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is at most 2.
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1. Introduction

Let � be a prime number, let k = F� be an algebraic closure of the field of � elements 
and let A be a finite dimensional k-algebra. For a ∈ N, the a-th Frobenius twist of A, 
denoted by A(�a), is a k-algebra with the same underlying ring structure as A, endowed 
with a new action of the scalars of k given by λ.x = λ

1
�a x for all λ ∈ k, x ∈ A. 

Two finite dimensional algebras A and B are Morita equivalent if mod(A) and mod(B)
are equivalent k-linear categories. By definition, A and A(�a) are isomorphic as rings, 
however, they need not even be Morita equivalent as k-algebras. The Morita Frobenius 
number of a k-algebra A, denoted by mf (A), is the least integer a such that A is Morita 
equivalent to A(�a).
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The concept of Morita Frobenius numbers was introduced by Kessar in [21] in the 
context of Donovan’s Conjecture in block theory. Donovan’s Conjecture implies that 
Morita Frobenius numbers of �-blocks of finite groups are bounded by a function which 
depends only on the size of the defect groups of the block. Little is known about the 
values of Morita Frobenius numbers in general, but it is known that a block of a group 
algebra can have Morita Frobenius number greater than 1 [2]. In this paper we calculate 
the Morita Frobenius numbers of a large class of blocks of finite reductive groups. We 
have used GAP [14] to check that the Morita Frobenius number of blocks of simple 
sporadic groups and their covers is 1. See Sections 2 to 5 for an explanation of the 
notation in the following theorem.

Theorem 1.1. Let b be an �-block of a quasi-simple finite group G. Let G = G/Z(G). 
Suppose that one of the following holds

(a) G is an alternating group;
(b) G is a finite group of Lie type in characteristic �;
(c) G is a finite group of Lie type in characteristic not equal to �, b dominates a unipotent 

block of G, and b is not one of the following blocks of E8;
• b = bE8(φ2

1.E6(q), E6[θi]) (i = 1, 2) with � = 2 and q of order 1 modulo 4;
• b = bE8(φ2

2.
2E6(q), 2E6[θi]) (i = 1, 2) with � ≡ 2 mod 3 and q of order 2 modulo �.

Then mf (b) = 1. In the excluded cases of part (c), mf (b) ≤ 2.

We start with some general results on the Morita Frobenius numbers of blocks in 
Section 2. Section 3 deals with the case of the alternating groups, and Section 4 deals 
with blocks of finite groups of Lie type in defining characteristic. In Section 5 we first 
present key results from e-Harish Chandra theory and unipotent block theory, followed by 
the results for unipotent blocks of finite groups of Lie type in non-defining characteristic. 
In Section 6 the results for exceptional covering groups are presented, and finally the 
proof of Theorem 1.1 is given in Section 7.

2. General results on Morita Frobenius numbers of blocks

Throughout, � is a prime number, k is an algebraically closed field of characteristic �, 
and G is a finite group.

2.1. Results on k-algebras

Let A and B be finite dimensional k-algebras and let A0 and B0 be basic algebras 
of A and B respectively. We define the Frobenius number of A to be the least integer a
such that A ∼= A(�a) as k-algebras, and denote it by frob(A). Recall that A and B are 
Morita equivalent if and only if A0 ∼= B0 as k-algebras, and note that A(�)

0 is a basic 
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algebra of A(�). Therefore, 1 ≤ mf (A0) ≤ frob(A0) = mf (A) ≤ frob(A) for any basic 
algebra A0 of A. Recall that A has an F�-form if there is a k-vector space basis of A
such that all structure constants lie in F�. By [22, Lemma 2.1], A has an F�-form if and 
only if A ∼= A(�) as k-algebras – that is, if and only if frob(A) = 1.

2.2. Results from Block theory

Let b be a block of kG. By this we mean that b is a primitive idempotent in Z(kG). 
We denote the Morita Frobenius and Frobenius numbers of kGb by mf (b) and frob(b), 
respectively. Let σ : k → k be the Frobenius automorphism given by λ �→ λ� for all 
λ ∈ k. We also denote by σ : kG → kG the induced Galois conjugation map on kG, 
defined by

σ

⎛⎝∑
g∈G

αgg

⎞⎠ =
∑
g∈G

α�
gg

for all 
∑

g∈G αgg ∈ kG. Although not an isomorphism of k-algebras, Galois conjugation 
is a ring isomorphism so it permutes the blocks of kG. We call σ(b) (or kGσ(b)) the 
Galois conjugate of b (resp. kGb), and we say that two blocks b and c of kG are Galois 
conjugate if b = σn(c) for some positive integer n.

Lemma 2.1. (Benson and Kessar [2]) There is a k-algebra isomorphism kGb(�) ∼= kGσ(b)
between the first Frobenius twist of kGb and the Galois conjugate of kGb.

We fix an �-modular system (K, O, k) with K a field of characteristic 0 containing 
a |G|-th root of unity, ν : K → Z ∪ {∞} a complete discrete valuation on K, O the 
valuation ring of ν with maximal ideal m, and k the residue field O/m. The canonical 
quotient map OG → kG induces a bijection between the set of blocks of OG and the set 
of blocks of kG. If b is a block of kG, we denote the corresponding block of OG by b̃. 
Blocks b̃ and c̃ of OG are said to be Galois conjugate if b and c are Galois conjugate.

Let IrrK(G) denote the set of K-valued irreducible characters of G and let eχ be the 
central idempotent of KG corresponding to χ ∈ IrrK(G). Let

IrrK(b) = {χ ∈ IrrK(G) | b̃eχ = eχ}

denote the set of irreducible characters belonging to the block b. We fix an automorphism 
σ̂ : K → K such that σ̂(ζ) = ζ� for any �′-root of unity ζ in K. Then σ̂ induces an action 
on KG via

σ̂

⎛⎝∑
αgg

⎞⎠ =
∑

σ̂(αg)g

g∈G g∈G
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for all 
∑

g∈G αgg ∈ KG, and an action on IrrK(G) via

σ̂χ(g) = σ̂(χ(g))

for all χ ∈ IrrK(G) and all g ∈ G. Note that although σ̂ may not preserve O, it induces 
an action on the set of blocks compatible with the action of σ on the blocks of kG. More 
precisely, we have the following.

Lemma 2.2. Let b be a block of kG. Then

(a) σ̂(b̃) = σ̃(b), and
(b) IrrK(σ(b)) = {σ̂χ | χ ∈ IrrK(b)}.

Proof. For part (a), see Kessar [23, Lemma 3.1]. For part (b), we first note that the 
following holds for any χ ∈ IrrK(G):

σ̂(eχ) = σ̂

⎛⎝χ(1)
|G|

∑
g∈G

χ(g−1)g

⎞⎠
= χ(1)

|G|
∑
g∈G

σ̂
(
χ(g−1)

)
g

=
σ̂χ(1)
|G|

∑
g∈G

σ̂χ(g−1)g

= eσ̂χ.

Suppose that χ ∈ IrrK(b). Then

σ̃(b)eσ̂χ = σ̂(b̃)σ̂(eχ) = σ̂(b̃eχ) = σ̂(eχ) = eσ̂χ,

so σ̂χ ∈ IrrK(σ(b)), showing that {σ̂χ | χ ∈ IrrK(b)} ⊆ IrrK(σ(b)).
On the other hand, for any ψ ∈ IrrK(σ(b)), since σ̂ is an automorphism of K we can 

define a character χ ∈ IrrK(G) by χ(g) = σ̂−1 (ψ(g)) for all g ∈ G, so σ̂χ = ψ. Since 
ψ ∈ IrrK(σ(b)), σ̃(b)eψ = eψ, so

σ̂
(
b̃eχ

)
= σ̂(b̃)σ̂(eχ) = σ̃(b)eσ̂χ = σ̃(b)eψ = eψ = eσ̂χ = σ̂(eχ).

Therefore b̃eχ = eχ so χ ∈ IrrK(b), hence IrrK(σ(b)) ⊆ {σ̂χ | χ ∈ IrrK(b)} and the 
result follows. �
Proposition 2.3. Let b be a block of kG. Suppose that one of the following holds

(a) b̃ ∈ QG;
(b) There exist χ1, . . . , χr ∈ IrrK(b) for some r ≥ 1 such that (χ1 + · · · + χr) (g) ∈ Q

for all g ∈ G;
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(c) There exists χ ∈ IrrK(b) such that χ(1)� = |G|�;
(d) The defect groups of b are cyclic or dihedral.

Then mf (b) = 1.

Proof. If b̃ ∈ QG then σ̂(b̃) = b̃ since Q is stabilized by σ̂. Therefore σ(b) = b so 
kGb(�) ∼= kGb as k-algebras by Lemma 2.1. Hence frob(b) = 1 and therefore mf (b) = 1.

Suppose that there exist characters χ1, . . . , χr ∈ IrrK(b) for some r ≥ 1 such that 
(χ1+· · ·+χr)(g) ∈ Q for all g ∈ G. Then 

(
σ̂χ1 + · · · + σ̂χr

)
(g) = σ̂ (χ1 + · · · + χr) (g) =

(χ1 + · · · + χr) (g) for all g ∈ G. It follows that {σ̂χ1, . . . , ̂σχr} and {χ1, . . . , χr} are equal 
as sets of irreducible characters, so σ(b) = b by Lemma 2.2 (b). Therefore mf (b) = 1
following the same argument as in part (a).

By [29, Theorem 3.18], if there exists a χ ∈ IrrK(b) such that χ(1)� = |G|�, then kGb
has trivial defect groups and hence is a matrix algebra. Therefore kGb has an F�-form 
for any �, so mf (b) = 1, showing part (c). If b has cyclic defect then its basic algebras are 
Brauer tree algebras, so they are defined over F�. If b has dihedral defect then its basic 
algebras are defined over F2 [13, Tables starting page 294]. Thus if b has cyclic or dihedral 
defect then the Frobenius number of any basic algebra of kGb is 1, so mf (b) = 1. �
Lemma 2.4. Let b be a block of kG. Suppose that there exists a group automorphism 
ϕ ∈ Aut (G) such that for the induced k-algebra isomorphism ϕ : kG → kG, ϕ(b) = σ(b). 
Then mf (b) = 1.

Proof. Since ϕ|kGb : kGb → kGσ(b) is a k-algebra isomorphism, kGb ∼= kGσ(b) as 
k-algebras. It follows that kGb ∼= kGb(�) as k-algebras by Lemma 2.1, so frob(b) = 1, 
whence mf (b) = 1. �
Lemma 2.5. Let G be a finite group such that H2(G, k×) ∼= C2 and let γ ∈ H2(G, k×). 
Then mf (kγG) = 1.

Proof. Define a map σ : H2(G, k×) → H2(G, k×) as follows. Let γ ∈ H2(G, k×) and 
let γ̃ be a 2-cocycle representing γ. Then σ(γ) is defined to be the class in H2(G, k×)
represented by the 2-cocycle given by

(g, h) �→ σ(γ̃(g, h)),

for all g, h ∈ G. It is easy to check that σ is a well-defined group homomorphism on 
H2(G, k×). If γ is non-trivial then so is σ(γ), so since H2(G, k×) ∼= C2, kγG ∼= kσ(γ)G

as k-algebras.
Recall that kγG(�) ∼= kγG as rings but not necessarily as k-algebras, and that 

scalar multiplication in kγG(�) is given by λ.x = λ
1
� x for all λ ∈ k, x ∈ kγG. Let

ϕ : kσ(γ)G → kγG
(�) be the map defined by
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ϕ

⎛⎝∑
g∈G

αgg

⎞⎠ =
∑
g∈G

α
1
�
g g

for all 
∑

g∈G αgg ∈ kσ(γ)G. This is a ring isomorphism, and

ϕ

⎛⎝λ
∑
g∈G

αgg

⎞⎠ =
∑
g∈G

(λαg)
1
� g = λ

1
�

∑
g∈G

α
1
�
g g = λ.ϕ

⎛⎝∑
g∈G

αgg

⎞⎠
for all λ ∈ k and 

∑
g∈G αgg ∈ kσ(γ)G, so ϕ is in fact an isomorphism of k-algebras. There-

fore kγG ∼= kσ(γ)G ∼= kγG
(�) as k-algebras, so frob(kγG) = 1, hence mf (kγG) = 1. �

2.3. Dominating blocks

Let G be a finite group with normal subgroup Z. Let G = G/Z and let μ : G → G

be the natural quotient map. Denote also by μ : kG → kG the induced k-algebra 
homomorphism given by

μ

⎛⎝∑
g∈G

αgg

⎞⎠ =
∑
g∈G

αgμ(g)

for all 
∑

g∈G αgg ∈ kG. If b is a block of kG, then μ(b) = b1 + . . . br for some r ≥ 0, 
where bi are block idempotents of kG. Recall that if r �= 0, then b is said to dominate
the blocks bi of kG, for 1 ≤ i ≤ r, and each block b of kG is dominated by a unique 
block of kG. By identifying χ ∈ IrrK(G) with χ ◦μ ∈ IrrK(G), we can consider IrrK(G)
as a subset of IrrK(G). See [28, Ch. 5, Section 8.2] for more details.

Lemma 2.6. Let b be a block of kG.

(a) b dominates some block of kG if and only if b covers the principal block of kZ;
(b) b dominates a block b of kG if and only if σ(b) dominates σ(b);
(c) If Z ≤ Z(G) and b dominates some block of kG, then b dominates a unique block of 

kG;
(d) If Z is an �′-group (not necessarily central) and b dominates some block of kG, then 

b dominates a unique block b of kG and kGb ∼= kGb as k-algebras.

Proof. Part (a) follows directly from [28, Ch. 5 Lemma 8.6 (i)]. For part (b), note 
that by [28, Ch. 5, Lemma 8.6 (ii)], b dominates b if and only if IrrK(b) ⊆ IrrK(b), 
where we identify characters in IrrK(G) with characters in IrrK(G) as discussed above. 
IrrK(b) ⊆ IrrK(b) if and only if we have the following:

IrrK
(
σ
(
b
))

= {σ̂χ | χ ∈ IrrK
(
b
)
} ⊆ {σ̂χ | χ ∈ IrrK(b)} = IrrK(σ(b)).

Therefore b dominates b if and only if σ(b) dominates σ
(
b
)
.
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Part (c) follows from [28, Ch. 5 Theorem 8.11]. Finally for part (d), suppose that Z is 
an �′-subgroup of G and that b dominates a block b of kG. Then by [28, Ch. 5, Theorem 
8.8], b is the unique block of kG dominated by b, and IrrK(b) = IrrK

(
b
)
. Therefore 

μ(b) = b, so μ : kG → kG restricts to another surjection μ : kGb → kGb given by

μ

⎛⎝⎛⎝∑
g∈G

αgg

⎞⎠ b

⎞⎠ =

⎛⎝∑
g∈G

αgμ(g)

⎞⎠ b

for all 
∑

g∈G αgg ∈ kG. Since dimk(kGb) =
∑

χ∈IrrK(b) χ(1)2 and IrrK(b) = IrrK
(
b
)
, it 

follows that dimk(kGb) = dimk(kGb) so μ : kGb → kGb is injective. Therefore kGb ∼= kGb

as k-algebras, showing part (d). �
3. The alternating groups

Theorem 3.1. Let G be Sn, An, or a double cover of Sn or An, and let b be a block of 
kG. Then mf (b) = 1.

Proof. The irreducible characters of Sn are rational valued so the result follows imme-
diately for blocks of kSn by Proposition 2.3 (b). The irreducible characters of An arise 
as restrictions of irreducible characters of Sn, which are parametrized by the partitions 
λ of n. Suppose b is the block of kSn containing the irreducible character χλ associated 
with a partition λ. By [30, Lemma 12.1], if λ is not symmetric then χλ|An

is an irre-
ducible character of An, so χλ|An

is a rational valued character of An. If λ is symmetric 
then χλ|An

= χ1
λ + χ2

λ is the sum of two irreducible conjugate characters of An, and 
these may not be rational valued. By [30, Proposition 12.2], if b has non-trivial defect, 
then χ1

λ and χ2
λ appear in the same block of kAn, and we note that their sum is rational 

valued. If b has trivial defect then χ1
λ and χ2

λ are in separate blocks of kAn [20, Theorem 
6.1.46], each of defect zero. Therefore, any block of kAn satisfies the hypothesis of at 
least one of parts (a), (b) and (d) of Proposition 2.3 so the Morita Frobenius number of 
all blocks of kAn is 1.

Let S̃n denote a double cover of the symmetric group. When � is odd, Sn is a quotient 
of S̃n by a central �′-subgroup, so by [28, Ch. 5 Theorem 8.8] kS̃n has two types of blocks 
– blocks which dominate unique blocks of kSn, and blocks which do not dominate any 
block of kSn. First, suppose c is a block of kS̃n which dominates a block b of kSn. Then 
kS̃nc ∼= kSnb as k-algebras by Lemma 2.6 (d), so mf (c) = mf (b) = 1.

Now suppose c is a block of kS̃n which does not dominate a block of kSn. The block c
contains only faithful characters, known as spin characters. The distribution of irreducible 
characters of S̃n into �-blocks for odd � was determined in [6, Theorems A and B]. Spin 
characters are parametrized by the strict partitions of n – partitions of n which have no 
repeated parts. The parity of a partition is
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ε(λ) =
{

1 if (n minus the number of parts in λ) is even,
−1 otherwise.

If ε(λ) = 1 then λ has one associated spin character, χλ, and χλ(g) �= 0 only if g
has cycle type with all odd parts [6, Theorem 3]. When g has cycle type with all odd 
parts then by a result of Morris (given in [6, Theorem 7]), the character values can 
be calculated using an analogue of the Murnaghan Nakayama formula. In particular, 
χλ(g) ∈ Q. Therefore when ε(λ) = 1, χλ(g) ∈ Q, for all g ∈ S̃n.

If ε(λ) = −1 then λ has two associated spin characters, χλ and χ′
λ, and there are two 

possibilities to consider. Firstly, if λ is equal to its �-bar core (see [6, Definition 5]) then 
χλ and χ′

λ lie in separate �-blocks of defect zero. Secondly, if λ is not equal to its �-bar 
core, then χλ and χ′

λ appear in the same block. In this case, if g has cycle type λ then by 
a result of Schur (given in [6, Theorem 3]), χλ(g) = −χ′

λ(g). Thus (χλ + χ′
λ) (g) = 0 ∈ Q. 

If g has cycle type different to λ, then χλ(g) and χ′
λ(g) are non-zero only if g has cycle 

type with all odd parts, in which case χλ(g) and χ′
λ(g) are rational valued, as above. 

Thus in all cases when ε(λ) = −1 and λ is not equal to its �-bar core, (χλ + χ′
λ) (g) ∈ Q, 

for all g ∈ S̃n. The result therefore follows for all blocks c of kS̃n when � is odd, by 
Proposition 2.3 (a), (b) and (d).

When � = 2, the 2-blocks of kS̃n are in one-to-one correspondence with the 2-blocks of 
kSn [28, Ch. 5, Theorem 8.11], so each block of kS̃n contains at least one rational valued 
character of Sn. The result therefore follows for all 2-blocks of kS̃n by Proposition 2.3 (b).

Finally, let Ãn denote a double cover of An. Suppose d is a block of kÃn covered by 
a block c of kS̃n. If c has non-trivial defect, then by [21, Proposition 3.16 (i)], d = c

so kÃnd = kÃnc. By the arguments for kS̃n above, kS̃nc satisfies at least one of the 
hypotheses of parts (a), (b) and (d) of Proposition 2.3 and therefore so does kÃnc. It 
follows that mf (kÃnd) = mf (kÃnc) = 1. Now suppose that c has trivial defect. Then d
also has trivial defect so mf (d) = 1 by Proposition 2.3 (d). �
4. Blocks of finite groups of Lie type in defining characteristic

Theorem 4.1. Let G be a simple, simply-connected algebraic group defined over an alge-
braic closure of the field of � elements. Let q be a power of � and let F : G → G be a 
Steinberg morphism with respect to an Fq-structure with finite group of fixed points, GF . 
Let b be a block of kGF with Galois conjugate σ(b). Then there exists a group automor-
phism ϕ : GF → GF such that for the induced k-algebra isomorphism ϕ : kGF → kGF , 
ϕ(b) = σ(b).

Proof. By [19, Theorems 8.3, 8.5], since G is simply-connected and � divides q, kGF

has |Z(GF )| +1 blocks; one of trivial defect which contains the Steinberg character, and 
|Z(GF )| of full defect. Note that these results also hold for the Suzuki and Ree groups.

First suppose that Z(GF ) ≤ C2. Then kGF has at most three blocks. One of these 
blocks contains the trivial character and another contains the Steinberg character, so by 
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the proof of Proposition 2.3 (b), all blocks b of kGF are stabilized by Galois conjugation. 
We can therefore let ϕ : GF → GF be the identity map.

Now suppose that Z(GF ) ∼= Cm for some m > 2 coprime to �. Let Z(GF ) = 〈g〉. 
Then Z(GF ) has m irreducible characters χi : Z(GF ) → K, and for each 0 ≤ i ≤ m −1, 
χi has an associated central primitive idempotent of KZ(GF ),

ei = 1
m

∑
0≤a≤m−1

χi(ga)g−a.

Since m is coprime to � it is invertible in O, so ei ∈ OGF . Let ēi be the image of ei in 
kGF under the canonical quotient mapping OGF → kGF ,

ēi = 1
m

∑
0≤a≤m−1

χi(ga)g−a.

Then ēi is a block of kZ (GF ) and is a central, but not necessarily primitive, idempotent of 
kGF . Since kGF has m +1 blocks, there are exactly m +1 primitive central idempotents 
in kGF . Clearly, the blocks of kZ (GF ) are GF -stable. Therefore, precisely one ēi is 
imprimitive in kGF . Since the trivial and Steinberg characters of GF both restrict to the 
trivial character on Z(GF ), it follows that the principal block of kZ(GF ) is imprimitive 
in kGF and splits into the principal and Steinberg blocks of kGF . Galois conjugation 
stabilizes the principal and Steinberg blocks, as discussed above, so it only remains to 
consider the m − 1 blocks of kGF with block idempotent ēi.

Galois conjugation acts on ēi by

σ(ēi) = 1
m

∑
0≤a≤m−1

χi(ga)
�
g−a.

The action of σ is trivial if � ≡ 1 mod m, so from now on we assume that � �≡ 1 mod m.
Let F� : G → G be an F�-split Steinberg endomorphism of G. Then there exists an 

F -stable maximal torus T of G such that F�(t) = t� for all t ∈ T [27, Definition 22.4]. 
Since Z(GF ) is a subgroup of every F -stable torus, it follows that F�(z) = z� for every 
z ∈ Z(GF ). Therefore F� acts on ēi as follows:

F�(ēi) = 1
m

∑
0≤a≤m−1

χi(ga)F�(g−a)

= 1
m

∑
0≤a≤m−1

χi(ga)g−�a.

Let ϕ = F
φ(m)−1
� , where φ is the Euler totient function, and let ω be a primitive m-th 

root of unity such that χi(ga) = ωia for 1 ≤ a ≤ m. Then
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ϕ(ēi) = 1
m

∑
0≤a≤m−1

(ωia)g−�φ(m)−1a

= 1
m

∑
0≤a′≤m−1

(ωi�a′)g−a′
,

letting a′ = �φ(m)−1a so that �a′ = �φ(m)a ≡ a mod m. Therefore

ϕ(ēi) = 1
m

∑
0≤a′≤m−1

χi(ga′)
�
g−a′

= σ(ēi).

This shows the result for all GF such that Z(GF ) ∼= Cm, m > 2 and m is coprime to �.
Finally, suppose that GF = Spin+

2n(q), with n ≥ 4 even and � odd, so
Z(GF ) ∼= C2 × C2. The irreducible characters of C2 × C2 are rational valued so the 
associated central primitive idempotents of kZ(GF ) are stabilized by Galois conjuga-
tion. It follows that the central primitive idempotents of kGF are also stabilized by 
Galois conjugation, so again, we can let ϕ be the identity map. �
Corollary 4.2. Let kGF be as in Theorem 4.1. Then,

(a) for any block b of kGF , mf (b) = 1, and
(b) if Z is a non-trivial central subgroup of GF and b is a block of k(GF /Z), then 

mf
(
b
)

= 1.

Proof. Part (a) follows from Theorem 4.1 and Lemma 2.4. For part (b), suppose that b
is a block of k(GF /Z) dominated by a block b of kGF . Then by part (a), mf (b) = 1. 
As we are in defining characteristic, Z(GF ) is an �′-group, so it follows from Lemma 2.6
(d) that kGF b ∼= k(GF /Z)b as k-algebras. Therefore mf

(
b
)

= mf (b) = 1. �
5. Unipotent blocks of finite groups of Lie type in non-defining characteristic

In Section 5 we continue to assume that k = F�, an algebraic closure of the field 
of � elements. Let p be a prime different to �, and let G be a simple simply-connected 
algebraic group defined over an algebraic closure of the field of p elements. Fix q, a power 
of p, and let F : G → G be the Frobenius morphism with respect to an Fq-structure. 
Let GF be the fixed points of G under F – a finite group of Lie type. First we recall 
some standard notions from e-Harish Chandra Theory. See [11] and [5] for more details.

5.1. e-Harish Chandra theory and unipotent blocks

We denote by P(G,F )(x) the polynomial order of GF ; i.e. P(G,F )(x) is the unique 
polynomial such that P(G,F )(qm) =

∣∣GFm∣∣ for infinitely many m ∈ N. An F -stable 
torus T is called a e-torus if P(T,F )(x) is a power of the e-th cyclotomic polynomial, Φe, 
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where e is some natural number. An e-split Levi subgroup L of G is the centralizer in G
of some e-torus of G. Recall that for an F -stable Levi subgroup L in a parabolic P of G
which is not necessarily F -stable, there exist linear maps Deligne Lusztig induction and 
restriction denoted by

RG
L⊂P : ZIrrK(LF ) → ZIrrK(GF )

∗RG
L⊂P : ZIrrK(GF ) → ZIrrK(LF ).

An irreducible character χ of GF is called unipotent if there exists an F -stable max-
imal torus T such that χ is a constituent of RG

T⊂P(1). The set of unipotent characters 
of GF is denoted by E(GF , 1). Although it is not known in general whether RG

L⊂P and 
∗RG

L⊂P are independent of the choice of P, they are known to be independent for unipo-
tent characters [3]. We will therefore drop the reference to P and denote Deligne Lusztig 
induction and restriction by RG

L and ∗RG
L respectively. An �-block of GF is unipotent

if it contains a unipotent character. An irreducible character χ of GF is e-cuspidal if 
∗RG

L (χ) = 0 for all proper e-split Levi subgroups L of G. Note that cuspidal is widely 
used instead of 1-cuspidal.

A pair (L, λ) is called unipotent e-split if L is an e-split Levi subgroup of G and λ
is a unipotent character of LF . If λ is also e-cuspidal, then (L, λ) is called a unipotent 
e-cuspidal pair. The e-Harish Chandra series above a unipotent e-cuspidal pair (L, λ) is 
the set of unipotent characters

IrrK(GF , (L, λ)) = {γ ∈ E(GF , 1) : γ is an irreducible constituent of RG
L (λ)}.

The set of irreducible unipotent characters of GF is partitioned by the e-Harish Chandra 
series of GF -conjugacy classes of unipotent e-cuspidal pairs [4, Theorem 7.5 (a)]:

E(GF , 1) =
⋃̇

IrrK(GF , (L, λ)),

where the (L, λ) run over a system of representatives of GF -conjugacy classes of unipo-
tent e-cuspidal pairs of G.

We define e�(q) to be the order of q modulo � if � > 2, and the order of q modulo 4 
if � = 2. Letting e = e�(q), a unipotent e-cuspidal pair (L, λ) is said to have �-central 
defect if λ(1)�|Z(L)F |� = |LF |�. If � is odd, good for G (see [8, Section 1.1]), and � �= 3
if 3D4 is involved in G, then all unipotent e-cuspidal pairs of G are of �-central defect 
[8, Proposition 4.3].

Theorem 5.1. Let e = e�(q).

(a) Let (L, λ) be a unipotent e-cuspidal pair of G. Then all irreducible constituents of 
RG

L (λ) lie in the same �-block, bGF (L, λ), of GF .
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(b) There exists a surjection⎧⎪⎨⎪⎩
GF -conjugacy classes of

unipotent e-cuspidal
pairs of G

⎫⎪⎬⎪⎭ �
{

Unipotent
�-blocks of GF

}

(L, λ) �→ bGF (L, λ)

where (L, λ) is a representative of a GF -conjugacy class of unipotent e-cuspidal 
pairs of G and bGF (L, λ) is the �-block of GF containing all irreducible components 
of RG

L (λ).
(c) The surjection in (b) restricts to a bijection if we only consider unipotent e-cuspidal 

pairs of central �-defect.⎧⎪⎨⎪⎩
GF -conjugacy classes of

unipotent e-cuspidal pairs of G
of �-central defect

⎫⎪⎬⎪⎭ ↔
{

Unipotent
�-blocks of GF

}

(L, λ) �→ bGF (L, λ)

In particular, when � is odd, good for G and � �= 3 if 3D4 is involved in G, then the 
surjection from part (b) is itself a bijection.

(d) If � is odd or G is of exceptional type, then the �-block bGF (L, λ) has a defect 
group P such that Z(L)F� � P and P/Z(L)F� is isomorphic to a Sylow �-subgroup of 
WGF (L, λ).

Proof. Parts (a), (b) and (c) were proved by Enguehard [12, Theorem A]. It there-
fore only remains to show part (d). By the proof of [24, Theorem 7.12], for an �-block
b = bGF (L, λ), we have the following inclusion of Brauer pairs of GF

({1}, b) �
(
Z(L)F� , bLF (λ)

)
� (P, eb) ,

where bLF (λ) the block of kLF containing λ, eb is a block of CGF (P ), 
(
Z(L)F� , bLF (λ)

)
is 

self-centralizing and (P, eb) is maximal. By [24, Lemma 2.1], P/ 
(
P ∩ Z(L)F�

)
= P/Z(L)F�

is isomorphic to a Sylow �-subgroup of

NGF

(
Z(L)F� , bLF (λ)

) /
CGF

(
Z(L)F�

)
.

Since CGF

(
Z(L)F�

)
= LF (see the proof of [25, Theorem 7.12]), P/Z(L)F� is therefore 

isomorphic to a Sylow �-subgroup of

NGF

(
Z(L)F� , bLF (λ)

) /
LF = WGF (L, λ),

as required. �
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Lemma 5.2. Let (L, λ) be a unipotent e-cuspidal pair of G and suppose that λ is rational 
valued. Then mf (bGF (L, λ)) = 1.

Proof. Let b = bGF (L, λ) and assume that λ is rational valued so σ̂λ = λ (see Sec-
tion 2.2). By the Deligne Lusztig induction character formula, and since the Green func-
tions are integer valued [11, Definition 12.1 and Proposition 12.2], σ̂

(
RG

L (λ)
)

= RG
L
(
σ̂λ

)
. 

Suppose χ ∈ RG
L (λ) ⊆ IrrK(b). Then σ̂χ ∈ RG

L (σ̂λ) = RG
L (λ), so σ̂χ ∈ IrrK(b). By 

Lemma 2.2 (b), IrrK(σ(b)) = {σ̂χ | χ ∈ IrrK(b)}, so it follows that σ(b) = b. Therefore 
kGF b ∼= kGF b(�) as k-algebras by Lemma 2.1, so frob(b) = 1, hence mf (b) = 1. �
Lemma 5.3. Let b be a block of kGF containing an e-cuspidal unipotent character λ of 
central �-defect. Suppose that Z

(
[G,G]F

)
is an �′-group. Then all characters in IrrK(b)

are e-cuspidal.

Proof. Let λ0 = λ|[G,G]F . Because λ is unipotent, results of Lusztig show that λ0
is irreducible (see for example [7, Proposition 3]). Since λ is of central �-defect,∣∣GF

∣∣
�
= λ(1)�

∣∣Z(GF )
∣∣
�
= λ0(1)�

∣∣Z(GF )
∣∣
�
. As we are assuming that Z

(
[G,G]F

)
is an 

�′-group, it follows from 
∣∣GF

∣∣ =
∣∣Z◦(G)F

∣∣ ∣∣[G,G]F
∣∣ that λ0(1)� =

∣∣[G,G]F
∣∣
�
. Therefore 

λ0 is in a block b̄ of [G, G]F of defect 0.
Let θ ∈ IrrK(b). Since b covers b̄ and λ0 is the only character in b̄, θ covers λ0. By [10, 

Corollary 11.7], therefore θ = ωλ for a uniquely determined character ω of GF /[G, G]F . 
Since [GF , GF ] ⊆ [G, G]F , GF /[G, G]F is abelian, so ω is a linear character.

As λ is e-cuspidal, 〈λ, RL
M(τ)〉 = 0 for any proper e-split Levi subgroup M of L and 

for all τ ∈ IrrKMF . Because ω is linear, it follows that 〈ωλ, ωRL
M(τ)〉 = 〈θ, RL

M(ωτ)〉 = 0
for all τ ∈ IrrKMF . Let τ̃ = ωτ . Then τ̃ runs over IrrKMF as τ does, so 〈θ, RL

M(τ̃)〉 = 0
for all τ̃ ∈ IrrKMF . Therefore θ is e-cuspidal, as required. �
5.2. A result of Puig

Theorem 5.4 shows that under certain conditions, Puig’s result [31, Theorem 5.5] can 
be applied to a block b = bGF (L, λ) to show that OGF b is Morita equivalent to a specific 
block of ONGF (L, λ). This result will be used later to calculate the Morita Frobenius 
number of some unipotent blocks of E8(q).

First we recall the following. Suppose M is a finite group with a normal �′-subgroup U , 
and suppose that L ∼= M/U . Let μ : M → L be the quotient map. If d is the principal 
block of OU , then Fong Reduction yields the following inverse O-algebra isomorphisms,

OL −̃→ OMd,

x �−→ xd,

μ(y) ←−� y,

for all x ∈ OL, y ∈ OMd, [17, Proposition 3.5].
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Theorem 5.4. Suppose � ≥ 5 and �|q− 1. Let (L, λ) be a proper unipotent 1-cuspidal pair 
of G of central �-defect. Let b = bGF (L, λ) and suppose that P = Z(L)F� is a defect group 
of b. Let f = bLF (λ) be the block of OLF containing λ. Then f is a block of ONGF (L, λ)
with defect group P such that OGF b and ONGF (L, λ)f are Morita equivalent.

Proof. Since L is a 1-split Levi subgroup, L is contained in an F -stable parabolic 
subgroup of G, M, say. Let U be the unipotent radical of M, so M = U � L. Set 
MF = UF � LF . Then MF /UF ∼= LF . Let μ : MF → LF be the quotient map. Let 
N = NGF (L, λ) and let c be the block of kMF that dominates f . We show that the 
hypotheses of [31, Theorem 5.5] are satisfied by MF , N , LF , c and f .

Because UF is an �′-group, c dominates a unique block of OLF by [28, Ch. 5 The-
orem 8.8], so μ(c) = f . Let d be the principal block of OUF . Then it follows from the 
isomorphisms due to Fong Reduction mentioned above, that c = fd. Since d is central 
in OM , therefore cf = c. Since λ is a 1-cuspidal unipotent character in f with central 
�-defect, Lemma 5.3 shows that all the characters in f are 1-cuspidal. It then follows by 
arguments given in [31, 5.3] that c(OGF )c = c(ON)c.

Next, since NGF (L, λ) ⊆ NGF (LF , λ), N normalizes LF and therefore f . By the 
proof of [11, Corollary 1.18], NG(L) ∩ U = {1}. Therefore NMF (L, λ) ∩ UF = {1}, so 
NMF (L, λ) ⊆ LF and thus LF = NMF (L, λ) = N ∩ MF . By [8, Proposition 2.2 (ii)], 
since � ≥ 5 and L is a proper Levi subgroup of G, LF = CGF

(
Z(L)F�

)
= CGF (P ). 

Therefore f is a block of OCGF (P ), so BrP (f) = f . It follows that BrP (c) = BrP (df) =
1

|UF |BrP (f) �= 0, so all hypotheses of [31, Theorem 5.5] are satisfied.
Recall that we have the following inclusion of Brauer pairs (1, b) ⊆ (P, f) from the 

proof of Theorem 5.1 (d). Therefore BrP (b)f = f . Since N/LF , the relative Weyl group 
of (LF , λ) in GF , is an �′-group, [31, 5.5.4] implies that f is a block of ONGF (L, λ)
with defect P , and ONf and OGF b are source algebra equivalent, and hence Morita 
equivalent by [33, Theorem 38.2]. �
5.3. Unipotent blocks of finite groups of Lie type in non-defining characteristic

Theorem 5.5. Let G be a simple, simply-connected algebraic group defined over an al-
gebraic closure of the field of p elements. Let q be a power of p and let F : G → G
be the Frobenius morphism with respect to an Fq-structure. Let k be a field of positive 
characteristic � �= p and let e = e�(q). Let b be a unipotent block of kGF . Then

(a) mf (b) ≤ 2 and
(b) mf (b) = 1, except possibly when b = bGF (L, λ) in one of the following situations

• G = E8, L = φ2
1.E6, λ = E6[θi] (i = 1, 2), with � = 2 and e = 1;

• G = E8, L = φ2
2.

2E6, λ = 2E6[θi] (i = 1, 2), with � ≡ 2 mod 3 and e = 2.

Proof. Let b = bGF (L, λ) be the block of GF containing all irreducible constituents of 
RG

L (λ), where (L, λ) is a unipotent e-cuspidal pair of G of central �-defect, as discussed in 
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Theorem 5.1. By [15, Proposition 5.6 and Table 1], the unipotent characters of classical 
finite groups of Lie type (including 3D4(q)) are rational valued, so by Proposition 2.3
(b) and Lemma 5.2 we need only consider the cases where G is of exceptional type, 
L contains some component of exceptional type, and λ is not rational valued. These 
e-cuspidal pairs can be identified using [5, Appendix: Table 1], [12] and [9, Chapter 13]
and are listed in the following table. We have used the notation of [9, Chapter 13] for 
the character labels.

G e (L, λ) (L, λ) is of �-central defect for

G2 1, 2
(
G2, G2[θi]

)
� �= 3

F4 1, 2
(
F4, F4[θi]

)
� �= 3

F4 1, 2 (F4, F4[±i])a � �= 2

E6 1, 2
(
E6, E6[θi]

)
� �= 3

2E6 1, 2
(2E6,

2E6[θi]
)

� �= 3

E7 1 (E7, E7[±ξ])b � �= 2
E7 2 (E7, φ512,11) , (E7, φ512,12) � �= 2
E7 1

(
E6, E6[θi]

)
� �= 3

E7 2
(2E6,

2E6[θi]
)

� �= 3

E8 1, 4
(
E8, E8[±θi]

)
� �= 2, 3

E8 1, 2 (E8, E8[±i]) � �= 2
E8 1, 2, 4

(
E8, E8[ζj ]

)
� �= 5

E8 2, 4
(
E8, E6[θi], φ2,1

)
,
(
E8, E6[θi], φ2,2

)
� �= 5

E8 4
(
E8, E6[θi], φ1,0

)
, 
(
E8, E6[θi], φ1,6

)
, (

E8, E6[θi], φ1,3′
)
, 
(
E8, E6[θi], φ1,3′′

)
, 

(E8, φ4096,11) , (E8, φ4096,26), 
(E8, φ4096,12) , (E8, φ4096,27), 
(E8, E7[±ξ, 1]) , (E8, E7[±ξ, ε])

every �

E8 1 (E7, E7[±ξ]) � �= 2
E8 2 (E7, φ512,11) , (E7, φ512,12)c � �= 2
E8 1

(
E6, E6[θi]

)
� �= 3

E8 2
(2E6,

2E6[θi]
)

� �= 3

θ := exp(2πi/3), ζ := exp(2πi/5), ξ :=
√−q.

a [12] omits this pair for � = 3, e = 2.
b [12] writes E7[±ζ] instead of E7[±ξ] for � = 2, e = 1.
c [12] writes E7[±ξ] instead of φ512,11, φ512,12 for � = 5, e = 2.

First suppose that � is good for G. Then by inspection, the Sylow �-subgroups of 
WGF (L, λ) are trivial so by Theorem 5.1 (d), the defect groups of b are isomorphic to 
a Sylow �-subgroup of Z(L)F . If L = G, then the Sylow �-subgroups of Z(LF ) are 
trivial by inspection of [27, Table 24.2]. By [9, Proposition 3.6.8], since L is connected 
reductive, Z(L)F = Z(LF ), therefore b has trivial defect and mf (b) = 1 by Proposi-
tion 2.3 (d). If L and G are such that rk(G) = rk([L, L]) + 1, then dim(Z◦ (L)F

)
= 1. 

The Sylow �-subgroups of Z◦(L)F are therefore isomorphic to subgroups of the multi-
plicative group Gm, so they are cyclic. By [8, Proposition 2.2 (i)], since � is good for G, 
Z(L)F� = Z◦(L)F� , therefore b has cyclic defect so mf (b) = 1 by Proposition 2.3 (d).

Now suppose that � is bad for G, that L = G, and that e = 1. By inspection of 
the character degrees given in [9, Chapter 13], we see that cuspidal characters λ of GF

satisfy λ(1)� = |GF |�, so mf (b) = 1 by Proposition 2.3 (c).
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The remaining �-blocks will be handled on a case-by-case basis. First, suppose that 
G = E8, L = φ1.E6 and λ = E6[θi] (i = 1, 2) with � ≥ 5 and e = 1. Then by Theorem 5.4, 
kGF b is Morita equivalent to kNf where N = NGF (L, λ) and f = bLF (λ) is the block 
of kLF containing λ. Suppose that P is a defect group of kLF f . Then since � is odd 
and WGF (L, λ) ∼= D12 is an �′-group, P is isomorphic to a Sylow �-subgroup of Z(L)F

by Theorem 5.1 (d). Since N normalizes L, P � N so kNf has normal defect. Then by 
[33, Theorem 45.12], kNf is Morita equivalent to a twisted algebra kα(P �D12), where 
α ∈ H2(D12, k×). Since H2(D12, k×) ∼= C2, it follows from the proof of Lemma 2.5 that 
mf (kα(P �D12)) = 1. Whence, mf (b) = 1.

Suppose now that G = E8, L = φ1.E7, λ = φ512,11 or φ512,12, � = 5 and e = 1. 
The relative Weyl group WGF (L, λ) ∼= S2 has no non-trivial Sylow �-subgroups, so by 
Theorem 5.5 (d) the defect groups of b are isomorphic to a Sylow �-subgroup of Z(L)F . 
Note that rk(G) = rk([L, L]) + 1, so dim(Z◦(L)F ) = 1 and the Sylow �-subgroups of 
Z◦(L)F are cyclic, as above. Again, using [8, Proposition 2.2], Z(L)F� = Z◦(L)F� , so b
has cyclic defect and mf (b) = 1 by Proposition 2.3 (d).

Suppose that G = E7, L = φ1.E6(q), λ = E6[θi], (i = 1, 2), with � = 2 and e = 1. 
Then b has dihedral defect by [12, page 357]. Therefore by Proposition 2.3 (d), mf (b) = 1.

Finally, suppose that we are in one of the following cases: G = E8, L = φ2
1.E6, 

λ = E6[θi], (i = 1, 2), with � = 2 and e = 1; or G = E8, L = φ2
2.

2E6, λ = 2E6[θi], 
(i = 1, 2), with � �= 3 and e = 2. From [15] we know that the character field of λ is Q(θ)
where θ = exp(2πi

3 ). Since � �= 3, θ is an �′-root of unity so σ̂(θ) = θ� (see Section 2.2). 
If � ≡ 1 mod 3, then σ̂(θ) = θ so σ̂λ = λ. Therefore by the arguments of Lemma 5.2, 
mf (b) = 1. If � ≡ 2 mod 3, however, then σ̂(θ) = θ2 �= θ so we cannot conclude that 
mf (b) = 1. Because σ̂2(θ) = θ4 = θ, however, it follows that σ̂2

λ = λ, so mf (b) is at 
most 2. �

Corollary 5.6. Let G, F and k be as in Theorem 5.5 and suppose that GF has non trivial 
center. Let Z be a central subgroup of GF and suppose that b is a block of k(GF /Z)
dominated by a unipotent block b of kGF . Then mf (b) = 1.

Proof. The assumption that GF has non trivial center means that we do not consider 
the case where GF = E8(q). Thus, for any unipotent block b of kG, it follows from the 
proof of Theorem 5.5 that either σ(b) = b, or b has either trivial, cyclic or dihedral defect.

First suppose that b is dominated by a unipotent block b of kG such that σ(b) = b. 
Then by Lemma 2.6 (b), σ

(
b
)

is also dominated by b. Since Z is central, it then follows 
from part (c) of Lemma 2.6 that σ

(
b
)

= b. Therefore k
(
GF /Z

)
b ∼= k

(
GF /Z

)
b
(�) as 

k-algebras by Lemma 2.1, so frob
(
b
)

= 1, hence mf
(
b
)

= 1.
Now suppose that b is dominated by a unipotent block b of kG which has either trivial, 

cyclic or dihedral defect. Then by [28, Ch.5 Theorem 8.7 (ii)], the defect groups of b are 
also either trivial, cyclic or dihedral. Therefore mf

(
b
)

= 1 by Proposition 2.3 (d). �
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Theorem 5.7. Let G be a Suzuki or Ree group. Let b be a block of kG in non-defining 
characteristic. If G is the large Ree group, assume that b is unipotent. Then mf (b) = 1.

Proof. First let G be the Suzuki group, 2B2(q2) (q = 22m+1), and let b be a �-block of G
with � �= 2. The subgroups of G of odd order are cyclic [32, Theorem 9], so b has cyclic 
defect and therefore mf (b) = 1 by Proposition 2.3 (d).

Next let G be the small Ree group, 2G2(q2) (q = 32m+1), and let b be a 2-block of G. 
The Sylow 2-subgroups of G are elementary abelian of order 8 and [34, I. 8] shows that 
the only 2-block of G of full defect is the principal block, which contains the rational 
valued trivial character. If b is not the principal block, then the defect groups of b are 
proper subgroups of an elementary abelian group of order 8, so b either has dihedral or 
cyclic defect. Therefore mf (b) = 1 by Proposition 2.3 (b) and (d).

Now let G be the small Ree group and � ≥ 5, and let b be an �-block of G. The order 
of G is |G| = q6φ1φ2φ4φ12 with q = 32m+1 for some m. Since � divides only one φi for 
some i ∈ {1, 2, 4, 12}, by [1, Corollary 3.13 (2)] the Sylow �-subgroups of G are cyclic. 
Therefore b has cyclic defect and mf (b) = 1 by Proposition 2.3 (d).

Finally, let G be the large Ree group, 2F4(q2) (q = 22m+1), and let b be a unipotent 
�-block of G with � �= 2. By [26], there are two cases to consider. In the first case we 
suppose that � 

∣∣� (q2 − 1). Then b is either the principal block of G, or b has trivial defect 
and therefore mf (b) = 1 by Proposition 2.3 (b) and (d). In the second case, suppose that 
� 
∣∣ (q2 − 1). Then b contains one of the following sets of characters (notation as per [18, 

Appendix D]): {χ1, χ2, χ3, χ4, χ9, χ10, χ11}, {χ5, χ7} or {χ6, χ8}. In the first case b is the 
principal block, and in the second and third cases b has cyclic defect [18, Appendix D], 
so mf (b) = 1 by Proposition 2.3 (b) and (d). �
6. Exceptional covering groups

In this section we deal with the exceptional covering groups as listed in [16, Table 
6.1.3]:

2.A5 3.A6 6.A6 3.A7 2.A8 2.S6(2)

2.L3(2) 42.L3(4) 22.U6(2) 32.U4(3) 2.U4(2) 3.O7(3)

22.O+
8 (2) 2.G2(4) 3.G2(3) 2.F4(2) 22.2E6(2) 22.Sz(8)

Lemma 6.1. Let G be a finite group. Suppose that there exists a finite group Ĝ such that 
G � Ĝ and such that for all blocks B of kĜ, either B has cyclic defect or σ(B) = B. 
Then mf (b) = 1 for all blocks b of kG.

Proof. First suppose that b is covered by some block B of kĜ which has cyclic defect. 
Then the defect groups of b are also cyclic, therefore mf (b) = 1 by Proposition 2.3 (d).



316 N. Farrell / Journal of Algebra 471 (2017) 299–318
Now suppose that b is covered by a block B of kĜ such that σ(B) = B. Recall that 
B covers b if and only if Bb �= 0, and note that this holds if and only if σ(B)σ(b) �= 0. 
Therefore, since σ(B) = B, σ(b) is also covered by B. Hence b and σ(b) are in the same 
Ĝ-orbit, so there is a group automorphism of G whose induced k-algebra automorphism 
of kG sends b to σ(b). Therefore mf (b) = 1 by Lemma 2.4. �

Lemma 6.2. Let G be a simple, simply-connected algebraic group defined over an algebraic 
closure of the field of p elements. Let q be a power of p and let F : G → G be a Steinberg 
morphism with respect to an Fq-structure with finite group of fixed points, GF . Let G be 
an exceptional cover of GF and let b be a block of kG. Then mf (b) = 1.

Proof. If G is not from the following list: 32.U4(3), 3.O7(3), 3.A6, 6.A6, 3.G2(3), 3.A7

with � = 2; or G = 42.L3(4) with � = 3; then using GAP [14] and Proposition 2.3, 
it can be shown that every block b of kG satisfies at least one of the following three 
properties: is a principal block, has cyclic defect, or contains a rational valued character, 
and therefore mf (b) = 1.

If � = 2 and G is one of 32.U4(3), 3.O7(3), 3.A6, 6.A6, 3.G2(3) or 3.A7, then there 
are some blocks of kG for which none of these three properties hold. For these groups, 
however, there exist finite groups Ĝ such that G � Ĝ and such that for every block B of 
kĜ, either B has cyclic defect or σ(B) = B. Therefore by Lemma 6.1, mf (b) = 1 for all 
blocks b of kG.

Finally, suppose G = 42.L3(4) and � = 3. Then there are blocks of kG which don’t 
satisfy any of the three properties above, and there is also no suitable Ĝ which would 
allow us to apply Lemma 6.1. Let G′ = L3(4) and Z = C4 × C4 so G = Z.G′. First 
suppose that b dominates a block b′ of kG′. Using GAP [14], as before we can verify that 
all blocks of kG′ satisfy at least one of the three properties above, so mf (b′) = 1. Since Z
is an �′-group, b′ is the unique block dominated by b, so by Lemma 2.6 (d), kGb ∼= kG′b′

as k-algebras. Therefore mf (b) = 1.
Now suppose that b does not dominate any block of kG′. Then by Lemma 2.6 (a), 

b covers a non-principal block of kZ . Since Z is an abelian �′-group, kZ has one
linear character in each block. Suppose b covers a block of kZ containing a non-trivial 
character μ, and let Zμ = kerμ. Then b dominates a unique block b of k(G/Zμ), by 
Lemma 2.6 (d), and mf (b) = mf (b). If G/Zμ

∼= 2.L3(4) then we can once again use 
GAP [14] to show all blocks of k(G/Zμ) satisfy one of the three properties above, so 
mf (b) = 1. If G/Zμ

∼= 41.L3(4) or 42.L3(4), then there are blocks of k(G/Zμ) which 
don’t satisfy any of the three properties. However, in these two cases there exist outer 
automorphisms of G/Zμ of order two such that for every block B of k ((G/Zμ).2),
either B has cyclic defect, or σ(B) = B. Therefore mf (b) = 1 by Proposition 2.3 and 
Lemma 6.1, as required. �
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7. Proof of Theorem 1.1

Proof. Part (a) is shown in Theorem 3.1. The result follows for exceptional covering 
groups of finite groups of Lie type by Lemma 6.2. The remainder of part (b) follows from 
Corollary 4.2. Part (c) is shown for the Suzuki and Ree groups in Theorem 5.7, and for 
all remaining cases in Corollary 5.6. �
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