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Let X be a variety over a field k and let X∞ be its space 
of arcs. Let PE be the stable point of X∞ defined by a 
divisorial valuation νE on X. Assuming char k = 0, if X
is smooth at the center of PE , we make a study of the 
graded algebra associated to νE and define a finite set whose 
elements generate a localization of the graded algebra modulo 
étale covering. This provides an explicit description of a 
minimal system of generators of the local ring OX∞,PE

. If 
X is singular, we obtain generators of PE / P 2

E and conclude 
that embdim O(X∞)red,PE

= embdim ÔX∞,PE
≤ k̂E + 1

where k̂E is the Mather discrepancy of X with respect to νE . 
This provides algebraic tools for explicit computations of the 
local rings ÔX∞,PE

.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The space of arcs X∞ of an algebraic variety X was introduced by J. Nash in the 60’s 
[20]. He expected to detect from arc families those components of the exceptional locus of 
the resolutions of singularities Y → X which are invariant by birational equivalence. The 
space X∞ is an intrinsic object associated to X which allows to construct invariants of 
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the variety: J. Denef and F. Loeser [4] made a systematic construction of some invariants 
of X using motivic integration on X∞. They also considered X∞ together with its scheme 
structure, an idea which was further developed by S. Ishii and J. Kollar [13].

Precisely, J. Nash asked “how complete is the representation of essential components 
by arc families”, that is, what essential valuations are determined by the irreducible 
components of the space of arcs XSing

∞ centered at some singular point of X. Divisorial 
valuations whose center appears as an irreducible component of the exceptional locus of 
every resolution of singularities of X are called essential valuations.

The arc families considered by J. Nash correspond to certain fat points P of X∞. 
These fat points are stable points, as defined by the author in [23] lemma 3.1 and [24]
definition 3.1 (see also [25]). It is natural to expect that those geometric properties of 
X∞ with respect to an arc family are reflected in the algebraic properties of the local 
ring OX∞,P . An important role is played by the following algebraic property: the ideal of 
definition of a stable point P of X∞ in a neighborhood of P , with its reduced structure, 
is finitely generated ([24] theorem 4.1, see 2.4 below). This implies that the complete 
local ring ÔX∞,P is a Noetherian ring ([24], corollary 4.6).

Most advances on the Nash program on arc families use our Curve Seletion Lemma 
([24] corollary 4.8) which is an easy consequence of the previous property, and is valid 
over a perfect field of any characteristic. For instance, if dimOX∞,P = 1 then P is the 
generic point of an irreducible component of XSing

∞ ([25] corollary 5.12). This is what 
occurs for essential valuations in toric varieties ([13] theorem 3.16), for nonuniruled ([16]
theorem 3.3) and for terminal valuations ([8] theorem 3.3). Known counterexamples 
involve a local ring ÔX∞,P of dimension greater than or equal to 2: for the counterexample 
in [13] see [25] remark 5.16, and for the ones in [14] see example 4.13 below. On the other 
hand, essential valuations are characterized in different ways: minimal elements in the 
cone for toric varieties ([3] theorem 1.10 and [13] section 3), nonruled ([1] proposition 4) 
and some divisorial valuations with discrepancy 1 (resp. 2) over certain canonical (resp. 
terminal) isolated singularities ([7] lemma 5.2 and [14]).

The local rings ÔX∞,P involved in these results and examples have nevertheless a 
simple algebraic structure: nonreduced curves and some mildly singular surfaces. But 
in general their structure is much more complicated. Our purpose in this article is to 
develop appropriate algebraic tools for computing the local rings ÔX∞,P , P a stable 
point. We construct (Corollary 4.11) a presentation of ÔX∞,P by concrete generators 
and relations:

ÔX∞,P
∼= κ(P )

[[
{Xj,r;n}(j,r;n)∈C

]] /
Ĩ

where P = PeE is the generic point of the family of arcs with contact e ≥ 1 with 
an exceptional divisor E and the cardinal of C is e(k̂E + 1). Here k̂E is the Mather 
discrepancy of X with respect to E (see [12], [5]). This provides a framework to recover 
geometric properties and invariants of a variety X. We apply our result in Corollary 4.11
to understand the geometry of the space of arcs in the examples of [14] (Example 4.13).
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If X is smooth at the center P0 of a stable point P of X∞, then the local ring OX∞,P

is regular and essentially of finite type over some field. Applying the Motivic Change of 
Variables formula ([4], lemma 3.4), it is proved that dimOX∞,PeE

= e(kE + 1) where kE
is the discrepancy of X with respect to E (Proposition 2.6). Assuming furthermore that 
char k = 0, we give an explicit description of a minimal set of generators of PeE, i.e. a 
regular system of parameters of OX∞,PeE

.
If X is not smooth at P0, let X → Ad

k be a general projection. A set of generators of 
the image of PeE in (Ad)∞ provides a set of generators of PeE ([25], prop. 4.5). From this 
it follows that the embedding dimension of the ring ̂OX∞,PeE

is bounded from above by 
e(k̂E + 1). A further work has been done by H. Mourtada and the author [19] to prove 
that this actually defines a minimal system of coordinates of (X∞, PeE) and to extract 
some consequences about the dimension of the ring ̂OX∞,PeE

.
A study of the graded algebra associated to the divisorial valuation νE is crucial in 

our study. One of the main ideas in our proof is to define some “approximate roots” 
{qj,r}(j,r)∈J in grνE

OAd,P0 , where X → Ad is a general projection (Definition 3.4). The 
techniques used here are similar to those used by B. Teissier ([28], [10], [27]) and are of 
independent interest from the point of view of valuation theory. Although the qj,r’s do 
not generate grνE

OAd,P0 (in general grνE
OAd,P0 is not finitely generated for d ≥ 3), they 

generate a localization of grνE
OAd,P0 modulo étale covering (Theorem 3.8). This is done 

in section 3. In section 4 we describe minimal coordinates of (Ad)∞ at the image PA
d

eE

of PeE in (Ad)∞ from the qj,r’s. From this we obtain a regular system of parameters of 
OX∞,PeE

if X is smooth at P0 (Theorem 4.8), and a system of coordinates of (X∞, PeE)
for general X (Corollary 4.10).

2. Preliminaries

2.1. Let k be a perfect field. For any scheme over k, let X∞ denote the space of arcs 
of X. It is a (not of finite type) k-scheme whose K-rational points are the K-arcs on X
(i.e. the k-morphisms Spec K[[t]] → X), for any field extension k ⊆ K. More precisely, 
X∞ := lim

←
Xn where, for n ∈ N, Xn is the k-scheme of finite type whose K-rational 

points are the K-arcs of order n on X (i.e. the k-morphisms Spec K[[t]]/(t)n+1 → X). 
In fact, the projective limit is a k-scheme because the natural morphisms Xn′ → Xn, 
for n′ ≥ n, are affine morphisms. We denote by jn : X∞ → Xn, n ≥ 0, the natural 
projections.

Given P ∈ X∞, with residue field κ(P ), we denote by hP : Spec κ(P )[[t]] → X

the induced κ(P )-arc on X. The image in X of the closed point of Spec κ(P )[[t]], or 
equivalently, the image P0 of P by j0 : X∞ → X = X0 is called the center of P . Then, 
hP induces a morphism of k-algebras h�

P : OX,j0(P ) → κ(P )[[t]]; we denote by νP the 
function ordth

�
P : OX,j0(P ) → N ∪ {∞}.

The space of arcs of AN
k = Spec k[x1, . . . , xN ] is (AN

k )∞ = Spec k[X0, . . . , Xn, . . .]
where for n ≥ 0, Xn = (X1;n, . . . , XN ;n) is an N -uple of variables. For any f ∈
k[x1, . . . , xN ], let 

∑∞
n=0 Fn tn be the Taylor expansion of f(

∑
n Xn tn), hence Fn ∈
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k[X0, . . . , Xn]. If X ⊆ AN
k is affine, and IX ⊂ k[x1, . . . , xN ] is the ideal defining X in 

AN
k , then we have X∞ = Spec k[X0, . . . , Xn, . . .] / ({Fn}n≥0,f∈IX ).

2.2. For r, m ∈ N, 0 ≤ r ≤ m, let Ar,m
k := k[[x1, . . . , xr]][xr+1, . . . , xm] and let 

X ⊆ Spec Ar,m
k be an affine irreducible k-scheme. A point P of X∞ is stable if there 

exist G ∈ OX∞ \ P , such that, for n >> 0, the map Xn+1 −→ Xn induces a trivial 
fibration

jn+1(Z(P )) ∩ (Xn+1)G −→ jn(Z(P )) ∩ (Xn)G

with fiber Ad
k, where d = dimX, Z(P ) is the set of zeros of P in X∞, jn(Z(P )) is 

the closure of jn(Z(P )) in Xn and (Xn)G is the open subset Xn \ Z(G) of Xn. This 
definition is extended to any element X in Xk, being Xk the subcategory of the category 
of k-schemes defined by all separated k-schemes which are locally of finite type over 
some Noetherian complete local ring R0 with residue field k ([25] def. 3.3). Note that 
Xk contains the separated k-schemes of finite type and it also contains the k-schemes 
Spec R̂, being R̂ the completion of a local ring R which is a k-algebra of finite type. In 
[24] and [25] a theory of stable points of X∞ is developed. One important property of 
these points is the following:

Proposition 2.3. ([25], prop. 3.7 (iv)) Let P be a stable point of X∞. For n ≥ 0, let Pn

be the prime ideal P ∩Ojn(X∞), where jn(X∞) is the closure of jn(X∞) in Xn, with the 
reduced structure. Then we have that dimOjn(X∞),Pn

is constant for n >> 0, and since

dimOX∞,P ≤ supn dimOjn(X∞),Pn

it implies that dimOX∞,P < ∞.

And the main result in the theory of stable points is:

2.4. Finiteness property of the stable points. ([24] th. 4.1, [25] 3.10)

Let P be a stable point of X∞, then the formal completion ̂O(X∞)red,P of the local ring 
of (X∞)red at P is a Noetherian ring.

Moreover, if X is affine, then there exists G ∈ OX∞ \ P such that the ideal 
P
(
O(X∞)red

)
G

is a finitely generated ideal of 
(
O(X∞)red

)
G

. In particular PO(X∞)red,P
is finitely generated.

Besides we have ÔX∞,P
∼= ̂O(X∞)red,P ([25] th. 3.13). Hence, from 2.4 it follows that 

the maximal ideal of ÔX∞,P is P ÔX∞,P , and even more, P̂n = PnÔX∞,P for every n > 0
(see [2] chap. III, sec. 2, no. 12, corol. 2). Therefore, if P is a stable point of X∞ then

embdim ÔX∞,P = embdim O(X∞)red,P .
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Though this article we will consider étale morphisms. The following holds:

Proposition 2.5. Let X, Z ∈ Xk and let σ : X → Z be an étale k-morphism. Then we 
have

X∞ ∼= Z∞ ×Z X

in particular, X∞ is étale over Z∞. Therefore, the morphism σ∞ : X∞ → Z∞ induces 
a map

{stable points of X∞} → {stable points of Z∞}

and, if Q is a stable point of X∞ and P its image by the previous map, then OZ∞,P →
OX∞,Q is étale and

ÔX∞,Q
∼= ÔZ∞,P ⊗κ(P ) κ(Q). (1)

Proof. We may suppose that Z = Spec A, X = Spec B where B = (A[x]/(f))g, f, g ∈
A[x] and the class of f ′(x) in B is a unit ([22], chap. V, th. 1). Then the stability property 
in [4] (see also [25] (8) in 3.4) implies that

X∞ = Spec (A∞[X0] / (F0))G0

where A∞ = OZ∞ . From this it follows that X∞ ∼= Z∞ ×Z X. Moreover, for n ≥ 0, we 
have

Xn = Spec (An[X0] / (F0))G0

that is, Xn
∼= Zn×ZX. From this, the stability property [4], lemma 4.1, and the definition 

of stable point, it follows that, if Q is a stable point of X∞ then its image P by σ∞ is a 
stable point of Z∞.

For the last assertion note that, if X̂ := Spec ÔX,Q0 , being Q0 the center of Q in 
X, then Q induces a stable point Q̂ in X̂∞ because hQ : Spec κ(Q)[[t]] → X factorizes 
through X̂, and we have

ÔX∞,Q
∼= Ô

X̂∞,Q̂
. (2)

Analogously, ÔZ∞,P
∼= ÔẐ∞,P̂ , where Ẑ := Spec ÔZ,P0 and P̂ is the stable point of 

Ẑ∞ induced by P . Therefore, in order to prove (1) we may suppose that Z = Spec A, 
X = Spec B where A and B are complete local rings and X → Z is local étale, hence 
B ∼= A ⊗κ(P0) κ(Q0) ([22] VIII corol. to lemme 2 and [11] III exer. 10.4). Now, X∞ ∼=
Z∞ ×Z X, therefore
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B∞ ∼= A∞ ⊗κ(P0) κ(Q0) and (B∞)Q ∼= (A∞)P ⊗κ(P0) κ(Q0).

Therefore (A∞)P → (B∞)Q is étale, hence ̂(A∞)P → ̂(B∞)Q is also étale, and from [22], 
VIII corol. to lemme 2, it follows that ̂(B∞)Q ∼= ̂(A∞)P ⊗κ(P ) κ(Q), thus (1) holds.

The inequality in Proposition 2.3 may be strict. However, if X is nonsingular at P0, 
then we will next show that equality holds.

Proposition 2.6. Let P be a stable point of X∞. If X is nonsingular at the center P0 of 
P , then the ring OX∞,P is regular and essentially of finite type over a field, and we have

dimOX∞,P = supn dimOjn(X∞),(P )n .

Proof. The first statement is prop. 4.2 in [25]. The second one also follows from the proof 
of [25], prop. 4.2. In fact, by Proposition 2.5 and since there exists an étale morphism 
from a neighborhood of P0 to a subset of Ar,d−r

k , where d = dimX, we may suppose 
that X ⊆ Ar,d−r

k . In this case we have

OX∞ = OX [X1, . . . , Xn, . . .] and OXn
= OX [X1, . . . , Xn], n ≥ 0

where Xn = (X1;n, . . . , Xd;n), n ≥ 1. By 2.4, there exist a finite number of polynomials 
G1, . . . , Gs, G ∈ OX∞ such that P = ((G1, . . . , Gs) : G∞). If n0 ∈ N is such that 
Ojn0 (X∞) contains G1, . . . , Gs, G, then k(Xn0+1, . . . , Xn, . . .) ⊂ OX∞,P . This implies 
that

OX∞,P
∼= k(Xn0+1, . . . , Xn, . . .) ⊗k Ojn0 (X∞),Pn0

hence we conclude the result.

2.7. Let X be a reduced separated k-scheme of finite type and let ν be a divisorial 
valuation on X, i.e. ν is a divisorial valuation on an irreducible component of X. Then 
there exists a proper and birational morphism π : Y → X, with Y normal, such that 
the center of ν on Y is a divisor E of Y . We also denote by νE the valuation ν. Let 
π∞ : Y∞ → X∞ be the morphism on the spaces of arcs induced by π. Let Y Ereg

∞ be 
the inverse image of E ∩ Reg(Y ) by the natural projection jY0 : Y∞ → Y , which is 
an irreducible subset of Y∞, and let NE be the closure of π∞(Y Ereg

∞ ). Then NE is an 
irreducible subset of X∞, let PE be the generic point of NE. More generally, for every 
e ≥ 1, let Y eEreg

∞ := {Q ∈ Y∞ / νQ(IE) = e}, where IE is the ideal defining E in an open 
affine subset of Reg(Y ) (the set Y eEreg

∞ will be also denoted by Y eE
∞ if Y is nonsingular). 

Then Y eEreg
∞ is an irreducible subset of Y∞, let NeE be the closure of π∞(Y eEreg

∞ ) and 
PeE (also denoted by PX

eE) be the generic point of NeE . Note that PeE only depends 
on e and on the divisorial valuation ν = νE , more precisely, if π′ : Y ′ → X is another 
proper and birational morphism, with Y ′ normal, such that the center E′ of ν on Y ′ is a 
divisor, then the point PeE′ defined by e and E′ coincides with PeE . We have that PeE

is a stable point of X∞ ([25], prop. 4.1, see also [24], prop. 3.8).
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2.8. With the notation in 2.7, the image of the canonical homomorphism dπ :
π∗(∧dΩX) → ∧dΩY is an invertible sheaf at the generic point of E. That is, there 
exists a nonnegative integer k̂E such that the fibre at E of the sheaf dπ(π∗(∧dΩX)) is 
isomorphic to the fibre at E of OY (−k̂EE). We call k̂E the Mather discrepancy of X with 
respect to the prime divisor E. Note that k̂E �= 0 implies that π is not an isomorphism 
at the generic point of E, and that k̂E only depends on the divisorial valuation ν = νE . 
We have:

supn dimOjn(X∞),(PeE)n = e (k̂E + 1) (3)

([4], lemma 3.4, [9], theorem 3.9). Hence by Proposition 2.3 we have

dimOX∞,PeE
≤ e (k̂E + 1).

Moreover, let P be a stable point of X∞ and let P0 be its center. If P0 is the generic 
point of X then νP is trivial. Otherwise, νP is a divisorial valuation ([25], (vii) in prop. 3.7 
and prop. 3.8), i.e. there exists π : Y → X birational and proper such that the center of 
νP on Y is a divisor E and there exists e ∈ N such that νP = eνE . There exists a stable 
point PY ∈ Y∞ whose image by π∞ is P ([25], prop. 4.1). Therefore PY ⊇ PY

eE and 
P ⊇ PeE . Now, assume that X is nonsingular at P0, and recall that in this nonsingular 
case we have k̂E = kE , where kE is the discrepancy of X with respect to E, which is 
defined to be the coefficient of E in the divisor KY/X with exceptional support which is 
linearly equivalent to KY − π∗(KX) ([6], appendix). Applying prop. 2.6 and lemma 4.3 
in [4] we conclude

Corollary 2.9. Let P be a stable point of X∞. Suppose that X is nonsingular at the center 
P0 of P , and that P0 is not the generic point of X and νP = eνE. Then OX∞,P is a 
regular ring of dimension

dimOX∞,P = ekE + dimOY∞,PY .

In particular

dimOX∞,PeE
= e(kE + 1).

The following question is open:

Question 2.10. Let P be a stable point of X∞ and suppose that X is analytically ir-
reducible at P0. If the local ring OX∞,P is regular, is X nonsingular at the center P0

of P?
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3. On the graded algebra of the local ring of a smooth scheme associated to a 
divisorial valuation

From now on, let k be a field of characteristic 0. Through this article, we will denote by 
k < y1, . . . , yr > the henselization of the local ring k[y1, . . . , yr](y1,...,yr), being y1, . . . , yr
indeterminacies (see [22] for more details on henselization).

Let η : Y → Ad
k be a k-morphism dominant and generically finite, where Y is a 

nonsingular k-scheme, let E be a divisor on Y and let P0 be the center on Ad
k of the 

valuation defined by E. In this section we will define elements {qj,r}(j,r)∈J in the fraction 
field of OAd,P0 (Proposition 3.3) whose initial forms generate a localization of the graded 
algebra grνE

OAd,P0 modulo étale covering. In section 4 we will prove that they have 

the property of determining a basis of PA
d

eE /(PA
d

eE )2, being PA
d

eE the image by η∞ of the 
generic point of Y eE

∞ (see 2.7). From this and applying Proposition 2.5, we will conclude 
analogous results for a smooth surface X and a divisorial valuation on X (Theorems 3.8
and 4.8).

Let us apply the description of the morphism η appearing in [25], proof of prop. 4.5 
(see (4) below). First, we may suppose that Y is an affine k-scheme. In fact, we may 
replace Y by an open affine subset which contains the generic point ξE of E. Let u ∈ OU , 
where U is an open subset of Y that contains ξE , such that u defines a local equation of 
E. Since η is dominant and generically finite, there exist local coordinates x1, . . . , xd in 
an open subset of Ad that contains η(ξE) such that the image of x1 in OY,ξE is g um1 , 
where m1 > 0 and g is a unit in OY,ξE . By restricting U and adding a m1-th root of g, we 
can define an étale morphism ϕ : Ũ → U such that the image of x1 in OŨ is um1

1 where 
u1 is a local equation of the strict transform Ẽ of E in Ũ . Moreover, since char k = 0, 
and ΩAd ⊗K(Y ) ∼= ΩY ⊗K(Y ), we may restrict Ũ and U and define {u1, . . . , ud} ⊂ OŨ , 
{x1, . . . , xd} ⊂ OV , where V is an open subset of Ad

k, determining respective regular 
systems of parameters in a closed point y0 ∈ Ẽ and in η ◦ ϕ(y0), and such that, if we 
identify x1, . . . , xd with their images by η� : OV,η(y0) → OŨ,y0

, then

x1 = um1
1

x2 =
∑

1≤i≤m2
λ2,i u

i
1 + um2

1 u2

x3 =
∑

1≤i≤m3
λ3,i(u2) ui

1 + um3
1 u3

. . . . . . . . .

xδ =
∑

1≤i≤mδ
λδ,i(u2, . . . , uδ−1) ui

1 + umδ
1 uδ

xδ+1 = uδ+1
. . . . . . . . .

xd = ud

(4)

where δ = codimAd η(ξE),

m1 ≤ ordu1xj = min{i / λj,i �= 0} for 2 ≤ j ≤ δ,

0 < m ≤ m ≤ . . . ≤ m ,
1 2 δ



48 A.J. Reguera / Journal of Algebra 494 (2018) 40–76
λj,i(u2, . . . , uj−1) ∈ k[[u2, . . . , uj−1]], for 2 ≤ j ≤ δ, 0 ≤ i ≤ mj , and, given j′ < j, if i <
mj′ then λj,i ∈ k[[u2, . . . , uj′−1]]. Moreover, since xj −u

mj

1 uj belongs to k[[u1, . . . , uj−1]]
and is integral over k[u1, . . . , ud](u1,...,ud), it is also integral over k[u1, . . . , uj−1](u1,...,uj−1). 
Therefore, after a possible replacement of y0 by another point in an open subset of Ũ∩Ẽ, 
we may suppose that, for 2 ≤ j ≤ δ and 0 ≤ i ≤ mj , λj,i(u2, . . . , uj−1) belongs to 
the henselization k < u2, . . . , uj−1 > of the local ring k[u2, . . . , uj−1](u2,...uj−1), and, if 
i < mj′ , j′ < j, then λj,i belongs to k < u2, . . . , uj′−1 >.

Besides, from the expression (4) it follows that there exists an open neighborhood 
of y0 in Ẽ whose closed points y′0 satisfy the same property, i.e. there exists a regular 
system of parameters of y′0 and of η ◦ ϕ(y′0) for which (4) holds. In fact, replace ui by 
u′
i = ui + ci mod u1, for 2 ≤ i ≤ d, where (ci)i lies in an open subset of kd−1. Hence, 

we may suppose with no loss of generality that

λj,i(u2, . . . , uj−1) ∈ k < u2, . . . , uj−1 > for 2 ≤ j ≤ δ, 0 ≤ i ≤ mj

if i < mj′ , j
′ < j, then λj,i ∈ k < u2, . . . , uj′−1 >

if λj,i(u2, . . . , uj−1) �= 0 then it is a unit in k < u2, . . . , uj−1 >

λj,mj
(u2, . . . , uj−1) is a unit, for 2 ≤ j ≤ d.

(5)

Note that Ũ is nonsingular. Note also that ∧dΩV is an invertible sheaf, hence the image 
of dη : η∗(∧dΩV ) → ∧dΩU is an invertible sheaf. The order aE in E of the corresponding 
divisor is equal to the order in Ẽ of the image of d(η ◦ϕ) : (η ◦ϕ)∗(∧dΩV ) → ∧dΩŨ . So, 
from now on, after a possible replacement of Y by Ũ and of η : Y → Ad by η◦ϕ : Ũ → V , 
we will suppose that (4) is a local expression of η. Besides, from (4) it follows that:

aE = m1 + . . . + mδ − 1. (6)

Lemma 3.1. Let A be a finitely generated k-algebra and let θ : Y → Spec A[x, y] be a 
k-morphism, where x, y are indeterminacies. Let j, 2 ≤ j ≤ d +1 and suppose that there 
exists a multiplicative system Sj−1 of A[x] and there exist elements

lj′ ∈ S−1
j−1A[x] for 2 ≤ j′ ≤ j − 1

such that, if we set vj′ := θ�(lj′) for 2 ≤ j′ ≤ j − 1, then {u1, v2, . . . , vj−1, uj , . . . , ud} is 
a regular system of parameters of OY,y0 . Suppose that the images of x, y by θ� are given 
by x �→ um1

1 and

y �→
∑

m1≤i≤m

λi(v2, . . . , vj−1) ui
1 + um

1 � mod (u1)m+1 (7)

where m ≥ m1, � ∈ OY,y0 and λi(v2, . . . , vj−1) ∈ k < v2, . . . , vj−1 >. Set
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e := g.c.d.({m1} ∪ {i / λi �= 0}), β0 := m1, e0 := β0
βr+1 := min {i / λi �= 0 and g.c.d.{β0, . . . , βr, i} < er } and
er+1 := g.c.d.{β0, . . . , βr+1} for 1 ≤ r ≤ g − 1, where g is such that eg = e

βg+1 := m.

(8)

Let n0 = 1 and nr := er−1
er

for 1 ≤ r ≤ g and let β0 = β0 and βr, 1 ≤ r ≤ g + 1, be 
defined by

βr − nr−1βr−1 = βr − βr−1, (9)

hence we have

βr > nr−1 βr−1 for 1 ≤ r ≤ g, and βg+1 ≥ ng βg;
nrβr belongs to the semigroup generated by β0, . . . , βr−1, 1 ≤ r ≤ g + 1.

(10)

Then, there exist an open subset U of Y containing ξE and a sequence of integers {is}Ns=1
such that

(i) i1 < i2 < . . . < iN = βg+1 and {is}Ns=1 ⊂ {β0} ∪ ∪g+1
r=1(nr−1βr−1, βr],

(ii) {βr}g+1
r=1 is contained in {i1, . . . , iN}, that is, there exist s1 < s2 < . . . < sg+1 := N

such that isr = βr for 1 ≤ r ≤ g + 1,
(iii) for each closed point y′0 in U ∩ E there exist a regular system of parameters 

{u1, v′2, . . . , v
′
j−1, u

′
j , . . . , u

′
d} of OY,y′

0
, where v′i = vi + ci, u′

i = ui + ci, (ci)i ∈ kd−1, 
and there exist {h1 = y, h2, . . . , hN} satisfying: given s, let r, 1 ≤ r ≤ g + 1, be 
such that nr−1βr−1 < is ≤ βr (or r = 1 if s = 1 and i1 = β0), then
(a) hs ∈ T−1

r−1 . . . T
−1
0 S−1

j−1A[x, y], where Tr′ is the multiplicative part generated 
by qr′ := hsr′ (resp. q0 := x1) for 1 ≤ r′ ≤ r − 1 (resp. r′ = 0),

(b) the image of hs in K(OY,y′
0
) belongs to OY,y′

0
, and if we identify hs with its 

image in OY,y′
0

then

hs =
∑

is≤i≤m(r) λs,i(v′2, . . . , v′j−1) ui
1

+ γs,m(r)(v′2, . . . , v′j−1) um(r)

1 � mod (u1)m
(r)+1 (11)

where λs,i, γs,m(r) ∈ k < v′2, . . . v
′
j−1 >, λs,is �= 0, γs,m(r) is a unit and m(r) :=

m + (n1 − 1)β1 + . . . + (nr−1 − 1)βr−1. Moreover, for r ≤ r′ ≤ g, let β(r)
r′ :=

βr′ + (n1 − 1)β1 + . . . + (nr−1 − 1)βr−1then we have

min
{
i / λs,i �= 0 and g.c.d.{er−1, β

(r)
r , . . . , β

(r)
r′−1, i} < er′−1

}
= β

(r)
r′ (12)

and λ
s,β

(r)
r′

is a unit.
(c) For s ≥ 2, if s = sr−1 + 1 (resp. sr−1 + 1 < s), then

hs := q
bs0
0 · · · qb

s
ρ

ρ Ps

(
μsh

bs0 bsρ
, l2, . . . , lj−1

)

q0 · · · qρ
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where h = (qr−1)nr−1 (resp. h = hs−1), ρ = r−2 (resp. ρ = r−1), the integers 
{bsr′}

ρ
r′=0 are the unique nonnegative integers satisfying bsr′ < nr′ , 1 ≤ r′ ≤ ρ, 

and nr−1βr−1 =
∑

0≤r′≤r−2 b
s
r′βr′ (resp. ij,s−1 =

∑
0≤r′≤r−1 b

s
j,r′βj,r′), μs =

(λs1,β1
)bs1 · · · (λsρ,βρ

)b
s
ρ is a unit, and Ps ∈ k[z, v′2, . . . , v′j−1] is such that

Ps(λ, v′2, . . . , v′j−1) = 0, ∂Ps

∂z
(λ, v′2, . . . , v′j−1) is a unit in k < v′2, . . . , v

′
j−1 >,

(13)

where λ = (λs−1,is−1)nr−1 (resp. λ = λj,s−1,ij,s−1).

Proof. First note that (10) follows from (8) and (9) (see [28] 2.2.1 in the Appendix). 
Note also that there exists an open neighborhood of y0 in E such that if y′0 is a closed 
point on it and {u1, v′2, . . . , v

′
j−1, u

′
j , . . . , u

′
d} is a regular system of parameters of OY,y′

0
, 

where v′i = v + ci, u′
i = ui + ci, (ci)i ∈ kd−1, then the integers defined by (8) and (9) for 

the expression of the image of y in terms of {u1, v′2, . . . , v
′
j−1, u

′
j , . . . , u

′
d} are the same 

as the ones defined for the expression in (7). Thus, to prove the lemma, it suffices to 
show that, after a possible replacement of y0 in an open subset U ∩ E of E, there exist 
{is}Ns=1 and {hs}Ns=1 satisfying (i), (ii) and (a), (b) for the image of hs in K(OY,y0)
(hence v′2 = v2, . . . , v′j−1 = vj−1 in (11)) and (c).

We will define {is}Ns=1 and {hs}Ns=1 by induction on s. First, after a possible replace-
ment of y0 in an open subset of E, we may suppose that, for every i such that λi �= 0 in 
(7), λi is a unit in the ring

Rj−1 := k < v2, . . . , vj−1 > .

Then, for s = 1, let i1 := min{i / λi(v2, . . . , vj−1) �= 0} and h1 := y. It is clear that 
β0 ≤ i1 ≤ β1 and that (a) and (b) hold for s = 1. Now, let s ≥ 2 and suppose 
that i1 < . . . < is−1 and h1, . . . , hs−1 are defined and satisfy the required conditions. 
If is−1 = βg+1 then set N := s − 1. If not, then is−1 < βg+1. Thus, there exist r, 
1 ≤ r ≤ g+1 such that is−1 ∈ {βr−1} ∪(nr−1βr−1, βr). Let s1 < s2 < . . . < sr−1 ≤ s −1
be such that isr′ = βr′ for 1 ≤ r′ ≤ r − 1 and let q0 := x, qr′ := hsr′ for 1 ≤ r′ ≤ r − 1.

If is−1 = βr−1, recall that λs−1,βr−1
(v2, . . . , vj−1) ∈ Rj−1 \ {0}, thus (λs−1,βr−1

)nr

belongs to Rj−1 \ {0} and hence there exists an irreducible monic polynomial Ps ∈
k[z, v2, . . . , vj−1] such that

Ps((λs−1,βr−1
)nr , v2, . . . , vj−1) = 0 and ∂Ps

∂z
((λs−1,βr−1

)nr , v2, . . . , vj−1) �= 0

Moreover, after a possible replacement of y0 in an open subset of E, we may suppose 
that
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Ps((λs−1,βr−1
)nr , v2, . . . , vj−1) = 0 and

∂Ps

∂z
((λs−1,βr−1

)nr , . . . , vj−1) is a unit in Rj−1.
(14)

Analogously, if is−1 ∈ (nr−1βr−1, βr), then after a possible replacement of y0 in an 
open subset of E, we may suppose that there exists an irreducible monic polynomial 
Ps ∈ k[z, v2, . . . , vj−1] such that

Ps(λs−1,is−1 , v2, . . . , vj−1) = 0, ∂Ps

∂z
(λs−1,is−1 , . . . , vj−1) is a unit in Rj−1. (15)

If is−1 = βr−1, let bsr′ = br−1,r′ , 0 ≤ r′ ≤ r − 2, be the unique nonnegative integers 
satisfying br−1,r′ < nr′ for 1 ≤ r′ ≤ r − 2, and nr−1βr−1 =

∑
0≤r′≤r−2 br−1,r′βr′ , and 

let μs := (λs1,β1
)bs1 · · · (λsr−2,βr−2

)b
s
r−2 , which is a unit in Rj−1, such that the image of 

q
bs0
0 · · · qb

s
r−2

r−2 by θ� is equal to μsu
nr−1βr−1
1 mod (u1)nr−1βr−1+1. Set

hs := q
br−1,0
0 · · · qbr−1,r−2

r−2 Ps

(
μs (qr−1)nr−1

q
br−1,0
0 · · · qbr−1,r−2

r−2
, l2, . . . , lj−1

)
(16)

and is := (nr−1 − 1)βr−1 + min 
{
i / i > βr−1, λs−1,i �= 0

}
, unless we have λs−1,i = 0

for all i > βr−1, which implies r−1 = g, then set is := βg+1. From (14), (16) and Taylor’s 
development for Ps it follows that, if s < N (resp. s = N) then the νE-value of the image 
θ�(hs) of hs in OY,y0 is is > nr−1βr−1 (resp. is ≥ iN = βg+1), and the exponents of u1
in θ�(hs) with nonzero coefficient (see the left hand side of (11)) are determined by the 
ones in θ�(hs−1) by adding (nr−1 − 1)βr−1, therefore nr−1βr−1 < is ≤ βr and (11) and 

(12) hold for s. Moreover, for r ≤ r′ ≤ g, the coefficient λ
s,β

(r)
r′

in u
β

(r)
r′

1 of θ�(hs) is equal, 
modulo product by a unit, to (λs−1,βr−1

)nr−1−1 λ
s−1,β(r−1)

r′
, therefore it is a unit, and 

(b) is satisfied. Besides, hs ∈ T−1
r−2 . . . T

−1
0 S−1

j−1A[x, y], hence (a) also holds.
If nr−1βr−1 < is−1 < βr then er−1 divides is−1 (by (b) applied to s − 1) and 

there exist unique nonnegative integers {bsr′}r−1
r′=0 satisfying bsr′ < nr′ for 1 ≤ r′ ≤

r − 1 and is−1 =
∑

0≤r′≤r−1 b
s
r′βr′ (because nr−1βr−1 ≤ is−1). Then, let μs :=

(λs1,β1
)bs1 · · · (λsr−1,βr−1

)b
s
r−1 , which is a unit in Rj−1, such that the image of qb

s
0

0 · · · qb
s
r−1

r−1

by θ� is equal to μsu
is−1
1 mod (u1)is−1+1, and set

hs := q
bs0
0 · · · qb

s
r−1

r−1 Ps

(
μs hs−1

q
bs0
0 · · · qb

s
r−1

r−1

, l2, . . . , lj−1

)
(17)

and is := min {i / i > is−1, λs,i �= 0}, unless we have λs−1,i = 0 for all i > βr−1, which 
implies r − 1 = g and then we set is := βg+1. It is clear that (a) holds and, from (15)
and (17), it follows that, if s < N (resp. s = N), then the νE-value of the image θ�(hs)
of hs in OY,y0 is is > is−1 > nr−1βr−1 (resp. ≥ iN = βg+1 > ngβg), and the exponents 
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of u1 in θ�(hs) with nonzero coefficient are the same as the ones for by θ�(hs−1), hence 
nr−1βr < is ≤ βr and (11) and (12) hold for s. Moreover, for r ≤ r′ ≤ g, the coefficient 

λ
s,β

(r)
r′

in u
β

(r)
r′

1 of θ�(hs) is the same, modulo product by a unit, as the coefficient λ
s−1,β(r)

r′

of θ�(hs−1), therefore it is a unit, and (b) is satisfied. Besides note that β(r)
r = βr for 

1 ≤ r ≤ g + 1, hence from the previous construction it follows that {βr}g+1
r=1 ⊂ {is}Ns=1, 

hence the result is proved.

Corollary 3.2. Let j, 2 ≤ j ≤ δ. Set A := k[x2, . . . , xj−1], x = x1, y = xj, and let θ : Y →
Spec A[x1, xj ] be the composition of η : Y → Ad with the projection Ad → Spec A[x1, xj ]. 
Suppose that the hypothesis in Lemma 3.1 holds and let the image by η� of xj be given 
by

xj =
∑

m1≤i≤mj

λ′
j,i(v2, . . . , vj−1) ui

1 + u
mj

1 uj mod (u1)mj+1, (18)

where λ′
j,i(v2, . . . , vj−1) ∈ Rj−1 = k < v2, . . . , vj−1 >. Let {βj,r}gj+1

r=0 , {ej,r}gjr=0, 
{nj,r}gjr=0 and {βj,r}

gj+1
r=0 be the integers defined by (8) and (9). Then there exist an 

open subset U of Y and, for each point y′0 in U ∩ E, a regular system of parameters 
{u1, v′2, . . . , v

′
j−1, u

′
j , . . . , u

′
d} of OY,y′

0
, where v′i = v + ci, u′

i = ui + ci, (ci)i ∈ kd−1, and 
there exist elements {qj,0 = x1, qj,1, . . . , qj,gj+1} where

qj,r ∈ T−1
r−1 · · ·T−1

0 S−1
j−1[x1, x2, . . . , xj−1, xj ]

being Tr′ the multiplicative part generated by qj,r′, such that the images of {qj,r}gj+1
r=0 in 

OY,y′
0

are given by

qj,r = μj,r(v′2, . . . , v′j−1) u
βj,r

1 mod (u1)βj,r+1 for 0 ≤ r ≤ gj

qj,gj+1 = μj,gj+1(v′2, . . . , v′j−1) u
βj,gj+1

1 uj mod (u1)βj,g1+1+1
(19)

where μj,r(v′2, . . . , v′j−1) is a unit in k < v′2, . . . , v
′
j−1 > for 0 ≤ r ≤ gj + 1.

Proof. This is consequence of Lemma 3.1. In fact, after a possible replacement of y0 in an 
open subset of E, we may suppose that there exist {is}Ns=1 and {hs}Ns=1 satisfying (i), (ii) 
and (a), (b) in Lemma 3.1. Let qj,0 := x1, qj,1 := hs1 , . . . , qj,gj := hsgj

. If λsgj+1,βg+1
= 0

in the expression (11) for η�(hsgj+1) then let qj,gj+1 := hsgj+1 . Otherwise, after a possible 
replacement of y0 in an open subset of E, we may suppose that there exists an irreducible 
monic polynomial P ∈ k[z, v2, . . . , vj−1] such that P (λsgj+1,βj,gj+1

, v2, . . . , vj−1) = 0 and 
∂P
∂z (λsgj+1,βgj+1

) is a unit in Rj−1. Then we proceed as in (17), that is we set

qj,gj+1 := q
bj,0
j,0 · · · qbj,gjj,gj

P

⎛⎝ μ hsgj+1

q
bj,0 · · · qbj,gj

, l2, . . . , lj−1

⎞⎠

j,0 j,gj
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where bj,0, . . . , bj,gj are nonnegative integers satisfying bj,r < nj,r, 1 ≤ r ≤ gj , and 
βj,gj+1 =

∑
0≤r≤gj

bj,rβj,r, and μ = (λs1,βj,1
)bj,1 · · · (λsgj ,βj,1

)bj,gj . Then {qj,r}gj+1
r=0 sat-

isfy the required condition.

Proposition 3.3. There exist a point y0 ∈ E, a regular system of parameters {u, v2, . . . , vd}
of OY,y0 and a regular system of parameters {x1, . . . , xd} of OAd,η(y0) such that the 
following holds:

(i) If we identify x1, . . . , xd with their images in OY,y0 then

x1 = um1

xj =
∑

m1≤i≤mj
λj,i(v2, . . . , vj−1) ui + umj vj mod (u)mj+1, for 2 ≤ j ≤ δ

xr = vr for δ + 1 ≤ r ≤ d,

where 0 < m1 ≤ m2 ≤ . . . ≤ md and, for 2 ≤ j ≤ δ, if we set Rj−1 :=
k < v2, . . . , vj−1 >, then λj,i(v2, . . . , vj−1) ∈ Rj−1, λj,i �= 0 implies that it is a 
unit in Rj−1, λj,mj

(v2, . . . , vj−1) is a unit in Rj−1 and

if i < mj′ , j
′ < j, then λj,i ∈ Rj′−1. (20)

(ii) For 2 ≤ j ≤ δ, let Bj := Rj−1[x1, xj ](x1,xj), let νj be the restriction of νE to Bj, 
let βj,0 = m1, βj,1, . . . , βj,gj be a minimal system of generators of the semigroup
νj(Bj \ {0}) and βj,gj+1 = νj(Ij), where Ij is the complete ideal defined by the 
restriction of νj to a general fibre of Spec Bj → Spec Rj−1. Set

J ∗ := {(1, 0)}∪{(j, r) / 2 ≤ j ≤ δ, 1 ≤ r ≤ gj}, J := J ∗∪{(j, gj+1) / 2 ≤ j ≤ δ}

let us consider the lexicographical order in J and, for (j, r) ∈ J , let

J ∗
j,r := {(j′, r′) ∈ J ∗ / (j′, r′) < (j, r)}, Jj,r := {(j′, r′) ∈ J / (j′, r′) < (j, r)} .

Then, there exist elements {qj,r}(j,r)∈J in k(x1, . . . , xj), more precisely,

qj,r ∈
∏

(j′,r′)∈J ∗
j,r

T−1
j′,r′ k[x1, . . . , xj ] (21)

where, for (j′r′) ∈ J ∗
j,r, Tj′,r′ is the multiplicative system generated by qj′,r′ , such 

that:
(a.2) q1,0 := x1 and, for 2 ≤ j ≤ δ, 0 ≤ r ≤ gj + 1, the image of qj,r in the 

fraction field K(OY,y0) of OY,y0 belongs to OY,y0 and, if we identify qj,r with 
its image, then
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qj,r = μj,r(v2, . . . , vj−1) uβj,r mod (u)βj,r+1 for 1 ≤ r ≤ gj

qj,gj+1 = μj,gj+1(v2, . . . , vj−1) u
βj,gj+1 vj mod (u)βj,gj+1+1 (22)

where μj,r(v2, . . . , vj−1) is a unit in Rj−1 for 1 ≤ r ≤ gj + 1.
(b.2) For 2 ≤ j ≤ δ, set qj,0 := q1,0 = x1, ej,r := g.c.d.{βj,0, . . . , βj,r}, nj,r :=

ej,r−1
ej,r

for 1 ≤ r ≤ gj, and let bj,0, . . . , bj,gj be the unique nonnegative integers 
satisfying

bj,r < nj,r for 1 ≤ r ≤ gj and βj,gj+1 =
∑

0≤i≤gj

bj,rβj,r, (23)

then, identifying qj,r with its image in OY,y0 , we have

qj,gj+1

q
bj,0
j,0 . . . q

bj,gj
j,gj

= vj ∈ OY,y0 .

(iii) Even more, for 2 ≤ j ≤ δ, there exist nonnegative integers Nj and sj,1 < sj,2 <

. . . < sj,gj+1 = Nj, and elements {hj,s}Nj

s=1, such that qj,r = hj,sj,r for 1 ≤ r ≤
gj + 1, and besides the following holds: given s, let r, 1 ≤ r ≤ gj + 1, be such that 
sj,r−1 < s ≤ sj,r (resp. r = 1 if s ≤ sj,1), then we have:
(a.3) hj,s ∈

∏
(j′,r′)∈J ∗

j,r
T−1
j′,r′ k[x1, . . . , xj ]

(b.3) the image of hj,s in K(OY,y0) belongs to OY,y0 and, if we identify hj,s with 
its image in OY,y0 then

hj,s =
∑

ij,s≤i≤m
(r)
j

λj,s,i(v2, . . . , vj−1) ui

+ γ
j,s,m

(r)
j

(v2, . . . , vj−1)um
(r)
j uj mod (u)m

(r)
j +1

where nj,r−1βj,r−1 < ij,s ≤ βj,r, ij,s−1 < ij,s, ij,s = βj,r iff s = sr, 
λj,s,i, γj,s,m(r)

j
∈ Rj−1, λj,s,ij,s , γj,s,m(r)

j
is a unit, and m(r)

j := mj +
(nj,1 − 1)βj,1 + . . . + (nj,r−1 − 1)βj,r−1.

(c.3) If s = sj,r−1 + 1 (resp. sr−1 + 1 < s), then hj,s is equal to

q
bsj,0
j,0 · · · qb

s
j,ρ

j,ρ Pj,s

⎛⎝ μj,sh

q
bsj,0
j,0 · · · qb

s
j,ρ

j,ρ

,
q2,g2+1

q
b2,0
2,0 . . . q

b2,g2
2,g2

, . . . ,
qj−1,gj−1+1

q
bj−1,0
j−1,0 . . . q

bj−1,gj−1
j−1,gj−1

⎞⎠
where h = q

nj,r−1
j,r−1 (resp. h = hj,s−1), ρ = r − 2 (resp. ρ = r − 1), the 

integers {bsj,r′}
ρ
r′=0 satisfy bsj,r′ < nj,r′ , 1 ≤ r′ ≤ ρ, and nj,r−1βj,r−1 =∑

0≤r′≤r−2 b
s
j,r′βj,r′ (resp. ij,s−1 =

∑
r′≤r−1 b

s
j,r′βj,r′), μj,s = μ

bsj,0
j,0 · · ·μbsj,ρ

j,ρ is 
a unit, and Pj,s ∈ k[z, v2, . . . , vj−1] is irreducible and satisfies
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Pj,s(λ, v2, . . . , vj−1) = 0, ∂Pj,s

∂z
(λ, v2, . . . , vj−1) is a unit in Rj−1; (24)

where λ = (λj,s−1,ij,s−1)nj,r−1 (resp. λ = λj,s−1,ij,s−1).

Proof. The result is a consequence of Lemma 3.1 and its Corollary 3.2. First note that, 
given j, 2 ≤ j ≤ δ, if there exist {qj,r}gj+1

r=1 in k(x1, . . . , xj) satisfying (22) and we define

lj :=
qj,gj+1

q
bj,0
j,0 . . . q

bj,gj
j,gj

∈ k(x1, . . . , xj) (25)

where qj,0 = x1 and {bj,r}gjr=0 satisfy (23), and vj to be the image of lj , then vj belongs 
to OY,y0 and besides

vj = γj uj mod (u) where γj is a unit in Rj−1. (26)

In fact, with the notation in (22) we may take γj = μj,g1+1

μ
bj,1
j,1 ...μ

bj,gj
j,gj

.

Note also that, fixed j, 2 ≤ j ≤ δ, if (26) holds for every j′ ≤ j − 1, then the image 
of xj in OY,y0 is given by

xj =
∑

m1≤i≤mj

λj,i(v2, . . . , vj−1) ui + umj uj mod (u)mj+1

where λj,i ∈ Rj−1, u := u1, mj is the integer in (4), λj,i �= 0 implies that it is a unit in 
Rj−1, λj,mj

is a unit in Rj−1 and (20) holds (recall the conditions in (5)). Moreover, the 
integers {βj,r}

gj
r=0 (resp. βj,gj+1) defined in (8) and (9) for the image of xj are a minimal 

system of generators of the semigroup νj(Bj \ 0) (resp. equal to νj(Ij)). From this, and 
defining vr to be the image of xr for δ + 1 ≤ r ≤ d (i.e. vr = ur, δ + 1 ≤ r ≤ d, with the 
notation in (4)), (i) would follow.

Hence, in order to prove (i) and (ii), it suffices to show that, for 2 ≤ j ≤ δ, there 
exist {qj,r}gj+1

r=1 satisfying (21) and (22), where Rj−1 is defined taking vj′ to be the 
image of lj′ for 2 ≤ j′ ≤ j − 1 (see (25)). We argue by induction on j. For j = 2
the hypothesis in Corollary 3.2 is clearly satisfied (we may take S1 = {1}). Thus, by 
Corollary 3.2, there exist {q2,r}g2+1

r=1 satisfying (21) and (22). Now, let j, 2 ≤ j ≤ δ and 

suppose that, for 2 ≤ j′ ≤ j − 1, there exist {qj′,r}
gj′+1
r=0 satisfying (21) and (22). Since 

vj′ is defined to be the image of lj′ , 2 ≤ j′ ≤ j − 1, the hypothesis of Corollary 3.2
is satisfied. In fact, there exists a multiplicative part Sj−1 of k[x1, . . . , xj−1] such that ∏

(j′,r′)∈J ∗
j,1

T−1
j′,r′ k[x1, . . . , xj−1] ∼= S−1

j−1k[x1, . . . , xj−1], hence lj′ ∈ S−1
j−1k[x1, . . . , xj−1]

for 2 ≤ j′ ≤ j − 1. Thus, Corollary 3.2 assures the existence of {qj,r}gj+1
r=1 satisfying (21)

and (22). From this, we conclude (i) and (ii). Besides, from the proof of Corollary 3.2
(see the proof of Lemma 3.1), (iii) follows.
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Definition 3.4. The local expression in Proposition 3.3 (i) (or in (4) at the beginning of 
this section) will be called a general transverse expression of η : Y → Ad

k with respect 
to E. The elements {qj,r}(j,r)∈J obtained in Proposition 3.3 (ii) will be called a system 
of transverse generators for η : Y → Ad

k with respect to E.

Remark 3.5. For j = 2, B2 = k[x1, x2](x1,x2) is a two-dimensional regular local ring. 
Then q2,0, q2,1, . . . , q2,g2 , q2,g2+1 ∈ B2 is a minimal generating sequence for ν2 ([26], theo-
rem 8.6). In fact, since R1 = k, if we apply Lemma 3.1 to y = x2 then all the λs,i’s in (11)
belong to k, hence we can take Ps(z) = z − (λs−1,is−1)nr (resp. Ps(z) = z − λs−1,is−1) 
in (13). Hence q2,r ∈ k[x1, x2] for 0 ≤ r ≤ g2 + 1, moreover we have q2,0 = x1, 

q2,1 = x2 −
∑

i<β2,1
λ2,i q

i
β2,0
2,0 and, for 1 ≤ r ≤ g2,

q2,r+1 = q
n2,r
2,r − c2,r q

b2,r,0
2,0 . . . q

b2,r,r−1
2,r−1 −

∑
γ=(γ0,...,γr)

c2,γ qγ0
2,0 . . . q

γr

2,r

where the b2,r,i’s are the unique nonnegative integers satisfying b2,r,i < n2,i for 1 ≤
i ≤ r − 1, and n2,rβ2,r =

∑
0≤i<r b2,r,iβ2,i, the γ’s are nonnegative integers satisfying 

γi < n2,i for 1 ≤ i ≤ r and n2,rβ2,r <
∑

i γiβ2,i, and c2,r, c2,γ ∈ k, c2,r �= 0 and c2,γ �= 0
only for a finite number of γ’s.

Remark 3.6. Let j, 2 ≤ j ≤ δ. Set A := k[v2, . . . , vj−1], x = x1, y = xj and let 
θ : Y → Spec A[x1, xj ] be defined by the morphism of k-algebras given by vj′ �→ vj′ , 2 ≤
j′ ≤ j − 1, xi �→ η�(xi), i = 1, j (see (18)). Setting lj′ = vj′ , 2 ≤ j′ ≤ j − 1, and 
Sj−1 = {1}, the hypothesis in Lemma 3.1 is satisfied. Let us apply Lemma 3.1, then the 
integers defined in (8) and (9) are {βj,r}gj+1

r=0 , {ej,r}gjr=0, {nj,r}gjr=0 and {βj,r}
gj+1
r=0 (see 

Proposition 3.3 or Corollary 3.2). We denote by {q′j,r}
gj+1
r=0 the elements {qr = hsr}

gj+1
r=0

in 3.1 (iii).(a), hence satisfying

q′j,r ∈ T ′−1
j,r−1 · · ·T ′−1

j,0k[v2, . . . , vj−1, x1, xj ]

being T ′
j,r′ the multiplicative part generated by q′j,r′ , and such that the images by θ� of 

{q′j,r}
gj+1
r=0 are {η�(qj,r)}gj+1

r=0 , thus given in (19). In fact, note that qj,r is obtained from 
q′j,r by replacing vi by qi,gi+1

q
bi,0
i,0 ...q

bi,gi
i,gi

, for 1 ≤ i ≤ j − 1.

On the other hand, for 2 ≤ j ≤ δ, there exists a domain Bj−1 which is an étale 
extension of k[v2, . . . , vj−1] and contains λj,i(v2, . . . , vj−1), m1 ≤ i ≤ mj (see (i) in 
Proposition 3.3). Let ν̃j be the valuation on Bj−1[x1, xj ] extending νj and such that 
ν̃j(�) = 0 for all � ∈ Bj−1 (see (ii) in Proposition 3.3). Let q̃j,1, . . . , ̃qj,gj+1 ∈ Bj−1[x1, xj ]
be a minimal generating sequence for ν̃j defined as in Remark 3.5, i.e. q̃j,0 = x1, q̃j,1 =
xj −

∑
i<βj,1

λ′
j,i (q̃j,0)

i
βj,0 and, for 1 ≤ r ≤ gj ,

q̃j,r+1 = q̃
nj,r

j,r − c̃j,r q̃
bj,r,0
j,0 . . . q̃

bj,r,r−1
j,r−1 −

∑
c̃j,γ q̃γ0

j,0 . . . q̃
γr

j,r, 1 ≤ r ≤ gj (27)

γ=(γ0,...,γr)
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where bj,r,i = b
sj,r+1
j,i , 1 ≤ i ≤ r − 1, i.e. bj,r,i < nj,i and nj,rβj,r =

∑
0≤i<r bj,r,iβj,i, we 

have ν̃j−1(q̃γ0
j,0 . . . q̃

γr

j,r) > nj,rβj,r for each sequence γ of nonnegative integers in the right 
hand side, and c̃j,r, ̃cj,γ ∈ Bj−1, c̃j,r �= 0 and c̃j,γ �= 0 only for a finite number of γ’s.

Note that, for 1 ≤ r ≤ gj + 1, in the ring 
∏r−1

r′=0 T
′−1
j,r′Bj−1[x1, xj ] we have

q′j,r = q̃j,r · �̃ + h̃ (28)

where �̃, ̃h ∈
∏r−1

s=0 T
′−1
j,sBj−1[x1, xj ], �̃ is a unit and ν̃(h̃) > βj,r.

3.7. Now, let X be a smooth k-scheme and let ν be a divisorial valuation on an 
irreducible component X0 of X. Let P0 be the center of ν on X and let R := OX,P0 . 
We consider the graded algebra associated with ν, that is, grνR := ⊗n∈Φ+℘n/℘

+
n where 

Φ+ := ν(R \ {0}) is the semigroup of the valuation and, for n ∈ Φ+,

℘n = {h ∈ R / ν(h) ≥ n}, ℘+
n = {h ∈ R / ν(h) > n}.

Let π : Y → X0 be a proper and birational morphism such that the center of ν on Y
is a divisor E, and let η : Y → Ad

k be the composition of π with an étale morphism 
X0 → Ad

k, where d = dimX0. Let us consider the notation introduced in this section for 
the morphism η, in particular, let {qj,r}(j,r)∈J be a system of transverse generators for 
η : Y → Ad

k with respect to E, (Proposition 3.3 (ii)). Recall that the center of ν on Ad
k

is (x1, . . . , xδ) and let S := k[x1, . . . , xd](x1,...,xδ).
There exists a proper and birational morphism Z → Ad

k with Z smooth such that the 
center of ν on Z is a divisor F . Since OZ,F is the valuation ring of the restriction of ν
to K(S), we have that OZ,F ≺ OY,E , i.e. OY,E dominates OZ,F , hence, after restricting 
to some open subset of Y , we may suppose that Y dominates Z, let σ : Y → Z denote 
the corresponding morphism. Note that we have

qj,gj+1

q
bj,0
j,0 . . . q

bj,gj
j,gj

∈ OZ,F for 2 ≤ j ≤ δ,

because these elements belong to K(S) and have ν-value equal to 0; we also denote by vj
the element qj,gj+1

q
bj,0
j,0 ...q

bj,gj
j,gj

of OZ,F (see Proposition 3.3 (ii)). Besides, the ramification index 

e of OY,E over OZ,F is equal to g.c.d.({βj′,r′}(j′,r′)∈J ∗). Thus there exist {aj,r}(j,r)∈J ∗ , 
aj,r ∈ Z, such that

z :=
∏

(j′,r′)∈J ∗

q
aj,r

j,r ∈ OZ,F and ν (z) =
∑

(j′,r′)∈J ∗

aj,rβj,r = e. (29)

Then,

ν(σ∗(dz ∧ dv2 ∧ . . . ∧ dvd)) = e− 1



58 A.J. Reguera / Journal of Algebra 494 (2018) 40–76
and hence, if kF (Ad) denotes the discrepancy of Ad with respect ro F , we have

aE = ekF (Ad) + e− 1 (30)

Since S ≺ R, the initial forms of the elements of k[x1, . . . , xd] are well defined elements 
in grνR, and since q1,0 = x1, applying (21) in Proposition 3.3, by recurrence on (j, r) we 
can define the initial form qj,r of qj,r for every (j, r) ∈ J . We have

qj,r ∈
∏

(j′,r′)∈J ∗
j,r

T−1
j′,r′ (grνR)

where, for (j′, r′) ∈ J ∗
j,r, Tj′,r′ is the multiplicative system generated by qj,r. Let 

k[{qj,r}(j,r)∈J ] be the k-subalgebra of the fraction field K(grνR) of grνR generated by 
the qj,r’s and, for δ + 1 ≤ j ≤ d, let xj be the initial form of xj . With this notation, the 
following holds:

Theorem 3.8. The initial forms {qj,r}(j,r)∈J of the system of transverse generators satisfy 
the following properties:

(i) We have an isomorphism of graded rings

G :=
∏

(j,r)∈J ∗

T−1
j,r k

[
{qj,r}(j,r)∈J , xδ+1, . . . ,xd

] Φ∼= A[ue,u−e]

where deg(u) = 1, and A is a k-algebra which is étale over the polynomial ring in 
d − 1 variables k[v2, . . . , vd], with deg(vj) = 0, 2 ≤ j ≤ d.

(ii) We have an isomorphism ∏
(j,r)∈J ∗

T−1
j,r grνR ∼= B[ue,u−e]

whose restriction to G is Φ, where A ⊗k κ(P0) ⊆ B and the extension is étale. 
Besides, the fraction field K(B) of B is κ(E).

(iii) For 2 ≤ j ≤ δ, the isomorphism Φ in (i) restricts to

Gj :=
∏

(j,r)∈J ∗
j,gj+1

T−1
j,r k

[
{qj′,r′}(j′,r′)∈Jj,gj+1∪{(j,gj+1)}

] Φ∼= Aj−1[vj ][uej ,u−ej ]

where ej := g.c.d.{βj′,r′ / (j′, r′) ∈ J ∗
j,gj+1}, A1 = k and Aj−1 is étale over 

k[v2, . . . , vj−1] for 2 < j ≤ δ.
(iv) For 2 ≤ j ≤ δ, there exists a domain Bj−1 étale over Aj−1 such that

Bj−1

[
{q1,0} ∪ {qj,r}gj+1

r=1

]
∼= Bj−1

[
y1,0, yj,2 . . . , yj,gj+1

]
/ Jj
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where the yj,r’s are indeterminacies and Jj is a prime ideal which is generated by 
{ynj,r

j,r − c̃j,r y
bj,r,0
1,0 · ybj,r,1j,1 . . . y

bj,r,r−1
j,r−1 }gjr=1, c̃j,r ∈ Bj−1. In particular, the previous 

ring is a domain which is a complete intersection over Bj−1.
Moreover, for any domain C, any ideal in C[y1,0, yj,2, . . . , yj,gj+1] generated by 

{ynj,r

j,r − cj,r y
bj,r,0
1,0 · ybj,r,1j,1 . . . y

bj,rr−1
j,r−1 }gjr=1, cj,r ∈ C, is a prime ideal.

Proof. First, we have that R = OX,P0 ⊇ k[x1, . . . , xd](x1,...,xδ) =: S is étale, hence 
R̂ ∼= Ŝ ⊗k κ(P0) where we denote by R̂ (resp. Ŝ) the completion with respect to the 
maximal ideal. Since the valuation ν on R (resp. on S) can be extended to a valuation 
ν̂ on R̂ (resp. on Ŝ) and we have grνR = grν̂R̂ (resp. grνS = grν̂ Ŝ) we conclude that 
grνR ∼= grνS ⊗k κ(P0). Therefore, in (ii) we may suppose that X = Ad

k, i.e. R = S.
Keep the notation in Proposition 3.3. The morphism S ↪→ OZ,F induces an inclusion

Φ : grνS ↪→ grνOZ,F
∼= κ(F ) [ue]

where κ(F ) is the residue field of F on Y , which contains k(v2, . . . , vd), and u, v2, . . . , vd

are indeterminacies, vj , 2 ≤ j ≤ d (resp. u) denotes the initial form of vj (resp. u), hence 
deg(vj) = 0, deg(u) = 1. We have

g2∏
r′=0

T−1
2,r′ k [{q1,0} ∪ {q2,r′}g2

r′=1]
Φ∼= k[ue2,g2 ,u−e2,g2 ]

and hence G2
Φ∼= k[v2][ue2,g2 , u−e2,g2 ]. More precisely, the image of the ring in the left 

hand side in the fraction field K(grνOZ,F ) of grνOZ,F is in fact in grνOZ,F and is equal 
to the ring in the hand side. Arguing by recurrence on j, 2 ≤ j ≤ δ, it follows that

∏
(j′,r′)∈J ∗

j,gj+1

T−1
j′,r′ k

[
{qj′,r′}(j′,r′)∈Jj,gj+1

] Φ∼= Aj−1[uej ,u−ej ]

where ej := g.c.d.{e2,g2 , . . . , ej,gj} = g.c.d.{βj′,r′ / (j′, r′) ∈ J ∗
j,gj+1} and Aj−1

is the minimal subring of κ(F ) containing k[v2, . . . , vj−1] and μj′,r′(v2, . . . , vj′−1), 
μj′,r′(v2, . . . , vj′−1)−1 for (j′, r′) ∈ J ∗

j,gj+1, hence Aj−1 is étale over k[v2, . . . , vj−1]. 
Therefore

Gj

Φ∼= Aj−1[vj ][uej ,u−ej ] and G = Gδ ⊗k k[xδ+1, . . . , xd]
Φ∼= A[ueδ ,u−eδ ]

where A = Aδ−1[vδ, . . . , vd], hence (i) and (iii) hold.
In order to prove (ii), let B be the minimal subring of κ(F ) containing k[v2, . . .vd]

and {λj,i(v2, . . . , vj−1)}2≤j≤d,m1≤i≤mj
. From the construction of the hj,s’s in Propo-

sition 3.3 (iii) (see the proof of (iii) in Lemma 3.1) it follows that, for every (j, i), 
2 ≤ j ≤ d, m1 ≤ i ≤ mj , there exists h ∈

∏
(j,r)∈J ∗ T

−1
j,r S such that the initial form of 
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h is λj,i(v2, . . . , vd)ue. Now, let h ∈ S = k[x1, . . . , xδ](x1,...,xδ) and let a := ν(h). Then 
eδ divides a and the image of h in OY,y0 is equal to λ(v2, . . . , vδ)ua modulo ua+1, where 
λ(v2, . . . , vδ) ∈ B. Hence the initial form of h belongs to B[ueδ ]. Besides, it follows that 
the set of elements of K(S) of degree 0 is precisely K(B), that is, κ(F ) = K(B). From 
this (ii) follows.

For (iv), recall that, given n ∈ N, a field F containing a primitive n-th root of unity 
ξ and an element b ∈ F ∗ = F \ {0}, if the class of b in F ∗/F ∗n has order m, then 
there exists d ∈ F such that Xm − d is an irreducible polynomial in F [X] and moreover 
Xn − b =

∏n/m
i=0 (Xm − ξid) is the decomposition in F [x] of Xn − b in irreducible factors 

(see for instance prop. 9.6 in [18]). In particular, if A is a domain containing a primitive 
n-th root of unity and b ∈ A is such that

b
1
n′ /∈ A for every n′ > 1, n′|n, then Xn − b is irreducible in A[x]. (31)

For j = 2, with the notation in Remark 3.5, let J2 is the ideal of k [y1,0, y2,1, . . . y2,g2 ]
generated by {yn2,r

2,r − c2,r y
b2,r,0
1,0 y

b2,r,1
2,1 . . . y

b2,r,r−1
2,r−1 }g2

r=1, where the y2,r’s are indetermina-
cies. Let B1 = A1 = k and let us consider the morphism of k-algebras

k[y1,0, y2,1, . . . , y2,g2+1] / J2 → k[{q1,0} ∪ {q2,r}g2+1
r=1 ]

sending y2,r, 1 ≤ r ≤ g2 +1 (resp. y1,0) to q2,r (resp. q1,0). Since k[{q1,0} ∪{q2,r}g2+1
r=1 ] is 

a 2-dimensional domain, to prove the isomorphism it suffices to show that for 1 ≤ r ≤ g2
the element yn2,r

2,r − c2,r y
b2,r,0
1,0 y

b2,r,1
2,1 . . . y

b2,r,r−1
2,r−1 is irreducible in

(
k [y1,0, . . . , y2,r−1] /

(
{yn2,r′

2,r′ − c2,r′ y
b2,r′,0
1,0 . . . y

b2,r′,r′−1
2,r′−1 }r−1

r′=1

))
[y2,r]

i.e. yb2,r,01,0 . . . y
b2,rr−1
2,r−1 does not have a n′-root for any n′ > 1 dividing n2,r. In fact, suppose 

that

y
b2,r,0
1,0 . . . y

b2,r,r−1
2,r−1 =

⎛⎝ ∑
a∈Zr

≥0

λa ya0
1,0 . . . y

ar−1
2,r−1

⎞⎠n′

mod
(
{yn2,r′

2,r′ − c2,r′ y
b2,r′,0
1,0 . . . y

b2,r′,r′−1
2,r′−1 }r−1

r′=1

) (32)

where n′|n2,r, λa ∈ k, the sum in the right hand side term is finite, then we may suppose 
that (32) is homogeneous with respect to the degree, that is, for each a in (32), we have 

n′
(∑r−1

i=0 ai β2,i

)
= n2,r β2,r. Since there exists at least one a in (32) and we have 

n2,r = e2,r−1
e2,r

where e2,l = g.c.d.(β1,0, . . . , β2,l), l = r − 1, r, and n′|n2,r, we conclude 

that n′e2,r divides β2,r and also e2,r−1, hence n′e2,r divides e2,r, that is n′ = 1.
Now, let j, 2 < j ≤ δ. Let us consider the notation in Remark 3.6. We have 

Bj−1

[
{q1,0} ∪ {qj,r}gj+1

r=1

]
∼= Bj−1

[
{q′

1,0} ∪ {q′
j,r}

gj+1
r=1

]
. Besides, from (28) it follows 
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that, for 1 ≤ r ≤ gj + 1, the initial form q′
j,r of q′j,r belongs to grν̃j

(Bj−1[x1, xj ]), 
although q′j,r ∈

∏r−1
r′=0 T

′−1
j,r′Bj−1[x1, xj ]. It also follows that

Bj−1

[
{q′

1,0} ∪ {q′
j,r}

gj+1
r=1

]
∼= Bj−1

[
y1,0, yj,1, . . . , yj,gj+1

]
/ Jj

where Jj is the ideal generated by {ynj,r

j,r − c̃j,r y
bj,r,0
1,0 . . . y

bj,r,r−1
j,r−1 }gjr=1. In fact, from the 

same argument as in before it follows that, for 1 ≤ r ≤ gj and for any n′ dividing nj,r, 
c̃j,ry

bj,r,0
1,0 · · · ybj,r,r−2

j,r−2 does not have a n′-root in the ring

Bj−1 [y1,0, . . . , yj,r−2] /
(
{ynj,r′

j,r′ − c̃j,r′ y
bj,r′,0
1,0 . . . y

bj,r′,r′−1
j,r′−1 }r−1

r′=1

)
More precisely, (bj,r,0, . . . , bj,r,r−2) �= (0, . . . , 0) and ybj,r,01,0 · · · ybj,r,r−2

j,r−2 does not have a 
n′-root in any ring of the form

C [y1,0, . . . , yj,r−2] /
(
{ynj,r′

j,r′ − cj,r′ y
bj,r′,0
1,0 . . . y

bj,r′,r′−1
j,r′−1 }r−1

r′=1

)
where C is a domain and the cj,r′ ’s are in C. Hence Jj is a prime ideal and (iv) holds. 
This concludes the proof.

Remark 3.9. Similar ideas to the ones in (ii) in theorem 3.8 appear in [21], proof of 
th. 1.3.8.

Restricting to dimension 3, but considering any valuation ν of rational rank 1 and 
dimension 3, i.e. ν centered in a regular 3-dimensional ring R, in [15] an (infinite) gen-
erating sequence {qn}n∈N of ν in R is constructed. Our construction in Proposition 3.3
is different to the one in [15] and we do not reach a generating sequence. Generating 
sequences in higher dimensional complete local rings are considered in [17].

4. Defining coordinates at stable points of the space of arcs

Let η : Y → Ad
k be a k-morphism dominant and generically finite, where Y is a 

nonsingular k-scheme, let E be a divisor on Y and e ≥ 1, and keep the notation in 
section 3.

Let PY
eE be the generic point of Y eE

∞ (see 2.7), and let PA
d

eE be the image by η∞ of PY
eE , 

which is a stable point of (Ad)∞ ([25] prop. 4.5). We will first prove (Proposition 4.5) 
that a system of transverse generators for η with respect to E induces a regular system 
of parameters of O(Ad)∞,P Ad

eE
. Then we will conclude Theorem 4.8 and Corollary 4.10.

Given a finitely generated k-algebra A, let us denote by A∞ the ring of (Spec A)∞. 
Given l ∈ A, we denote by 

∑∞
n=0 Ln tn the image of l by the morphism of k-algebras 

A → A∞[[t]].

Lemma 4.1. ([25] proof of prop. 4.1 (iii)) Let A ⊆ B be finitely generated k-algebras and 
let θ : Spec B → Spec A be the induced dominant morphism. Let P ′ be a stable point of 
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Spec B∞ and let P be its image by θ∞ in Spec A∞. Let h ∈ B belonging to the fraction 
field K(A) of A, h = l/q where l, q ∈ A. Then, there exist {Hn}n≥0 in (A∞)P such that

Hn ≡ Hn mod P ′ (33)

(recall that Hn ∈ B∞ for n ≥ 0). Even more, there exists c ∈ N such that Q0, . . . , Qc−1 ∈
P , Qc /∈ P and there exist polynomials Sn on 2(n + 1) indeterminacies with coefficients 
in k, for n ≥ 0, such that,

Hn := Sn(Lc, . . . , Ln+c, Qc, . . . , Qn+c)
(Qc)n+1 ∈ (A∞)P

satisfies (33).

Proof. First note that P is a stable point of Spec A∞ ([25] prop. 4.5), hence the existence 
of c such that Q0, . . . , Qc−1 ∈ P , Qc /∈ P ([25], prop. 3.7 (i)). Then, the result follows 
from the following observation: given h = l/q, l, q ∈ A, if Q0, . . . , Qc−1 ∈ P , Qc /∈ P , 
then we have

QcHn + . . . + Qn+cH0 ≡ Ln+c mod P ′ for n ≥ 0.

([25] proof of prop. 4.1).

Lemma 4.2. Suppose that the assumptions in Lemma 3.1 hold and suppose besides that 
θ : Y → Spec A[x, y] is dominant. Let P = P

A[x,y]
eE be the image of PY

eE by θ∞, which is 
a stable point of Spec A[x, y]∞. Let y0, the regular system of parameters {u, v2, . . . , vd}
of OY,y0 and {h1 = y, h2, . . . , hN} satisfy (a) to (c) in 3.1. For 2 ≤ j′ ≤ j − 1, let 
{Lj′;n}n≥0 in (A[x, y]∞)P be such that Lj′;n ≡ Lj′;n mod PY

eE (see Lemma 4.1). Then, 
there exists a multiplicative system Sj−1 of A[x]∞ such that Lj′;n ∈ S

−1
j−1A[x]∞ for 

2 ≤ j′ ≤ j − 1, n ≥ 0 and there exist elements {Hs;n}1≤s≤N,n≥0 in (A[x, y]∞)P , n ≥ 0, 
satisfying:

(i) Hs;n ≡ Hs;n mod PY
eE, therefore

Hs;n ∈ P (A[x, y]∞)P for 0 ≤ n ≤ eis − 1 and Hs;eis /∈ P (A[x, y]∞)P .

(ii) Let r, 1 ≤ r ≤ g + 1 be such that nr−1βr−1 < is ≤ βr (resp. r = 1 if s = 1
and i1 = β0). Set Q0;n := Xn for n ≥ 0, Qr′;n := Hsr′ ;n, for 1 ≤ r′ < r, n ≥ 0
and let T r′ is the multiplicative part generated by Qr′;eβr′

, 0 ≤ r′ < r. Then, for 
n ≥ e(βr − βr), we have:

Hs;n ∈ T
−1
r−1 . . . T

−1
0 S

−1
j−1A∞[X0, X1, . . . , Xn, . . . , Y0, Y1, . . . , Yn−e(βr−βr)].
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(iii) If s = 1 then H1;n = Yn for n ≥ 0. If s > 1 then

Hs;n ∈ ({Qr′;n} r′≤r−1
n<eβr′

∪ {Hs−1;n}n<eis−1) for 0 ≤ n < max {enr−1βr−1, eis−1}

Hs;n = us,n Yn−(βr − βr) + ρs,n for n > max {enr−1βr−1, eis−1}

where us,n, ρs,n ∈ T
−1
r−1 . . . T

−1
0 S

−1
j−1A∞[X0, . . . , Xn, . . . , Y0, . . . , Yn−e(βr−βr)−1]

and us,n is a unit.
(iv) Suppose that s > 1. If is−1 = βr−1 (resp. is−1 ∈ (nr−1βr−1, βr)) then Hs;enr−1βr−1

(resp. Hs;eis−1) is equal to

Q
bs0
0;eβ0

· · ·Qbsρ

ρ;eβρ

· Ps

⎛⎝ cs H

Q
bs0
0;eβ0

· · ·Qbsρ

ρ;eβρ

, L2;0, . . . , Lj−1;0

⎞⎠
where H = (Qr−1;eβr−1

)nr−1 (resp. H = Hs−1;eis−1), cs ∈ k \ {0} and ρ, {bsr′}
ρ
r′=0

and Ps are as in (c) in 3.1.
(v) Fixed r, 1 ≤ r ≤ g+1, the following ideals in T

−1
r−1 . . . T

−1
0 S

−1
j−1A[x, y]∞ are equal:(

{Qr′;n} 0≤r′≤r

0≤n≤eβr′−1

)
=

(
{Qr′;n} 0≤r′≤1

0≤n≤eβr′−1
∪ {Qr′;n} 2≤r′≤r

enr′−1βr′−1≤n≤eβr′−1

)

and also the ideal generated by

{Q0;n}em1−1
n=0 ∪ {H1;n}ei1−1

n=0 ∪
(
∪s1
s=2{Hs;n}eis−1

e is−1

)
∪

∪r
r′=2

(
{Hsr′−1+1;n}

eis
r′−1+1−1

n=enr′−1βr′−1
∪
(
∪s′r
s=sr′−1+2{Hs;n}eis−1

n=eis−1

))
.

Proof. The existence of Sj−1 follows from Lemma 4.1; in fact, it suffices to ask Sj−1 to 
contain the elements Qc where q ∈ Sj−1 and c is such that Q0, . . . , Qc−1 ∈ P and Qc /∈ P . 
Now, let us define the elements {Hs;n}n≥0, 1 ≤ s ≤ N , by induction on s. For s = 1, 
h1 = y ∈ A[x, y], so H1;n ∈ A[x, y]∞ for n ≥ 0. We set H1;n := H1;n = Yn ∈ A[x, y]∞ for 
n ≥ 0. It is clear that (i) to (iii) are satisfied. Now, let s, 2 ≤ s ≤ N , and suppose that 
Hs′;n ∈ (A[x, y]∞)P are defined, for 1 ≤ s′ < s, n ≥ 0, and satisfy the conditions. Let r, 
1 ≤ r ≤ gj +1 be such that is−1 ∈ {βr−1} ∪ (nr−1βr−1, βr). Therefore {Qr′;n}0≤r′<r,n≥0
in (A[x, y]∞)P are defined, and satisfy:

Qr′;n ∈ P (A[x, y]∞)P for 0 ≤ n ≤ eβr′ − 1 and Qr′;eβr′
/∈ P (A[x, y]∞)P .

Hence, for every l in the k-algebra k[{qr′}0≤r′<r ∪ {hs−1}] generated by qr′ , 0 ≤
r′ < r, and hs−1, and for every n ≥ 0, there exists a polynomial function Ln on 
{Qr′;n}r′<r,n≥eβ ∪ {Hs−1;n}n≥eis−1 such that Ln ≡ Ln mod PY

eE . Moreover, given

r′
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h = l

q
∈ OY,y0 where l ∈ k[{qr′}0≤r′<r ∪ {hs−1}], q =

∏
0≤r′<r

q
ar′
r′ (34)

ar′ ∈ N ∪ {0}, let c =
∑

0≤r′<r ar′eβr′ , so that Q0, . . . , Qc−1 ∈ P , Qc /∈ P and set

Hn :=
Sn(Lc, Lc+1, . . . , Ln+c, Qc, Qc+1, . . . , Qn+c)

(Qc)n+1
∈ (A[x, y]∞)P

where Sn is the polynomial in Lemma 4.1; then Hn ≡ Hn mod PY
eE . From this and (c) 

in Lemma 3.1, which expresses hs as a polynomial in elements of the form (34), the 
definition of {Hs;n}n≥0 ⊂ (A[x, y]∞)P follows. They satisfy (i) and, from the expression 
in 3.1 (c) and the induction hypothesis, it follows that (ii) holds and that the first 
statement in (iii) and also (iv) are satisfied. In (iv), cs is the class of μs ∈ Rj−1, hence 
cs �= 0. The second statement in (iii) is obtained from the expression in 3.1 (c) and the 
induction hypothesis, applying also (13) in Lemma 3.1. Finally, (v) can also be proved 
by induction, applying the same argument as before.

Let A1,0
∞ := k and, for 2 ≤ j ≤ δ, let

Aj,1
∞ := k[Xj−1

0 , . . . Xj−1
n , . . .], Aj,r

∞ := Aj,1
∞ [Xj;0, . . . , Xj,eβj,r−1 ] , 2 ≤ r ≤ gj + 1,

where Xj−1
n := (X1;n, . . . , Xj−1;n). Let {qj,r}(j,r)∈J be a system of transverse generators 

for η : Y → Ad
k with respect to E, as in 3.3 (ii). Even more, for 2 ≤ j ≤ δ, let us consider 

the elements {hj,s}Nj

s=1 in 3.3 (iii) and set h1,0 := q1,0 = x1 ∈ A. Let

I := {(1, 0)} ∪ {(j, s) / 2 ≤ j ≤ δ, 1 ≤ s ≤ Nj}.

Then we have:

Lemma 4.3. There exist elements {Hj,s;n}(j,s)∈I,n≥0 in O(Ad)∞,P Ad
eE

, n ≥ 0, satisfying:

(i) Hj,s;n ≡ Hj,s;n mod PY
eE, therefore Hj,s;n ∈ PA

d

eE for 0 ≤ n ≤ eij,s − 1 and 
Hj,s;eij,s /∈ PA

d

eE .
(ii) We have H1,0;n = X1;n for n ≥ 0. For 2 ≤ j ≤ δ, let r, 1 ≤ r ≤ gj + 1 be 

such that nj,r−1βj,r−1 < ij,s ≤ βj,r (resp. r = 1 if s = 1 and ij,1 = βj,0). For 
(j′, r′) ∈ Jj,r, set Qj′,r′;n := Hj′,sj′,r′ ;n, n ≥ 0 and, for (j′, r′) ∈ J ∗

j,r, let T j′,r′ be 
the multiplicative system generated by Qj′,r′;eβj′,r′

. Then, for n ≥ e(βj,r − βj,r) we 
have:

Hj,s;n ∈
∏

(j′,r′)∈J ∗
j,r

T
−1
j′,r′ A

j,r
∞ [Xj;eβj,r−1+1, . . . , Xj;n−e(βj,r−βj,r)]

(if r = 1, replace Xj;eβj,r−1+1 by Xj;0 in the previous equality).
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(iii) For 2 ≤ j ≤ δ, if s = 1 then Hj,s;n = Xj;n for n ≥ 0. If s > 1 then:

Hj,s;n ∈
(
{Qj,r′;n} r′≤r−1

n<eβj,r′

∪ {Hj,s−1;n}n<eis−1

)

for 0 ≤ n < max {enj,r−1βj,r−1, eij,s−1} and

Hj,s;n = uj,s,n Xj;n−e(βj,r − βj,r) + ρj,s,n for n > max {enj,r−1βj,r−1, eij,s−1}

where uj,s,n, ρj,s,n ∈
∏

(j′,r′)∈J ∗
j,r

T
−1
j′,r′ Aj,r

∞ [Xj;eβj,r−1+1, . . . Xj;n−e(βj,r−βj,r)−1]
and uj,s,n is a unit.

(iv) Suppose that j, s ≥ 2. If ij,s−1 = βj,r−1 (resp. ij,s−1 ∈ (nj,r−1βj,r−1, βj,r)) then 
Hj,s;enj,r−1βj,r−1

(resp. Hj,s;eij,s−1) is equal to

Q
bsj,0

1,0;eβj,0
·Qbsj,1

j,1;eβj,1
· · ·Qbsj,ρ

j,ρ;eβj,ρ

·

·Pj,s

⎛⎜⎝ cj,sH

Q
bsj,0

1,0;eβj,0
· · ·Qbsj,ρ

j,ρ;eβj,ρ

, . . . ,
Qj−1,gj−1+1;eβj−1,gj−1+1

Q
bj−1,0

1,0;eβj−1,0
. . . Q

bj−1,gj−1

j−1,gj−1;eβj−1,gj−1

⎞⎟⎠
where H = (Qj,r−1;eβj,r−1

)nj,r−1 (resp. H = Hj,s−1;eij,s−1), cj,s ∈ k \ {0} and ρ, 
{bsj,r′}

ρ
r′=0 and Ps are as in (c.3) in 3.3.

(v) Set G1,0 := {H1,0;n / 0 ≤ n ≤ e m1 − 1} and, for 2 ≤ j ≤ δ,

Gj,1 := {Hj,1;n / 0 ≤ n ≤ e ij,1 − 1} ∪ ∪s1
s=2{Hj,s;n / e ij,s−1 ≤ n ≤ e ij,s − 1}

Gj,r := {Hj,sr−1+1;n / e nj,r−1βj,r−1 ≤ n ≤ e ij,sr−1+1 − 1} ∪
∪sr
s=sr−1+2{Hj,s;n / e ij,s−1 ≤ n ≤ e ij,s − 1} for 2 ≤ r ≤ gj + 1.

Then, for 2 ≤ j ≤ δ and 1 ≤ r ≤ g1 + 1, we have

(
{Qj,r′;n} 0≤r′≤1

0≤n≤eβj,r′−1
∪ {Qj,r′;n} 2≤r′≤r

enj,r′−1β
j,r′−1≤n≤eβ

j,r′−1

) ∏
(j′,r′)∈J ∗

j,r

T
−1
j′,r′ Aj+1,1

∞ =

= (G1,0 ∪ Gj,1 ∪ . . . ∪ Gj,r)
∏

(j′,r′)∈J ∗
j,r

T
−1
j′,r′ Aj+1,1

∞ .

Proof. Let us prove, by induction on j, 1 ≤ j ≤ δ, the existence of {Hj′,s′;n} (j′,s′)∈I
j′≤j,n≥0

satisfying the required conditions. For j = 1, (j, s) = (1, 0), h1,0 := q1,0 = x1 ∈ OAd,η(y0), 
so, if we set H1,0;n := H1,0;n = X1;n ∈ O(Ad)∞,P Ad

eE
for n ≥ 0 then it is clear that (i) 

to (iii) are satisfied. Now, let j, 2 ≤ j ≤ δ, and suppose that Hj′,s′;n ∈ O(Ad)∞,P Ad
eE

are defined, for j′ < j, (j′, s′) ∈ I, n ≥ 0, and satisfy the conditions. Then the result 
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follows applying Lemma 4.2 to Y → Spec A[x1, xj ], where A = k[x2, . . . , xj−1], and the 
following remark: since

lj′ =
qj′,gj′+1

q
bj′,0
1,0 q

bj′,1
j′,1 . . . q

bj′,g
j′

j′,gj′

for 2 ≤ j′ ≤ j − 1

we may take Sj−1 = {Qj′,r′;eβj′,r′
}(j′,r′)∈J ∗

j−1,gj−1+1
and

Lj′;0 =
Qj′,gj′+1;eβj′,g

j′+1

Q
bj′,0
1,0;eβj′,0

·Qbj′,1
j′,1;eβj′,1

· · ·Q
bj′,g

j′

j′,gj′ ;eβj′,g
j′

.

From this, (i) to (iv) follow for j. This concludes the proof.

Remark 4.4. Let j, 2 ≤ j ≤ δ. Let {q̃j,r}gj+1
r=0 in Bj−1[x1, xj ] be as in Remark 3.6, and 

Q̃j,r;n ∈ Bj−1[x1, xj ]∞, n ≥ 0, as in the beginning of this section. Arguing by recurrence 
and applying (27), we obtain that, for 1 ≤ r ≤ gj + 1,

Q̃j,r;n ∈
(
{Q̃j′,r′;n} 0≤r′≤r−1

0≤n≤eβj′,r′−1

)2

Bj−1[x1, xj ]∞

for 0 ≤ n < ε(q̃j,r) := e 
(
(nr−1 − 1)βr−1 + . . . + (n1 − 1)β1

)
= e(βj,r − βj,r) and

Q̃j,r;n ∈
(
{Q̃j′,r′;n} 0≤r′≤r−1

0≤n≤eβj′,r′−1

)
Bj−1[x1, xj ]∞

for ε(q̃j,r) ≤ n < ε(q̃j,r) + e βj,r−1 = e nj,r−1βj,r−1.

Analogously, for {q′j,r}
gj+1
r=0 , q′j,r ∈ T ′ −1

j,r−1 · · ·T ′ −1
j,0 k[v2, . . . , vj−1, x1, xj ] (see Re-

mark 3.6), let {Q′
j,r;n}n≥0 in 

∏
0≤s≤r−1 T

′−1
j,sk[v2, . . . , vj−1, x1, xj ]∞ be obtained ap-

plying Lemma 4.2. Given r, 0 ≤ r ≤ gj + 1, let {as}0≤s≤r−1 be nonnegative integers 
such that

z′j,r := q′j,r ·
∏

0≤s≤r−1
q′j,s

as ∈ k[v2, . . . , vj−1, x1, xj ],

and let Z ′
j,r;n ∈ k[v2, . . . , vj−1, x1, xj ]∞[[t]], n ≥ 0, as before. Arguing by recurrence, 

from (c) in Lemma 3.1 it follows that, for 0 ≤ n < ε(z′j,r) := e 
(
ν(z′j,r) − βj,r

)
,

Z ′
j,r;n ∈

(
{Q′

j,s;n} 0≤s≤r−1
0≤n≤eβ −1

)2 ∏
T ′−1

j,s k[v2, . . . , vj−1, x1, xj ]∞ (35)

j,s 0≤s≤r−1
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and, for ε(z′j,r) ≤ n < ε(z′j,r) + e βj,r−1 = e (ν(z′j,r) − βj,r + βj,r−1), we have

Z ′
j,r;n ∈

(
{Q′

j,s;n} 0≤s≤r−1
0≤n≤eβj,s−1

) ∏
0≤s≤r−1

T ′−1
j,s k[v2, . . . , vj−1, x1, xj ]∞

Now, with the assumptions and notation in Lemma 4.3, given (j, r) ∈ J , let 
{aj′,r′(j, r)}(j′,r′)∈J ∗

j,r
be any sequence of nonnegative integers such that

zj,r := qj,r ·
∏

(j′,r′)∈J ∗
j,r

q
aj′,r′ (j,r)
j′,r′ ∈ k[x1, . . . , xj ]

let αj,r := ν(zj,r) and let Zj,r;n ∈ k[x1, . . . , xj ]∞, n ≥ 0, as before. Then we have(
{Zj′,r′;n} (j′,r′)∈Jj,r

0≤n≤eαj′,r′−1

) ∏
(j′,r′)∈J ∗

j,r

S−1
j′,r′ k[x1, . . . , xj ]∞ =

=
(
{Qj′,r′;n} (j′,r′)∈Jj,r

0≤n≤eβj′,r′−1

) ∏
(j′,r′)∈J ∗

j,r

T−1
j′,r′ k[x1, . . . , xj ]∞

where Sj′,r′ is the multiplicative part generated by Zj′,r′;eαj′,r′ . Moreover, arguing by 
recurrence and applying (c.2) in Proposition 3.3 and the condition (20), it follows that

Zj,r;n ∈
(
{Zj′,r′;n} (j′,r′)∈Jj,r

0≤n≤eαj′,r′−1

)2 ∏
(j′,r′)∈J ∗

j,r

S−1
j′,r′ k[x1, . . . , xj ]∞ (36)

for 0 ≤ n < ε(zj,r) := e (ν(zj,r) − βj,r). In fact, the proof is based on the one for (35), 
taking into account condition (20). We also obtain that

Zj,r;n ∈
(
{Zj′,r′;n} (j′,r′)∈Jj,r

0≤n≤eαj′,r′−1

) ∏
(j′,r′)∈J ∗

j,r

S−1
j′,r′ k[x1, . . . , xj ]∞ (37)

for ε(zj,r) ≤ n < e (ν(zj,r) − βj,r + βj,r−1).

Let G := ∪(j,r)∈J Gj,r where the Gj,r’s are defined in Lemma 4.3 (v). Note that the 
cardinal of G1,1 is em1 and, for 2 ≤ j ≤ δ,

�
(⋃gj+1

r=1 Gj,r

)
= e βj,1 + (e βj,2 − e nj,1βj,1) + . . . + (e βj,gj+1 − e nj,gjβj,gj )
= e

(
βj,1 + ( βj,2 − βj,1) + . . . + (βj,gj+1 − βj,gj )

)
= e βj,gj+1 = e mj .

Hence, applying (6) and (30) we obtain

�G = e (aE + 1) = e e (kF (Ad) + 1).
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Proposition 4.5. We have

PA
d

eE O(Ad)∞,P Ad
eE

= (G) O(Ad)∞,P Ad
eE

moreover, there exists L ∈ O(Ad)∞ \ PA
d

eE such that PA
d

eE (O(Ad)∞)L = (G) (O(Ad)∞)L. 
Besides, the images of the elements of G in PA

d

eE/(PA
d

eE )2 O(Ad)∞,P Ad
eE

are independent, 
hence define a basis as κ(PA

d

eE )-vector space. In particular, we obtain dimO(Ad)∞,P Ad
eE

=
�G = e (aE + 1).

Proof. First note that, by (i) in Lemma 4.3, we have G ⊂ PA
d

eE . Let us prove that 
(G) O(Ad)∞,P Ad

eE
is a prime ideal. By (ii) in Lemma 4.3, for (j, r) ∈ J , we have

Gj,r ⊂
∏

(j′,r′)∈J ∗
j,r

T
−1
j′,r′ A

j,r
∞ [Xj;eβj,r−1+1, . . . , Xj;eβj,r−1]

(if r = 0 or 1, replace Xj;eβj,r−1+1 by Xj;0 and set β1,0 := m1). Then, for each j, 
2 ≤ j ≤ δ, there exists Mj ∈ N such that

Qj′,r′ ∈
∏

(j′′,r′′)∈J ∗
j′,r′

T
−1
j′′,r′′ k[Xj

0, . . . , X
j
Mj

] for every (j′, r′) ∈ J ∗
j,gj+1

and, if we set

Bj
∞ :=

∏
(j′,r′)∈J ∗

j,gj+1

T
−1
j′,r′ k[Xj

0, . . . , X
j
Mj

]

then

Gj :=
⋃

(j′,r′)∈Jj,gj+1∪{(j,gj+1)}
Gj′,r′ ⊂ Bj

∞

(in fact, Mj can be taken to be equal to emj). Let Pj be the contraction of PA
d

eE to Bj
∞. We 

will prove, by induction on j, 2 ≤ j ≤ δ, that there exists Lj ∈ Bj
∞\Pj such that the ring 

(Bj
∞)Lj

/(Gj) is a domain. For j = 2, we have h1,0 = x1, thus G1,0 = {X1;0, . . . , X1;em1−1}
and, applying Remark 3.5 and (iii) in Lemma 4.3 to Q2,r;n, enj,r−1β2,r−1 < n < eβ2,r
and (iv) in Lemma 4.3 to Q2,r;eβ2,r

, we obtain that B2
∞ / (G2) is isomorphic to

(
S−1

2 k [y2,0, y2,2 . . . , y2,g2+1] / J2
)

[{X1;n}em1<n≤M2 ∪ {X2;n}eβ2,g2+1<n≤M2 ]

where the image of y2,r, 1 ≤ r ≤ g2 + 1 (resp. y2,0) is Q2,r;eβ2,r
(resp. X1;em1), J2 is 

the ideal in Theorem 3.8 (iv) and S2 is the multiplicative part generated by {y2,r}g2
r=0, 

therefore B2
∞/(G2) is a domain by Theorem 3.8.
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Let j, 3 ≤ j ≤ δ, and suppose that the result holds for j − 1. Applying (iii) in 
Lemma 4.3 to Hj,s;n, for eij,s−1 < n ≤ eij,s−1 (resp. enj,r−1βj,r−1 < n ≤ eij,sr−1+1−1) 
if sr−1 + 2 ≤ s ≤ sr (resp. s = sr−1 + 1) and applying (iv) in 4.3 to Hj,s;eij,s−1 (resp. 
Hj,s;enj,r−1βj,r−1

), we obtain that there exists an étale extension B̃j
∞ of Bj

∞ containing 

the image of PY
eE , i.e. the contraction of PY

eE to B̃j
∞ is a prime ideal P̃j �= B̃j

∞, and such 
that B̃j

∞/(Gj)B̃j
∞ is isomorphic to a localization of(
S−1
j D̃j−1[yj,1, . . . , yj,gj+1] / Jj

) [
{Xj;n}eβj,gj+1<n≤Mj

]
where D̃j−1 is a domain which is an étale extension of Bj−1

∞ /(Gj−1), Sj is the multi-
plicative part generated by {yj,r}gjr=1 and Jj is an ideal generated by {ynj,r

j,r − c̃j,r y
bj,r,0
1,0 ·

y
bj,r,1
j,1 . . . y

bj,r,r−1
j,r−1 }gjr=1, c̃j,r ∈ D̃j−1 and y1,0 = X1;em1 ∈ D̃j−1. Here yj,r is identified with 

Qj,r;eβj,r
. Applying Theorem 3.8 (iv) we conclude that B̃j

∞/(Gj) is a domain. Since the 

morphism (Bj
∞)Pj

/(Gj) → (B̃j
∞)P̃j

/(Gj)B̃j
∞ is local étale, hence an inclusion of local 

rings, we conclude that (Bj
∞)Pj

/(Gj) is a domain. Therefore, there exists Lj ∈ Bj
∞ \ Pj

such that (Bj
∞)Lj

/(Gj) is a domain (recall that Bj
∞ is the localization of a finitely gen-

erated k-algebra).
In particular, it follows that there exists Lδ ∈ Bδ

∞ \Pδ ⊂
∏

(j,r)∈J ∗ T
−1
j,rO(Ad)∞ \PA

d

eE

such that the ideal generated by G in (
∏

(j,r)∈J ∗ T
−1
j,rO(Ad)∞)Lδ

is a prime ideal. From 

this it follows that there exists L ∈ O(Ad)∞\PA
d

eE such that (G) (O(Ad)∞)L is a prime ideal, 
in fact, we may take L = Lδ ·

∏
(j,r)∈J ∗ Q

aj,r

j,r;eβj,r
for some positive integers {aj,r}(j,r)∈J ∗ . 

Hence (G) O(Ad)∞,P Ad
eE

is a prime ideal.
Let us denote by P ′ the prime ideal of OAd

∞
such that (G) O(Ad)∞,P Ad

eE
= P ′O(Ad)∞,P Ad

eE
. 

We will next prove that P ′ = PA
d

eE . In fact, with the notation in 2.7 and 3.7, let PZ
eeF be 

the generic point of ZeeF
∞ and let PA

d

eeF be the image of PZ
eeF by the morphism Z∞ →

(Ad)∞. Since e is the ramification index of OY,E over OZ,F , PZ
eeF is the image of PY

eE by 
σ∞ : Y∞ → Z∞ and hence PA

d

eeF = PA
d

eE . Now, by the definition of G, and since P ′ ⊆ PA
d

eE , 
we have

eβj,r ≤ νP ′(qj,r) ≤ e ν(qj,r) = eβj,r for (j, r) ∈ J .

Therefore νP ′(qj,r) = eβj,r for every (j, r) ∈ J and hence

νP ′

⎛⎝ qj,gj+1

q
bj,0
j,0 . . . q

bj,gj
j,gj

⎞⎠ = 0 for 2 ≤ j ≤ δ and νP ′ (z) =
∑

(j′,r′)∈J ∗

aj,re βj,r = e e

(recall (29) in 3.7). From this it follows that the morphism of k-algebras h�
P ′ : OX,P0 →

κ(P ′)[[t]] induced by the arc hP ′ extends to OZ,F . That is, hP ′ : Spec κ(P ′)[[t]] → X

lifts to (Z, F ), more precisely, since νP ′(z) = ee, this lifting defines a point in ZeeF
∞ . 

Therefore P ′ ∈ {PAd

eeF }, hence we conclude that P ′ = PA
d

eeF = PA
d

eE .
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Finally, since �G = e e (kF (Ad) +1), the end of the proof follows from Proposition 2.6
and equality (3), which is in fact lemma 3.4 in [4].

Remark 4.6. Alternatively, in the proof of Proposition 4.5 it can be proved by induction 
on j, 2 ≤ j ≤ δ, applying (iii) and (iv) in Lemma 4.3, not only that (Gj) is a prime 
ideal of (Bj

∞)Lj
, but also that the elements in Gj are independent in (Gj) / (Gj)2. Then, 

lemma 3.4 in [4] can be recovered (at least for X smooth) from Propositions 4.5 and 2.6. 
Therefore, Proposition 4.5 can be seen as a new version of lemma 3.4 in [4], which is in 
fact the change of variables theorem in the motivic integration.

Definition 4.7. Let η : Y → Ad
k be a k-morphism dominant and generically finite, where 

Y is a nonsingular k-scheme, let E be a divisor on Y and let e ≥ 1. Let {qj,r}(j,r)∈J
be a system of transverse generators for η with respect to E (Definition 3.4), and let 
{Qj,r;n}(j,r)∈J ,n≥0 defined as in Lemma 4.3. We call

Q := {Qj,r;n}(j,r)∈J , enj,r−1βj,r−1≤n≤eβj,r−1

a regular system of parameters of O(Ad)∞,P Ad
eE

associated to {qj,r}(j,r)∈J .

In fact, note that by Proposition 4.5 (see also Lemma 4.3 (v)), O(Ad)∞,P Ad
eE

is a regular 
local ring of dimension the cardinal of Q whose maximal ideal PA

d

eEO(Ad)∞,P Ad
eE

is generated 
by Q.

Theorem 4.8. Assume that char k = 0. Let X be a nonsingular k-scheme, let ν be a 
divisorial valuation on an irreducible component X0 of X, and let e ∈ N. Let π : Y → X0
be a proper and birational morphism such that the center of ν on Y is a divisor E, and 
let η : Y → Ad

k be the composition of π with an étale morphism X0 → Ad
k, where 

d = dimX0. Let Q = {Qj,r;n}(j,r)∈J , 0≤n≤eβj,r−1 be a regular system of parameters of 
O(Ad)∞,P Ad

eE
associated to a system of transverse generators for η with respect to E. Then 

Q is also a regular system of parameters of OX∞,PX
eE

, that is

PX
eE OX∞,PX

eE
=

(
{Qj,r;n}(j,r)∈J , enj,r−1βj,r−1≤n≤eβj,r−1

)
OX∞,PX

eE
,

and OX∞,PX
eE

is a regular local ring of dimension

dimOX∞,PX
eE

= �Q = e (kE + 1),

where kE is the discrepancy of X with respect to E.
Moreover, there exist elements zj,r ∈ OX,P0 , (j, r) ∈ J , and L ∈ OX∞ \ PX

eE such 
that

PX
eE(OX∞)L =

(
{Zj,r;n}(j,r)∈J ,0≤n<eαj,r

)
(OX∞)L (38)

where αj,r = ν(zj,r) for (j, r) ∈ J .
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Proof. Recall that PY
eE is the generic point of Y eE

∞ (see 2.7) and that PX
eE (resp. PA

d

eE ) is 
the image of PY

eE by π∞ (resp. η∞). By Proposition 2.5 (see also Corollary. 2.9) it suffices 
to prove the result for the point PA

d

eE in (Ad)∞. Then it follows from Proposition 4.5. 
In fact, for the first assertion note that in this case kE(Ad

k) is equal to the discrepancy 
kE of X with respect to E. For the second assertion, let {qj,r}(j,r)∈J be a system of 
transverse generators for η with respect to E. For each (j, r) ∈ J there exists a sequence 
of nonnegative integers {aj′,r′(j, r)}(j′,r′)∈J ∗

j,r
, such that

zj,r := qj,r ·
∏

(j′,r′)∈J ∗
j,r

q
aj′,r′ (j,r)
j′,r′ ∈ OAd,P0 .

(see Proposition 3.3). Then, from Proposition 4.5, (38) follows. This concludes the proof.

Remark 4.9. Let P be any stable point of X∞ and suppose that X is nonsingular 
at the center P0 of P and that P0 is not the generic point of X. There exists a bi-
rational and proper morphism π : Y → X such that the center of νP on Y is a 
divisor E, and e ∈ N such that νP = eνE ([25], (vii) in prop. 3.7). Let PY ∈ Y∞
whose image by π∞ is P , then we have dimOX∞,P = ekE + dimOY∞,PY (corol. 
2.9). Since PY ⊇ PY

eE and P ⊇ PX
eE , with the notation in Theorem 4.8 and Propo-

sition 3.3, {U0, . . . , Ue−1} is part of a regular system of parameters of OY∞,PY and 
Q = {Qj,r;n}(j,r)∈J , enj,r−1βj,r−1≤n≤eβj,r−1 is part of a regular system of parameters of 
OX∞,P . Moreover, suppose that {U0, . . . , Ue−1, G1, . . . , Gs} is a regular system of pa-
rameters of OY∞,PY . To describe a regular system of parameters of OX∞,P we add to Q
the following elements: By Lemma 4.1 and since π is birational, for each y ∈ OY and for 
each n, there exists Y n ∈ OX∞,P such that

Yn ≡ Y n mod P.

Then, let Gi ∈ OX∞,P , 1 ≤ i ≤ s be obtained from Gi by replacing Un and Vj;n by Un

and V j;n, for n ≥ 0, 2 ≤ j ≤ d. We have

Gi ≡ Gi mod P.

and Q ∪ {G1, . . . , Gs} is a regular system of parameters of OX∞,P .

Now let us consider a reduced separated k-scheme of finite type X and a divisorial 
valuation ν on X centered on Sing X. There exists a resolution of singularities π : Y →
X (i.e. π is a proper, birational k-morphism, with Y smooth, such that the induced 
morphism Y \ π−1(Sing X) → X \ Sing X is an isomorphism) such that the center of 
ν on Y is a divisor E.

Corollary 4.10. Assume that char k = 0. Let X be a reduced separated k-scheme of finite 
type, let ν be a divisorial valuation on an irreducible component X0 of X centered on 
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Sing X and let e ∈ N. Let π : Y → X be a resolution of singularities such that the center 
of ν on Y is a divisor E, and let η : Y → Ad

k be the composition of π with a general pro-
jection μ : X0 → Ad, where d = dimX0. Let Q = {Qj,r;n}(j,r)∈J , enj,r−1βj,r−1≤n≤eβj,r−1
be a regular system of parameters of O(Ad)∞,P Ad

eE
associated to a system of transverse 

generators for η with respect to E. Then Q is a system of coordinates of ((X∞)red, PX
eE), 

that is,

PX
eEO(X∞)red,PX

eE
=

(
{Qj,r;n}(j,r)∈J , enj,r−1βj,r−1≤n≤eβj,r−1

)
O(X∞)red,PX

eE
.

Therefore

embdim ̂OX∞,PeE
= embdim O(X∞)red,PeE

≤ �Q = e (k̂E + 1),

where k̂E is the Mather discrepancy of X with respect to E.
Moreover, there exist elements {zj,r}(j,r)∈J in OX,P0 and L ∈ OX∞ \ PX

eE such that

PX
eE(O(X∞)red)L =

(
{Zj,r;n}(j,r)∈J ,n≤eαj,r−1

)
(O(X∞)red)L

=
(
{Zj,r;n}(j,r)∈J ,eαj,r−e(βj,r−βj,r−1)≤n≤eαj,r−1

)
(O(X∞)red)L

where αj,r = ν(zj,r) for (j, r) ∈ J .

Proof. We may suppose that π : Y → X dominates the Nash blowing up of X. We may 
suppose that X is affine, let X ⊆ AN

k = Spec k[y1, . . . , yN ]. Then, a general projection 
ρ : X ⊆ AN

k → Ad
k, y → (x1, . . . , xd) satisfies

ordE π∗(dx1 ∧ . . . ∧ dxd) = k̂E . (39)

Let PA
d

eE be the image of PY
eE by η∞. Then the result follows from Proposition 4.5 applied 

to PA
d

eE (see also (37) in Remark 4.4), Proposition 4.5 (iii) in [25] applied to ρ : X → Ad
k

and the finiteness property of the stable points in [24] th. 4.1 (see 2.4).

From Corollary 4.10 it follows that ̂OX∞,PeE
is a quotient of the ring

κ(PeE)[[{Xj,r;n}(j,r)∈J , eαj,r−e(βj,r−βj,r−1)≤n≤eαj,r−1]] where Xj,r;n is sent to Zj,r;n. 
Moreover, we may suppose that X is affine, let X ⊆ AN

k , and let X → Ad
k, 

(x1, . . . , xN ) �→ (x1, . . . xd), be a general projection. Then, there exist series X̃l;n ∈
κ(PeE) 

[[
{Xj,r;n}(j,r;n)

]]
whose image in ̂OX∞,PeE

is Xl;n, d + 1 ≤ l ≤ N , n ≥ 0. For 
d + 1 ≤ l ≤ N , let fl ∈ k[x1, . . . , xd, xl] be such that fl(x1, . . . , xd, xl) = 0 where xl

denotes the class of xl in OX , hence X is contained in the complete intersection X ′ of 
dimension d = dimX defined by {fl}d+1≤l≤N . We have that ̂OX∞,PeE

∼= ̂OX′
∞,PX′

eE
([25], 

Proposition 3.7 (ii) and Theorem 3.13). Therefore we conclude:
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Corollary 4.11. With the notation as before,

̂OX∞,PeE
∼= κ(PeE)

[[
{Xj,r;n}(j,r;n)∈C

]] /
Ĩ

where C = {(j, r; n) / (j, r) ∈ J , eαj,r − e(βj,r − βj,r−1) ≤ n < eαj,r} has e(k̂E + 1)
elements and

Ĩ =
(
{F̃l;n}d+1≤l≤N,n≥0

)
where F̃l,n is obtained from Fl;n by substituting Xl;n′ by X̃l;n′ , for 0 ≤ n′ ≤ n.

Remark 4.12. Note that Ĩ is a finitely generated ideal. Moreover, since X → Ad is a 
general projection (39) holds, and hence εl := νE(Jac(fl)) = νE( ∂fl

∂xl
). Then, from [23]

proof of lemma 3.2 (see also [24], proof of lemma 4.2) it follows that F̃l;εl+n = 0 for 
n > εl. In fact, this is the effective way of constructing the series X̃l;n, n ≥ εl + 1 (see 
[25], corol. 5.6). Analogously, imposing F̃l;εl+n = 0 for 0 ≤ n ≤ εl is the way to construct 
X̃l;n, 0 ≤ n ≤ εl, and hence to describe the ring ̂OX∞,PeE

(see example below).

Example 4.13. The following examples were given in [14]: For m ≥ 3 let us consider the 
singular threefold Xm given by z2 = xy+wm in A4

k where k is a field of characteristic 0. 
It has an isolated singularity at the origin O. Let Xm,1 → Xm be the blowing up of Xm

at O. Then Xm,1 has an isolated singularity which is locally isomorphic to Xm−2. If we 
continue in this way r := �m

2 � steps we obtain a resolution of singularities of Xm. Let

Y = Xm,r → Xm,r−1 → · · · → Xm,1 → Xm,

be the chain of point blowing ups and let Ei, 1 ≤ i ≤ r, be the strict transform in Y
of the exceptional locus of the blowing up Xm,i → Xm,i−1, which is irreducible. Let 
νEi

be the divisorial valuation defined by Ei, hence νEi
(x) = νEi

(y) = νEi
(z) = i and 

νEi
(w) = 1. Then kEi

(Xm) = i for 1 ≤ i ≤ r ([14] lemma 12) and we can check that 
k̂Ei

(Xm) = 2i, 1 ≤ i ≤ r.

Set X := Xm and f := z2 − xy − wm. For 1 ≤ i ≤ r, let PEi
be the stable point 

of X∞ defined by νEi
. The projection X → A3

k, (x, y, z, w) �→ (x, y, w) is general, it 
satisfies ordEi

π∗(dx ∧ dy ∧ dw) = k̂Ei
(X). Applying Corollary 4.10, in this case we 

obtain PEi

(
O(X∞)red

)
PEi

= (X0, . . . , Xi−1, Y0, . . . , Yi−1, W0) 
(
O(X∞)red

)
PEi

. Moreover

PEi

(
O(X∞)red

)
W1Xr

= (X0, . . . , Xi−1, Y0, . . . , Yi−1, Z0, . . . , Zi−1,W0)
(
O(X∞)red

)
W1Xr

.

(40)

Since the open subset W1Xr �= 0 of X∞ has nonempty intersection with {PEi
} for all i, 

1 ≤ i ≤ r, it follows that PE1 ⊂ PE2 ⊂ . . . ⊂ PEr
and, in particular, XSing

∞ = {PE1}. 
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This gives another proof of theorem 1 (1) in [14]. Besides, from (37) it follows that 
̂OX∞,PEi

is a quotient of κ(PEi
)[[X0, . . . , Xi−1, Y0, . . . , Yi−1, W0]]. For i = 1, applying 

Corollary 4.11 we obtain

̂OX∞,PE1
∼= κ(PE1)[[X0, Y0,W0]] / ((Z̃0)2 −X0Y0 −Wm

0 ) (41)

where

κ(PE1) ∼= k(X1, X2, . . . , Y1, Y2, . . . ,W1,W2, . . .)[Z1]/(Z2
1 −X1Y1) (42)

and Z̃0 ∈ κ(PE1)[[X0, Y0, W0]] is defined from the Fn’s, n ≥ 1 = νE1(Jac f). Precisely, 
the isomorphism (42) defines, for each n ≥ 0, Z(0)

n ∈ κ(PE1) such that Zn − Z
(0)
n ∈

(X0, Y0, W0). Arguing recursively on n′ ≥ 1 and n ≥ 0, with the lexicographical order 
on (n′, n), that is, reasoning as in corol. 5.6 in [25], it follows that, for n′, n ≥ 0, there 

exists Z(n′)
n ∈ κ(PE1)[X0, Y0, W0] such that,

F1+n ≡ 2Z1 (Zn − Z(n′)
n ) mod (X0, Y0,W0)n

′+1 for n ≥ 0, n �= 1

F2 ≡ (Z1)2 − (Z(n′)
1 )2 mod (X0, Y0,W0)n

′+1

hence Z
(n′+1)
n ≡ Z

(n′)
n mod (X0, Y0,W0)n

′+1 and this defines series Z̃n in
κ(PE1)[[X0, Y0, W0]] such that F̃1+n = 0 for n ≥ 0 (see Remark 4.12). In particular, 
it defines Z̃0 in (41). From these computations it follows that the ring ̂OX∞,PE1

has 
dimension 2. Even more, for m odd (resp. m even) ̂OX∞,PE1

has a 2-dimensional singu-
larity whose normalization has a D4- singularity (resp. A1-singularity). This in particular 
implies that ̂OX∞,PE1

is reduced and not regular.
From analogous computations applying Corollary 4.11 to describe the ring ̂OX∞,PEi

, 
2 ≤ i ≤ r, we obtain that ̂OX∞,PEi

is a complete intersection local ring of dimension

dim ̂OX∞,PEi
= i + 1 = kEi

(X) + 1 for 1 ≤ i ≤ r.

In [14] prop. 9 it is proved that if m ≥ 5 is odd (resp. m is even or m = 3) then νE1

and νE2 (resp. νE1) are the only essential valuations. Since (Xm)Sing
∞ is irreducible for 

every m, in case that m ≥ 5 is odd, E2 defines an essential valuation whose family of arcs 
{PE2} is not an irreducible component of (Xm)Sing

∞ ([14] example 1). Let us consider

X := Spec ̂OX∞,PE1

so that the set XO
∞ of arcs ϕ : Spec K[[ξ]] → X centered at the closed point O of X is 

precisely the set of wedges, or k-morphisms φ : Spec K[[ξ, t]] → X, whose special arc is 
PE1 . By special arc (resp. generic arc) of φ we mean the image by ϕ of the closed (resp. 
generic) point of K[[ξ]]. If m is even then X is a surface singularity whose normalization 



A.J. Reguera / Journal of Algebra 494 (2018) 40–76 75
has a A1- singularity, hence XO
∞ is irreducible. If m is odd then X is a surface singularity 

whose normalization has a D4-singularity, hence XO
∞ has 4 irreducible components. These 

families of arcs of XO
∞ correspond to wedges on X whose special arc is PE1 and whose 

generic arc is not centered at Sing X, i.e. it does not belong to XSing
∞ . On the other 

hand, if m ≥ 5 then

̂O(Xm,1)∞,PE2
∼= ̂OX∞,PE1

,

therefore X = Spec ̂O(Xm,1)∞,PE2
. In this ring PE1 is defined by (W0), which contains 

the closed point of X and is contained in Sing X . From this one can compute explicitly 
a wedge on Xm,1 whose projection in X is a wedge whose special arc is PE2 and whose 
generic arc is PE1 (see [14], proof of th. 1).
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