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1. Introduction

The space of arcs X, of an algebraic variety X was introduced by J. Nash in the 60’s
[20]. He expected to detect from arc families those components of the exceptional locus of
the resolutions of singularities Y — X which are invariant by birational equivalence. The
space X is an intrinsic object associated to X which allows to construct invariants of
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the variety: J. Denef and F. Loeser [4] made a systematic construction of some invariants
of X using motivic integration on X .. They also considered X, together with its scheme
structure, an idea which was further developed by S. Ishii and J. Kollar [13].

Precisely, J. Nash asked “how complete is the representation of essential components
by arc families”, that is, what essential valuations are determined by the irreducible
components of the space of arcs X579 centered at some singular point of X. Divisorial
valuations whose center appears as an irreducible component of the exceptional locus of
every resolution of singularities of X are called essential valuations.

The arc families considered by J. Nash correspond to certain fat points P of X.
These fat points are stable points, as defined by the author in [23] lemma 3.1 and [24]
definition 3.1 (see also [25]). It is natural to expect that those geometric properties of
X, with respect to an arc family are reflected in the algebraic properties of the local
ring Ox__ p. An important role is played by the following algebraic property: the ideal of
definition of a stable point P of X, in a neighborhood of P, with its reduced structure,
is finitely generated ([24] theorem 4.1, see 2.4 below). This implies that the complete
local ring (9/X;p is a Noetherian ring ([24], corollary 4.6).

Most advances on the Nash program on arc families use our Curve Seletion Lemma
([24] corollary 4.8) which is an easy consequence of the previous property, and is valid
over a perfect field of any characteristic. For instance, if dimOx_ p = 1 then P is the
generic point of an irreducible component of X9 ([25] corollary 5.12). This is what
occurs for essential valuations in toric varieties ([13] theorem 3.16), for nonuniruled ([16]
theorem 3.3) and for terminal valuations ([8] theorem 3.3). Known counterexamples
involve a local ring (’XM\ p of dimension greater than or equal to 2: for the counterexample
in [13] see [25] remark 5.16, and for the ones in [14] see example 4.13 below. On the other
hand, essential valuations are characterized in different ways: minimal elements in the
cone for toric varieties ([3] theorem 1.10 and [13] section 3), nonruled ([1] proposition 4)
and some divisorial valuations with discrepancy 1 (resp. 2) over certain canonical (resp.
terminal) isolated singularities ([7] lemma 5.2 and [14]).

The local rings (’)/X: p involved in these results and examples have nevertheless a
simple algebraic structure: nonreduced curves and some mildly singular surfaces. But
in general their structure is much more complicated. Our purpose in this article is to
develop appropriate algebraic tools for computing the local rings O/Xoo\ p, P a stable
point. We construct (Corollary 4.11) a presentation of (O/X: p by concrete generators
and relations:

o —

Ox_.p

K(P) [{Xjrn}jrimyec]] / I

1

where P = P.p is the generic point of the family of arcs with contact e > 1 with
an exceptional divisor E and the cardinal of C is e(@E + 1). Here kg is the Mather
discrepancy of X with respect to E (see [12], [5]). This provides a framework to recover
geometric properties and invariants of a variety X. We apply our result in Corollary 4.11
to understand the geometry of the space of arcs in the examples of [14] (Example 4.13).
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If X is smooth at the center Py of a stable point P of X, then the local ring Ox__ p
is regular and essentially of finite type over some field. Applying the Motivic Change of
Variables formula ([4], lemma 3.4), it is proved that dim Ox__ p,, = e(kg + 1) where kg
is the discrepancy of X with respect to E' (Proposition 2.6). Assuming furthermore that
char k = 0, we give an explicit description of a minimal set of generators of P.p, i.e. a
regular system of parameters of Ox__ p, -

If X is not smooth at Py, let X — A¢ be a general projection. A set of generators of
the image of P, in (A)., provides a set of generators of P.r ([25], prop. 4.5). From this
it follows that the embedding dimension of the ring OX/W\pE » is bounded from above by
e(kg + 1). A further work has been done by H. Mourtada and the author [19] to prove
that this actually defines a minimal system of coordinates of (X, P.g) and to extract
some consequences about the dimension of the ring OX/OOE =

A study of the graded algebra associated to the divisorial valuation vg is crucial in
our study. One of the main ideas in our proof is to define some “approximate roots”
{@jr}mes in gr,, Ona p,, where X — A% is a general projection (Definition 3.4). The
techniques used here are similar to those used by B. Teissier ([28], [10], [27]) and are of
independent interest from the point of view of valuation theory. Although the g¢;,’s do
not generate gr,, Opa p, (in general gr, Oya p, is not finitely generated for d > 3), they
generate a localization of gr, Oua p, modulo étale covering (Theorem 3.8). This is done
in section 3. In section 4 we describe minimal coordinates of (A%),, at the image Pﬁ;
of P.p in (A?),, from the gj»’s. From this we obtain a regular system of parameters of
Ox_ .p,p if X is smooth at Py (Theorem 4.8), and a system of coordinates of (Xoo, Peg)
for general X (Corollary 4.10).

2. Preliminaries

2.1. Let k be a perfect field. For any scheme over k, let X, denote the space of arcs
of X. It is a (not of finite type) k-scheme whose K-rational points are the K-arcs on X
(i.e. the k-morphisms Spec K[[t]] — X), for any field extension k¥ C K. More precisely,
Xoo = liin X, where, for n € N, X,, is the k-scheme of finite type whose K-rational

points are the K-arcs of order n on X (i.e. the k-morphisms Spec K[[t]]/(t)"*! — X).
In fact, the projective limit is a k-scheme because the natural morphisms X, — X,
for n’ > n, are affine morphisms. We denote by j, : Xoo — X,, n > 0, the natural
projections.

Given P € X, with residue field x(P), we denote by hp : Spec x(P)[[t]] - X
the induced k(P)-arc on X. The image in X of the closed point of Spec x(P)[[t]], or
equivalently, the image Py of P by jo : Xoo — X = Xy is called the center of P. Then,
hp induces a morphism of k-algebras h%, : Ox jo(p)y — (P)[[t]]; we denote by vp the
function ordthgj 1 Ox jopy = NU{o0}.

The space of arcs of AY = Spec k[z1,...,zn] is (AY)oo = Spec k[X, ..., X, ]
where for n > 0, X, = (X1.ny...,XnNm) is an N-uple of variables. For any f €
klz1,...,zn], let D07  F, t" be the Taylor expansion of f(>° X, t"), hence F, €
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k[ Xo, ..., X,). If X C AY is affine, and Iy C k[x1,...,2y] is the ideal defining X in
AN then we have Xo, = Spec k[X,, ..., X,,,...] / {Fulnso0 rerx)-

2.2. Forrym € N, 0 < r < m,let A" = kl[z1,...,2]][zr41,..., 2] and let
X C Spec A" be an affine irreducible k-scheme. A point P of X, is stable if there
exist G € Ox__ \ P, such that, for n >> 0, the map X,+1 — X,, induces a trivial
fibration

Jnt1(Z(P)) N (Xni1)a — jn(Z(P)) N (Xn)a

with fiber A¢, where d = dim X, Z(P) is the set of zeros of P in Xu, jn(Z(P)) is
the closure of j,(Z(P)) in X,, and (X,,)g is the open subset X,, \ Z(G) of X,,. This
definition is extended to any element X in X}, being X}, the subcategory of the category
of k-schemes defined by all separated k-schemes which are locally of finite type over
some Noetherian complete local ring Ry with residue field & ([25] def. 3.3). Note that
X, contains the separated k-schemes of finite type and it also contains the k-schemes
Spec E being R the completion of a local ring R which is a k-algebra of finite type. In
[24] and [25] a theory of stable points of X is developed. One important property of
these points is the following:

Proposition 2.3. (/25], prop. 8.7 (iv)) Let P be a stable point of Xo. For n > 0, let P,
be the prime ideal PN Om, where j,(Xoo) is the closure of jn,(Xso) in Xy, with the
reduced structure. Then we have that dim (’)m p, s constant for n >> 0, and since

dim Ox_ p < sup,, dim Om7
it implies that dim Ox_ p < o0.
And the main result in the theory of stable points is:
2.4. Finiteness property of the stable points. (/24] th. 4.1, [25] 3.10)

Let P be a stable point of X, then the formal completion O(X p of the local ring

oo)wda
of (Xoo)rea at P is a Noetherian ring.
Moreover, if X is affine, then there exists G € Ox_ \ P such that the ideal
(O(X )md) is a finitely generated ideal of (O(Xoo)red)G' In particular PO(x_),..,P

is finitely generated.

Besides we have (Q/X\p = (’)(X ([25] th. 3.13). Hence, from 2.4 it follows that
the maximal ideal of O/X\p is POx_ ; x..,p, and even more, pn— P"(’g: p for every n > 0

(see [2] chap. III, sec. 2, no. 12, corol. 2). Therefore, if P is a stable point of X, then

oo)re(h

embdim (’f(:p = embdim O(x_ ), .,,p-
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Though this article we will consider étale morphisms. The following holds:

Proposition 2.5. Let X, Z € &) and let 0 : X — Z be an étale k-morphism. Then we
have

Xoo & 70 7 X

in particular, X is étale over Z,. Therefore, the morphism 04 : Xoo — Zoo induces
a map

{stable points of Xoo} — {stable points of Zoo}

and, if Q) is a stable point of Xoo and P its image by the previous map, then Oz p —
Ox...q s étale and

Ox0 =07 p @uip) #(Q). (1)

Proof. We may suppose that Z = Spec A, X = Spec B where B = (Alz]/(f))g, f,9 €
Alz] and the class of f/(z) in B is a unit ([22], chap. V, th. 1). Then the stability property
in [4] (see also [25] (8) in 3.4) implies that

Xoo = Spec (Axc[Xo] / (Fb))g,

where As = Oz_ . From this it follows that X, = Zo xz X. Moreover, for n > 0, we
have

Xn = Spec (An[Xo] / (F0))g,

that is, X,, & Z,, x z X. From this, the stability property [4], lemma 4.1, and the definition
of stable point, it follows that, if @ is a stable point of X, then its image P by o0 is a
stable point of Z..

For the last assertion note that, if X = Spec C’)/X-Q\D, being Q) the center of @ in
X, then @ induces a stable point Q in X, because hg : Spec k(Q)[[t]] = X factorizes
through X , and we have

Ox.@ =05 4o 2)
Analogously, (”Zoo\,p = (9/2;3, where 7 = Spec (O/ZE and P is the stable point of

~

Z~ induced by P. Therefore, in order to prove (1) we may suppose that Z = Spec A,
X = Spec B where A and B are complete local rings and X — Z is local étale, hence
B = A ®p,) k(Qo) ([22] VIII corol. to lemme 2 and [11] III exer. 10.4). Now, X, =
Zoo Xz X, therefore
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Boo = Aoo ®K,(P0) ’%(QO) and (BOO)Q = (Aoo)P ®H(P{)) K’(QO)'

Therefore (Ao)p — (Boo)q is étale, hence (@ — (Bso)q is also étale, and from [22],
VIII corol. to lemme 2, it follows that (Buo)@ = (Ass) P ®@w(p) £(Q), thus (1) holds.

The inequality in Proposition 2.3 may be strict. However, if X is nonsingular at Fp,
then we will next show that equality holds.

Proposition 2.6. Let P be a stable point of Xoo. If X is nonsingular at the center Py of
P, then the ring Ox__ p s reqular and essentially of finite type over a field, and we have

dim Ox_,p = sup,, dim O x5 (p), -

Proof. The first statement is prop. 4.2 in [25]. The second one also follows from the proof
of [25], prop. 4.2. In fact, by Proposition 2.5 and since there exists an étale morphism
from a neighborhood of P to a subset of A};’d_r, where d = dim X, we may suppose
that X C AZ"dir. In this case we have

OXOC:OX[K17""K7L7"'] and Ox,n:(/)x[il,...,& HZO

nL

where X, = (X1, ..., Xan), n > 1. By 2.4, there exist a finite number of polynomials
Gi,...,Gs,G € Ox_ such that P = ((Gy1,...,Gs) : G™). If ny € N is such that
contains G1,...,Gs, G, then k(X ,y,...,X .) C Ox_ p. This implies

ny -

05 )
that

OXao,P = k(ino-i—lv""in"") (29 Omvpno

hence we conclude the result.

2.7. Let X be a reduced separated k-scheme of finite type and let v be a divisorial
valuation on X, i.e. v is a divisorial valuation on an irreducible component of X. Then
there exists a proper and birational morphism 7 : ¥ — X, with Y normal, such that
the center of v on Y is a divisor E of Y. We also denote by vg the valuation v. Let
Too * Yoo — Xo be the morphism on the spaces of arcs induced by 7. Let Yo’i"eg be
the inverse image of E N Reg(Y) by the natural projection j¥ : Y., — Y, which is
an irreducible subset of Y., and let Ng be the closure of noo(YoEwg). Then Ng is an
irreducible subset of X, let Pg be the generic point of Ng. More generally, for every
e>1, let Yo = {Q € Y / vo(Ig) = e}, where I is the ideal defining E in an open
affine subset of Reg(Y") (the set VEPs will be also denoted by YF if Y is nonsingular).
Then Y7 is an irreducible subset of Y., let N.g be the closure of 7, (Y}foEreg ) and
P.r (also denoted by Pjﬁ;) be the generic point of N.g. Note that P.g only depends
on e and on the divisorial valuation v = vg, more precisely, if 7’ : Y/ — X is another
proper and birational morphism, with Y’ normal, such that the center E/ of v on Y’ is a
divisor, then the point P.gs defined by e and E’ coincides with P,r. We have that P.p
is a stable point of X, ([25], prop. 4.1, see also [24], prop. 3.8).
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2.8. With the notation in 2.7, the image of the canonical homomorphism dm :
7*(AQx) — Ay is an invertible sheaf at the generic point of E. That is, there
exists a nonnegative integer kg such that the fibre at E of the sheaf dr(m*(A%Qx)) is
isomorphic to the fibre at E of Oy(*i{?\EE). We call @E the Mather discrepancy of X with
respect to the prime divisor E. Note that %E # 0 implies that 7 is not an isomorphism
at the generic point of E, and that 7<:\E only depends on the divisorial valuation v = vg.
We have:

sup,, dim OM7(PEE)W, =e (kg +1) (3)

([4], lemma 3.4, [9], theorem 3.9). Hence by Proposition 2.3 we have

dimOXoo,PeE <e (EE + 1).

Moreover, let P be a stable point of X, and let Py be its center. If Py is the generic
point of X then vp is trivial. Otherwise, vp is a divisorial valuation ([25], (vii) in prop. 3.7
and prop. 3.8), i.e. there exists 7 : Y — X birational and proper such that the center of
vp on Y is a divisor F and there exists e € N such that vp = evg. There exists a stable
point PY € Y, whose image by 7o is P ([25], prop. 4.1). Therefore P¥ O PY; and
P O P.p. Now, assume that X is nonsingular at Py, and recall that in this nonsingular
case we have EE = kg, where kg is the discrepancy of X with respect to F, which is
defined to be the coefficient of £ in the divisor Ky, x with exceptional support which is
linearly equivalent to Ky — 7*(Kx) ([6], appendix). Applying prop. 2.6 and lemma 4.3
in [4] we conclude

Corollary 2.9. Let P be a stable point of Xo,. Suppose that X is nonsingular at the center
Py of P, and that Py is not the generic point of X and vp = evg. Then Ox__ p is a
regular ring of dimension
dimOXomp =ckg + dimOym)PY.
In particular
dimOX(aneE = e(kE + 1)

The following question is open:

Question 2.10. Let P be a stable point of X, and suppose that X is analytically ir-
reducible at Fy. If the local ring Ox__ p is regular, is X nonsingular at the center Fp
of P?
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3. On the graded algebra of the local ring of a smooth scheme associated to a
divisorial valuation

From now on, let k be a field of characteristic 0. Through this article, we will denote by
k <wy1,...,yr > the henselization of the local ring k[y1, . . . 7yr](y1,...,yr)a being y1,..., Y-
indeterminacies (see [22] for more details on henselization).

Let n : Y — Aﬁ be a k-morphism dominant and generically finite, where Y is a
nonsingular k-scheme, let F be a divisor on Y and let Py be the center on Ai of the
valuation defined by E. In this section we will define elements {g; , } ;)7 in the fraction
field of Opa p, (Proposition 3.3) whose initial forms generate a localization of the graded
algebra gr,,Oua p, modulo étale covering. In section 4 we will prove that they have
the property of determining a basis of Pfg / (Pfg)g, being Pﬁ; the image by 7., of the
generic point of Y (see 2.7). From this and applying Proposition 2.5, we will conclude
analogous results for a smooth surface X and a divisorial valuation on X (Theorems 3.8
and 4.8).

Let us apply the description of the morphism 7 appearing in [25], proof of prop. 4.5
(see (4) below). First, we may suppose that Y is an affine k-scheme. In fact, we may
replace Y by an open affine subset which contains the generic point g of E. Let u € Oy,
where U is an open subset of Y that contains g, such that u defines a local equation of
E. Since 7 is dominant and generically finite, there exist local coordinates z1,...,z4 in
an open subset of A? that contains 7(£g) such that the image of z; in Oy, is g u™,
where m; > 0 and g is a unit in Oy ¢,,. By restricting U and adding a m;-th root of g, we

* where

can define an étale morphism ¢ : U — U such that the image of 21 in O is uy”
uy is a local equation of the strict transform Eof EinU. Moreover, since char k = 0,
and Q. @ K(Y) = Qy ® K(Y), we may restrict U and U and define {u1,...,uq} C O,
{z1,...,24} C Oy, where V is an open subset of Ag, determining respective regular
systems of parameters in a closed point yg € E and in 1o ©(yo), and such that, if we

identify x1,...,xq with their images by 7* : Ovntye) — Of o’ then

x1  =u
_ Y ma
T2 - Zl§i§7n2 )\2>Z up +up T Uz
— A m3
r3 = Z1gigm3 Az i(ug) ui +uy™ ug
...... 4 1)
_ ma (
Ts =D icicmy MoilUzy . us—1) Uy Ul U

Ts4+1 = Us+1

Tq = U4

where 0 = codimya 1n(¢g),

my < ordy,x; =min{i / \j; #0} for 2 <j <94,
0<mg <mg < ... < mg,
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Nji(ug, .. uj—1) € E[[ug, ..., uj—1]], for 2 < j < 4,0 < i <mj, and, given j' < j, if i <
mjs then \;; € k[[ua, ... ,uj_1]]. Moreover, since z; —u} " u; belongs to k[[u1,...,u;j_1]]
and is integral over k[u1, . .., Ud](u, ... uy), it is also integral over kfu1, ..., uj—1](u;,...ou;_1)-
Therefore, after a possible replacement of yo by another point in an open subset of ﬁﬁE,
we may suppose that, for 2 < j < § and 0 < i < my, Aj,(ug,...,uj—1) belongs to
the henselization k < ug,...,u;—1 > of the local ring kfua, ..., uj—1](us, .u;_,), and, if
i <mj,j <j,then \;; belongs to k < ug,...,uj_1 >.

Besides, from the expression (4) it follows that there exists an open neighborhood
of yo in E whose closed points y(, satisfy the same property, i.e. there exists a regular
system of parameters of y, and of 5 o ¢(y;) for which (4) holds. In fact, replace u; by
uf = u; + ¢; mod ug, for 2 <4 < d, where (¢;); lies in an open subset of ka1, Hence,
we may suppose with no loss of generality that

)\j,i(UQ,...,uj_l)€k<u2,...,uj_1> f0r2§j§5, OS’LSmJ

ifi <my,j’ <j, then \j; € k <ug,...,uj—1 >
if Aji(ug,...,uj—1) # 0 then it is a unit in k < ug,...,u;—1 > (5)
Ajm; (U2, ... uj—1) is a unit, for 2 <j <d.

Note that U is nonsingular. Note also that A%Qy is an invertible sheaf, hence the image
of dn : n*(A4y) — A%Qy is an invertible sheaf. The order ag in E of the corresponding
divisor is equal to the order in F of the image of d(n 0p): (noe)*(AQy) — /\dQ So,
from now on, after a possible replacement of Y by U and of n:Y = Albynoy: U— Vv,
we will suppose that (4) is a local expression of 7. Besides, from (4) it follows that:

ag=m1+...+ms— 1. (6)
Lemma 3.1. Let A be a finitely generated k-algebra and let 6 : Y — Spec Alz,y] be a

k-morphism, where x,y are indeterminacies. Let j, 2 < j < d+ 1 and suppose that there
exists a multiplicative system S;_1 of Alx] and there exist elements

lipe S Azl for2<j' <j—1
such that, if we set vj := 0%(1;) for 2 < j' < j—1, then {uy,va, ..., vj—1,Uj,...,uq} i

a regular system of parameters of Oy,y,. Suppose that the images of x,y by 0% are given
by x — ul™ and

Y= Z )\i(vg, e 7Uj—l> ull + u;” o mod (ul)m—H (7)

my<i<m

where m > my, 0 € Oy, and Xi(va,...,vj—1) €k <va,...,v_1 >. Set



A.J. Reguera / Journal of Algebra 494 (2018) 40-76 49

¢ =ged({mipu{i/ N#0}),  Bor=mi, e = [o

Bre1 i=min{i / A; #0 and g.c.d{Po,...,Br,i} < e, }and

ert1 = g.c.d{Bo,...,Br41} forl <r <g—1, where g is such that e; = ¢
,Bg+1 =m.

(8)

Let ng = 1 and n, ::ere—;lforlfrggandletﬁozﬂo and B,, 1 <r < g+1, be
defined by

Br - nr—lﬁr—l = ﬂr - ﬂr—l; (9)
hence we have

B,;> Ne_1 B,y for1<r<g, and Bgtl > ng?g; (10)
n.B, belongs to the semigroup generated by By, ...,0,_1, 1 <r<g+1.
Then, there exist an open subset U of Y containing £g and a sequence of integers {is ),

such that

(i) i1 <iy < ...<in =PByq and {is}y C {Bo}U Uit (ne—1B,_1, B,

(it) {B,}21 is contained in {i1,...,in}, that is, there exist s1 < s3 < ... < 8441 := N
such that is, = B, for1<r <g+1,

(iii) for each closed point yi in U N E there exist a regular system of parameters
{ur, vy, v, ugt of Oy, where v = vi+ci, wp = ui+ci, (¢;)i € k-1,
and there exist {h1 = y, ha,...,hn} satisfying: given s, let r, 1 <r < g+1, be
such that ny_18,_, <is < B, (orr=11ifs=1 and i, = B,), then
(a) hy € T4 .. .To_lSj:llA[x,y], where T, is the multiplicative part generated

by g = hs_, (resp. qo :=x1) for 1 <r' <r —1 (resp. 7' =0),
(b) the image of hs in K(Oy,,) belongs to Oy, and if we identify hs with its
image in Oy, then

hs = Zisgigmm As,i(Vhy s Ué‘f(l)) uj o (11)
T i
+ Vomr (Vs V) wf 0 mod (ug)™

where s i, Vs mn €k < Vh, oV > Asl #0, Vs,m( S a unit and m() =

/
j7
m+(ny — 1B, + ...+ (np_1 — 1)B,_,. Moreover, forr <1’ < g, let ﬂg) =

B+ (n1 —1)By + ...+ (n.—1 — 1)B,_ then we have

min {z / Asi #0 and g.c.d{e._1,85, ... ,ﬁi,rll,i} < ep_1 } = ﬁg) (12)

and X, 18 a unit.
S;BT(,/)

(¢c) Fors>2,if s=s,_1+1 (resp. s,—1 +1<s), then

b b? nsh
h ;:qOO...qu Py (ﬁ, ZQ,...,lj1>
90 " dp
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where h = (gr—1)" = (resp. h = hs_1), p=1—2 (resp. p =1 —1), the integers
{5,170, _ are the unique nonnegative integers satisfying bs, < n,,, 1 <1’ < p,

and nr—lﬂr—l = Zogr/gy-_2 bi’ﬂr/ (T’@Sp. ij,S—l = Zogrlgr—l bj’,r’ﬁj,r’% ﬁs =

(/\S1 Bl)bf ...()\Sp 3 )bi is a unit, and Ps € k[z,vh, ... »U;—1] 18 such that
5 Pp
, , OP; , , . . ' /
Py(\,v), ... an—l) =0, E(A’U” . ,vj_l) is a unit in k < vy,...,v5_1 >,
(13)

where A = (Xg—1,3,_, )" (resp. A= Njs_1,.,_,)-

Proof. First note that (10) follows from (8) and (9) (see [28] 2.2.1 in the Appendix).
Note also that there exists an open neighborhood of yo in E such that if y;, is a closed
point on it and {uy,v5,...,v5_;,u, ..., uy} is a regular system of parameters of Oy,
where v = v + ¢;, u} = u; + ¢;, (¢;); € k%1, then the integers defined by (8) and (9) for
the expression of the image of y in terms of {u1,v5,...,v5_;,u}, ..., uy} are the same
as the ones defined for the expression in (7). Thus, to prove the lemma, it suffices to
show that, after a possible replacement of yy in an open subset U N E of E, there exist
{is}2, and {hs}, satisfying (i), (ii) and (a), (b) for the image of hs in K(Oy,y,)
(hence vy = va,...,vj_; = v;_1 in (11)) and (c).

We will define {is}Y ; and {hs}¥; by induction on s. First, after a possible replace-
ment of Yy in an open subset of F, we may suppose that, for every ¢ such that A; # 0 in
(7), A; is a unit in the ring

Rj,1 ::k‘<1}2,...,’l)j,1 >

Then, for s = 1, let 41 := min{i¢ / A\;(va,...,vj—1) # 0} and hy := y. It is clear that
By < i1 < By and that (a) and (b) hold for s = 1. Now, let s > 2 and suppose
that i1 < ... < i5_1 and hy,...,hs_1 are defined and satisfy the required conditions.
If is_1 = Bgﬂ then set N := s — 1. If not, then i;_1 < Bg+1' Thus, there exist r,
1<r<g+1lsuchthatis_q € {8, _1}Umr_18,_1,0,) - Let 1 < s2 < ... < 81 <s5—1
be such that i, , = 3,/ for 1 <7/ <r—1and let qo :=z, ¢ :=hy, for 1 <o/ <pr—1.

If is_y = B,_, recall that Ao—15,_,(v2,..,05-1) € Rj—y \ {0}, thus (\,_; 5 )"
belongs to R;_; \ {0} and hence there exists an irreducible monic polynomial Ps; €
k[z,va,...,vj_1] such that

P,
PS(()\S_17ET71)7LT,U2, s 7’Uj*1) =0 and oz (()‘s—1ﬁr71)m77)27 e 7’Uj*1) 7& 0

Moreover, after a possible replacement of 1y in an open subset of E, we may suppose
that
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PS(()\S—I,BT_l)nT’U%'"7,0]‘*1) =0 and
14)
0P, . o (
E(()\S_L@_l)"", ...,Uj—1) is a unit in R;j_4.

Analogously, if is_1 € (n,_18,_1,3,), then after a possible replacement of o in an
open subset of E, we may suppose that there exists an irreducible monic polynomial
P, € k[z,vq,...,v;_1] such that

OPs

Ps()\s_17i571,1)2, ey ’Uj_l) = O7 E

()\3_1,1‘571,. N 7Uj—1) is a unit in Rj—l- (15)

Ifig_1 = B3, 4, let bS5, = byr_1,7, 0 <1’ <r —2, be the unique nonnegative integers
satisfying by_q1,» < n, for 1 <7’ <r —2, and nr_lﬁr_l =3 o<ri<r_2 br_l,r/ﬁ,d, and
let @, := ()‘sl,ﬁl)bf (A, LB 72)1’:—2, which is a unit in R;_q, such that the image of

s b — B _
qgo ---q,7 3 by 6% is equal to T u; Pr-1 nod () r=1Pr—1F1 Set,

r—1,0 r—1,r—2"

b’l‘— b’!‘—l r— _s rT— =1
hy =g 0 g Py (qb“ (g ;2) 127...,1]-1) (16)
g

and i, := (n,_1 — 1)3,_, + min {z /i>B,_q, As—1,i # 0}, unless we have A\s_1; =0
for all i > f3,_, which implies 7 —1 = g, then set i, := Bg+1' From (14), (16) and Taylor’s
development for P it follows that, if s < N (resp. s = N) then the vg-value of the image
0%(hs) of hy in Oy,y, is ig > Np_1B,_1 (resp. is > iy = Eg+1), and the exponents of uq
in 6%(hs) with nonzero coefficient (see the left hand side of (11)) are determined by the
ones in 6*(h,_1) by adding (n,_1 — 1)8,._,, therefore n,_1,_; < i, < B, and (11) and
(12) hold for s. Moreover, for r <1’ < g, the coefficient As,ﬁ@ in uf’(") of 0%(hy) is equal,
modulo product by a unit, to (/\571737‘71)"“1’1 /\Sil’ﬁirl;, therefore it is a unit, and
(b) is satisfied. Besides, h, € T, .. .ToflSj*_llA[x,y], hence (a) also holds.

If n.—_18,_1 < is—1 < (B, then e,_; divides is—; (by (b) applied to s — 1) and
there exist unique nonnegative integers {b2 }/,_} satisfying b5, < n, for 1 < 7' <
r—1and is.1 = > gcepy b;ﬁ,Br, (because n,_18, ; < is_1). Then, let 7, :=

s s <1 . s . 5 by_
()\81731)171 (A, 1B 71)”7‘*1, which is a unit in R;_1, such that the image of qgo ceg

by 6% is equal to fi,uy" " mod (up)%~1F! and set

r—1

s b, Ty hs_

hs = qgoqu—a PS (#78;; l27"'7lj—1> (17)

0
o~ dr—1

and is ;= min{i /i >is_1, As; # 0}, unless we have A\;_1,; = 0 for all i > 3,_;, which

implies r — 1 = ¢g and then we set iz := Bg+1~ It is clear that (a) holds and, from (15)

and (17), it follows that, if s < N (resp. s = N), then the vg-value of the image 6%(h)

of hg in Oy, i8 15 > i5-1 > np_18,_1 (resp. > iy = Bg-ﬁ-l > ngﬁg), and the exponents
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of uy in 6%(h,) with nonzero coefficient are the same as the ones for by 6%(hs_1), hence
nr—1B, <is < B, and (11) and (12) hold for s. Moreover, for r < 7’ < g, the coefficient

A, PIa in ulﬁr' of Hﬁ(hs) is the same, modulo product by a unit, as the coefficient Aoy 5

of 0%(h,_1), therefore it is a unit, and (b) is satisfied. Besides note that g{"”) = 3, for
1 <r < g+1, hence from the previous construction it follows that {5,}71] {zs}9 1
hence the result is proved.

Corollary 3.2. Let j, 2 < j <¢. Set A:=k[zxa,...,zj_1],z=z1,y=x;, and let 0 : Y —
Spec Alx1,z;] be the composition of n: Y — A% with the projection AY — Spec Alzy, ;).
Suppose that the hypothesis in Lemma 3.1 holds and let the image by n' of x; be given
by

gi= Y N(vayvmn) ub Y wg mod (ug)™ (18)

my<i<m;

i+1
where )\' J(v2,. .., v1) € Rjoy = k < wag,...,uj_1 >. Let {f, ;(f”(_), {eﬂ o
{n; 372, and {ﬂ” g’+1 be the integers defined by (8) and (9). Then there exist an
open subset U of Y and, for each point y, in U N E, a regular system of parameters

{ur, vy, vj g, ult of Oy, where v = v + ¢, up = ui + ¢, (¢i)i € k41, and
there exist elements {q;0 = 1,451, --,Qjg,+1} where
eeT TS| A ]
dj,r r—1 0 Pj—1lT1,L2,..., Tj—1,Lj
being T, the multiplicative part generated by q; .+, such that the images of {g;r g’H n
Oy, are given by
B 3,
G = (vl V) T mod (u1)?s-*1 - for 0 <7 < g; (19)
Bjg:+1 B
Qg1 = Migyr1(Va, ..o, V) uy T g mod (uy)Pior+171
where i, (vy, ..., v5_1) is a unit in k <wvy,...,v;_; > for0<r <g;+1.

Proof. This is consequence of Lemma 3.1. In fact, after a possible replacement of yg in an
open subset of E, we may suppose that there exist {is} ; and {hs}_, satisfying (i), (ii)
and (a), (b) in Lemma 3.1. Let g0 := z1, ¢j1 := hs17 gy = hs,  IE )‘sg~+1,ﬁg+1 =0

in the expression (11) for nﬁ(hsgﬁl) then let g 4,41 :=h Otherwise, after a possible

Sgj+1°
replacement of yg in an open subset of E, we may suppose that there exists an irreducible
monic polynomial P € k[z,va,...,v;_1] such that P(X

8_P( _
0z ng+17ﬁgj+l

ng+17§j,gj+1’v2’ s 7Uj—1) =0 and

) is a unit in R;_;. Then we proceed as in (17), that is we set

, _ bio . Vi B sy l I:
4j,9;+1 = qu q] 9; bio bj,gj 5y 02500y l5—1

950 7,95
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v_vhere bj 055 bjg; are. nonnegative integers satisfying b;, < nj,, 1 < r < g;, and

— . big.: g;+1
Bjg+1 = Logreg, birBir and = (A, 5 ) (A, 5 )7 Then {g;, ]2y sat-
isfy the required condition.

Proposition 3.3. There exist a point yo € E, a regqular system of parameters {u,va,...,vq}
of Oy,y, and a regular system of parameters {x1,...,xq} of Opa ) such that the
following holds:

(1) If we identify x1,...,xq with their images in Oy, then
1 = u™
xj = Zmlgigmj Nji(v2, . yvjm1) ut +u™ vy mod ()™ for2< <6

Ty =v. fordo+1<r<d,
where 0 < mp < mg < ... < mgq and, for 2 < j < 6, if we set Rj_1 =
k< wg,...,vj_1 >, then Aj;(va,...,vj_1) € Rj_1, A\j; # 0 implies that it is a
unit in Rj_1, Njm; (v2,...,vj-1) is a unit in R;_1 and
if i< mj/,j' < j, then )\j,i € Rj/,l. (20)
(i) For2 < j <6, let Bj := R; _1[T1,%5](2,,2,), let v; be the restriction of vy to B,
let BJ,O = ml,gjyl, . ,Bj,gj be a minimal system of generators of the semigroup

vi(B; \ {0}) and Bj7gj+1 = v;(I;), where I; is the complete ideal defined by the
restriction of v; to a general fibre of Spec B; — Spec Rj_q. Set

T ={1,0}u{(j,r)/2<j <6, 1<r<g;}, T:=T"UH{g+1)/2<75<0}
let us consider the lexicographical order in J and, for (j,r) € J, let

T =A0" ) e T [ () <G}y, Tie=AG") e /(') <)}

Then, there exist elements {q; r}(jryeg n k(z1,...,1;), more precisely,
Gr€ I Tih k... )] (21)
(' ETS,

where, for (j'r') € J},., Ty is the multiplicative system generated by qj: .+, such

that:

(a.2) qi0 == x1 and, for 2 < j < 6,0 < r < g; + 1, the image of q;, in the
fraction field K(Oy,y,) of Oy, belongs to Oy, and, if we identify q; , with
its image, then
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(b.2)
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Qjr = wjr(va,...,vj-1) uBir mod (’U,)EJ\T+1 for1<r<y;
Qg1 = Higy+1(va, vy 1) Wit vy mod (u) et (22)
where i (ve,...,vj_1) is @ unit in R;_1 for 1 <r < g; + 1.
For 2 < j <4, set ¢gjo = q10 = %1, €jr = g.c.d{Bjo,---,Bjr}, Njr =
eje];:l Jor 1 <r <gj;, andlet bjo,...,bj . be the unique nonnegative integers
satisfying

bj,r < MNjr for1<r < gj and Bj,gj—i-l = Z bj,rBjma (23)
0<i<g;

then, identifying q;,, with its image in Oy, , we have

dj,9;+1
b b Uj € OY7Z/0'

5,0 J«gj
950 ---Y.g;

(iii) Even more, for 2 < j < §, there exist nonnegative integers N; and s;1 < Sj2 <
.. < 859,41 = Nj, and elements {hj,s}iﬁl, such that qj, = hj,,, for1 <r <
g; + 1, and besides the following holds: given s, let r, 1 <r < g; + 1, be such that
Sjr_1 <8< sj, (resp. v =11if s < s;j1), then we have:

(a.3)
(b.3)

(c.3)

-1
hj7s S H(j/,rf)ejj*’r Tj’,r’ k[xl, R .Z’j}
the image of hj s in K(Oy,y,) belongs to Oy,y, and, if we identify h; s with
its image in Oy,y, then

1
hjs= Y Ajs,i(V2, .. v5-1) u
(r)

z,-,sgzgmj

m{" m(-r)-i-l
+’yjsm(_r)(v2,...7vj,1)u i wj mod (u)™i
18,
where njr—1f8; .1 < ljs < B ls—1 < ls, GG = By, iff s = sy,
Aj,s,i,7j787m5r) € Rj_q, )\j,syij’s,'yj&m;r) is a unit, and m;’ = mj +
(mig = DB+ 4+ (njr—1 = )B4
If s=sj,—1+1 (resp. s,_1+1<s), then h; s is equal to
Qo p, fij,sh 42,95 +1 Gj—1,9;1+1
70 7P »* bjo l?;’p’ qbz,o qbz,g2’ ’ bj-1,0 bj_lv-qj—l
450 4.0 2,0 92,4, 4510 - 9j—1,9;_4
N
where h = ¢;7"7" (resp. h = hjs_1), p =1 —2 (resp. p = r — 1), the
Js _
) . . ,
integers {b5 . }7,_o satisfy b3, < nj, 1< 0" < p,oand 1B, =

_ _ b bS
s ;. — S 7 — 3,0 e g
Zogwgr—Q bj,r’ﬂj,r’ (resp. ijs—1 = Zr'gr—l bj7r’6j,r’)7 Hjs = Hjo Hyp 18

a unit, and Pj s € k[z,ve,...,vj_1] is irreducible and satisfies
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OP;..

Pj,s()‘vv%"'avjfl) :07 9z

(A v2,...,v5-1) is a unit in Rj_1; (24)

where A = (Njs—1,i,,_1)"" 7" (Tesp- A= Njs—1,i,. 1)

Proof. The result is a consequence of Lemma 3.1 and its Corollary 3.2. First note that,

given j, 2 < j <4, if there exist {g;,r ffll in k(zq,...,x;) satisfying (22) and we define
L dj,9;4+1
lj = b S k(scl,...,:vj) (25)
5,0 7,95
950 -4,

where ¢; 0 = 21 and {bj,r}f’;o satisfy (23), and v; to be the image of [}, then v; belongs
to Oy,y, and besides

vj =7; u; mod (u) where y; is a unit in R;_;. (26)
In fact, with the notation in (22) we may take v, = %
R

Note also that, fixed j, 2 < j < 6, if (26) holds for every j' < j — 1, then the image
of z; in Oy, is given by

T = Z )\j’i(’Ug7 . 7’Uj,1) u' +u™ U mod (u)mj+1

may Szgm]

where \;; € Rj_1, u = w1, m; is the integer in (4), A;; # 0 implies that it is a unit in
Rj_1, A\jm, is a unit in R;_; and (20) holds (recall the conditions in (5)). Moreover, the
integers {Bj,r}ﬁjzo (resp. Bj,gj_‘_l) defined in (8) and (9) for the image of z; are a minimal
system of generators of the semigroup v;(B; \ 0) (resp. equal to v;(I;)). From this, and
defining v, to be the image of x,. for 6 +1 <r <d (i.e. v, = u,, § + 1 <r < d, with the
notation in (4)), (i) would follow.

Hence, in order to prove (i) and (ii), it suffices to show that, for 2 < j < §, there
exist {qj’r}ffll satisfying (21) and (22), where R;_; is defined taking v;; to be the
image of I;; for 2 < j° < j — 1 (see (25)). We argue by induction on j. For j = 2
the hypothesis in Corollary 3.2 is clearly satisfied (we may take S; = {1}). Thus, by
Corollary 3.2, there exist {qur}giﬁl satisfying (21) and (22). Now, let 7, 2 < j < 4 and
suppose that, for 2 < j/ < j — 1, there exist {qj/m}fiérl satisfying (21) and (22). Since
vjs is defined to be the image of l;;, 2 < j° < j — 1, the hypothesis of Corollary 3.2
is satisfied. In fact, there exists a multiplicative part S;_q of k[z1,...,x;_1] such that
H(j’,r’)ejjfl TJT}T, Elz1,...,zj-1] = Sj_flk;[xl, ...,xj_1], hence I;; € Sj:llk[xl, ce ]
for 2 < j' < j — 1. Thus, Corollary 3.2 assures the existence of {qjvr}ff:tl satisfying (21)
and (22). From this, we conclude (i) and (ii). Besides, from the proof of Corollary 3.2
(see the proof of Lemma 3.1), (iii) follows.
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Definition 3.4. The local expression in Proposition 3.3 (i) (or in (4) at the beginning of
this section) will be called a general transverse expression of n:Y — Ag with respect
to E. The elements {g;,}(; ey obtained in Proposition 3.3 (ii) will be called a system
of transverse generators formn:Y — Ag with respect to E.

Remark 3.5. For j = 2, By = k[x1,%2](5, 2,) 15 a two-dimensional regular local ring.
Then ¢2,0,92,15- - - 42.g5542,g.+1 € B2 is a minimal generating sequence for v ([26], theo-
rem 8.6). In fact, since Ry = k, if we apply Lemma 3.1 to y = x9 then all the A, ;’s in (11)
belong to k, hence we can take Ps(z) = z — (As—14,_,)"" (rvesp. Ps(2) = 2 — As—1,4,_,)
n (13). Hence ¢, € k[z1,z2] for 0 < r < go + 1, moreover we have ¢z 9 = 1,

i

7
@21 = T2 — Zi<52,1 A2i qpp° and, for 1 <r < gy,

n b2, r, b2 1 (i
q2,r+1 = Q2’27~’ — Caopr Qon ’ QQ27—1 f - Z €2,y qg,oo e qg,r
'Y:(’YOv---y'Yr)
where the by ,;’s are the unique nonnegative integers satisfying by ,; < ng; for 1 <
i <r—1,and n27TBQ,7, = Zog_i<r b27T,i327i,_the ~’s are nonnegative integers satisfying
¥i <mng for 1 <i<randng,By, <D vifa,; and capycay €K, c2, #0and ez, # 0
only for a finite number of 7’s.

Remark 3.6. Let j, 2 < j < 0. Set A := k[ve,...,vj_1], ¢ = @1, y = x; and let
6 :Y — Spec A[zq,x;] be defined by the morphism of k-algebras given by vj — vj/,2 <
i< i—1 x — nfaxy), i = 1,5 (see (18)). Setting l;; = v, 2 < j/ < j — 1, and
Sj—1 = {1}, the hypothesis in Lemma 3.1 is satisfied. Let us apply Lemma 3.1, then the
integers defined in (8) and (9) are {8;,}%5", {e;. ,«}T o {nj P}y and {B;,}72 gJH (see
Proposition 3.3 or Corollary 3.2). We denote by {¢} . i1 the elements {g, = hsr g5l
in 3.1 (iii).(a), hence satisfying

! ! !
qjﬂ‘ T]r 1° Tjok[vg,...,vj,1,$1,$j]

being T’ T, the multlphcatlve part generated by qj ./, and such that the images by 6* of
; ‘”*O are {n*(q; ) }72 o , thus given in (19). In fact, note that g¢;, is obtained from

q”byreplacmgvlbyq”iﬁt for1 <i<j—1.
q?O' 1,95

On the other hand, for 2 < j < 4, there exists a domain B;_; which is an étale
extension of kfva,...,v;_1] and contains A;;(ve,...,vj_1), m1 < i < m; (see (i) in
Proposition 3.3). Let ; be the valuation on Bj_i[z1, ;] extending v; and such that
vj(€) =0 for all £ € B;_1 (see (ii) in Proposition 3.3). Let gj1,...,jg,4+1 € Bj_1[r1, 2]
be a minimal generating sequence for v; defined as in Remark 3.5, i.e. gj0 = 1, ¢j1 =

xj — Zi<ﬁj,1 N (gj0)%0 and, for 1 <r < g;,

~ R ~ ~bj r o0 S - Yo e
qj,r+1 = qJ"JT —Cjr qJ"Jo . qJJT 1 § Ciy dj0---495r 1<r<yg; (27)
Y=(Y0,-++57r)
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sjrt1 . . o B a3 3
1 <i<r—1,ie bj,; <nj,; and "B, = 20§i<r bjriBji, We

have ﬁj,l(ﬂ% .. (jjr) > njﬁrﬁj’r for each sequence v of nonnegative integers in the right

where b;.; = b

hand side, and ¢; ., ¢j € Bj—1, ¢jr # 0 and ¢; , # 0 only for a finite number of 7’s.
Note that, for 1 <r < g; + 1, in the ring H:;lo T/;:/Bj_l[xl,xj] we have

Gy = Gr-L+h (28)

)

where 0, h € H:;é T’;;Bj_l[xl,:rj], ( is a unit and 7(h) > B

3.7. Now, let X be a smooth k-scheme and let v be a divisorial valuation on an
irreducible component Xy of X. Let Py be the center of ¥ on X and let R := Ox p,.
We consider the graded algebra associated with v, that is, gr,R := ®,cq+ pn/p, where
&t :=y(R\ {0}) is the semigroup of the valuation and, for n € &+,

on=1{heR/v(h)>n}, f={heR/v(h)>n}

Let m : Y — Xy be a proper and birational morphism such that the center of v on Y
is a divisor E, and let 7 : Y — A¢ be the composition of 7 with an étale morphism
Xo — Aﬁ, where d = dim Xj. Let us consider the notation introduced in this section for
the morphism 7, in particular, let {g;,}(es be a system of transverse generators for
n:Y — A with respect to E, (Proposition 3.3 (ii)). Recall that the center of v on A¢
is (z1,...,25) and let S :=k[z1,...,%d] (4. 05)-

There exists a proper and birational morphism Z — Ag with Z smooth such that the
center of v on Z is a divisor F. Since Oz r is the valuation ring of the restriction of v
to K(S), we have that Oz r < Oy, i.e. Oy,g dominates Oz p, hence, after restricting
to some open subset of Y, we may suppose that Y dominates Z, let 0 : Y — Z denote
the corresponding morphism. Note that we have

dj,9;+1
bj,gj

; € Ozp for2<j<0,
7,0
950 -4,

because these elements belong to K (S) and have v-value equal to 0; we also denote by v;
the element 1%97]:1
j,0  Pigj

95,0 95,9,

of Oz r (see Proposition 3.3 (ii)). Besides, the ramification index

¢ of Oy, over Oz p is equal to g.c.d.({8; . }(jr »)e7+). Thus there exist {a;,}(nes
a;r € Z, such that

z:= H q;jf € Ozrp and v(z)= Z ajB;, = e (29)
(g"r)eg+ (g'regx

Then,

v(o*(dz Advg A ... ANdvg)) =e—1
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and hence, if kr(A?) denotes the discrepancy of A? with respect ro F, we have
ap = ekp(AY) +e—1 (30)

Since S < R, the initial forms of the elements of k[z1, ..., x4] are well defined elements
in gr, R, and since ¢1,0 = 21, applying (21) in Proposition 3.3, by recurrence on (j,7) we
can define the initial form qj . of g;,, for every (j,7) € J. We have

-1
g€ [ T;L (9rR)
(3" rETS,

where, for (j/,7') € Jjry Ty is the multiplicative system generated by qjr. Let
E[{dj.r}(j,res] be the k-subalgebra of the fraction field K (gr,R) of gr, R generated by
the q;,,’s and, for 6 +1 < j < d, let x; be the initial form of z;. With this notation, the
following holds:

Theorem 3.8. The initial forms {q; };ryes of the system of transverse generators satisfy

the following properties:

(i) We have an isomorphism of graded rings

[0 &

H T {qj T}(jT' €T X5+17~'~7Xd] A[ueau_e}

(J,r)eTx

where deg(u) = 1, and A is a k-algebra which is étale over the polynomial Ting in
d — 1 variables k[va, ..., vq], with deg(v;) =0, 2 < j <d.
(i) We have an isomorphism

H Tjrgrl, ~ Blu‘,u™]
(4r)eg*

whose restriction to G is ®, where A ® k(Po) C B and the extension is étale.
Besides, the fraction field K(B) of B is k(FE).
(iii) For 2 < j <, the isomorphism ® in (i) restricts to

[
o~

Gj = H T;,} k {{qj’ﬂ"'}(j/,T’)EJj,gj+1U{(j,9j+1)}} Ajfl[Vj][ue%u_ej]

Ur)€T g, 41
where ¢; = g.c.d{B;,. | (j',7') € Jjgists A1 = k and Aj_y is élale over

k‘[VQ, Ce ,Vj_l] fOT’ 2 <3< 0.
(tv) For 2 < j <4, there exists a domain B;_1 étale over A;_q1 such that

+1| ~
Bj1 [{Ch o} U{a; 1z } =~ Bjo1 [y1.0:Ui2 - Yig+1] [
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where the y; . ’s are indeterminacies and J; is a prime ideal which is generated by
Nj,r 5,7,0 bj,r1 bjrr—119; ~. . ; 1
{yLr = Cir Yo YA yn T Ly, G € Bjoa. In particular, the previous

ring is a domain which is a complete intersection over B;_.

Moreover, for any domain C, any ideal in Clyi0,Yjz2,---,Yjg,+1] generated by
" . . b 1195 . L
{y; 77 —¢jor y1’0 0 y]j Ly ML ¢ € O, s a prime ideal.

Proof. First, we have that R = Ox Py ) k[m17...,xd]($17___,x5) =: S is étale, hence
R~ 3, k(Py) where we denote by R (resp. S) the completion with respect to the
maxmlal ideal. Since the valuation v on R (resp on S) can be extended to a valuation
7 on R (resp. on §) and we have gr,R = gryR (resp. gr,S = gryS) we conclude that
gruR = gr,S @ k(P). Therefore, in (ii) we may suppose that X = A¢ ie. R = S.
Keep the notation in Proposition 3.3. The morphism S < Oz r induces an inclusion

S: gr,S — gr,Ozp = K(F) [u’]
where x(F) is the residue field of F on Y, which contains k(va, ..., vg), and u, va, ..., vy

are indeterminacies, v;, 2 < j < d (resp. u) denotes the initial form of v; (resp. u), hence
deg(v;) = 0, deg(u) = 1. We have

[1 &

H To, k[{aio} U{az 17,

k[ue&m , u*e2,92]

P
and hence Gy & k[vy][u sz u~“92]. More precisely, the image of the ring in the left
hand side in the fraction field K(gr,Oz r) of gr,Oz p is in fact in gr,Oz r and is equal
to the ring in the hand side. Arguing by recurrence on j, 2 < j < §, it follows that

1

Aj_1[u® um*]

H TJ_T [{qj r }(J ) ET;, qJ+1]

(" r)€T 9,41

where ¢; = g.cd{erg,,....€jq,} = gcd{B;,. | (j,r') € Tjg+1t and Aj

is the minimal subring of k(F') containing k[va,...,vj_1] and pj . (ve,...,Vji_1),
tjr e (Vay ooy vio1) T for (§7r) € Jfy 11, hence Aj_q is étale over k[va,...,vj_1].
Therefore
@ @
G; = Ajqlv;l[u,u™%] and G = GsQ k[zst1,...,2q = Au®,u”*]
where A = As_1[vs,...,vq], hence (i) and (iii) hold.

In order to prove (il), let B be the minimal subring of x(F') containing k[va, ... v{]
and {\;i(ve,...,Vj_1)}e<j<dmi<i<m,;. From the construction of the h;,’s in Propo-
sition 3.3 (iii) (see the proof of (iii) in Lemma 3.1) it follows that, for every (j,1),
2<j<d,my <i<my, there exists h € []; e 7 T}, 1S such that the initial form of
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hiis Aji(va,...,vg)u‘. Now, let h € S = k[z1,...,25](5,,.. 2,) and let a := v(h). Then
¢; divides a and the image of h in Oy, is equal to A(vg, ..., vs)u® modulo w1, where
A(va,...,Vs) € B. Hence the initial form of h belongs to B[u®?]. Besides, it follows that
the set of elements of K(S) of degree 0 is precisely K (B), that is, x(F) = K(B). From
this (ii) follows.

For (iv), recall that, given n € N, a field F' containing a primitive n-th root of unity
¢ and an element b € F* = F \ {0}, if the class of b in F*/F*" has order m, then
there exists d € F such that X™ — d is an irreducible polynomial in F[X] and moreover

-b= H?:/gl (X™ — £4d) is the decomposition in F[z] of X™ — b in irreducible factors
(see for instance prop. 9.6 in [18]). In particular, if A is a domain containing a primitive
n-th root of unity and b € A is such that

b7 ¢ A for every n’ > 1, n/|n, then X™ — b is irreducible in A[z]. (31)
For j = 2, with the notation in Remark 3.5, let J5 is the ideal of k [y1.0,Y2,1, - - - Y2,
generated by {yy7" —car ylfo yble ! ygif 11192, where the y ,’s are indetermina-

cies. Let By = A1 = k and let us con81der the morphism of k-algebras

Ely1,0,92,15- - Y2,904+1] / Jo = E[{a1,0} U {az, !

sending g, 1 <7 < ga+1 (resp. y1.0) to Qo (resp. qu0). Since k[{qio}U{qe, 92" is
a 2-dimensional domain, to prove the isomorphism it suffices to show that for 1 <r < gy

b b b . a
the element yy3" — ca.r 4% Yo'i" - Yoy " is irreducible in

! b !l —
(k? (Y1055 y2,r-1]/ <{i‘/;2r/ — G2, y120 0'-~3/2,2r'71 = 1)) [Y2,r]

. b2 r b2, C g
ie. yl'jj ., y22T 1! does not have a n/-root for any n’ > 1 dividing ns ,.. In fact, suppose

that

n

b2, r.0 b rr—1 ag ar—1
Y10 - Yo2,r1 = E Ag Y10 Y2,r—1
a€Zy (32)

b2 !l —1

UPR b2,r/,0 r—1
mod ({ym, — o Y10 Yo }T/:1>

where n'|ng , Ay € k, the sum in the right hand side term is finite, then we may suppose
that (32) is homogeneous with respect to the degree, that is, for each @ in (32), we have

1 - ) . . .
n' (Z: 0 @i Ba Z) = na, (g, Since there exists at least one a in (32) and we have
no, = % where ez; = g.c.d.(By ¢, ... ,Ba,), | =7 — 1,7, and n'|ny,., we conclude

that n'eg, divides EQW and also ez ,_1, hence n'es, divides eg ,, that is n’ = 1.
Now, let j, 2 < j < §. Let us consider the notation in Remark 3.6. We have
B;_4 [{ql ot U{q;, gﬁl] ~ Bj_,4 [{ql oy Uidj, gﬁl} Besides, from (28) it follows
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that, for 1 < r < g; + 1, the initial form qj, of ¢, belongs to gry, (Bj_1[r1,7;]),
although ¢}, € T[], T';. 1, 1]z, z;]. Tt also follows that

+1| ~
Bj_1 [{(h ot Uid] P } = Bj [yLo,yj,l,-u,yj,ngrl] / J;
where J; is the ideal generated by {yjnjr —Cjr yl”O“J yJJTT 71, In fact, from the
same argument as in before it follows that, for 1 < r < g; and for any n’ dividing n; .,

bj.r0 bjrr—2

/ . .
Cirtlo " Y;as " does not have a n/-root in the ring

R ~ bj,r’,(] b]7 o/ —1yr—1
Bj—l[ylyov"'vyjﬂ“—ﬂ/<{yj,r/ = Cia Yl Y b

]7*0

More precisely, (bjro0,---,bjrr—2) # (0,...,0) and y’y -~y§”;rf{2 does not have a

n/-root in any ring of the form

0 bjw’.r’fl r—1

n.,; ., r/
C[yl,ov---,ym-—z]/({yj,i-’/ = i le Y r/:l)

where C' is a domain and the ¢;,.’s are in C. Hence J; is a prime ideal and (iv) holds.
This concludes the proof.

Remark 3.9. Similar ideas to the ones in (ii) in theorem 3.8 appear in [21], proof of
th. 1.3.8.

Restricting to dimension 3, but considering any valuation v of rational rank 1 and
dimension 3, i.e. v centered in a regular 3-dimensional ring R, in [15] an (infinite) gen-
erating sequence {¢, }nen of v in R is constructed. Our construction in Proposition 3.3
is different to the one in [15] and we do not reach a generating sequence. Generating
sequences in higher dimensional complete local rings are considered in [17].

4. Defining coordinates at stable points of the space of arcs

Let n : Y — A{ be a k-morphism dominant and generically finite, where Y is a
nonsingular k-scheme, let F be a divisor on Y and e > 1, and keep the notation in
section 3.

Let Pe’% be the generic point of Y (see 2.7), and let PeA; be the image by 7., of PeYE,
which is a stable point of (A%),, ([25] prop. 4.5). We will first prove (Proposition 4.5)
that a system of transverse generators for 7 with respect to E induces a regular system

of parameters of O Then we will conclude Theorem 4.8 and Corollary 4.10.

(A®)oo Pl
Given a finitely generated k-algebra A, let us denote by A, the ring of (Spec A)s
Given | € A, we denote by > ° /L, t" the image of [ by the morphism of k-algebras

A — As|[t])-

Lemma 4.1. (/25] proof of prop. 4.1 (iii)) Let A C B be finitely generated k-algebras and
let 6 : Spec B — Spec A be the induced dominant morphism. Let P’ be a stable point of
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Spec By and let P be its image by O in Spec A. Let h € B belonging to the fraction
field K(A) of A, h =1/q where l,q € A. Then, there exist {H, }n>0 in (Aso)p such that

H,=H, modP (33)

(recall that H,, € Boo forn > 0). Even more, there exists ¢ € N such that Qo, ..., Qc—1 €
P, Q. ¢ P and there exist polynomials Sy, on 2(n + 1) indeterminacies with coefficients
in k, forn >0, such that,

I . S’I’L(LC7"')L’I’L+C)QC7"'7QTL+C)
Hi= Qo™ = (elr

satisfies (33).

Proof. First note that P is a stable point of Spec A ([25] prop. 4.5), hence the existence
of ¢ such that Qo,...,Qc—1 € P, Q. ¢ P (|25], prop. 3.7 (i)). Then, the result follows
from the following observation: given h = l/q, l,q € A, if Qo,...,Qc—1 € P, Q. ¢ P,
then we have

QcHy+ ...+ QnicHy =Ly, mod P’ forn>0.
([25] proof of prop. 4.1).

Lemma 4.2. Suppose that the assumptions in Lemma 5.1 hold and suppose besides that
0:Y — Spec Alx,y] is dominant. Let P = P;{E[w’y] be the image of Py by 0o, which is
a stable point of Spec Alx,yleo. Let yo, the regular system of parameters {u,va,...,v4}
of Oy, and {h1 = y,hs,...,hn} satisfy (a) to (¢) in 3.1. For 2 < j' < j—1, let
{Ljrn}nzo0 in (Alz,yloo)p be such that Lj., = Lji., mod PY; (see Lemma J.1). Then,
there exists a multiplicative system S;_1 of A[x]e such that Lj., € gj__llA[x]oo for
2<j'<j—1,n>0 and there exist elements {H s, }1<s<nn>0 i (AlZ,yloc)p, n >0,
satisfying:

(i) Hs., = Fsm mod ng, therefore

Hg., € P(Alz,yloo)p for0<n<eis—1 and Hgei, ¢ P(Alz,yloo)p-

(i) Let r, 1 < r < g+ 1 be such that n,._lﬁT_l < gy < BT (resp. m =1 if s = 1
and iy = By). Set Qq., = X forn >0, Qpuyy = Hy ,in, for 1 <1/ <r,n >0
and let T,/ is the multiplicative part generated by Gr/;eﬁw 0 <7 <r. Then, for
n > e(B, — B;), we have:

— ——1 ——1—=—1
Hon €T,y ... Ty S; 1 AxXo. X1, X Yo Yar Y, o5 )
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(iii) If s =1 then Hy,, = Yy, forn > 0. If s > 1 then
Hs., € ({@r,m}ﬂstl U{Hs 1n}n<ei,,) for0<n < maz {en,_18,_1,¢is 1}
n<ef,.

Hsp = usy, Yo_@ - p,)tPsn for n > maz {en,_1B,_1,eis_1}

where Uy, pPsn € Tr_ Ty S A [Xov---va”~7Y0v-~-aYnfe(EFBr)71]
and ug p, s a unit.

(iv) Suppose that s > 1. Ifig_1 = B,_; (resp. is_1 € (np_1B,_1,B,)) then H
(resp. Hg.ei, ) is equal to

5§5nr—1§r,1

b cs H

Qo 0 - - _ .op &
Bo peB, T F @bé —bz
O;EB() Q

, Lo, ... ,Lj_1,
where H = (Q,_y,.5,_ )" (resp. H=Hy15i, , ), ¢s € k\ {0} and p, {0, }7,_,
and Py are as in (c) in 3.1.
— 1
(v) Fizedr, 1 <r < g+1, the following ideals in Trjl ..Ty Sjle[ac,y}oo are equal:

<{§r’;n} 0<r/<r ) = <{@r/;n} 0<r/<1 U{@T’;n} 2<r/<r )

0<n<ef, —1 0<n<ef, —1 enT/_1BT/_1<n<e,8 r—1

and also the ideal generated by

{Go;n}zzl U {Hl n}e“ ' ( {Hs n}?ig 1) U

els ,_ +1

— o -1 4 ia—1
=2 ({HST/_1+1;n}’n:enw_1ﬁr’—1 Y (U =Sr 1+2{H8 n},il eis_1)> )

Proof. The existence of gj_l follows from Lemma 4.1; in fact, it suffices to ask §j_1 to
contain the elements Q). where ¢ € S;_1 and cis such that Qo,...,Qc—1 € Pand Q. ¢ P.
Now, let us define the elements {Hs.;,}n>0, 1 < s < N, by induction on s. For s = 1,
hi =y € Alz,y], so Hy,n € Alz,y]oo for n > 0. We set Hy., := Hyy, = Yy, € Az, y]oo for
n > 0. It is clear that (i) to (iii) are satisfied. Now, let s, 2 < s < N, and suppose that
Hg.n € (A[2,9)00) p are defined, for 1 < s’ < s, n > 0, and satisfy the conditions. Let r,
1 <r < g;+1besuch that is_1 € {B,_;}U(nr—18,_1,B,). Therefore {Q,., }o<r <rn>0
n (Alx,yle)p are defined, and satisfy:

Qi € P(Alz,yloc)p for0<n<ef,, —1 and @r';eﬁrl ¢ P(Alz,y]so)p-

Hence, for every [ in the k-algebra k[{g, }o<r<r U {hs—1}] generated by ¢/, 0 <
r’ < r, and he_1, and for every n > 0, there exists a polynomial function L, on
{@,.l;n}r,<nn2€3 CU{Hs—1:n}n>ei, , such that L, = L, mod PY,;. Moreover, given
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l Qa,.r
h=1 €Oy, whereleblgbocrar Uihoall = [] @ (39

o<r’'<r

a € NU{0}, let c = Zogr’o« aeB,,, o that Qq,...,Q._, € P, Q. ¢ P and set

— Sn(LeyLegts - s Lty Quy Quigs -y Qe
Hn .— ( +1 _+ Q Q+1 Q +) E(A[x,y]oo)]?

(Qc)"*!

where S, is the polynomial in Lemma 4.1; then H,, = H,, mod P);. From this and (c)
in Lemma 3.1, which expresses hs as a polynomial in elements of the form (34), the
definition of {H ., }n>0 C (A[7,y]eo)p follows. They satisfy (i) and, from the expression
in 3.1 (c) and the induction hypothesis, it follows that (ii) holds and that the first
statement in (iii) and also (iv) are satisfied. In (iv), ¢; is the class of 71, € R;_1, hence
¢s # 0. The second statement in (iii) is obtained from the expression in 3.1 (c¢) and the
induction hypothesis, applying also (13) in Lemma 3.1. Finally, (v) can also be proved
by induction, applying the same argument as before.

Let ALY :=k and, for 2 < j <6, let
AL — [XJ 1 l£_17“.]’ Aj’ — AL [ gow'-,Xj,eﬁj,rfl] , 2<r<g;+1,

where XJ L. = (X1n5---» Xj—1:n)- Let {gjr}(j,mes be a system of transverse generators
forn:Y — Ag with respect to F, as in 3.3 (ii). Even more, for 2 < j < §, let us consider
the elements {hj,s}f:jl in 3.3 (iil) and set hqo :=q1,0 = x1 € A. Let

Z:={(1,0}u{(j,s) /2<j<é1<s<N,}
Then we have:

Lemma 4.3. There exist elements {Fj,s;n}(j7s)61,n20 n O(Ad)w,Pfg’ n > 0, satisfying:

(i) Hj s = Hjsn mod PY, therefore Hjsn € PfE for 0 < n < eijo—1 and
Hj iy, ¢ Pl

(i) We haveHlon =Xy forn > 0. For2 < j<d,letr,1 <r < gj+1be
such that nj,_ 1ﬁjr 1 < s < _JT (resp. r =1 if s =1 and i, = ﬁ o). For
(4, r") € T, setQJ - n:fHJ s;roms M >0 and, for (5',7") € T, let Tjr . be
the multiplicative system genemted by QJ reByr . Then, for n > e(B;, — Bjr) we

have:

Hj,s;n € H T i’ Al T[X],e,gj RPN PR ’Xj;nfe(Bj,r*ﬁj,r)]
(' ET

(if r =1, replace Xjep, . ,+1 by Xj,0 in the previous equality).
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(iii) For2<j <4, ifs=1then Hj s, = Xj.n forn >0. If s > 1 then:

Fj’sfﬂ € <{@j,r’;n} r/<r—1 U {Fj751§”}ﬂ<€isl>

n<eB; .

for 0 <n < mazx {en;,18;,_1,€ijs-1} and

Hjsn = tjsn Xjo @, — g,y +Pism forn>maz{en;, 1f;, 1, €ij1}

— 1 .
where Uj,sns Pisn € H(jlvrl)ejj*,r Tj/,T' A&T[XjJEBj,T—1+1""Xj;’nfe(gjyr*ﬁj,r)*l]
and uj s pn 15 a unit.
(iv) Suppose that j,s > 2. If ij1 = B, 4 (resp. ijs—1 € (Njr-1Bj,-1,08;,)) then
Hj,s;enj,rflﬁj,r_l (resp. Hj sei, . ) is equal to

rok LI 2 R 2
1a0§513j,0 juliijJ jap§eﬁj,p
.P; ¢jsH Qj*l’gjﬂ*l?eﬁj—l,gj_ﬁl
15| Fb50 A ’ ’ @ba‘—lg @bf*wj—l
1,05¢B,0 JpieBy , L0eB; 10" " Fi-lgj-15eB5 1,4,
T — (0O _ o1 T 7. . )
where H = (QJ}T*I;EB]'_TA) ir=t (resp. H = Hj s 15ei;,.,), ¢j,s € k\ {0} and p,

{03,/ }7— and Py are as in (c.3) in 3.3.
(v) Set Gro:={H10n /0<n<em;—1} and, for2<j <4,

Gia ={Hjam /0<n<eijn—1} U ULy{Hjsn [ € djs1 <n<eijs—1}
Gjr =A{Hjs, y41m [ € njr1fjry Sn<edjs, iy =1} U
Usls yolHjsm [ eijs1 <n<eij,—1} for2 <r<g;+1.

Then, for2<j<§ and1<r <g;+ 1, we have

Jj+1,1 _
{Qjm’;n} 0<r/<1 U{Qj,r’;n} 2<r/ < H T AL =
0<n<ef; s—1 en 1Sn<eB; -1

irl 18 . .
dr! 1B (' rET]

—_1 .
= (gLO U QjJ U...U gj,r) H Tj’,'r’ Ajojl’l.
@G eIy,

Proof. Let us prove, by induction on j, 1 < j < §, the existence of {Hj/ s} ;v orer

j'<j3,m=>0
satisfying the required conditions. For j =1, (j,s) = (1,0), h10:=q1,0 = 21 € Opa

_ 1(Yo)?
so, if we set H1 0. 1= H1,0.n = X1;n € (’)(

Ad)oo,PAL for n > 0 then it is clear that (i)

to (iii) are satisfied. Now, let j, 2 < j < ¢, and suppose that ﬁj/’s/;n € O(Ad) pad
s e
are defined, for j' < j, (j',¢') € Z, n > 0, and satisfy the conditions. Then the result
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follows applying Lemma 4.2 to Y — Spec Alx1,z;], where A = k[z,...,2;_1], and the
following remark: since

qj',g.1+1 . .
lj/: 95 b for2§j/§jfl
biro bira 3’9
N 4511 - 37,91

we may take S;_; = {@j’,r';eﬁj,m,}(j’,r YT and

1,95 141

Qj/agj/"‘l?eﬁj',gjﬂrl

Too=
I bJ/ 0 —b./ —b"wg-/

Q QU QY
1O€ﬁ'/,o j/71§eﬂj/,1 .j/’gjﬂeﬁj/,gj,

From this, (i) to (iv) follow for j. This concludes the proof.

Remark 4.4. Let j, 2 < j < 4. Let {%’T}fizl in Bj_1[z1,2;] be as in Remark 3.6, and
Qjrin € Bj_1[21,25]00, n > 0, as in the beginning of this section. Arguing by recurrence
and applying (27), we obtain that, for 1 <r < g; + 1,

2
Qj,r;n€<{Qj’,r’;n} 0<r’ <r—1 > Bj—l[xlyxj]oo
1

Ogngeﬁj/w/ -

for 0 <n < e(@,):=e ((nr—1—=1)B,_; +...+ (n1 —1)B,) = e(B,,, — B;) and

@j,r;n S <{@j’,r’;n} 0<r/<r—1 ) Bj—l[xlaxj]oo

0<n<eB;r ,»—1
for e(gjr) <n <e(gr)+efjr_1=e¢ njyr,lﬁj’rfl.

Analogously, for {q,}; 4(_)1, ¢, € T{_1 -'-T;’alk[vg,...,vj_l,xl,xj] (see Re-
mark 3.6), let {Q’} ., n>0 in [To<s<r— i Slk[vg, ...,Vj-1,%1,Zj]ec be obtained ap-
plying Lemma 4.2. Given r, 0 < r < g; + 1, let {as}o<s<r—1 be nonnegative integers
such that

ro_ / as
Zj,?" = qjﬂn' H qjs Gk[vz,...,vj_l,xl,xj],
0<s<r—1

and let Z] ., € klvz,...,vj-1,71,%5]o0[[t]], n > 0, as before. Arguing by recurrence,

from (c) in Lemma 3.1 it follows that, for 0 < n < e(2},) = e (v(2},) = Bjr),

2
—1
<{Q/an} 0<s<r—1 ) H T/j,s k[v%"wvj*l’whmj]oo (35)

<n<e[3 0<s<r—1
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and, for e(2},) <n < e(2},) +e Bjr—1=e (v(2},) = Bjr+ Bjr1), we have
——1
Jrn {Qljsn} 0<s<r—1 H T/j,s k[UZ,---,’Uj—l,CCl,fL'j}oo
0<n<eB;—1/ o<s<r—1
Now, with the assumptions and notation in Lemma 4.3, given (j,r) € J, let

{ajo (4,7} regy, be any sequence of nonnegative integers such that

it vt (357)
Zjr = Qi H q;b/]m'/ " S k[xl,...,xj}

G'rET,
let @;, :=v(z;,) and let Zj ., € k[x1,...,%]00, 7 > 0, as before. Then we have

<{Zj/,r’;n} G ETf ) H S;’}r’ klz1, ... %jlee =
1 .
(

Ogngeaj/ ]/’T/)EJ;,T

({@j,,r,m} e ) I 7ok ke 25w

Oﬁnﬁeﬁj’,r/ (37r")ETS

;) —
T

where Sj/,» is the multiplicative part generated by Zj wiea, .- Moreover, arguing by
recurrence and applying (c.2) in Proposition 3.3 and the condition (20), it follows that

2
Zjym € ({Z],,,/n} e ) H i | AP 1 [ (36)
1
(

0<n<eo¢ il — -7/>r/)€‘-7j*,r

for 0 < n < e(z,r) :=e (v(zj,) — Bjr). In fact, the proof is based on the one for (35),
taking into account condition (20). We also obtain that

J rin € <{ r';n} (' rET; ) H S;}r/ k‘[371, cee >xj]00 (37)
Osn<eay =1/ (j regy,

for e(zj,) <n<e V() = Bjr+ Bjr—1)-

Let G := U(j,yegGj,r where the G;,’s are defined in Lemma 4.3 (v). Note that the
cardinal of G; ;1 is em; and, for 2 < j <9,

(UgJ G, T) =e Bﬂ + (e Bm —e nj,lﬁj,l) +...+ (e Bj,gj-‘rl —e nj,gjﬁjvgj)
=e(Bin+(Bi2—Bin)+ - 4 Bjgt1 — Big;)) =€ Big41 =€ my.

Hence, applying (6) and (30) we obtain

4G =c (ag+1)=ce (kp(AY) +1).
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Proposition 4.5. We have

Pl Qo s = (9) Ony_ g
moreover, there exists L € Oua)  \ P, E such that PfE Oy ) = (G) (Owpay )L

Besides, the images of the elements of G in E/(PBA];) 4 are independent,

(Ad) Plg
hence define a basis as K(Pfg)—vector space. In particular, we obtain dim O
8G =e (ag +1).

(Ad) oo, P2

Proof. First note that, by (i) in Lemma 4.3, we have G C Pfg. Let us prove that
(G) O(Ad) pd is a prime ideal. By (ii) in Lemma 4.3, for (j,r) € J, we have

Gir € JI T A Xy at1s- s Xires, 1]
(' )eTs,

o

= 0 or 1, replace Xj.cp,, ,+1 by Xj,0 and set 31 := my). Then, for each j,
2 § d, there exists M; € N such that

_ _ , 4 ’
Qjr . € H T k[XG, ..., X3, ] for every (1) € T} g, 41
G ET 0

and, if we set

Bl = I Ty kX5 X5

then

Gj = U Gy C B

(4" ,r")€T4,9;+10{(d:9;+1)}

(in fact, M; can be taken to be equal to em;). Let P; be the contraction of PEA; to BJ_. We
will prove, by induction on j, 2 < j < 4, that there exists L; € B, \ P; such that the ring
(BL,)r,/(G;) is a domain. For j = 2, we have hy o = @1, thus G1,0 = {X1,0, .., Xt;emy 1}
and, applying Remark 3.5 and (iii) in Lemma 4.3 to Qz,r;na €nj,r7132,rf1 <n< egz’r
and (iv) in Lemma 4.3 to @277;63%, we obtain that B2 / (G,) is isomorphic to

(Sglk [y2,07 Y2,2 ... 71‘/2,gz+1} / J2) [{Xl;n}em1<n§M2 U {X2;n}662,92+1<n§M2}

where the image of y2,, 1 <17 < go + 1 (resp. y20) is Q2,r;eﬁg (resp. Xi.em,), J2 is
the ideal in Theorem 3.8 (iv) and Ss is the multiplicative part generated by {yo.,}72,
therefore B2, /(Gz) is a domain by Theorem 3.8.
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Let j, 3 < j < 4§, and suppose that the result holds for j — 1. Applying (iii) in
Lemma 4.3 to Fj,sm, foreijs—1 <n<eij,—1 (resp. enj’r,lﬁj’rfl < n_§ €l s 141~ 1)
if s,_1 +2 < s < s (vesp. s = s,—1 + 1) and applying (iv) in 4.3 to Hj sei;, , (resp.
H;en,, .5, _,)s we obtain that there exists an étale extension B, of BL, containing

)5, ,r— Fyr—
the image of P)g, i.e. the contraction of PY; to BJ is a prime ideal P; # BJ_, and such
that B, /(G;)BZ, is isomorphic to a localization of

(Sj_le_1[yj,1,~-~7yj,gj+1] / Jj) {{X';n}eﬁj,gﬁ&nﬁ%

where 5J 1 is a domain which is an étale extension of BIS1/(G;_1), Sj is the multi-
phcatlve part generated by {yj +}97, and J; is an ideal generated by {y] —Cjr yi”f{’o
y]f o yj’r”1 "ML G € DJ 1and y10 = Xi,em, € DJ 1. Here y; , is identified with
QJ’r,ij,r' Applying Theorem 3.8 (iv) we conclude that Bgo/(gj) is a domain. Since the
morphism (BL))p,/(G;) — (Bgo)lgj/(gj)Bgo is local étale, hence an inclusion of local
rings, we conclude that (B )p,/(G;) is a domain. Therefore, there exists L; € BZ \ P;
such that (BZ,)r,/(G;) is a domain (recall that BZ, is the localization of a finitely gen-
erated k-algebra).

In particular, it follows that there exists Ls € B%. \ Ps C Iimes T]_Tl Oy, \Pﬁ;
such that the ideal generated by G in ([]; ej* T»flO(Ad)oo)La is a prime ideal. From
this it follows that there exists L € Opay__ \ Py - such that (G) (O(ady.. )L is a prime ideal,
in fact, we may take L = Ls-[]; . e 7- Qir;eﬁw
Hence (G) O(Ad)m

Let us denote by P’ the prime ideal of Oya such that (G) O(Ad) prd = PIO(M)W,Pﬁg'
We will next prove that P’ = PA In fact, with the notation in 2.7 and 3.7, let PZ be
the generic point of Z< and let PﬁF be the image of PeeF by the morphism Z,, —

for some positive integers {a;,} j,r)er+-

pad 18 @ prime ideal.
el

(A%) . Since ¢ is the ramification index of Oy g over Oz F, PZ . is the image of P); by
Ooo i Yoo = Zs and hence Pé‘f; = Pfg. Now, by the definition of G, and since P’ C Pﬁ;,
we have

eﬁj,r < vpr (qj,T) <e V(qj,T) = eﬁj,r for (j,T) €J.

Therefore vp:(g;,) = €f;,. for every (j,r) € J and hence

y . 1 . —
vps . qJ’g’+bv =0 for2<j<d and vp(z) = E ajre B, =ee
i, 7,94 ’
4G9 -~ 4j,g, (e

(recall (29) in 3.7). From this it follows that the morphism of k-algebras hgg, :Ox,py, =
k(P")[[t]] induced by the arc hps extends to Oz p. That is, hpr : Spec k(P')[[t]] = X
lifts to (Z, F), more precisely, since vp/(z) = ee, this lifting defines a point in ZF.
Therefore P’ € {PA7.}, hence we conclude that P’ = Pé‘:} = Pfg.
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Finally, since G = e ¢ (kp(A?) + 1), the end of the proof follows from Proposition 2.6
and equality (3), which is in fact lemma 3.4 in [4].

Remark 4.6. Alternatively, in the proof of Proposition 4.5 it can be proved by induction
on j, 2 < j < 4, applying (iii) and (iv) in Lemma 4.3, not only that (G;) is a prime
ideal of (BZ,)y,, but also that the elements in G; are independent in (G;) / (G;)?. Then,
lemma 3.4 in [4] can be recovered (at least for X smooth) from Propositions 4.5 and 2.6.
Therefore, Proposition 4.5 can be seen as a new version of lemma 3.4 in [4], which is in
fact the change of variables theorem in the motivic integration.

Definition 4.7. Let 7 : Y — A¢ be a k-morphism dominant and generically finite, where
Y is a nonsingular k-scheme, let E be a divisor on Y and let e > 1. Let {g;,}(j,res
be a system of transverse generators for n with respect to E (Definition 3.4), and let
{@j,r;n}(g‘,r)ej,nzo defined as in Lemma 4.3. We call

Q:= {Qjﬂ“;n}(jﬂ“)ej, enjr—1B <n<eB; ,—1

Jr—1=

a reqular system of parameters of O(Ad) pad associated to {tr}Gryea-
oo Lep

In fact, note that by Proposition 4.5 (see also Lemma 4.3 (v)), O(Ad) pad 18 a regular
st eE

local ring of dimension the cardinal of Q@ whose maximal ideal Pfg (@]

pad 18 generated
0t eE
by Q.

(Ad)

Theorem 4.8. Assume that char k = 0. Let X be a nonsingular k-scheme, let v be a
divisorial valuation on an irreducible component Xy of X, andlete € N. Let w: Y — X
be a proper and birational morphism such that the center of v on'Y is a divisor E, and
letn:Y — Ag be the composition of m with an étale morphism Xo — Aﬁ, where

d = dim Xy. Let Q = {QJ r.n}(j MeT, 0<n<eB, —1 be a reqular system of parameters of
i (g, , 0<n<epB; .
(’)(M) pad associated to a system of transverse generators for n with respect to E. Then
oyt e E
Q is also a regular system of parameters of (’)Xoo,p)%, that is

X _ ra) _ _
PeE OX(X,,PSXE - ({Qj,r;n}(j,r)ej, enjr—13 <n§eﬁjm—1) OXoo,Pe‘){E?

jr—13

and OXOO’PS)% is a regular local ring of dimension

where kg is the discrepancy of X with respect to E.
Moreover, there exist elements z;, € Ox. p,, (4,7) € J, and L € Ox_ \ P25, such
that

POx )L = ({Zjrm}imesocn<es,,) (Ox )L (38)

where @; , = v(z;,) for (j,r) € J.
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Proof. Recall that PY; is the generic point of Y2F (see 2.7) and that P2, (resp. Pﬁg ) is
the image of PY; by 7o, (resp. 1a0). By Proposition 2.5 (see also Corollary. 2.9) it suffices
to prove the result for the point Pﬁ; in (A%). Then it follows from Proposition 4.5.
In fact, for the first assertion note that in this case kg (Ag) is equal to the discrepancy
kg of X with respect to E. For the second assertion, let {g;,}( ey be a system of
transverse generators for 1 with respect to E. For each (j,r) € J there exists a sequence
of nonnegative integers {a; (j,7)}(j,re7,, such that

o ;s (3,r)
=g H qj,,r/ S OAd,Po'
(' )eT;,

<j

(see Proposition 3.3). Then, from Proposition 4.5, (38) follows. This concludes the proof.

Remark 4.9. Let P be any stable point of X, and suppose that X is nonsingular
at the center Py of P and that Py is not the generic point of X. There exists a bi-
rational and proper morphism 7w : Y — X such that the center of vp on Y is a
divisor E, and e € N such that vp = evg ([25], (vii) in prop. 3.7). Let PY € Y,

whose image by 7o is P, then we have dimOx_ p = ekgp + dimOy_ pv (corol
2.9). Since PY D Pe}% and P D Pg};, with the notation in Theorem 4.8 and Propo-
sition 3.3, {Uy,...,Uec—1} is part of a regular system of parameters of Oy pv and

Q= {Gw;n}(j7r)e\77 enjr 1B, 1 <n<eB,,—1 is part of a regular system of parameters of
Ox_..p. Moreover, suppose that {Up,...,Ue—1,G1,...,Gs} is a regular system of pa-
rameters of Oy pv. To describe a regular system of parameters of Ox__ p we add to Q
the following elements: By Lemma 4.1 and since 7 is birational, for each y € Oy and for
each n, there exists Y,€0 Xx..,p such that

Y,=Y, modP.

Then, let G; € Ox_ p, 1 <i < s be obtained from G; by replacing U,, and V;.,, by U,
and ij, forn >0, 2 < j <d. We have

G;=G; mod P.
and QU {@1, . ,55} is a regular system of parameters of Ox__ p.

Now let us consider a reduced separated k-scheme of finite type X and a divisorial
valuation v on X centered on Sing X. There exists a resolution of singularities 7 : Y —
X (i.e. 7 is a proper, birational k-morphism, with ¥ smooth, such that the induced
morphism Y \ 77! (Sing X) — X \ Sing X is an isomorphism) such that the center of
vonY is a divisor E.

Corollary 4.10. Assume that char k = 0. Let X be a reduced separated k-scheme of finite
type, let v be a divisorial valuation on an irreducible component Xy of X centered on
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Sing X and lete € N. Let m: Y — X be a resolution of singularities such that the center
of v onY is a divisor E, and let ) : Y — A{ be the composition of m with a general pro-
jection i : Xo — A?, where d = dim Xg. Let Q = {Qjrintjmes, enj v 1By y<n<cB, —1

be a regular system of parameters of O( pud associated to a system of transverse
T eE

Ad)
generators for n with respect to E. Then Q is a system of coordinates of ((Xoo)reds P2Y;),

that is,

N _
PeEO(Xo) P = <{Qj,r;n}(jm)e~7, enjr1B <n§e3j,r—1) O(X o) s PX -

Gr—13

Therefore

embdim OX/O;EE = embdim O(x_),...r.n < 1Q=¢ (kg +1),

where EE is the Mather discrepancy of X with respect to E.
Moreover, there exist elements {zj}(j.mes in Ox p, and L € Ox_ \ P.y; such that

POt = ({ZirmtGmesncea,—1) (Oxo)a)L
= ({Zjrm}Gmed.ca,, e —B;r 1) <n<ety—1) (O(xo)md) L

where @, = v(zj,) for (j,r) € J.

Proof. We may suppose that 7 : Y — X dominates the Nash blowing up of X. We may
suppose that X is affine, let X C AQI = Spec k[yi,...,yn]. Then, a general projection
p: X CAY = Al y — (x1,...,34) satisfies

ordg ©*(dxy A ... Ndzxg) = EE (39)

Let Péj; be the image of PY; by 1. Then the result follows from Proposition 4.5 applied
to PA, (see also (37) in Remark 4.4), Proposition 4.5 (iii) in [25] applied to p : X — A¢
and the finiteness property of the stable points in [24] th. 4.1 (see 2.4).

From Corollary 4.10 it follows that OX/OOEE is a quotient of the ring
K(PBE)H{X]'WH}(J'»T)GJ, eaj,r—e(ﬁj,r—ﬁj,r—l)Snﬁeaj,r—l]] where X, is sent to Zj .
Moreover, we may suppose that X is affine, let X C AY and let X — AY,
(z1,...,2Nn) — (x1,...x4), be a general projection. Then, there exist series )?l;n €
5(Pep) [[{Xj.rn}(jrimy] | whose image in (’)X/w\peE is X, d+1 <1< N, n>0.For
d+1 <1< N,let f; € k[zq,...,2q,7;] be such that fi(x1,...,24,T;) = 0 where T;
denotes the class of z; in Ox, hence X is contained in the complete intersection X’ of
dimension d = dim X defined by {f;}4+1<i<n. We have that OX/M,\Peg = O@g ([25],

Proposition 3.7 (ii) and Theorem 3.13). Therefore we conclude:
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Corollary 4.11. With the notation as before,

—

OXOO,PQE = K(PEE) [[{X',T;n}(j,'r;n)ec]] / T

where C = {(j,m;n) / (j,r) € T, et —e(Bjr — Bjr—1) < n < eq;,} has e(%E +1)
elements and

I = ({ﬁl;n}d+1§l§N,n20)
where En is obtained from Fy., by substituting X, by )}l;n’; for0<n' <n.

Remark 4.12. Note that I is a finitely generated ideal. Moreover, since X — A% is a
general projection (39) holds, and hence ¢; := vg(Jac(f;)) = VE(g—g). Then, from [23]
proof of lemma 3.2 (see also [24], proof of lemma 4.2) it follows that E;eﬁ-n = 0 for
n > ¢. In fact, this is the effective way of constructing the series )Z'lm, n > ¢+ 1 (see
[25], corol. 5.6). Analogously, imposing E;Eﬁ_n =0 for 0 < n < ¢ is the way to construct

Xin, 0 <n < ¢, and hence to describe the ring OX/OO,\peE (see example below).

Example 4.13. The following examples were given in [14]: For m > 3 let us consider the
singular threefold X,, given by 2% = zy +w™ in A} where k is a field of characteristic 0.
It has an isolated singularity at the origin O. Let X,, 1 — X,,, be the blowing up of X,
at O. Then X, 1 has an isolated singularity which is locally isomorphic to X,,—z. If we
continue in this way r := [ 3 | steps we obtain a resolution of singularities of X,,. Let

Y =X, = Xpro1— = X1 — Xy,

be the chain of point blowing ups and let E;, 1 < i < r, be the strict transform in Y
of the exceptional locus of the blowing up X,,; — X, i—1, which is irreducible. Let
vg, be the divisorial valuation defined by F;, hence vg,(z) = vg,(y) = vg,(2) = i and
vg,(w) = 1. Then kg, (X,,) = ¢ for 1 <4 < r ([14] lemma 12) and we can check that
kg, (Xpm) =2i, 1 <i<r.

Set X := X,, and f := 22 —zy — w™. For 1 < i < r, let Pg, be the stable point
of Xo defined by vg,. The projection X — A2 (z,y,z,w) — (z,y,w) is general, it
satisfies ordg, 7*(dx A dy A dw) = EEl (X). Applying Corollary 4.10, in this case we
obtain PE@ (O(Xoc)red)PEi = (Xo, cee 7Xz'—1a Yo, cee ,Y;_l, Wo) (O(Xoo)red)PEi . Moreover

(X0, Xi1, Y0, .., Y1, Zoy -, Zim1, Wh) (O(Xoc)red)leT .
(40)

P, (O(Xoc)x-ed)WlX

r

Since the open subset W1 X, # 0 of X has nonempty intersection with {Pg,} for all 4,
1 <i < r, it follows that Pp, C Pg, C ... C Pp, and, in particular, X5 = {Pg, }.
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This gives another proof of theorem 1 (1) in [14]. Besides, from (37) it follows that

=

Ox...ps, is a quotient of x(Pg,)[[Xo,. .., Xi—1,Y0,...,Yi—1, Wo]]. For i = 1, applying
Corollary 4.11 we obtain

Oxo e, = K(Pr,)[[Xo0, Yo, Wol] / ((Z0)? — XoYo — Wg") (41)
where
k(Pp,) 2 k(Xy, Xo, ..., Y1, Y, ... W1, Wa,..)[Z1]/(Z} — X1Y1) (42)

and Zo € k(Pg,)[[Xo, Yo, W] is defined from the F,’s, n > 1 = vg, (Jac f). Precisely,
the isomorphism (42) defines, for each n > 0, 70 e k(Ppg,) such that Z, — z¥ e
(Xo, Yo, Wy). Arguing recursively on n’ > 1 and n > 0, with the lexicographical order
on (n’,n), that is, reasoning as in corol. 5.6 in [25], it follows that, for n’,n > 0, there
exists Z\") € k(Pg,)[Xo, Yo, Wp] such that,

Frin =22y (Zo — Z0))  mod (Xo, Yo, Wo)" t1 forn >0, n#1
Fy=(Z)2— (Z2"))?  mod (Xo, Yo, Wo)"
hence Z Y = 28mod (XO,YO,WO)"/'H and this defines series Z, in
k(Pg,)[[Xo, Yo, Wp]] such that Fi4, = 0 for n > 0 (see Remark 4.12). In particular,

it defines Zp in (41). From these computations it follows that the ring Ox has

00, PEy
dimension 2. Even more, for m odd (resp. m even) Ox_, p,, has a 2-dimensional singu-
larity whose normalization has a Dy4- singularity (resp. A;-singularity). This in particular

implies that OZQ,\PEI is reduced and not regular.
From analogous computations applying Corollary 4.11 to describe the ring O;)C?Ei,

2 <14 <r, we obtain that Ox__ p, is a complete intersection local ring of dimension

dimOx_ py, = i+1=kp(X)+1 forl<i<r

In [14] prop. 9 it is proved that if m > 5 is odd (resp. m is even or m = 3) then vg,
and vg, (resp. vg,) are the only essential valuations. Since (X,,)3"9 is irreducible for
every m, in case that m > 5 is odd, FE» defines an essential valuation whose family of arcs
{Pg,} is not an irreducible component of (X,,)59 ([14] example 1). Let us consider

X := Spec OZO?El

so that the set X2 of arcs ¢ : Spec K[[¢]] — X centered at the closed point O of X is
precisely the set of wedges, or k-morphisms ¢ : Spec K[[¢,t]] — X, whose special arc is
Pg, . By special arc (resp. generic arc) of ¢ we mean the image by ¢ of the closed (resp.
generic) point of K[[£]]. If m is even then X is a surface singularity whose normalization
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has a A;- singularity, hence X2 is irreducible. If m is odd then X is a surface singularity
whose normalization has a D,-singularity, hence X< has 4 irreducible components. These
families of arcs of X< correspond to wedges on X whose special arc is Pg, and whose
generic arc is not centered at Sing X, i.e. it does not belong to X259, On the other
hand, if m > 5 then

—

~
O(Xm,l)oo7PE2 = OXOO,PE17

therefore X = Spec O Xm/,l-):, Py, In this ring Pg, is defined by (Wo), which contains
the closed point of X and is contained in Sing X. From this one can compute explicitly
a wedge on X, ; whose projection in X is a wedge whose special arc is Pg, and whose
generic arc is Pg, (see [14], proof of th. 1).
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