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M3(F ) for a perfect field F can be extended to partial algebra 
morphisms into the algebraic closure of F .

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The Bell–Kochen–Specker Theorem [6,31] is a no-go theorem that demonstrates the 
impossibility of certain hidden variable theories for quantum mechanics. The usual formu-
lation of the Heisenberg Uncertainty Principle in terms of matrix mechanics shows that 
we can only expect to have precise knowledge of the values of two quantum-mechanical 
observables P and Q simultaneously if these observables (represented as operators on 
some Hilbert space) commute: PQ = QP . Thus commuting observables are also called 
commeasurable. The nature of the algebra of operators on a Hilbert space H (of di-
mension dim(H) ≥ 2) is such that one may have an observable P commeasurable with 
two observables Q and Q′, but such that Q and Q′ are not commeasurable with one 
another. Thus one may expect to have precise simultaneous knowledge of the values of 
P and Q, or of P and Q′, but not of the triple {P, Q, Q′}. A hidden variable theory is 
called non-contextual if the value v(P ) assigned to an observable P is independent of the 
choice of pairwise commeasurable set of observables {P, Q1, Q2, . . . } that also happen 
to be measured by an experimental setup. This property was emphasized by Bell in [6, 
Section V].

Now suppose that one restricts to observables that are projections (i.e., self-adjoint 
idempotent operators) on H. The value of each projection, being an eigenvalue of the 
operator, is either 0 or 1, so that such observables represent “yes-no questions” that may 
be asked about the underlying quantum system. Further, if one has an orthogonal set 
{Pi} of projections whose sum is the identity (such as the projections onto an orthonormal 
basis of H), these classically correspond to mutually exclusive, collectively exhaustive 
propositions about the system. If one measures the values of the Pi simultaneously, 
then compatibility with the classical logic of Boolean algebras would require that one 
of these projections is assigned the value 1 and the rest are assigned value 0. Thus, a 
non-contextual hidden variable theory is expected to “color” every projection on H with 
a value 0 or 1 in such a way that, for each basis {vi} of H, the projection onto exactly one 
of the vi is assigned the value 1. But Kochen and Specker proved such an assignment to be 
impossible whenever dim(H) ≥ 3, by providing an explicit set of orthogonal projections 
(represented by vectors in their ranges) for which such a {0, 1}-valued function does not 
exist. Bell [6] provided an alternative proof using Gleason’s Theorem. (Our own methods 
follow closely those of Kochen and Specker, especially considering colorings of finite sets of 
vectors or idempotents. For this reason, we will refer to the no-hidden-variables theorem 
as the Kochen–Specker Theorem.)
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By now there are many fine discussions of the role of the Bell–Kochen–Specker theorem 
in the logical foundations of quantum mechanics, so we have limited our discussion of 
this background to a brief explanation of the physical intuition behind the mathematical 
result. Aside from the original papers of Bell and Kochen–Specker, we refer readers to 
the textbooks [5,32] for introductions to the theorem in the broader context of hidden 
variable theories, to the article [3] for a discussion of various claimed “loopholes” to 
the theorem, and to the detailed survey [24] for further discussion and references to the 
literature.

There is much recent interest in examining the Kochen–Specker Theorem from new 
perspectives. One of the most notable such programs is the formulation of the theorem 
in the context of topos theory [28]. There are also approaches to the general theory 
of contextuality through sheaf theory [1] and through graphs and hypergraphs [11,2]. 
There has been recent progress [41] on the problem of determining lower bounds for the 
size of a Kochen–Specker uncolorable set of three-dimensional vectors. The theorem has 
also found recent application in the well-known “Free Will Theorems” of Conway and 
Kochen [13,14].

Our present work seeks to push the study of the Kochen–Specker Theorem in a new 
direction by allowing the study of contextuality for vectors and matrices whose entries lie 
in more general coefficient rings than the real or complex numbers, and it is motivated by 
applications in the setting of noncommutative algebraic geometry. The original analysis 
of Kochen and Specker framed the discussion of hidden variables in algebraic terms as 
an assignment of values to all observables on a quantum system whose restriction to any 
commeasurable set of observables forms a homomorphism. Such an assignment of values 
will be called a morphism of partial rings, as discussed in more detail in Section 2 below. 
From this perspective, one may view any noncommutative ring R as a purely algebraic 
analogue of the observables of a quantum system, with its commutative subrings as 
“commeasurable” subsets of observables, so that a morphism of partial rings from R to 
a commutative ring can be viewed as a “noncontextual hidden variable theory.”

In this paper we establish that contextuality—in the purely algebraic sense of inad-
missibility of such morphisms of partial rings—is a property inherent to any matrix ring 
of the form Mn(R) for n ≥ 3, independent of the choice of the ring of scalars R. We con-
sider this problem from the intimately related perspectives of Kochen–Specker colorings 
of idempotents and of morphisms of partial rings. Section 2 contains background and 
fundamental results on partial rings and partial Boolean algebras in the sense of Kochen 
and Specker, showing the precise relationships between colorability of idempotents, mor-
phisms of partial rings, and the spectrum p-Spec(R) of prime partial ideals of a partial 
ring R. Most of these relationships are expressed in the basic language of categories [33], 
in terms of various functors and natural transformations. The results in this section are 
elementary but seem not to have been carefully considered elsewhere; thus we hope that 
this will fill a gap in the literature.

Then in Section 3 we prove that algebraic analogues of the Kochen–Specker theorem 
do or do not hold in various (partial) rings of matrices. These results are summarized in 
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Table 1
Idempotent colorings and partial spectra of partial rings of matrices.

Partial ring R Prime p Idpt(R) p-Spec(R) Result

M3(Fp)sym p = 2, 3 colorable nonempty Theorem 3.4
M3(Z)sym colorable nonempty Corollary 3.5
M3(Fp)sym p ≥ 5 uncolorable empty Theorems 3.2, 3.6
M3(Z[1/30])sym uncolorable empty Theorem 3.2
M3(Q)sym uncolorable empty Theorem 3.2
M3(Z) uncolorable empty Theorem 3.9

Table 1. Given a ring S, we let Idpt(S) denote the set of idempotents of S, which carries 
the structure of a partial Boolean algebra. A formal definition of a Kochen–Specker 
coloring is given in Definition 2.7. For a commutative ring R, the set of matrices in 
M3(R) that are symmetric (equal to their own transpose) is denoted M3(R)sym. We 
remark that the partial rings S in Table 1 for which p-Spec(S) = ∅ admit no morphism 
of partial rings S → C for any (total) commutative ring C, yielding a direct analogue of 
the type of obstruction that Kochen and Specker originally sought.

Our motivation for this study stems from the recent application of the Kochen–Specker 
theorem to noncommutative geometry in [37]. There it was shown that any contravariant 
functor F from rings to sets (or to topological spaces) whose restriction to commutative 
rings is the prime spectrum functor Spec must satisfy F (Mn(C)) = ∅ for n ≥ 3. In 
Section 4 we strengthen this result to conclude that such functors F in fact satisfy 
F (Mn(R)) = ∅ for every ring R and integer n ≥ 3.

Our results may be of particular interest in the study of models of quantum mechanics 
defined over fields other than the real or complex numbers. Quantum physics over p-adic 
fields has been a subject of interest for some time; for versions of p-adic quantum theory 
in which the amplitudes of wavefunctions are p-adic (as surveyed, for instance, in [16, 
Section 9]), the “matrix entries” of observable operators will also have p-adic values. 
Quantum physics over finite fields has also become a topic of recent interest, including 
investigations involving modal quantum theory [40], quantum computing [21,22], and 
even quantum field theory [39,4]. Our results show that some form of contextuality 
persists in either of these settings, where observables on finite-dimensional systems form 
matrices with entries over exotic commutative rings.

We wish to thank Alexandru Chirvasitu for several discussions and suggestions 
throughout the writing of this paper, as well as Benno van den Berg and Chris He-
unen for useful comments on a draft of the paper. We also thank the referee for several 
helpful suggestions.

2. Partial algebraic structures and Kochen–Specker colorings

We will largely follow the basic definitions of [31], as adapted to the ring-theoretic 
setting in [37]. We follow the convention that every ring is associative and contains a 
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multiplicative identity, and every ring homomorphisms preserves multiplicative identity 
elements.

The physical intuition for the terminology below is that a partial k-algebra A consists 
of “observables of a quantum system,” with x, y ∈ A commeasurable if and only if the 
values of x and y can be simultaneously measured with arbitrarily high precision.

Definitions 2.1. Let k be a commutative ring. A partial algebra A over k is a set equipped 
with:

• a reflexive and symmetric binary relation � ⊆ A ×A, called commeasurability,
• “partial” addition and multiplication operations + and · that are functions � → A,
• a scalar multiplication operation k ×A → A, and
• zero and unity elements 0, 1 ∈ A,

satisfying the following axioms:

(1) 0 and 1 are commeasurable with all elements of A,
(2) the partial binary operations preserve commeasurability,
(3) for every pairwise commeasurable subset S ⊆ A, there exists a pairwise commeasur-

able subset T ⊆ A containing S such that the restriction of the partial operations of 
A make T into a (unital, associative) commutative k-algebra.

If A and B are partial k-algebras, then a function f : A → B is called a morphism of 
partial k-algebras if f(0) = 0, f(1) = 1, f(λx) = λf(x) for all λ ∈ k and x ∈ A, and 
whenever x, y ∈ A are such that x � y, it follows that

• f(x) � f(y) in B,
• f(x + y) = f(x) + f(y), and
• f(xy) = f(x)f(y).

A partial algebra over the ring k = Z is called a partial ring. A morphism of partial 
Z-algebras is also called a morphism of partial rings. The category of partial rings with 
morphisms of partial rings is denoted pRing.

We will use the terms total k-algebra and total ring to distinguish the usual notions 
of k-algebra and ring from their partial counterparts. Every total k-algebra R carries a 
natural partial k-algebra structure, with the commeasurability relation given by x � y if 
and only if xy = yx, and with the restricted operations from the k-algebra structure of R. 
In this way we obtain a functor Ring → pRing, which allows us to view the category of 
rings as a subcategory of that of partial rings. Even though this partial algebra structure 
on a ring is not necessarily unique, we always view rings and algebras as partial rings and 
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partial algebras with this canonical structure, trusting that this will not lead to serious 
confusion.

We define a partial k-subalgebra of a partial k-algebra R to be a subset S ⊆ R

that is a partial k-algebra under the restricted commeasurability relation and partial 
operations inherited from R, or equivalently, such that such that S is closed under 
k-scalar multiplication as well as sums and products of commeasurable elements. If all 
elements of S are pairwise commeasurable, we say that S is a commeasurable subalgebra; 
it is clear that S becomes a total subalgebra under the induced operations. In case 
k = Z, we use the term partial subring for a partial Z-subalgebra. (We note without 
further discussion that there is a subtlety in this terminology: it is possible to have a 
partial ring S, whose underlying set is a subset of a second partial ring R, such that the 
commeasurability relation on S is strictly coarser than that of R. Then the inclusion 
function i : S → R is a morphism of partial rings, but S is not a partial subring of R in 
the sense above.)

In the algebraic formulation of quantum mechanics, one views commutative algebras 
as corresponding to classical systems. Then commeasurable subalgebras of a partial 
algebra can be seen as “classical contexts” in which a measurement may be performed 
on the corresponding quantum system [26, p. 48]. For more detail on this perspective, 
we refer readers to the recent survey [25].

The (Zariski) spectrum of a commutative ring R, denoted Spec(R), is the set of prime 
ideals of R. As discussed in Section 4 below, the spectrum is a spatial invariant of a 
commutative ring; but for the time being, we will view it merely as a set. We recall the 
extension of the spectrum to an invariant of partial rings as in [37].

Definition 2.2. A subset p of a partial ring R is a prime partial ideal if, for every commea-
surable subring C ⊆ R, the intersection C ∩ p is a prime ideal of C; this is equivalent to 
the condition that p is a partial ideal [37, Definition 2.5] such that 1 /∈ p and if a, b ∈ R

are commeasurable with ab ∈ p, then either a ∈ p or b ∈ P . The set of all prime partial 
ideals of R is denoted p-Spec(R).

Given a morphism of partial rings f : R → S and p ∈ p-Spec(S), one may verify that 
f−1(p) ∈ p-Spec(R); see [37, Lemma 2.10]. Using this assignment on morphisms, way we 
consider p-Spec : pRingop → Set as a functor to the category of sets. In particular, if we 
consider the category of rings as a subcategory of pRing via the functor Ring → pRing
mentioned above, the partial spectrum restricts to the usual prime spectrum functor 
Spec: Ringop → Set.

The remark and lemma below illustrate that the partial spectrum of a partial ring may 
be viewed as an invariant to detect obstructions of morphisms in pRing to total commu-
tative rings, reminiscent of Kochen and Specker’s treatment of hidden variable theories.

Remark 2.3. It is well-known that every nonzero commutative ring has a (maximal, 
hence) prime ideal and consequently has a nonempty spectrum; for instance, see
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[34, Theorem 1.1]. On the other hand, the results of [37] (to be generalized in Corol-
lary 3.11) show that sufficiently large matrix rings have empty partial spectrum. A useful 
technique to show that a particular partial ring R has empty partial spectrum is to pro-
duce a ring morphism of partial rings R0 → R such that p-Spec(R0) = ∅. For then 
functoriality of the partial spectrum yields a function p-Spec(R) → p-Spec(R0) = ∅, 
and because the only set with a function to the empty set is the empty set itself, we 
deduce p-Spec(R) = ∅.

Lemma 2.4. Given a partial ring R, if p-Spec(R) = ∅ then:

(1) There is no morphism of partial rings R → C for any nonzero (total) commutative 
ring C;

(2) The colimit in cRing of the diagram of commutative subrings of R is zero.

Proof. Let f : R → C be a morphism as in (1) where C �= 0. There exists a prime ideal 
p ∈ Spec(C) as in Remark 2.3. Thus f−1(p) ∈ p-Spec(R), contradicting the assumption 
that p-Spec(R) = ∅.

For (2), let L = lim−−→C be the colimit in cRing of all commeasurable subrings C ⊆
R, equipped with canonical morphisms fC : C → L. Each x ∈ R is contained in a 
commeasurable subring C ⊆ R, and the construction of the colimit is such that the 
value f(x) = fC(x) ∈ L is independent of the choice of C. In this way we obtain a 
well-defined function f : R → L that is readily verified to be a morphism of partial 
rings (since f restricts on each commeasurable subring to a ring homomorphism). It now 
follows from (1) that if p-Spec(R) = ∅, then L = 0. �

Thanks to the above, an important special case for us is the integer matrix ring 
Mn(Z). This ring plays a universal role in no-go theorems, due to the fact that each ring 
R admits a unique ring homomorphism Z → R, which induces a ring homomorphism 
Mn(Z) → Mn(R) by when applied to each matrix entry. Thus a Kochen–Specker type 
of theorem proved for Mn(Z) typically extends to Mn(R) for any ring R.

Kochen and Specker also considered “partial logical structures” in the following way. 
(We follow the terse, but efficient, alternative definition given in [7].) Recall that a 
Boolean algebra (B, ∨, ∧, ¬, 0, 1) is a structure such that (B, ∨, ∧, 0, 1) is a distributive 
lattice with bottom element 0 and top element 1, and a unary orthocomplement operation 
¬ : B → B (i.e., ¬ is an order-reversing involution that maps each element to a lattice-
theoretic complement). The category Bool of Boolean algebras has as its morphisms the 
lattice homomorphisms that preserve top and bottom elements along with the orthocom-
plement operation. We refer readers to [20,18] for the basic theory of Boolean algebras.

Definition 2.5. A partial Boolean algebra is a set B equipped with:

• a reflexive and symmetric commeasurability relation � ⊆ B ×B,
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• a unary operation of negation ¬ : B → B,
• partially defined binary operations of meet and join ∧, ∨ : � → B,
• elements 0, 1 ∈ B,

such that every set S ⊆ B of pairwise commeasurable elements is contained in a pairwise 
commeasurable set T ⊆ B containing 0 and 1 for which the restriction of the operations 
makes T into a Boolean algebra.

As in the case of partial rings, we say that a subset of a partial Boolean algebra B
is a partial Boolean subalgebra if it forms a partial Boolean algebra under the restricted 
commeasurability relation and partial operations from B. We also use the terms total 
Boolean algebra and commeasurable Boolean subalgebra to refer to the obvious Boolean 
analogues of the corresponding ring-theoretic notions.

Remark 2.6. There is a classical correspondence [20, §2] between Boolean algebras and 
Boolean rings, which are rings in which every element is idempotent. Define a partial 
Boolean ring to be a partial ring in which every element is idempotent, or equivalently, 
in which every commeasurable subring is Boolean; these form a full subcategory of pRing
which we denote by pBRing. The manner of defining Boolean algebra operations from 
a Boolean ring and of defining Boolean ring operations from a Boolean algebra both 
extend directly by restricting to commeasurable subalgebras or subrings. This yields an 
equivalence (even isomorphism!) of categories pBool ∼= pBRing.

We say that two elements p and q of a partial Boolean algebra B are orthogonal if 
they are commeasurable and p ∧ q = 0. Similarly, we define a partial ordering on B by 
declaring p ≤ q if p and q are commeasurable and p ∨ q = q.

Definition 2.7. Let B be a partial Boolean algebra with a subset S ⊆ B. A black-and-
white coloring of S is called a Kochen–Specker coloring if, for every list of pairwise 
orthogonal elements p1, . . . , pn ∈ B,

(1) there is at most one index i such that pi is colored white, and
(2) if furthermore p1 ∨ · · · ∨ pn = 1, then there is exactly one index i such that pi is 

colored white.

While the definition above is suited to an arbitrary subset of a partial Boolean algebra 
B, the algebraic theory of such colorings is best behaved in the case where one takes 
S = B to be the entire algebra, as illustrated in the results outlined in the remainder 
of this section. On the other hand, to prove that the (possibly infinite) partial Boolean 
algebra B has no Kochen–Specker colorings, it clearly suffices to exhibit a smaller (finite) 
subset S of B that has no such coloring.

Notice immediately that for any Kochen–Specker coloring of a nontrivial (0 �= 1) 
partial Boolean algebra, 0 is black and 1 is white by applying the condition above to 
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the orthogonal decomposition 1 = 1 ∨ 0 ∨ 0. On the other hand, the trivial Boolean 
algebra has no Kochen–Specker coloring, as evidenced by condition (2) applied to 0 =
0 ∨ 1 = 1.

Remark 2.8. In the physics literature, Kochen–Specker colorings are usually considered 
on sets of vectors in real or complex Hilbert spaces H. Such colorings can be considered 
as colorings subsets of the orthomodular lattice of orthogonal projections on H (viewed 
as a partial Boolean algebra as in [27, Lemma 3.3], for instance) by identifying a vector 
v with the rank-1 orthogonal projection of H onto the line spanned by v.

Next we aim to show that Kochen–Specker colorings on a piecewise Boolean B algebra 
are intimately related to the appropriate notion of prime ideals and ultrafilters of B. The 
suitable generalizations of these objects are as follows.

Definition 2.9. A subset I of a partial Boolean algebra B is called a partial ideal if it 
satisfies the following conditions for commeasurable elements p, q ∈ B:

(i) 0 ∈ I;
(ii) If q ∈ I and p ≤ q, then p ∈ I;
(iii) If p, q ∈ I, then p ∨ q ∈ I.

A partial ideal I of B is called a prime partial ideal if it additionally satisfies the following 
condition for all commeasurable p, q ∈ B:

(iv) 1 /∈ I, and if p ∧ q ∈ I, then p ∈ B or q ∈ B (or equivalently, for all p ∈ B, either p
or ¬p is in B but not both).

The set of prime partial ideals of B will be denoted p-Spec(B).

Definition 2.10. A subset F of a partial Boolean algebra B is called a partial filter if it 
satisfies the following conditions for commeasurable elements p, q ∈ F :

(i) 1 ∈ F ;
(ii) p ∈ F and p ≤ q imply q ∈ F ;
(iii) p, q ∈ F implies p ∧ q ∈ F .

A partial filter F is called a partial ultrafilter if it additionally satisfies the following 
condition for all commeasurable p, q ∈ B:

(iv) 0 /∈ B and if p ∨ q ∈ F , then p ∈ B or q ∈ B (or equivalently, for all p ∈ B, either p
or ¬p is in F but not both).



M. Ben-Zvi et al. / Journal of Algebra 491 (2017) 280–313 289
The definitions above coincide with the usual definitions of prime ideals and ultrafilters 
in case the partial Boolean algebra is in fact a total Boolean algebra. Furthermore, it 
is clear that a subset X of a partial Boolean algebra B is a partial ideal (respectively, 
prime partial ideal, partial filter, or partial ultrafilter) if and only if X ∩ C is an ideal 
(respectively, prime ideal, filter, or ultrafilter) of C for every commeasurable Boolean 
subalgebra C of B. As in the classical case of total Boolean algebras, one may readily 
verify that a subset I of a partial Boolean algebra B is a partial ideal if and only if 
¬I = {¬x | x ∈ I} is a partial filter of B, and that I is a prime partial ideal if and only 
if ¬I is an ultrafilter, if and only if B \ I is an ultrafilter (equal to ¬I).

We also note that if B is a partial Boolean algebra and I is a subset of B, then 
I is a prime partial ideal of B considered as a partial Boolean algebra if and only if 
I is a prime partial ideal of B when considered as a partial Boolean ring. (This is 
perhaps most easily verified considering the intersection I ∩ C for all commeasurable 
Boolean subalgebras C ⊆ B, and recalling that the two notions coincide in the classical 
case of total Boolean algebras and rings.) Thus there is no danger in our use of the 
notation p-Spec(B) for the spectrum of prime partial ideals in both senses, as these two 
spectra in fact coincide. This assignment forms a functor p-Spec : pBoolop → Set, which 
acts on a morphism f : A → B by sending p ∈ p-Spec(B) to Spec(f)(p) = f−1(p) ∈
p-Spec(A).

Proposition 2.11. Let B be a partial Boolean algebra, and fix a black-and-white coloring 
of B. The coloring is a Kochen–Specker coloring if and only if the set of white elements 
forms a partial ultrafilter of B, if and only if the set of black elements forms a prime 
partial ideal of B.

Proof. First suppose that the coloring is Kochen–Specker; we verify the four conditions 
of Definition 2.10 for the set of white elements. Condition (i) follows by applying the 
Kochen–Specker condition to the orthogonal decomposition 1 = 1 ∨ 0 ∨ 0. Condition (iv) 
follows easily by applying the Kochen–Specker condition to the orthogonal decomposition 
1 = p ∨ (¬p). For condition (ii), suppose that p ≤ q in B with p white. In the orthogonal 
decomposition 1 = p ∨ (q ∧ ¬p) ∨ ¬q, because p is white the third term ¬q must be 
black, so that it follows from (iv) that q is white. For (iii), suppose that p, q ∈ B are 
commeasurable and white. In the decomposition

1 = (p ∧ q) ∨ (p ∧ ¬q) ∨ (q ∧ ¬p) ∨ ¬(p ∨ q),

exactly one of the four joined terms on the right is white. If any of the second, third, or 
fourth terms is white, then its complement is black by (iv); as each of these elements x
has either p ≤ x or q ≤ x, we would deduce from condition (ii) the contradiction that 
either p or q is black. Thus we must have p ∧ q white as desired.

Conversely, suppose that the set of white elements of the coloring satisfies conditions 
(i)–(iv) of Definition 2.10. To verify the Kochen–Specker condition, suppose
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1 = p1 ∨ · · · ∨ pn (2.12)

for pairwise orthogonal elements pi ∈ B; we prove inductively that exactly one of the 
pi is white. The trivial case n = 1 follows from (i). In case n = 2, the fact that exactly 
one of p1 or p2 = ¬p1 is white follows from (iv). Proceeding inductively, suppose the 
Kochen–Specker condition holds for all orthogonal decompositions of the unit into n −1 ≥
2 elements. We may rewrite (2.12) as

1 = (p1 ∨ p2) ∨ p3 ∨ · · · ∨ pn

and deduce by the inductive hypothesis that exactly one of q = (p1 ∨ p2), p3, . . . , pn is 
white. If one of p3, . . . , pn is white then q is black. Applying (ii) to p1, p2 ≤ q we obtain 
that p1 and p2 are both black, as desired. Now in case p3, . . . , pn are black and q is 
white, we only need to verify that exactly one of p1 or p2 is white. In the orthogonal 
decomposition 1 = q ∨ ¬q = p1 ∨ p2 ∨ (¬q), condition (iv) implies that ¬q is black. If p1

and p2 are both black, then ¬(p1 ∨ p2) = (¬p1) ∧ (¬p2) is a join of white elements and 
therefore is white by (iii), implying the contradiction that p1 ∨ p2 = q is black. Thus at 
least one of p1 or p2 is white. Because p1 ∧ p2 = 0 = ¬1 is black, condition (iii) now 
shows that only one of p1 or p2 can be white, as desired.

The set of white elements of the coloring is an ultrafilter if and only if its complement, 
the set of black elements, is a prime partial ideal. This completes the proof. �

Let KS(B) denote the set of Kochen–Specker colorings of a partial Boolean algebra B. 
Given a morphism f : B1 → B2 in pBool and a Kochen–Specker coloring of B2, one may 
readily verify using Proposition 2.11 that the coloring of B1 given by declaring b ∈ B1

white if and only if f(b) ∈ B2 is white yields a Kochen–Specker coloring of B1. Thus we 
obtain a functor KS: pBoolop → Set.

In the following, we let 2 = {0, 1} denote the two-element Boolean algebra, which is 
the initial object of both the category of Boolean algebras and pBool.

Theorem 2.13. Let B be a partial Boolean algebra. Then the following three sets are in 
bijection:

(1) The set pBool(B, 2) of morphisms of partial Boolean algebras B → 2;
(2) The set KS(B) of Kochen–Specker colorings of B;
(3) The set p-Spec(B) of prime partial ideals of B.

These bijections are natural in B and thus form natural isomorphisms pBool(−, 2) ∼=
KS ∼= p-Spec as functors pBoolop → Set.
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Proof. We will define functions

p-Spec(B)

pBool(B,2) KS(B)

(2.14)

as follows. Given φ ∈ pBool(B, 2), set pφ = φ−1(0) ⊆ B. Because φ can equivalently be 
viewed as a morphism of partial Boolean rings B → 2, we find that pφ = p-Spec(φ)(0) ∈
p-Spec(B).

Next, given p ∈ p-Spec(B), it follows from Proposition 2.11 that the coloring of B
assigning black to all elements of p and white to all elements of B\p is a Kochen–Specker 
coloring. This yields our function p-Spec(B) → KS(B).

Finally, given a Kochen–Specker coloring of B, define a function φ : B → 2 by φ(b) = 0
if b ∈ B is colored black and φ(b) = 1 if b is colored white. Then φ−1(0) is a prime partial 
ideal of B by Proposition 2.11. Now the restriction of φ to any commeasurable subalgebra 
C of B is such that φ|−1

C (0) = φ−1(0) ∩ C is a prime ideal, and it is well-known [18, 
Lemma 22.1] that this implies that φ|C is a homomorphism of Boolean algebras. So φ
restricts to a Boolean algebra homomorphism on all commeasurable subalgebras, from 
which we conclude that it is a morphism in pBool(B, 2).

The composite of the three functions in the cycle (2.14) beginning at any of the 
three sets yields is readily seen to be the identity. Thus each of the functions is bijective. 
Finally, it is straightforward to see from the construction of these bijections that they are 
natural in B, yielding natural isomorphisms between the three functors pBoolop → Set
as claimed. �

Given a partial ring R, let Idpt(R) = {e ∈ R | e = e2} denote the set of idempotents 
elements of R. Given commeasurable elements e, f ∈ Idpt(R), it is straightforward to 
verify that e ∨f = e +f−ef and e ∧f = ef are both idempotents. Clearly 0, 1 ∈ Idpt(R)
as well. It is straightforward to verify that the above operations endow Idpt(R) with 
the structure of a partial Boolean algebra. Furthermore, any morphism of partial rings 
f : R → S restricts to a morphism of partial Boolean algebras Idpt(R) → Idpt(S). In 
this way we may view this assignment as a functor

Idpt: pRing → pBool .

In particular, if we again consider the category of rings to be a subcategory of pRing, 
then this restricts to a functor Idpt: Ring → pBool.

It is straightforward to verify that with the above definitions in place, if p ∈ p-Spec(R)
for a partial ring R, then p ∩ Idpt(R) is a prime partial ideal of the partial Boolean 
algebra of idempotents. In this way one obtains a natural transformation of functors 
pRingop → Set
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p-Spec → p-Spec ◦ Idpt ∼= KS ◦ Idpt . (2.15)

This allows us to deduce information about the partial spectrum of a ring from the 
(un)colorability of its idempotents.

Corollary 2.16. If R is a partial ring such that the partial Boolean algebra Idpt(R) has 
no Kochen–Specker colorings, then p-Spec(R) = ∅.

Proof. The natural transformation (2.15) provides a function p-Spec(R) → KS(Idpt(R)). 
Because the latter set is empty, so is the former. �

A square matrix over a commutative ring is said to be symmetric if it is equal to its own 
transpose. For a commutative ring R and positive integer n, we let Mn(R)sym denote the 
subset of Mn(R) consisting of symmetric matrices, and we let Proj(R) = Idpt(Mn(R)sym)
denote the set of symmetric idempotents, which we call projections. It is clear that 
Mn(R)sym is a partial R-subalgebra of Mn(R), and that Proj(Mn(R)) is a partial Boolean 
subalgebra of Idpt(Mn(R)). Together, we obtain a diagram of sets

p-Spec(Mn(R)sym) p-Spec(Mn(R))

p-Spec(Proj(Mn(R)) p-Spec(Idpt(Mn(R))

that is easily shown to commute. Thus, to show that p-Spec(Mn(R)) = ∅, it suffices to 
show that any one of the other three partial spectra is empty.

The next lemma shows that the nonexistence of either Kochen–Specker colorings or 
of prime partial ideals extends from matrix rings of a fixed order to all matrix rings of 
larger order. Throughout the following, for a ring R, we let Eij ∈ Mn(R) denote the 
matrix unit whose (i, j)-entry is 1 and whose other entries are 0.

Lemma 2.17. Let R be a ring and let m ≥ 1 be an integer.

(1) If Idpt(Mm(R)) has no Kochen–Specker colorings, then also Idpt(Mn(R)) has no 
Kochen–Specker colorings for all integers n ≥ m.

(2) If p-Spec(Mm(R)) = ∅, then also p-Spec(Mn(R)) = ∅ for all integers n ≥ m.

Now assume furthermore that R is commutative.

(3) If Proj(Mm(R)) has no Kochen–Specker colorings, then also Proj(Mn(R)) has no 
Kochen–Specker colorings for all integers n ≥ m.

(4) If p-Spec(Mm(R)sym) = ∅, then also p-Spec(Mn(R)sym) = ∅ for all integers n ≥ m.



M. Ben-Zvi et al. / Journal of Algebra 491 (2017) 280–313 293
Proof. To prove (1), it suffices by induction assume that Idpt(Mn(R)) has no Kochen–
Specker coloring and deduce that Idpt(M) has no such coloring for M = Mn+1(R). 
Suppose toward a contradiction that there Idpt(M) does have a Kochen–Specker color-
ing. Consider the diagonal idempotents Eii for i = 1, . . . , n, n +1. It follows that exactly 
one of the Eii is white; assume without loss of generality that this is E11.

For the idempotent E = E11 + · · · + Enn = 1 − En+1,n+1 ∈ M , because E11 ≤ E in 
Idpt(M) we have that E is white according to Proposition 2.11. The corner ring EME

has multiplicative identity E, so that the restriction of the coloring to Idpt(EME)
satisfies condition (i) of Proposition 2.11. But conditions (ii)–(iv) of the same lemma 
are easily seen to pass to Idpt(EME), from which it follows that this restriction is a 
Kochen–Specker coloring. But it is clear from the choice of E that EME ∼= Mn(R). Thus 
we obtain the contradiction that Idpt(Mn(R)) ∼= Idpt(EME) has a Kochen–Specker 
coloring.

The proof of (2) also proceeds inductively, showing that any p ∈ p-Spec(M) for 
M = Mn+1(R) induces a prime partial ideal of Mn(R). This is done similarly to the 
proof of part (1) above, this time noting that without loss of generality we may assume 
E11 ∈ p with the rest of the Eii /∈ p, so that for E = E11 + · · · + Enn the restriction 
p ∩EME is a prime partial ideal of EME ∼= Mn(R).

The proofs of (3) and (4) follow the same arguments as those given above with 
only minor modifications: the idempotents Eii and E above are symmetric, so that the 
transpose restricts to an involution of the corner ring EME, resulting in isomorphisms 
EMEsym ∼= Mn(R)sym. �
Remark 2.18. If S ⊆ Idpt(Mn(R)) is a subset that has no Kochen–Specker coloring, then 
one may adapt the proof above to explicitly construct a new set S+ ⊆ Idpt(Mn+1(R))
that also has no Kochen–Specker coloring, by taking the diagonal matrix units Eii for 
i = 1, . . . , n, n + 1 along with isomorphic copies of S in each of the partial Boolean 
algebras Idpt((1 −Eii)Mn+1(R)(1 −Eii)) ∼= Idpt(Mn(R)).

3. Colorability of idempotent matrices over various rings

In the following, for a field F , we consider the F -vector spaces Fn to consist of column 
vectors. Given vectors u, v ∈ Fn, we denote their usual “dot product” by

u · v = uT v =
∑

uivi.

This defines a bilinear form on Fn, but this may be a degenerate pairing depending upon 
the ground field F .

Lemma 3.1. Let F be a field, and let v ∈ Fn \ {0}. Then the following are equivalent:

(1) There is a symmetric idempotent in Mn(F ) with range Span(v);
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(2) The sum of squares vT v ∈ F is nonzero.

In case vT v = λ �= 0, the symmetric idempotent with range Span(v) is Pv = λ−1vvT . 
Finally, given u, v ∈ Fn with uTu �= 0 �= vT v, the projections Pu and Pv are orthogonal 
if and only if u · v = 0.

Proof. Assume (1) holds, so that P = P 2 = PT ∈ Mn(F ) with range(P ) = Span(v). 
Because v �= 0, we have P �= 0. Thus some entry of P is nonzero, say the (i, j)-entry. 
Let vi and vj denote the ith and jth rows of P respectively. Then the (i, j)-entry of 
P = P 2 = PTP is equal to vTi vj �= 0. But as vi, vj ∈ range(P ) = Span(v), the product 
vTi vj is a scalar multiple of vT v. Thus (2) must hold.

Conversely, suppose (2) holds, and set λ = vT v �= 0. Then P = λ−1vvT satisfies 
P = PT and

P 2 = (λ−1vvT )(λ−1vvT ) = λ−2v(vT v)vT = λ−1vvT = P.

Given any w ∈ Fn, since Pw = λ−1vvTw = (λ−1v · w)v ∈ Span(v) and Pv = v, we see 
that range(P ) = Span(v). Thus (1) holds.

Finally, suppose u, v ∈ Fn are as in the last sentence of the lemma. If u · v = 0 then 
we have

PuPv = (uTu)−1uuT · (vT v)−1vvT = (uTu · vT v)−1u(uT v)vT = 0,

and PvPu = (PuPv)T = 0. Conversely, suppose that PuPv = 0. Then

u · v = (Puu) · (Pvv) = (PT
v Puu) · v = (PvPuu) · v = 0

as desired. �
The lemma above allows us to equate Kochen–Specker colorings of rank-1 symmetric 

projections over a field F with Kochen–Specker colorings of vectors v satisfying vT v �= 0, 
in a manner analogous to Remark 2.8.

Our first uncolorability result makes use of one of the few vector configurations in 
the literature on Kochen–Specker colorings for which all vectors have integer entries. An 
account is given in [9] (also [10, Chapter 3]) of a proof of the Kochen–Specker Theorem 
due to Kurt Schütte, making use of a certain classical tautology that does not remain a 
tautology when interpreted in the partial Boolean algebra Proj(M3(R)). The orthogonal 
projections used to represent this logical proposition happen to be projections onto lines 
spanned by vectors with integer entries. Though these vectors do not have unit length, 
and their normalizations have irrational entries, we observe in the proof below that the 
resulting projection matrices do in fact have rational entries. We recall below that for 
any rational q ∈ Q, the ring Z[q] denotes the subring of Q generated by the integers 
and q, and consists of elements of the form f(q) where f is any polynomial with integer 
entries.
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Theorem 3.2. The partial Boolean algebra Proj(M3(Z[1/30])) has no Kochen–Specker 
coloring. Consequently, the partial ring M3(Z[1/30])sym has no prime partial ideals.

Proof. Consider the uncolorable set of vectors [9, Section 4] used in Schütte’s proof 
of the Kochen–Specker theorem. These are vectors in Z3, and each of the vectors v is 
such that ‖v‖2 = vT v divides 30. Thus each of the corresponding orthogonal projections 
pv = (vT v)−1vvT lies in Proj(M3(Z[1/30])) by Lemma 3.1. Thus the argument of Schütte 
and Bub in fact shows more generally that Proj(M3(Z[1/30])) has no Kochen–Specker 
coloring.

Because Proj(M3(Z[1/30])) = Idpt(M3(Z[1/30])sym), the claim about prime partial 
ideals follows from Corollary 2.16. �

Let F be a field and consider the canonical ring homomorphism Z → F . If the 
characteristic of F does not divide 30, then this homomorphism factors uniquely as 
Z → Z[1/30] → F . This induces a ring homomorphism M3(Z[1/30]) → M3(F ), along 
with a morphism of partial Boolean algebras Proj(M3(Z[1/30])) → Proj(M3(F )). By 
functoriality of Kochen–Specker colorings, the theorem above implies that Proj(M3(F ))
has no Kochen–Specker colorings and therefore that M3(F )sym has no prime partial 
ideals. In particular, these remarks apply to the field F = Q of rational numbers.

Remark 3.3. In the literature addressing finite-precision loopholes to the Kochen–Specker 
theorem (as in [35,12] and many further references discussed in [3]) it is well-documented 
that the set S = Q3 ∩ S2 of vectors with rational coordinates on the unit sphere has 
a Kochen–Specker coloring [19]. The apparent conflict between this fact and the uncol-
orability of Proj(M3(Q)) may be resolved as follows. The mapping φ : S → Proj(M3(Q))
given by φ(v) = Pv = ‖v‖−2vvT = vvT preserves orthogonality by Lemma 3.1 and has 
image contained in the rank-1 rational projections. By the same lemma, every rank-1 
projection in Proj(M3(Q)) is of the form P = Pv = ‖v‖−2vvT for any nonzero vector v
in the range of P . The image of φ forms a proper subset of the rank-1 rational projec-
tions, as one readily verifies that for vectors such as v = (1 1 1)T such that v/‖v‖
has irrational entries, the projection Pv lies outside of the image of φ. So the rational 
unit vectors correspond to a Kochen–Specker colorable subset of the Kochen–Specker 
uncolorable set of all rank-1 rational projections.

On the other hand, if F has characteristic p dividing 30 (i.e., p = 2, 3, 5), then the 
ring homomorphism Z → F does not factor through Z[1/30], so we cannot make the 
same conclusion about Kochen–Specker colorings of projections or prime partial ideals 
in M3(F )sym. In the following we use Fq to denote the finite field with q elements. In 
case F = Fp we will show below that such Kochen–Specker colorings and prime partial 
ideals do in fact exist in case p = 2, 3 but not in case p = 5.

Theorem 3.4. There exist Kochen–Specker colorings of Proj(M3(Fp)) and prime partial 
ideals of the partial rings M3(Fp)sym for p = 2, 3.
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Proof. We establish the existence of Kochen–Specker colorings below. Then it will follow 
from Lemma A.1 that there exists a morphism of partial F -algebras φ : M3(Fp)sym → K

for a field extension K of Fp, making φ−1(0) a prime partial ideal of M3(Fp)sym for 
p = 2, 3.

p = 2: There are four vectors v ∈ F3
2 satisfying vT v �= 0, yielding four rank-1 projec-

tions in M3(F2); three of these projections are the diagonal matrix units Eii = eie
T
i from 

the standard basis vectors {ei | i = 1, 2, 3}, and the fourth is

U = uuT =
(1 1 1

1 1 1
1 1 1

)
for u =

(1
1
1

)
.

Thus Proj(M3(F2)) has two maximal commeasurable Boolean subalgebras: one is gener-
ated by the Eii (and therefore isomorphic to the power set algebra on a three-element 
set), and the other is given by {0, U, I − U, I} (isomorphic to the power set of a two-
element set). Now any independent choice of a Kochen–Specker coloring on each of 
these maximal commeasurable subalgebras (given by any homomorphism into 2) gives 
a Kochen–Specker coloring of Proj(M3(F2)).

p = 3: In this case every projection in M3(F3) is a sum of orthogonal rank-1 projec-
tions, of which there are nine. In fact, there are only four orthogonal triples of rank-1
projections that sum to the identity (the off-diagonal entries that are omitted below are 
zero):

I =
(1

0
0

)
+
(0

1
0

)
+

(0
0

1

)

=
(1

0
0

)
+
(0

2 2
2 2

)
+

(0
2 1
1 2

)

=
(0

1
0

)
+
(2 0 2

0 0 0
2 0 2

)
+

(2 0 1
0 0 0
1 0 2

)

=
(0

0
1

)
+
(2 2

2 2
0

)
+

(2 1
1 2

0

)

As each of the diagonal matrix units Eii is contained in T = {E11, E22, E33} and exactly 
one other orthogonal triple, it is easy to verify that any Kochen–Specker coloring of the 
triple T can be extended to a Kochen–Specker coloring of the nine projections above and 
thereby to all of Proj(M3(F3)). �
Corollary 3.5. There exist morphisms of partial rings M3(Z)sym → Fp6 for p = 2, 3. 
Consequently, p-Spec(M3(Z)sym) �= ∅.
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Proof. For p = 2, 3 let M3(Z)sym → M3(Fp)sym be the canonical homomorphism that 
acts “modulo p” in each matrix entry. By Theorem 3.4 and Lemma A.1 (see also Re-
mark A.2), there is a morphism of partial Fp-algebras M3(Fp) → Fp6 , since Fp6 is up to 
isomorphism the unique degree six extension of Fp. The composite of these morphisms 
yields the desired function, and the preimage of the zero ideal of Fp6 is a prime partial 
ideal of M3(Z)sym. �

Next we will show that the projections in M3(F5) do not have a Kochen–Specker 
coloring. To this end, we note that each v ∈ F3

5 satisfying vT v �= 0 is a scalar multiple of 
a unique vector in the list below.

v1 =
(1

0
0

)
v2 =

(0
1
0

)
v3 =

(0
0
1

)
v4 =

(1
1
0

)
v5 =

(1
0
1

)

v6 =
(0

1
1

)
v7 =

(−1
1
0

)
v8 =

(−1
0
1

)
v9 =

( 0
−1
1

)
v10 =

(1
1
1

)

v11 =
(−1

1
1

)
v12 =

( 1
−1
1

)
v13 =

( 1
1
−1

)
v14 =

(2
1
1

)
v15 =

(1
2
1

)

v16 =
(1

1
2

)
v17 =

(−2
1
1

)
v18 =

( 1
−2
1

)
v19 =

( 1
1
−2

)
v20 =

(−2
2
1

)

v21 =
(−2

1
2

)
v22 =

( 1
−2
2

)
v23 =

( 2
−2
1

)
v24 =

( 2
1
−2

)
v25 =

( 1
2
−2

)

Thus the 25 rank-1 symmetric projections are exactly those of the form Pi = Pvi for the 
vectors vi above.

Suppose that Q ∈ M3(F5) is an invertible matrix with Q−1 = QT . If A ∈ M3(F5)sym

then (QAQ−1)T = (Q−1)TATQT = QAQ−1, so that conjugation by Q restricts from 
an automorphism of the F5-algebra M3(F5) to a partial F5-algebra automorphism of 
M3(F5)sym and to an automorphism of the partial Boolean algebra Proj(M3(F5)). This 
applies in particular if Q is any permutation matrix.

Theorem 3.6. There is no Kochen–Specker coloring of Proj(M3(F5)). Thus M3(F5)sym

has no prime partial ideals.

Proof. Assume for contradiction that there is a Kochen–Specker coloring of the rank-1 
projections in M3(F5); this induces a coloring on the vectors {vi | i = 1, . . . , 25} above.
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As remarked above, conjugation by any 3 × 3-permutation matrix restricts to an 
automorphism of the partial Boolean algebra Idpt(M3(F5)). This automorphism clearly 
preserves the rank of a projection. So it restricts to a bijection on the set of rank-1 
projections {Pi | i = 1, . . . , 25} defined by the vectors above. These automorphisms 
permute the diagonal matrix units Eii = Pi for i = 1, 2, 3. Thus after conjugating by an 
appropriate permutation matrix, we may assume that the coloring of the vectors is such 
that v1, v2 are black and v3 is white. By orthogonality of the triple {v3, v4, v7}, we must 
have v4 and v7 colored black.

Similarly, conjugation by the symmetric matrix Q =
(

1 0 0
0 −1 0
0 0 1

)
restricts to an au-

tomorphism of Proj(M3(F5)) that preserves rank. This automorphism fixes P1 (as 
Qv1 = v1) and permutes P6 with P9 (as Qv6 = v9 and Qv9 = v6). Thus, after con-
jugating by Q if necessary, we assume without loss of generality that v6 is colored black 
and v9 is white. From the following orthogonality relations, we deduce the colorings 
below:

{v9, v10, v17} orthogonal =⇒ v10 black,

{v9, v11, v14} orthogonal =⇒ v11 black,

{v4, v11, v20} orthogonal =⇒ v20 white,

{v7, v10, v19} orthogonal =⇒ v19 white,

{v18, v20, v25} orthogonal =⇒ v25 black,

{v19, v21, v22} orthogonal =⇒ v21 black,

{v5, v11, v21} orthogonal =⇒ v5 white,

{v6, v13, v25} orthogonal =⇒ v13 white.

But now orthogonality of the triple {v5, v13, v24} contradicts the coloring of the vec-
tors v5 and v13 above, establishing uncolorability of the set of projections {Pi}25

i=1 and 
consequently the uncolorability of Proj(M3(F5)).

Because Proj(M3(F5)) = Idpt(M3(F5)sym), the second claim follows from the first by 
Corollary 2.16. �

Our results on Kochen–Specker colorings on symmetric idempotents over finite fields 
has the following consequence for Kochen–Specker colorings of vectors in R3 whose co-
ordinate entries happen to be integers (such as those considered in [9]).

Corollary 3.7. Suppose that {vi} is a set of vectors in R3 for which there is no Kochen–
Specker coloring. If all vi have integer coordinates, then the least common multiple of the 
integers vi · vi = ‖vi‖2 is divisible by 6.
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Proof. Let N = lcm{‖vi‖2} be the least common multiple described in the statement. 
Given any prime p, entrywise application of the canonical map Z � Fp, denoted x �→ x, 
induces a linear mapping Z3 → F3

p, which we similarly denote by v �→ v. Suppose that 
p � N ; then each of the images vi·vi = vi · vi ∈ Fp are nonzero. Thus we obtain projections 
Qi = (vi · vi)−1vivi

T in Proj(M3(Fp)) for all i, with Qi and Qj orthogonal whenever vi
is orthogonal to vj . So if the set {vi} has no Kochen–Specker coloring, the same must 
be true of the set {Qi}, making Proj(M3(Fp)) uncolorable.

But now it follows from Theorem 3.4 that N must be divisible by both p = 2 and 
p = 3, yielding the desired result. �

Related to the results presented above, we ask two related questions:

Question 3.8. (A) Can the conclusion of the corollary above be strengthened to state that 
30 = 2 · 3 · 5 must divide the least common multiple of the ‖vi‖2?

(B) Does Proj(M3(Z[1/6])) have a Kochen–Specker coloring?

The method of proof used above does not extend to the prime p = 5 because of 
the uncolorability of Proj(M3(F5)), which leads to question (A). Note that every rank-1 
projection in M3(Z[1/6]) is of the form ‖v‖−2vvT for some v ∈ Z3. Choosing v to have 
the least common multiple of its entries equal to 1, then we may conclude that ‖v‖2 = v·v
divides a power of 6. So a negative answer to question (B) would imply a negative answer 
to question (A).

We now turn our attention to partial Boolean algebras of (non-symmetric) idem-
potents over various rings, beginning with finite fields. While Theorem 3.9 will be 
generalized in Corollary 3.11 below, the uncolorable set of idempotents to be constructed 
for the proof of Theorem 3.10 is actually motivated by this preliminary result regarding 
finite fields.

The following theorem was communicated to us by Alexandru Chirvasitu, whom we 
thank for kindly allowing us to include it here. Its proof uses some well-known methods of 
counting subspaces in vector spaces over finite fields via Gaussian binomial coefficients; 
see [36], for instance. Let q be a prime power, let F = Fq be the field of q elements, and 
let V be an F -vector space of dimension n. The number of k-dimensional subspaces of 
V is given by the number of ordered linearly independent lists of k vectors in V (each 
of which spans a k-dimensional subspace) divided by the number of (ordered) bases for 
a k-dimensional vector space:

(
n

k

)
q

= (qn − 1)(qn − q) · · · (qn − qk−1)
(qk − 1)(qk − q) · · · (qk − qk−1) .

The dual vector space V ∗ = HomF (V, F ) is also an n-dimensional vector space. Given 
a subspace W ⊆ V of dimension k, there is a corresponding subspace W⊥ = {f ∈ V ∗ |
f(W ) = 0} of dimension n − k in V ∗. Note that W1 ⊆ W2 implies W⊥

2 ⊆ W⊥
1 for 
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subspaces Wi of V . Because V ∼= V ∗ as vector spaces, this provides a bijection between 
the subspaces of V having dimension k and the subspaces of V having dimension n − k, 
which reverses inclusion of subspaces.

For instance, when V = F 3 so that n = 3, the number of 1-dimensional subspaces in 
V is 

(3
1
)
q

= (q3−1)/(q−1) = q2+q+1 and the number of 2-dimensional subspaces is also (3
2
)
q

= q2 + q+1. Also, the number of 2-dimensional subspaces of V that contain a given 
1-dimensional subspace is equal to the number of 1-dimensional subspaces contained in 
a given 2-dimensional subspace, and is therefore equal to 

(2
1
)
q

= (q2 −1)/(q−1) = q+1.

Theorem 3.9. Let p be a prime such that p ≡ 2 (mod 3). Then Idpt(M3(Fp)) has no 
Kochen–Specker coloring.

Proof. We prove the contrapositive. Suppose that there exists a Kochen–Specker coloring 
of Idpt(M3(Fp)). Consider the set S of unordered orthogonal triples {E1, E2, E3} of 
rank-1 idempotents in M3(Fp) such that E1 + E2 + E3 = I. Given a rank-1 idempotent 
E, let SE = {T ∈ S | E ∈ T}; we claim that these sets have the same cardinality for 
all E. Indeed, the general linear group G = GL3(Fp) acts transitively on the rank-1 
idempotents in M3(Fp) via conjugation, and this induces an action on S by

UT = {UEiU
−1 | i = 1, 2, 3} for U ∈ G and T = {E1, E2, E3} ∈ S.

Now given rank-1 idempotents E and F , if we fix U ∈ G with UEU−1 = F , the action 
of U on S carries the elements of SE to the elements of SF . Thus these two sets are in 
bijection, establishing the claim. We let N = |SE | denote the number of triples in S that 
contain any given rank-1 idempotent E, independent of E.

By the Kochen–Specker property of the coloring, each T ∈ S contains exactly one 
white idempotent and two black idempotents. Thus the number of white rank-1 idempo-
tents is equal to |S|/N and the number of black rank-1 idempotents is equal to 2(|S|/N). 
In particular, the number of rank-1 idempotents is 3(|S|/N), a multiple of 3.

On the other hand, each rank-1 idempotent is uniquely determined by the choice of 
its range, which can be any line in the vector space V = F3

p, along with its kernel, which 
can be any plane in V not containing that line. The number of lines in V is equal to (3
1
)
p

= p2 + p + 1. The number of planes not containing a given line in V is equal (by 
duality) to the number of lines not contained in a given plane, and is therefore equal to (3
1
)
p
−
(2
1
)
p

= (p2 +p +1) − (p +1) = p2. Thus we may alternatively calculate the number 
of rank-1 idempotents in M3(Fp) to be equal to (p2 + p + 1)p2.

It follows that 3 divides (p2 + p + 1)p2. This is only possible if p �≡ 2 (mod 3), 
completing the proof. �

At this point, we are able to deduce that for any prime p �= 3, there is no Kochen–
Specker coloring of Idpt(M3(Fp)). Indeed, if p /∈ {2, 3, 5}, then the existence of a (unique) 
ring homomorphism Z[1/30] → Fp induces morphisms of partial Boolean algebras 
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Proj(M3(Z[1/30])) ⊆ Idpt(M3(Z[1/30])) → Idpt(M3(Fp)). It follows from Theorem 3.2
and functoriality of Kochen–Specker colorings that Idpt(M3(Fp)) has no Kochen–Specker 
colorings. On the other hand, for p ∈ {2, 5} the result follows directly from Theorem 3.9. 
But as we have already mentioned, a far stronger conclusion will be made in Corol-
lary 3.11 below.

We will now define a set S ⊆ Idpt(M3(Z)) that will be shown to have no Kochen–
Specker coloring. For a commutative ring R, given a basis {u, v, w} of the free R-module 

R3, we use the notation 
[
u v w

]
to denote the idempotent in M3(R) with range 

spanned by u and with kernel spanned by v and w. (This may be explicitly constructed 
via the invertible matrix U = (u v w ) as UE11U

−1.) The argument given in the 
proof of Theorem 3.9 shows that number of rank-1 idempotents in M3(F2) is equal to 
22(22 + 2 + 1) = 28. Below we list all 28 idempotent matrices of rank 1 in M3(F2) in 
terms of the above notation.

P1 =

⎡
⎢⎣1 0 0

0 1 0
0 0 1

⎤
⎥⎦ P2 =

⎡
⎢⎣0 1 0

1 0 0
0 0 1

⎤
⎥⎦ P3 =

⎡
⎢⎣0 1 0

0 0 1
1 0 0

⎤
⎥⎦ P4 =

⎡
⎢⎣0 1 0

1 0 1
0 0 1

⎤
⎥⎦

P5 =

⎡
⎢⎣0 1 0

1 0 1
1 0 0

⎤
⎥⎦ P6 =

⎡
⎢⎣0 1 0

0 0 1
1 0 1

⎤
⎥⎦ P7 =

⎡
⎢⎣0 1 0

1 0 0
1 0 1

⎤
⎥⎦ P8 =

⎡
⎢⎣1 0 1

0 1 0
0 0 1

⎤
⎥⎦

P9 =

⎡
⎢⎣1 0 1

0 1 0
1 0 0

⎤
⎥⎦ P10 =

⎡
⎢⎣0 0 1

0 1 0
1 0 1

⎤
⎥⎦ P11 =

⎡
⎢⎣1 0 0

0 1 0
1 0 1

⎤
⎥⎦ P12 =

⎡
⎢⎣1 0 1

0 0 1
0 1 0

⎤
⎥⎦

P13 =

⎡
⎢⎣1 0 1

1 0 0
0 1 0

⎤
⎥⎦ P14 =

⎡
⎢⎣0 0 1

1 0 1
0 1 0

⎤
⎥⎦ P15 =

⎡
⎢⎣1 0 0

1 0 1
0 1 0

⎤
⎥⎦ P16 =

⎡
⎢⎣1 0 1

1 1 0
1 0 0

⎤
⎥⎦

P17 =

⎡
⎢⎣1 0 0

1 1 0
1 0 1

⎤
⎥⎦ P18 =

⎡
⎢⎣0 0 1

1 1 0
1 0 1

⎤
⎥⎦ P19 =

⎡
⎢⎣1 0 1

1 1 0
0 1 0

⎤
⎥⎦ P20 =

⎡
⎢⎣1 1 0

0 1 1
0 0 1

⎤
⎥⎦

P21 =

⎡
⎢⎣0 1 0

1 1 1
0 0 1

⎤
⎥⎦ P22 =

⎡
⎢⎣0 0 1

1 0 1
1 1 0

⎤
⎥⎦ P23 =

⎡
⎢⎣1 0 1

1 0 0
1 1 0

⎤
⎥⎦ P24 =

⎡
⎢⎣1 0 1

0 1 0
1 1 0

⎤
⎥⎦



302 M. Ben-Zvi et al. / Journal of Algebra 491 (2017) 280–313
P25 =

⎡
⎢⎣0 1 0

0 1 1
1 0 1

⎤
⎥⎦ P26 =

⎡
⎢⎣1 1 0

1 0 1
0 1 0

⎤
⎥⎦ P27 =

⎡
⎢⎣1 0 1

0 0 1
1 1 0

⎤
⎥⎦ P28 =

⎡
⎢⎣1 1 0

1 1 1
1 0 1

⎤
⎥⎦

Considering the column vectors above as elements of Z3, note that each triple of vectors 
given above forms a basis of the free Z-module Z3. (This can be easily verified, for 
instance, by noting that the matrix U = (u v w ) formed by placing the three vectors 
from a triple into its columns has determinant in the group of units {±1} ⊆ Z.) Thus if 
we interpret the above notation in M3(Z), the Pi for 1 ≤ i ≤ 28 define distinct rank-1 
idempotents in M3(Z). We let S = {Pi | 1 ≤ i ≤ 28} denote the set of 28 idempotents 
in M3(Z) given above.

Note that two idempotents P =
[
u v w

]
and Q =

[
x y z

]
presented as above 

are orthogonal if and only if the range vector u is contained in the Z-span of the kernel 
vectors y and z, and also x is contained in the Z-span of v and w.

Under the canonical ring homomorphism φ : M3(Z) → M3(F2) induced entrywise by 
Z � F2, the set S is constructed in such a way that φ restricts to a bijection S ∼−→
Idpt(M3(F2)). In this sense, we may think of S as a set of “lifts” of the idempotents of 
M3(F2) to the integer 3 × 3 matrices.

If the idempotents in S satisfied the same orthogonality relations as their images in 
M3(F2), then it would follow directly from Theorem 3.9 that S has no Kochen–Specker 
coloring. But as it happens, there are triples of idempotents in S that are not pairwise 
orthogonal over Z, but whose image under φ become pairwise orthogonal over F2.

To be precise, the following list displays all triples {i, j, k} such that {Pi, Pj , Pk} ⊆
M3(Z) and {φ(Pi), φ(Pj), φ(Pk)} ⊆ M3(F2) are both orthogonal.

O1 = {1, 2, 3} O2 = {1, 4, 5} O3 = {1, 6, 7} O4 = {2, 8, 9}

O5 = {2, 10, 11} O6 = {3, 12, 13} O7 = {3, 14, 15} O8 = {4, 8, 16}

O9 = {4, 17, 18} O10 = {5, 19, 20} O11 = {5, 15, 21} O12 = {6, 17, 22}

O13 = {6, 12, 23} O14 = {8, 23, 24} O15 = {10, 14, 17} O16 = {10, 23, 27}

O17 = {12, 16, 19} O18 = {15, 22, 25} O19 = {14, 16, 26} O20 = {19, 22, 28}

On the other hand, the list below displays the pairs Oa
m = {i, j} and Ob

m = {i, k}
of indices such that {Pi, Pj} and {Pj , Pk} are orthogonal pairs with Pi and Pk not 
orthogonal over Z, but {φ(Pi), φ(Pj), φ(Pk)} forms an orthogonal triple over F2.

Oa
21 = {7, 24} Ob

21 = {7, 20} Oa
22 = {7, 11} Ob

22 = {7, 25}

Oa
23 = {9, 26} Ob

23 = {21, 26} Oa
24 = {9, 13} O24 = {13, 20}

Oa
25 = {11, 18} Ob

25 = {18, 21} Oa
26 = {13, 27} Ob

26 = {13, 25}

Oa
27 = {18, 28} Ob

27 = {18, 24} Oa
28 = {26, 28} Ob

28 = {26, 27}
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Thus the proof that S is uncolorable requires a different argument. Note that the fol-
lowing proof only gives a complete argument that a larger set S ′ ⊇ S is uncolorable. But 
as we indicate below, with extra work it is possible to prove that S itself is uncolorable.

Theorem 3.10. There is no Kochen–Specker coloring of Idpt(M3(Z)).

Proof. It suffices to show that the set S defined above is uncolorable. This is achieved 
through a case-splitting argument which shows that various colorings of the triples Oi

for i = 1, 2, 3 lead to contradictions. Thus, we assume toward a contradiction that S has 
a Kochen–Specker coloring.

Case I: P1 black, P2 black, and P3 white in O1. Then in the orthogonal triple O6 we 
have that P12 is black. We examine two possible subcases.

Case I.1: P4 is black and P5 is white in O2. We obtain the following sequence of 
deductions:

P19 black in triple O10 ⇒ P16 white in triple O17

⇒ P8 white in triple O8

We deduce contradictions in two further subcases of Case I.1 as follows.
Case I.1.a: P6 black and P7 white in O3. In this case we deduce:

P24 black in pair Oa
21 ⇒ P11 black in pair Oa

22

⇒ P10 black in triple O5

⇒ P23 black in triple O14,

arriving at the contradiction that two idempotents in triple O16 are white.
Case I.1.b: P6 black and P7 white in O3. Now we deduce that P17 and P22 are black in 

triple O12, which implies that P18 is white in triple O9 and P28 is white in triple O20. We 
obtain a contradictory coloring of the pair Oa

28. This completes the proof that case I.1 
leads to a contradiction.

Case I.2: P4 is white and P5 is black in O2. In this setting we have P14 black in triple 
O7, while P8 and P16 are black in triple O8. It follows that P9 is white in triple O4 and 
P26 is white in triple O19. We obtain a contradictory coloring of the pair Oa

23.
We deduce from these contradictions that there is no Kochen–Specker coloring of S

satisfying the condition in case I. Let G ⊆ M3(Z) be the group of permutation matrices, 
acting on Idpt(M3(Z)) by conjugation. While S is not fixed under the action of G, 
it is contained in a smallest set S ′ = GS closed under this action. Now if S ′ had a 
Kochen–Specker coloring, conjugation by a suitable element of G would yield a coloring 
of S ′ ⊇ S for which case I indeed holds. So we find that S ′ is uncolorable, proving the 
theorem.
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(The interested reader may reason as above to verify similar contradictions in either
case II: P1 black, P2 white, P3 black, or case III: P1 white, P2 black, P3 black. This 
proves that S itself has no Kochen–Specker coloring.) �
Corollary 3.11. Let R be a ring, and fix any integer n ≥ 3.

(1) There is no Kochen–Specker coloring of Idpt(Mn(R)).
(2) p-Spec(Mn(R)) = ∅.
(3) There is no morphism of partial rings from Mn(R) to any (total) commutative ring.
(4) The colimit in cRing of the diagram of commutative subrings of Mn(R) is zero.

Proof. (1) It follows from Lemma 2.17 and Theorem 3.10 that Idpt(Mn(Z)) has no 
Kochen–Specker coloring. The existence of a ring homomorphism Mn(Z) → Mn(R)
and functoriality of Idpt yield a morphism of partial Boolean algebras Idpt(Mn(Z)) →
Idpt(Mn(R)). Now by functoriality of Kochen–Specker colorings, we obtain a function 
KS(Idpt(Mn(R))) → KS(Idpt(Mn(Z))) = ∅. Now we deduce that Idpt(Mn(R)) has no 
Kochen–Specker colorings.

Part (2) follows from (1) by Corollary 2.16. Then (3) and (4) are immediate from 
Lemma 2.4. �

We close this section with some open questions related to “ring-theoretic contextual-
ity” as it is discussed in Section 1. To date, the only proofs that a noncommutative ring 
has an empty partial spectrum rely upon Kochen–Specker uncolorability of idempotents, 
as in Corollary 2.16 above. Thus it would be interesting to find a ring with empty partial 
spectrum in the extreme case with only the trivial idempotents 0 and 1.

Question 3.12. Does there exist a nonzero ring R with no nontrivial idempotents such 
that p-Spec(R) = ∅?

By Lemma 2.4, an example of such a ring will have no morphism of partial rings 
R → C for any nonzero commutative ring C, and thus will have no “noncontextual 
hidden variable theory.” If R is a domain (that is, a nonzero ring without zero divisors), 
then the zero ideal is readily seen to be a prime partial ideal so that p-Spec(R) is 
nonempty; nevertheless, it would be interesting to find an example of such R that still 
has no “noncontextual hidden variable theory.” Thus we ask the following.

Question 3.13. Does there exist a domain R such that there is no morphism of partial 
rings R → C for any nonzero commutative ring C?

4. Applications to spectrum functors in noncommutative algebraic geometry

In this final section, we apply the above results on the partial spectrum of integer 
matrix rings to strengthen the main result of [37] and certain results from [8].
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Modern algebraic geometry provides a way to view every commutative ring as a ring of 
“globally defined functions” (the global sections of a sheaf of rings) on a geometric object 
(a locally ringed space) called an affine scheme. The scheme associated to a commutative 
ring is called its spectrum, and the assignment of the spectrum to each ring forms an 
equivalence of categories cRingop → AffSch. For a commutative ring R, the Zariski prime 
spectrum Spec(R) (the set of prime ideals of R) forms the underlying set of its affine 
scheme. We refer readers to [17, I.2] for an introduction to the spectrum of a ring in 
algebraic geometry.

In the spirit of noncommutative geometry, it is natural to wonder whether every 
noncommutative ring may be given a similar “spatial realization.” The most obvious way 
to attempt to build a “noncommutative affine scheme” would be to use a ringed space 
for which the sheaf of rings is not necessarily commutative. Indeed, such constructions 
have been intensely pursued in past decades; an outstanding survey of these efforts may 
be found in [42]. In order to obtain a true correspondence between algebra and geometry, 
one would wish for such a construction to be a contravariant functor. Thus, at the very 
least, one would require a functor F from Ringop to the category Top of topological 
spaces, or even to Set if we forget about topology, that yields the underlying point set of 
each ringed space, such that the restriction of F to cRingop is (isomorphic to) the usual 
spectrum functor Spec: cRingop → Set. Furthermore, in order to obtain a nontrivial 
construction, one should require that if R is a nonzero ring then F (R) is nonempty.

However, it was shown in [37] that any functor F as above necessarily assigns 
F (Mn(R)) = ∅ for any ring R containing C as a subring and any integer n ≥ 3. 
The proof of this result crucially relied upon the fact that the Kochen–Specker Theorem 
implies that p-Spec(Mn(R)) = ∅ for any such R. Our algebraic analogues of Kochen–
Specker will allow us to extend this result to any ring R, not only those that contain the 
complex numbers.

In hindsight, the connection between the connection between this algebro-geometric 
obstruction and the Kochen–Specker Theorem is arguably a natural one. For a ring R, 
let C(R) denote the diagram in cRing whose objects are the commutative subrings C ⊆ R

and whose morphisms C1 → C2 are the inclusions of subrings C1 ⊆ C2 ⊆ R. It is shown 
in [37, Proposition 2.14] that as sets, the partial spectrum of R is the limit in the category 
of sets of the spectra Spec(C) for C ∈ C(R):

p-Spec(R) ∼= lim←−−
C∈C(R)

Spec(C). (4.1)

This bijection allows us to view a point in p-Spec(R) as a “noncontextual choice of points” 
in the spectra Spec(C) of all commutative subrings of R. The obstruction of [37] used 
the Kochen–Specker Theorem to show that there does not exist any such “noncontextual 
choice of points” in the case where R = Mn(C) for n ≥ 3. See also [15, Sec. 3–4] for a 
related discussion.

Further, it is interesting to note that Kochen and Specker’s motivating discussion 
in [31, Section 1] phrases the problem of hidden variables as the search for a probability 
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space Ω of “hidden pure states,” with a hidden variable theory being a morphism of 
partial algebras from the algebra of observables to the algebra of real-valued measurable 
functions on Ω. If one imagines Ω as a kind of spectrum associated to a quantum system, 
then it seems entirely natural that the Kochen–Specker theorem should have led to the 
results of [37].

We now prove the strengthened version of [37, Theorem 1.1], answering the ques-
tion posed in [37, Question 4.2]. We use essentially the same argument, relying upon 
Theorem 3.10 in place of the Kochen–Specker Theorem.

Theorem 4.2. Let F : Ringop → Set (or F : Ringop → Top) be a functor whose restriction 
to the full subcategory cRingop is isomorphic to Spec. Then F (Mn(R)) = ∅ for any ring 
R and any integer n ≥ 3.

Proof. By [37, Theorem 2.15], the hypothesis on F ensures that there exists a natural 
transformation F → p-Spec. For a fixed ring R and integer n ≥ 3, the unique ring 
homomorphism Z → R induces a ring homomorphism Mn(Z) → Mn(R). The natural 
transformation and functoriality of p-Spec yield a composite function

F (Mn(R)) → p-Spec(Mn(R)) → p-Spec(Mn(Z)) = ∅,

with the last equality following from Corollary 3.11. As the only set with a function to 
the empty set is ∅ itself, we conclude that F (Mn(R)) = ∅. �

This obstruction to “noncommutative spectrum functors” has the following immediate 
application, which strengthens [37, Corollary 4.3] regarding “abelianization functors” 
defined on the category of rings.

Corollary 4.3. Let R be a ring and n ≥ 3 be an integer. If α : Ring → cRing is any functor 
whose restriction to cRing is isomorphic to the identity functor, then α(Mn(R)) = 0.

Proof. The hypothesis on α ensures that the composite functor Spec ◦α : Ringop → Set
has restriction to cRingop isomorphic to Spec. By Theorem 4.2 we have Spec(α(M3(Z))) =
∅. This implies that the commutative ring α(M3(Z)) is zero. �

It was noted in [37, p. 689] that the statements of both Corollaries 3.11(4) and 4.3
fail in the case where n = 2.

The study of topological spaces and their sheaves, especially including ringed spaces, 
can be conducted without any reference to the underlying point set of the topological 
space via the use of locales and toposes [30]. One might therefore expect that obstructions 
such as the one in Theorem 4.2 could be avoided if one considers the Zariski spectrum 
as a functor taking values in the category of locales rather than in the category of 
topological spaces. (We will describe the localic Zariski spectrum below.) However, it 
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was shown in [8] that the obstruction of [37] persists for functors taking values in such 
categories of “pointless spaces.” We now show that our version of the Kochen–Specker 
theorem for integer matrices allows us to extend the obstruction of Theorem 4.2 in the 
same manner. From this point until the end of the paper, we now consider the Zariski 
spectrum Spec(R) of a commutative ring R as a topological space, with the usual Zariski 
topology whose open sets are those of the form D(I) = {p ∈ Spec(R) | I � p} for all 
ideals I of R. We include the basic definitions of locales and the localic spectrum below, 
although we must invoke some results from locale theory in the proof below without a 
full survey of this theory, which would take us too far afield.

A frame (F, 
∨
, ∧, 0, 1) is a complete lattice which satisfies the “infinite distributive 

law” a ∧ (
∨

bi) =
∨

(a ∧ bi) for any family {bi} ⊆ F . The motivating example of a frame 
is the collection of open sets in a topological space X. Frames form a category Frm whose 
morphisms are the homomorphisms of posets that preserve finite meets and arbitrary 
joins; in particular, these maps preserve 0 and 1. The category Loc = Frmop of locales is 
defined to be the opposite of the category of frames. If L denotes a locale, we will use 
Ω(L) to denote its underlying frame (so that L is “opposite” to Ω(L) in Loc = Frmop); 
we call the elements of Ω(L) the opens of L. Given a morphism f : L → S in Loc, we 
denote the corresponding morphism of frames as f∗ : Ω(S) → Ω(L).

We recall one formulation of the localic Zariski spectrum from [29, V.3] (and especially 
Corollary V.3.2(i) of that reference). For a commutative ring R and an ideal I of R, recall 
that the radical of I is the ideal 

√
I = {x ∈ R | xn ∈ I for some integer n ≥ 1}, and that 

I is called a radical ideal if I =
√
I (that is, xn ∈ I for x ∈ R and some integer n ≥ 1

implies x ∈ I). Let RIdl(R) denote the set of radical ideals of R. This forms a lattice 
with respect to inclusion, which is complete since the intersection of an arbitrary set of 
radical ideals is again radical. The join of an arbitrary family {Ij} ⊆ RIdl(R) and the 
pairwise meet of I, J ∈ RIdl(R) are given in terms of the usual ideal sum and product 
by

∨
Ij =

√∑
Ij , I ∧ J = I ∩ J =

√
I · J.

With these descriptions, one can verify that the “infinite distributive law”

J ∧
(∨

Ij

)
=

√
J ·

√∑
Ij =

√∑
JIj =

√∑√
JIj =

∨
(J ∧ Ij)

holds for all J and {Ij} as above. Thus RIdl(R) is a frame.
We define the localic (Zariski) spectrum of R to be the locale LSpec(R) whose corre-

sponding frame is Ω(LSpec(R)) = RIdl(R). A morphism f : R → S in cRing induces 
a function RIdl(f) : RIdl(R) → RIdl(S) via I �→

√
S · f(I), which one may verify 

to be a morphism of frames; we denote the corresponding morphism of locales by 
LSpec(f) : LSpec(S) → LSpec(R). In this way, the localic spectrum forms a functor

LSpec: Ringop → Loc .
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Readers familiar with the (“spatial”) Zariski spectrum will recognize that RIdl(R)
is isomorphic to the lattice of open sets of the Zariski topology on Spec(R) (see [23, 
Lemma 2.1], for instance). Indeed, the spatial Zariski spectrum Spec(R) is isomorphic 
to the space of points [29, II.1.3] of the locale LSpec(R); see [29, V.3.2]. However, the 
definition of LSpec is entirely constructive, while one must invoke the Axiom of Choice 
(or at least the Boolean Prime Ideal Theorem) to verify that Spec(R) is nonempty for 
nonzero rings R. For this reason, localic spectra are preferred in the setting of constructive 
mathematics.

We say that a locale is trivial if its frame of opens is a singleton (i.e., satisfies 0 = 1), 
or equivalently, if it is an initial object of Loc. Trivial locales play the role of the empty 
space in pointless topology. If L is a locale with a morphism to a trivial locale, then the 
top and bottom elements of the frame of opens of L are also equal, making L a trivial 
locale.

Corollary 4.4. Let F : Ringop → Loc be a functor whose restriction to cRingop is isomor-
phic to LSpec: cRingop → Loc. Then F (Mn(R)) is the trivial locale for every ring R and 
every integer n ≥ 3.

Proof. Let G : Ringop → Loc be the functor that assigns to a ring R the limit of the 
locales LSpec(C) where C ranges over the diagram C(R) of commutative subrings of R. 
It is clear from the construction of G that for any functor F as in the statement, there 
is a natural transformation G → F , as in [37, Theorem 2.15]. The category of coherent 
locales is the subcategory of Loc that is opposite to the essential image of the functor 
that assigns to each distributive lattice its frame of ideals; see [29, II.3]. It is known 
that LSpec has image in the category of coherent locales [29, V.3.1]. Furthermore, it is 
known [8, Lemma 2.6] that the subcategory of coherent locales is closed under limits in 
Loc.

Let ∗ denote the locale corresponding to the one-point space, so that the point-set 
functor pt: Loc → Set is pt = Loc(∗, −). Being representable, this functor preserves 
limits [33, Theorem V.4.1]. Thus for any ring R we have natural isomorphisms

pt(G(R)) = pt
(

lim←−−
C∈C(R)

LSpec(C)
)

∼= lim←−−
C∈C(R)

pt(LSpec(C)).

As discussed above, the composite pt ◦ Spec: cRingop → Set is isomorphic to the usual 
Zariski prime spectrum functor Spec. It follows from (4.1) that the limit above is natu-
rally isomorphic to p-Spec(R), so we in fact have a natural isomorphism pt ◦ G ∼= p-Spec.

Now for any ring R and any integer n ≥ 3, we have pt(G(Mn(R))) ∼= p-Spec(Mn(R)) =
∅ thanks to Theorem 4.2. Because G(Mn(R)) is coherent, it is a spatial locale [29, II.3.4], 
so that its frame of opens is isomorphic to the frame of open subsets of its space of 
points. Thus G(Mn(R)) is the trivial locale. Finally, the existence of a morphism of 
locales G(Mn(R)) → F (Mn(R)) implies that F (Mn(R)) is also trivial. �
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We also remark that as in [8], similar obstructions hold if we regard Spec as a functor 
from commutative rings into the any one of the categories of toposes, ringed toposes, 
ringed locales, or ringed spaces.

Corollary 4.5. Let C be any of the categories of toposes, ringed toposes, ringed locales, 
or ringed spaces, and consider Spec as a functor cRingop → C in the usual way. Suppose 
that F : Ringop → C is a functor whose restriction to cRingop is isomorphic to Spec. 
Then F (Mn(R)) is the trivial (initial) object of C for any ring R and any integer n ≥ 3.

Proof. The proofs are direct analogues of those given in [8, Corollaries 6.2 and 6.3 ]. �
Remark 4.6. Given the emphasis in the locale theory literature on constructive proofs, 
we wish to emphasize that the proof of Corollary 4.4 above invokes the nonconstructive 
technique of reducing to spaces of points; by contrast, the proof for the case where R = C
given in [8, Corollary 6.1] is constructive. The proofs of these localic obstructions are 
complicated by the fact that the Zariski spectrum (either spatial or localic) generally 
does not preserve limits out of Ringop. This was handled in [8] by noting that the Zariski 
spectrum does preserve limits when restricted to finite-dimensional algebras over the 
algebraically closed field C. Unfortunately, more work is required in our context because 
our algebras are not finite-dimensional over a field. There is a proof of Corollary 4.4
that is constructive in principle. The idea is to consider the localic spectra of the finite 
diagram of the commutative subrings of M3(Z) that are generated by orthogonal sets 
of idempotents from the proof of Theorem 3.10, to show that LSpec restricted to this 
diagram (whose limit is trivial) has image in the subcategory fBoolop opposite to finite 
Boolean algebras within Loc = Frmop, and to proceed as in [8, Corollary 6.1] noting that 
the inclusion fBoolop ↪→ Loc preserves limits. With such techniques in hand, one may 
also extend the proof of [8, Corollary 5.7] to show that a similar obstruction holds for 
extensions of Spec into the opposite of the category of (unital or strong) quantales. For 
the sake of brevity, we do not provide further details here.

In closing, we note that readers seeking further open problems regarding contextuality 
in noncommutative algebraic geometry will find some in [38, Question 4.9], while readers 
interested in positive results on noncommutative spectrum functors are referred to [27]
for one successful example.

Appendix A. Partial algebra morphisms from Kochen–Specker colorings, 
by Alexandru Chirvasitu

We prove here the following result relating idempotent colorings to morphisms of 
partial algebras.
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Lemma A.1. Let F be a perfect field, K ⊇ F a field extension containing an isomorphic 
copy of every degree-two and degree-three extension of F , and A a partial F -subalgebra 
of M3 = M3(F ).

If there exists a Kochen–Specker coloring of Idpt(A), then there exists a morphism of 
partial F -algebras A → K. Consequently, p-Spec(R) is nonempty.

Proof. A Kochen–Specker coloring provides a map ϕ from Idpt(A) to {0, 1} compatible 
with addition of orthogonal idempotents, and we wish to extend this map to all of A.

Step 1: Reducing to semisimple operators. The fact that F is perfect ensures that 
we can decompose every x ∈ A as a sum xs + xn, where xs ∈ A is semisimple, xn ∈ A

is nilpotent, and each is a polynomial in x with no constant term. Because x, y ∈ A

commute if and only if xs and xn both commute with ys and yn, we can simply extend 
ϕ to the partial algebra generated by idempotents and nilpotent operators by sending 
the latter to zero.

If we had an extension of ϕ to the partial subalgebra Ass ⊂ A consisting of semisimple 
elements, then we could set ϕ(x) = ϕ(xn) + ϕ(xs). The above observation that x, y ∈ A

commute if and only if xs and xn commute with ys and yn then ensures that this is well 
defined and a partial algebra morphism.

We may now assume that all elements of A are semisimple; this assumption will be 
in place throughout the rest of the proof.

The support supp(x) ∈ Idpt(M3) of a semisimple element x ∈ M3 is the idempotent 
with the same range and kernel as x. For every x ∈ A consider the element xd (for 
‘diagonalizable’) defined as 

∑
tipi, where ti are the distinct non-zero eigenvalues of x

and pi are the corresponding spectral idempotents.
The element xd is expressible as a polynomial in x with no constant term (because pi

are so expressible) and hence belongs to A. Moreover, it is the unique element of M3 that 
is diagonalizable in M3, a polynomial in x with no constant term, and whose support is 
maximal among elements with this property.

It follows from the description of x that x − xd is either zero or purely non-
diagonalizable, in the sense that (x −xd)d vanishes (i.e. x −xd has no non-zero eigenval-
ues). Denote xnd = x − xd.

Step 2: Diagonalizable operators. The decomposition x = xd + xnd is similar in spirit 
to the Jordan decomposition, and we can put it to similar use.

Any diagonalizable x ∈ A breaks up uniquely as 
∑

tipi where ti ∈ F and pi ∈ Idpt(A)
are as above. Now simply set ϕ(x) =

∑
tiϕ(pi). This is easily seen to be a partial algebra 

morphism from the partial subalgebra Ad ⊆ A consisting of diagonalizable operators to 
F ⊆ K.

Step 3: Purely non-diagonalizable operators. Let x �= 0 be such an operator and 〈x〉
the (non-unital) subalgebra of A that it generates. It is isomorphic to a field extension 
of F generated by any one of the non-zero eigenvalues of x, with unit supp(x). Define 
an arbitrary unital algebra morphism
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ψ : 〈x〉 → K

and extend ϕ to 〈x〉 via ϕ(x) = ψ(x)ϕ(supp(x)).
Step 4: Putting the ingredients together. For x ∈ A set ϕ(x) = ϕ(xd) + ϕ(xnd).
Step 5: Checking that ϕ is a morphism. We have to check that ϕ as defined above 

preserves products and sums of commuting elements x, y, which we fix throughout the 
rest of the proof.

Because both xd and xnd can be expressed as polynomials with no constant term in x, 
an operator commutes with x if and only if it commutes with xd and xnd. Consequently, 
x, y ∈ A commute if and only if xd, xnd, yd and ynd all commute.

If x and y are diagonalizable there is nothing to check, as we already know that ϕ|Ad

is a morphism of partial algebras. So we may as well suppose xnd �= 0.
Now y commutes with the idempotent e = supp(xnd), and since ϕ annihilates exactly 

one of e and 1 − e we may as well restrict our attention to eM3e or (1 − e)M3(1 − e), 
depending on whether ϕ(e) = 1 or ϕ(1 − e) = 1 respectively.

There are two possibilities for e: either it has rank two and 〈ex〉 ⊂ eM3e is a field L
of degree two over F , or e = 1 and 〈x〉 is a field of degree three over F . This means that 
if ϕ(1 − e) = 1 then (1 − e)M3(1 − e) is (at most) one-dimensional with (1 − e)x and 
(1 − e)y both scalars therein, so there is nothing to check.

On the other hand, if ϕ(e) = 1 then ey ∈ eM3e commutes with ex and hence acts as 
L-linear endomorphisms of L. Putting ex ∈ eM3e in rational normal form will identify 
eFn with eL and hence eM3e with EndF (L) in such a manner that 〈ex〉 gets identified 
with L ⊂ EndF (L) (acting on itself by multiplication). Since ey ∈ EndF (L) acts on L as 
L-linear endomorphisms (because it commutes with 〈ex〉) we must have ey ∈ L = 〈ex〉. 
We can now conclude from the fact that ϕ is a morphism when restricted to 〈x〉. �
Remark A.2. In particular, we can take K = F , the algebraic closure of F . On the other 
hand, if F is finite then K can be taken to be its unique degree-six extension.
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