], [16, Theorem 1], [26].
2. Fuchsian groups – [8].
3. Hyperbolic groups – [14, Theorems 1, 3].
4. Limit groups – [4, Theorem 1], [5, Theorem 4.1], [21, Chapters 4, 5], [30, Section 6].
5. Groups with a positive first �2-Betti number – [23, Corollary 5.13, Proposition 7.3].
6. Free profinite groups – [12, Main Theorem].
7. Absolute Galois groups of Hilbertian fields – [9].
8. Free pro-p groups and free pro-p products – [20, 3.3, 3.5], [18, Theorem C].
9. Nonsolvable pro-p Demushkin groups and other pro-p IF -groups with positive defi-

ciency – [17, 3.12, 3.13], [31,11].
10. Pro-p groups from the class L – [30, Theorem C (5–7)].

It is our point of view that an assumption on the increase in the number of generators 
upon passing to finite index subgroups (e.g. (1.1)) creates a good framework for proving 
results like those stated in Theorem 1.2, the paragraph following it, and the list above. 
Indeed, all the groups in the list (excluding some of those in 3), have positive rank 
gradient. As a result, arguments from the proof of Theorem 1.2 can be used to obtain 
most of the results in the list above. For instance, [20, pro-p Greenberg Theorem], [17, 
Lemma 3.12, Proposition 3.13], [31, Theorem A], and a part of [30, Theorem C (5–7)]
are special cases of Theorem 1.2.

Next, we generalize Takahasi’s theorem (see [32, Theorem 1], [10, Lemma], and [13, 
Theorem 14.1]) which is the case of free G in the following.

Theorem 1.3. Let G be a group for which every subgroup H ≤ G whose profinite com-
pletion is finitely generated, is itself finitely generated. Let n ∈ N, and let F �= ∅ be a 
family of n-generated subgroups of G. Then F contains a maximal element.

Most notably, the theorem applies to Fuchsian groups, and to limit groups, as their 
subgroups with finitely generated profinite completions are finitely generated (see Propo-
sition 3.2). As in [10, Corollary], we have the following consequence of Theorem 1.3.

Corollary 1.4. Let G be a limit group, let α be an automorphism of G, and let H ≤ G be 
a finitely generated subgroup which is mapped by α into itself. Then α(H) = H.

The main condition in Theorem 1.3 is not redundant as subsection 3.1 shows.
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2. Pro-p groups

2.1. Directed families of subgroups

Given a set I, we say that a family of subgroups {Ai}i∈I of a group G is directed 
if for every i, j ∈ I there exists a k ∈ I such that Ak ≥ Ai, Aj . In this case, the 
abstract subgroup generated by the {Ai}i∈I is just their union. Furthermore, it follows 
by induction that for all m ∈ N and i1, . . . , im ∈ I there exists some i ∈ I such that 
Ai ≥ Aik for each 1 ≤ k ≤ m.

Lemma 2.1. Let Γ be a profinite group, let {Ai}i∈I be a directed family of subgroups of Γ, 
set A := 〈Ai〉i∈I , let G be a finite group, and let τ : A → G be an epimorphism. Then 
there exists some j ∈ I such that τ |Aj

is a surjection.

Proof. Note that

G = τ(A) = τ(〈Ai〉i∈I) = τ(
⋃
i∈I

Ai) ⊆ τ(
⋃
i∈I

Ai) =
⋃
i∈I

τ(Ai) (2.1)

so for each g ∈ G there exists some ig ∈ I such that g ∈ τ(Aig ). Since G is finite, 
directedness implies that there exists some j ∈ I such that Aj ≥ Aig for all g ∈ G. It 
follows that τ(Aj) = G as required. �
Corollary 2.2. Let Γ be a profinite group, let n ∈ N, and let {Ai}i∈I be a directed family 
of n-generated subgroups of Γ. Then A := 〈Ai〉i∈I is n-generated.

Proof. Let τ : A → G be an epimorphism onto a finite group. By Lemma 2.1, there 
exists some j ∈ I such that τ(Aj) = G. Hence, d(G) ≤ d(Aj) ≤ n, so d(A) ≤ n since by 
[25, Lemma 2.5.3] we know that d(A) is determined by the finite homomorphic images 
of A. �

For the proof of Proposition 1.1 recall that the Frattini subgroup of a profinite 
group U , denoted by Φ(U), is defined to be the intersection of all maximal subgroups 
of U .

Proof. Let C be an ascending chain in F , and let U be the subgroup of Γ generated 
by the subgroups in C. Since C is an ascending chain, it is directed, so d(U) ≤ n by 
Corollary 2.2. As U is a finitely generated pro-p group, [25, Proposition 2.8.10] tells us 
that U → U/Φ(U) is an epimorphism onto a finite group. By Lemma 2.1, there exists 
some H ∈ C such that HΦ(U) = U , so in view of [25, Corollary 2.8.5] we must have 
H = U . Thus U ∈ F is an upper bound for C. By Zorn’s Lemma, F has a maximal 
element. �
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Note that our assumption that Γ is not merely a profinite group but a pro-p group, 
has been used in the proof only to conclude that Φ(U) ≤o U for any finitely generated 
U ≤c Γ. By [25, Proposition 2.8.11], this conclusion holds under the weaker assumption 
that Γ is a pro-supersolvable group with order divisible by only finitely many primes. 
Such groups have been studied, for instance, in [3].

2.2. Hereditarily linearly increasing rank

2.2.1. Basic properties

Proposition 2.3. Let Γ be a pro-p group with a hereditarily linearly increasing rank, let 
H ≤c Γ be a finitely generated subgroup, and let R ≤c Γ be a subgroup containing H as 
an open subgroup. Then d(R) ≤ d(H).

Proof. By taking the union of a finite generating set for H with a transversal for H
in R we get a finite generating set for R. It follows from (1.1) that d(H) ≥ d(R) as 
required. �
Proposition 2.4. Let Γ be a pro-p group with a hereditarily linearly increasing rank. Then 
Γ is torsion-free.

Proof. Let C ≤c Γ be a finite subgroup. Since {1} ≤o C, (1.1) implies that 0 = d({1}) ≥
d(C) which guarantees that C = {1} as required. �
Corollary 2.5. Let Γ be a pro-p group with a hereditarily linearly increasing rank, and let 
H be a finitely generated subgroup of Γ. Then F := {R ≤c Γ | H ≤o R} has a maximal 
element.

Proof. This is immediate from Proposition 2.3 and Proposition 1.1. �
The proof of the following simple lemma is left to the reader.

Lemma 2.6. Let G be a finitely generated profinite group, let K�cG be a normal subgroup, 
and let H ≤c G be a finitely generated subgroup containing K. Then d(G) ≤ d(H) +
d(G/K).

2.2.2. Faithful action on the space of cosets
We establish Theorem 1.2 in a sequence of claims, the most important of which is the 

following theorem that makes crucial use of the positivity of the rank gradient. For the 
proof, recall that if U is an open subgroup of a finitely generated profinite group Γ, then 
d(U) ≤ d(Γ)[Γ : U ] as can be seen from [25, Corollary 3.6.3].
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Theorem 2.7. Let Γ be a pro-p group with a hereditarily linearly increasing rank, and 
let H ≤c Γ be a finitely generated subgroup of infinite index. Then the left action by 
multiplication of Γ on the space of cosets Γ/H is faithful.

Note that the conclusion is equivalent to saying that the core of H in Γ is trivial.

Proof. Let K �c Γ be the kernel of the action, and note that K ≤c H. Towards a 
contradiction, suppose that K �= {1}. By Corollary 2.5, we can find some M ≤c Γ
maximal among those having H as an open subgroup. Since [M : H] < ∞ and [Γ : H] =
∞ by assumption, we can pick some x ∈ Γ \M . Set N := 〈M∪{x}〉, so that [N : H] = ∞
by the maximality of M . By Proposition 2.3, we get that

d(N) ≤ d(M) + 1
(2.3)
≤ d(H) + 1 (2.2)

so N is finitely generated, and from the fact that K is a nontrivial nonopen subgroup 
of N , we infer that d(N) > 1 (if d(N) ≤ 1 then all nontrivial subgroups of the pro-p
group N are open).

By (1.1), there exists an ε > 0 such that for all V ≤o N we have

d(V ) ≥ ε(d(N) − 1)[N : V ] = δ[N : V ] (2.3)

where δ := ε(d(N) − 1) > 0. By Proposition 2.4, K is infinite, and this fact (along with 
the fact that [N : H] = ∞) is seen in the finite quotients of N . For instance, there exists 
some U �o N such that

[N : UH], [UK : U ] > 2(d(H) + 1)
δ

. (2.4)

By Lemma 2.6, (2.2), and (2.4) we find that

d(U)
(2.6)
≤ d(U/U ∩K) + d(U ∩H)

= d(UK/K) + d(U ∩H)

≤ d(UK) + d(H)[H : U ∩H]

≤ d(N)[N : UK] + d(H)[UH : U ]
(2.2)
≤ (d(H) + 1) [N : U ]

[UK : U ] + d(H) [N : U ]
[N : UH]

≤ 2(d(H) + 1)[N : U ]
min{[UK : U ], [N : UH]}

(2.4)
< δ[N : U ]

(2.5)

which is a contradiction to (2.3). �
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For the next corollary, recall that given a subgroup H of a profinite group Γ, the 
normalizer of H in Γ (the set of γ ∈ Γ for which γH = Hγ) is denoted by NΓ(H). The 
normalizer is easily seen to be a subgroup.

Corollary 2.8. Let Γ be a pro-p group with a hereditarily linearly increasing rank, and let 
H �= {1} be a finitely generated subgroup of Γ. Then [NΓ(H) : H] < ∞.

Proof. Suppose that [NΓ(H) : H] = ∞. Since hereditarily linearly increasing rank is 
inherited by subgroups, we can apply Theorem 2.7 to the action of NΓ(H) on its cosets 
modulo H, and get that

H =
⋂

g∈NΓ(H)

gHg−1 = {1} (2.6)

where the first equality stems from the normality of H in NΓ(H), and the second one 
from the faithfulness of the action of NΓ(H) on NΓ(H)/H. Clearly, (2.6) contradicts our 
assumption that H �= {1}. �
2.2.3. Roots and commensurators

The following theorem is a strengthening of Corollary 2.5.

Theorem 2.9. Let Γ be a pro-p group with a hereditarily linearly increasing rank. Then 
every finitely generated subgroup of Γ has a root.

Proof. Let n ∈ N, and let D be the family of all n-generated subgroups of Γ which 
do not have a root. Towards a contradiction, suppose that D �= ∅. By Proposition 1.1, 
there is a maximal M ∈ D. By Corollary 2.5, there exists some T maximal among the 
subgroups of Γ having M as an open subgroup. Since M ∈ D, we know that T is not a 
root of M , so there exists an A ≤c Γ not contained in T , such that M ≤o A. As M ≤ T

and A � T , we conclude that M � A. The maximality of T implies that T � A so 
M � T . By Proposition 2.4, M �= {1} since otherwise T would have been a nontrivial 
finite subgroup of Γ.

Set B := T ∩ A and suppose that there exists a root C of B. Since M ≤o B we 
see that B ≤o A, T so A, T ≤c C by definition of the root. Since A � T , we find that 
T � C. On the other hand, C =

√
B implies that B ≤o C, and thus M ≤o C which is 

a contradiction to the maximality of T . We conclude that B does not have a root, and 
by Proposition 2.3, d(B) ≤ d(M) ≤ n. Hence, B ∈ D and the maximality of M implies 
that B = M .

Let A0, T0 �o M be minimal subgroups of A, T respectively, and set J := 〈A0∪T0〉. Ev-
idently, M is a maximal subgroup of the pro-p groups A0, T0 so by [25, Lemma 2.8.7 (a)], 
M �o A0, T0 which means that A0, T0 ≤c NΓ(M). Consequently, J ≤c NΓ(M), so from 
Corollary 2.8 we get that [J : M ] < ∞. By Proposition 2.3, d(T0) ≤ d(M) ≤ n so 
from the maximality of M we infer that T0 has a root R. Since T0 ≤o T, J we have 
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T, J ≤c

√
T0 = R. The fact that T ∩ A = M implies that A0 � T , so T � R as 

A0 ≤o J ≤o R. Since R =
√
T0 we have M ≤o T0 ≤o R so R contains M as an open 

subgroup, thus contradicting the maximality of T . �
Corollary 2.10. Let Γ be a pro-p group with a hereditarily linearly increasing rank, let 
H be a finitely generated subgroup of Γ, and let K be an open subgroup of H. Then √
H =

√
K.

More generally, we have the following corollary the obvious proof of which is omitted.

Corollary 2.11. Let Γ be a pro-p group with a hereditarily linearly increasing rank, and 
let H, K be finitely generated subgroups of Γ. Then H and K are commensurable if and 
only if 

√
H =

√
K.

Corollary 2.12. Let Γ be a pro-p group with a hereditarily linearly increasing rank, and 
let H �= {1} be a finitely generated subgroup of Γ. Then CommΓ(H) =

√
H.

Proof. Let g ∈
√
H. We have

√
gHg−1 = g

√
Hg−1 =

√
H (2.7)

so by Corollary 2.11, H and gHg−1 are commensurable, which means that g ∈
CommΓ(H). Now, let x ∈ CommΓ(H). Thus, H and xHx−1 are commensurable. By 
Corollary 2.11,

√
H =

√
xHx−1 = x

√
Hx−1 (2.8)

so x ∈ NΓ(
√
H). We have thus shown that CommΓ(H) ≤ NΓ(

√
H). Since H ≤o

√
H

Proposition 2.3 tells us that 
√
H is finitely generated, so by Corollary 2.8, [NΓ(

√
H) :√

H] < ∞ which implies that NΓ(
√
H) =

√
H in view of the maximality of the root 

√
H. 

Hence, CommΓ(H) ≤
√
H and we have an equality. �

Observe that Theorem 1.2 follows at once from Corollary 2.12 and Theorem 2.7.

3. Abstract groups

For a group G, we denote by Ĝ the profinite completion of G.

Corollary 3.1. Let G be a group, let n ∈ N, let {Ai}i∈I be a directed family of n-generated 
subgroups, and set A := 〈Ai〉i∈I . Then d(Â) ≤ n.

Proof. Apply Corollary 2.2 to Â, and the closures {Ai}i∈I in Â. �
We are now up to proving Theorem 1.3.
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Proof. Let C be an ascending chain in F , and let U be its union. Since C is an ascending 
chain, Corollary 3.1 implies that d(Û) ≤ n. By our assumption on G, there exists a 
finite generating set S ⊆ U . Since C is an ascending chain, we can find an R ∈ C which 
contains S, and thus all of U . Therefore, U = R ∈ F is an upper bound for C. By Zorn’s 
Lemma, F has a maximal element. �

Let us now briefly explain why Theorem 1.3 applies to limit groups. For that matter, 
recall that a group G is said to be fully residually free if for any finite X ⊆ G not 
containing 1, there is a homomorphism ϕ from G to a free group, such that 1 /∈ ϕ(X). 
A limit group is defined to be a finitely generated fully residually free group (see [27]).

Proposition 3.2. Let L be a limit group, and let H ≤ L be a subgroup with a finitely 
generated profinite completion. Then H is finitely generated.

Proof. Suppose that H is not finitely generated. By [27, Theorem 3.2], L decomposes 
as a graph of groups Y with cyclic edge groups. This induces a decomposition of H as 
a graph of groups X which must be infinite since H is not finitely generated. If X has 
an infinite first Betti number, then H surjects onto a free group of infinite rank, so in 
particular, its profinite completion is not finitely generated.

We may thus assume that the first Betti number of X is finite, which implies that

X = C ∪ T1 ∪ · · · ∪ Tn (3.1)

where C is compact, n ∈ N, and T1, . . . , Tn are infinite trees with a unique leaf each. 
Hence, in order to show that the profinite completion of H is not finitely generated, it 
is sufficient to show this for the fundamental group of T1. For that, recall that every 
abelian subgroup of a limit group is finitely generated free abelian so infinitely many 
vertex groups in T1 are not cyclic. Since edge groups are cyclic, by collapsing edges we 
can assure that all vertex groups in T1 are not cyclic. It follows from fully residual freeness 
that every vertex group surjects onto Z2, so the fundamental group of T1 surjects onto 
the fundamental group of a tree of groups in which every vertex group is Z2 and every 
edge group is either {1} or Z. The latter group surjects onto an infinite direct sum of 
Z/2Z so its profinite completion is not finitely generated. �

We are now ready for the proof of Corollary 1.4.

Proof. Set

F := {K ≤ G | d(K) ≤ d(H), α(K) � K} (3.2)

and suppose that H ∈ F . By Theorem 1.3 and Proposition 3.2, there exists a maximal 
M ∈ F . It is easy to verify that α−1(M) ∈ F , so α−1(M) = M by maximality. Hence, 
α(M) = M – a contradiction. �
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3.1. A hyperbolic group failing Theorem 1.3

We construct a residually finite hyperbolic group to which Theorem 1.3 does not 
apply. Let F be the free group on x, y and define a homomorphism β : F → F by 
β(x) = xy−1x2y and β(y) = yx−1y2x. It is not difficult to see that β is injective but not 
surjective. Freely construct a group G generated by F and some formal element t such 
that the equality twt−1 = β(w) holds in G for each w ∈ F . Then G is called the strict 
ascending HNN extension of (F, β). Set

H :=
∞⋃

n=0
t−nFtn

where the union is taken in G. Clearly, H is a strictly ascending union of finitely generated 
subgroups of G that are all isomorphic to F . It follows that H is a subgroup of G that 
is not finitely generated. On the other hand, the profinite completion of H is finitely 
generated by Corollary 3.1. Therefore, the assumptions of Theorem 1.3 are not fulfilled 
by G, and it is easy to see that F := {t−nFtn : n ∈ N} does not have a maximal element. 
By [6, Theorem 4.2], G is hyperbolic and linear over Z, and thus, residually finite.
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