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We show that every regular sequence in C(X) has length 
≤ 1. This shows that depth(C(X)) ≤ 1. We also show that 
the depth of each maximal ideal of C(X) is either zero or 
one. In fact we observe that X is an almost P -space if and 
only if the depth of each maximal ideal of C(X) is zero and 
X contains at least one non-almost P -point if and only if 
depth(M) = 1 for each maximal ideal M of C(X). Using 
this it turns out that for a given topological space X, there 
are no maximal ideals in C(X) with different depths. Regular 
sequences are also investigated in the factor rings of C(X)
and we observe that such sequences in the factor rings of 
C(X) modulo principal z-ideals have also length ≤ 1. Finally, 
we obtain some topological conditions for which the depth of 
factor rings of C(X) modulo some closed ideals are zero.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In this article, all rings are assumed to be commutative rings with identity, ideals 
are proper and all topological spaces are considered to be completely regular Hausdorff 
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(Tychonoff) spaces. We denote by C(X) the ring of all real-valued continuous functions 
on a space X and C∗(X) is the subring of C(X) consisting of bounded functions. For 
each f ∈ C(X) the zero-set Z(f) is the set of zeros of f and its complement coz f , is 
called the cozero-set of f . It is well known that a Hausdorff space X is completely regular 
if and only if the set of all zero-sets is a base for closed subsets of X, or equivalently the 
set of all cozero-sets is a base for open subsets of X; see Theorem 3.2 in [6].

We recall that a commutative ring is a reduced ring if it does not contain any nonzero 
nilpotents. It is well known that a prime ideal P in a reduced ring is minimal if and 
only if for each a ∈ P there exists b /∈ P such that ab = 0. The set of all minimal prime 
(resp., maximal) ideals of a ring R is denoted by Min(R) (resp., Max(R)). An ideal I
in a commutative ring is called a z-ideal if Ma ⊆ I for each a ∈ I, where Ma is the 
intersection of all maximal ideals of the ring containing a. It is easy to see that an ideal 
I in C(X) is a z-ideal if and only if whenever f ∈ I, g ∈ C(X) and Z(f) ⊆ Z(g), then 
g ∈ I; see Problem 4A in [6]. For each ideal I of C(X), the ideal Iz = {g ∈ C(X) :
Z(f) = Z(g) for some f ∈ I} is a z-ideal and it is in fact the smallest z-ideal containing 
I; see [6] and [9]. In particular, for each f ∈ C(X), Mf = {g ∈ C(X) : Z(f) ⊆ Z(g)} is 
the smallest z-ideal containing f . Similarly, an ideal I in a commutative ring is called a 
z◦-ideal if Pa ⊆ I for each a ∈ I, where Pa is the intersection of all minimal prime ideals 
of the ring containing a. Whenever the ring is reduced, the ideal Pa is clearly the smallest 
z◦-ideal containing a and Pa = {b ∈ R : Ann(a) ⊆ Ann(b)}; see Proposition 1.5 in [2]. 
Since for each f, g ∈ C(X), Ann(f) ⊆ Ann(g) is equivalent to intXZ(f) ⊆ intXZ(g), 
we have Pf = {g ∈ C(X) : intXZ(f) ⊆ intXZ(g)}. Using this, an ideal I in C(X) is a 
z◦-ideal if and only if whenever f ∈ I, g ∈ C(X) and intXZ(f) ⊆ intXZ(g), then g ∈ I; 
see [2] for more details of z◦-ideals.

An ideal I in C(X) is called fixed if 
⋂

Z[I] :=
⋂

f∈I Z(f) �= ∅, otherwise it is called 
free. A nonzero ideal in a ring is said to be essential if it intersects every nonzero ideal 
non-trivially. The following topological characterization of essential ideals in C(X) is 
given in [1].

Lemma 1.1. An ideal E in C(X) is essential if and only if intX
⋂

Z[E] = ∅.

The spaces βX and υX are the Stone-Čech compactification and the Hewitt real-
compactification of X, respectively. For any p ∈ βX, Mp (resp., Op) is the set of all 
f ∈ C(X) for which p ∈ clβXZ(f) (resp., p ∈ intβXclβXZ(f)). For each p ∈ βX, Mp is 
a maximal ideal of C(X) and also, every maximal ideal of C(X) is precisely of the form 
Mp, for some p ∈ βX. The maximal ideal Mp (resp., Op) is free or fixed according as 
p ∈ βX \X or p ∈ X; and in the latter case, Mp (resp., Op) is denoted by Mp (resp., 
Op); see § 7 in [6]. Clearly, Op ⊆ Mp, for each p ∈ βX. Moreover, every prime ideal of 
C(X) is contained in a unique maximal ideal Mp for some p ∈ βX and contains the 
unique Op; see Theorems 2.11 and 7.13 in [6]. Using this, it is evident that for each 
p ∈ βX, we have Op =

⋂
P∈Min(Op) P , where Min(Op) is the set of all prime ideals in 

C(X) minimal over Op. Note that Min(Op) is exactly the set of all minimal prime ideals 
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of C(X) contained in Mp. For every f ∈ C∗(X) the unique extension of f to a function 
in C(βX) is denoted by fβ and for undefined terms and notations we refer the reader 
to [5] and [6].

We denote by U(R) (resp., U(X)) the set of all unit (invertible) elements of a ring R
(resp., C(X)). The set of all non-zerodivisor (regular) elements of a ring R (resp., C(X)) 
is denoted by r(R) (resp., r(X)). The following lemma gives a well known topological 
characterization of units and also non-zerodivisors of C(X).

Lemma 1.2. The following statements hold.

(1) An element f ∈ C(X) is a unit if and only if Z(f) = ∅.
(2) An element f ∈ C(X) is a regular (non-zerodivisor) if and only if intXZ(f) = ∅, or 

equivalently cozf is dense in X.

Recall that a space X is a P -space if every Gδ-set or equivalently every zero-set in 
X is open, and it is an almost P -space if every nonempty Gδ-set or equivalently every 
nonempty zero-set in X has a nonempty interior. Hence, every P -space is an almost 
P -space but the converse is not true, for instance, the one-point compactification of an 
uncountable discrete space is an almost P -space which is not a P -space; see Example 2 
in [8] and Problem 4K(1) in [6]. By the above lemma, it is easy to see that X is an almost 
P -space if and only if r(X) = U(X). Using this, X is an almost P -space if and only if 
f ∈ C(X) and clXcoz f = X imply that coz f = X, or equivalently whenever f ∈ C(X)
is nonzero at every point of some dense subset of X, then f is nonzero at every point of 
X. A point x ∈ X is called an almost P -point if for every f ∈ C(X), x ∈ Z(f) implies 
that intXZ(f) �= ∅. Hence, whenever x ∈ X is not an almost P -point, then there exists 
a regular element r ∈ C(X) such that x ∈ Z(r). Clearly, a space X is an almost P -space 
if and only if every point of X is an almost P -point. We need the following lemma in 
the sequel which gives another characterization of an almost P -point of X.

Lemma 1.3. The following statements are equivalent.

(1) A point x ∈ X is an almost P -point.
(2) Every element of the maximal ideal Mx is a zerodivisor.
(3) The maximal ideal Mx is a z◦-ideal.
(4) If f ∈ C(X) and x ∈ Z(f), then x ∈ clX intXZ(f).

Proof. Clearly, (1) and (2) are equivalent by the above lemma. The equivalence of (2) 
and (3) follows from Theorem 1.21 in [2]. By Corollary 3.3 in [3], x ∈ clX intXZ(f) if and 
only if f belongs to a maximal z◦-ideal of C(X) contained in Mx. Then (3) is equivalent 
to (4) and we are done. �
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If Y is a subspace of X, then almost P -points of Y are not necessarily the almost 
P -points of X and every point of Y which is an almost P -point of X need not be an 
almost P -point of Y . For instance every point of a discrete subspace D of R is an isolated 
point of D and so it is an almost P -point of D. But, clearly no point of D is an almost 
P -point of R. Also if X = Y ∪ {σ} is the one-point compactification of an uncountable 
discrete space Y , and if we take a countable subspace Y ′ of X containing σ, then σ is 
not an almost P -point of Y ′, whereas it is an almost P -point of X. But whenever Y is 
an open subspace of X, then a point of Y is an almost P -point of Y if and only if it is 
an almost P -point of X. This is evident because every Gδ-set in Y is also a Gδ-set in X
and the intersection of Y with a Gδ-set in X is also a Gδ-set in Y . We cite this fact as 
a lemma which is needed for later use.

Lemma 1.4. Let Y be an open subset of X and let x ∈ Y . Then x is an almost P -point 
of Y if and only if it is an almost P -point of X.

We also need the following lemma which topologically characterizes the unit elements 
of the factor rings of C(X). First, for an ideal I in C(X), we recall that θ(I) = {p ∈ βX :
I ⊆ Mp} and from 7O in [6], θ(I) =

⋂
f∈I clβXZ(f). We have also θ(I) =

⋂
f∈I∗ Z(fβ), 

where I∗ = I ∩C∗(X). For the sake of completeness, we give a short proof for the latter 
equality. Clearly, θ(I) ⊆

⋂
f∈I∗ Z(fβ), since f ∈ I if and only if (−1 ∨ f) ∧ 1 ∈ I∗, and 

also Z(f) = Z((−1 ∨ f) ∧ 1); see 1E in [6]. To prove the reverse inclusion, let p /∈ θ(I). 
Then there exists g ∈ I such that p /∈ clβXZ(g). Thus, there is h ∈ C∗(X) such that 
hβ(p) = 2 and hβ(clβXZ(g)) = 0. Now, if we take the function k ∈ C∗(X) such that 
kβ = (hβ − 1) ∨ 0, then

clβXZ(g) ⊆ {x ∈ βX : hβ(x) < 1} ⊆ {x ∈ βX : hβ(x) ≤ 1} =
{x ∈ βX : ((hβ − 1) ∨ 0)(x) = 0} = Z(kβ).

Therefore, Z(g) ⊆ intXZ(k) and hence k ∈ I∗, by 1D in [6]. But kβ(p) = 1 implies that 
p /∈

⋂
f∈I∗ Z(fβ).

Lemma 1.5. Let I be an ideal of C(X) and f ∈ C(X). Then the following statements are 
equivalent.

(1) f + I is a unit in C(X)/I.
(2) Z(g) ∩ Z(f) = ∅, for some g ∈ I, i.e., (f, I) = C(X).
(3) θ(I) ∩ clβXZ(f) = ∅.

In particular, if f, g ∈ C(X), then f + (g) (resp., f +Mg) is a unit in C(X)/(g) (resp., 
C(X)/Mg) if and only if Z(f) ∩ Z(g) = ∅.

Proof. (1)⇔ (2). If f + I is a unit in C(X)/I, then there exists h ∈ C(X) such that 
(h + I)(f + I) = 1 + I, i.e., fh − 1 ∈ I or equivalently, fh + g = 1 for some g ∈ I. 
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This implies that Z(f) ∩ Z(g) = ∅. Conversely, let Z(f) ∩ Z(g) = ∅ for some g ∈ I. 
Then Z(f2 + g2) = ∅ implies that f2 + g2 = u is a unit in C(X) by Lemma 1.2. Now, 
1
uf

2 + 1
ug

2 = 1 implies that ( 1
uf + I)(f + I) = 1 + I, i.e., f + I is a unit.

(2) ⇔ (3). If θ(I) ∩ clβXZ(f) �= ∅, then clβXZ(f) intersects clβXZ(g), for every 
g ∈ I and thus Z(g) ∩ Z(f) �= ∅, for every g ∈ I. To prove the converse, suppose 
Z(g) ∩ Z(f) �= ∅, for every g ∈ I. The set {clβXZ(g) ∩ clβXZ(f) : g ∈ I} has the 
finite intersection property and thus using the compactness of βX, we conclude that 
θ(I) ∩ clβXZ(f) = (∩g∈IclβXZ(g)) ∩ clβXZ(f) �= ∅. �
2. Regular sequences in C(X)

Let R be a ring and M be an R-module. An element a ∈ R is called M -regular if a
is not a zerodivisor on M . In other words, a is M -regular if am �= 0 for all 0 �= m ∈ M . 
A sequence a1, · · · , an of elements of R is said to be an M -regular sequence (or briefly, 
M -sequence) of length n, if the following statements hold.

(1) a1 is M -regular, a2 is M/a1M -regular, a3 is M/(a1M + a2M)-regular, etc.
(2) M �=

∑n
i=1 aiM .

The maximum length of all M -regular sequences, if exists, is called the depth of M and 
it is denoted by depth(M). The depth of an ideal of a ring R (or R itself) is defined 
similarly when we consider it as an R-module.

Our main result in this section is based on a question which was raised by Roger 
Wiegand at a seminar in Iran (Ardabil) that “does C((0, 1)) (or C([0, 1])) contain a 
regular sequence of length 2?” In this section we show that C(X), for every completely 
regular Hausdorff space X, has no sequence with length 2 and hence we conclude that 
depth(C(X)) ≤ 1. Nevertheless, we may give a negative answer to the aforementioned 
question by our main result of this section, but before to present the main result, we 
prefer to settle this case directly, because we think that the simple proof of this special 
case will be useful.

Proposition 2.1. Let r ∈ C((0, 1)) be a regular element. Then every nonzero element of 
C((0, 1))/(r) is either a unit or a zerodivisor.

Proof. First, for every g ∈ C((0, 1)) and each 0 < α < 1 with g(α) = 0, we define 
a function gα with gα(x) = g(x) for x ≥ α and gα(x) = −g(x) for x < α. Clearly, 
gα ∈ C((0, 1)). Now, suppose that f+(r) �= 0 is not a unit in C((0, 1))/(r). By Lemma 1.5, 
Z(f) ∩ Z(r) �= ∅. Take α ∈ Z(f) ∩ Z(r), then rα /∈ (r). In fact, if rα = rg for some 
g ∈ C((0, 1)), then limx→α g(x) does not exist which contradicts the continuity of g
(note, using Lemma 1.2, intXZ(r) = ∅, so there exists a sequence xn /∈ Z(r) such that 
x2n ≥ α and x2n−1 < α, for each n ∈ N and xn → α. Now, we have g(x2n) → 1 and 
g(x2n−1) → −1). Therefore, rα + (r) �= 0. But frα = fαr ∈ (r) because for x ≥ α, 
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f(x)rα(x) = f(x)r(x) = fα(x)r(x) and for x < α, f(x)rα(x) = −f(x)r(x) = fα(x)r(x). 
Hence, (f + (r))(rα + (r)) = frα + (r) = (r), i.e., f + (r) is a zerodivisor. �

Now, to prove our main result of this section, we need the following lemmas and 
corollary.

Lemma 2.2. Let I be an ideal of C(X). Let θ(I) ∩ intβXclβXZ(g) �= ∅ and g /∈ I. Then 
g + I is a zerodivisor in C(X)/I. In particular, if (

⋂
Z[I]) ∩ intXZ(g) �= ∅, then g + I

is a zerodivisor in C(X)/I.

Proof. Without loss of generality, we assume that g ∈ C∗(X); see 2A in [6]. Define 
h ∈ C∗(X) with hβ(βX \ intβXclβXZ(g)) = 0 and hβ(x0) = 1 for some x0 ∈ θ(I) ∩
intβXclβXZ(g). Hence, gβhβ = 0, so gh = 0 and thus (g + I)(h + I) = I. On the other 
hand, h /∈ I, for x0 ∈ θ(I) and hβ(x0) = 1; see the argument preceding Lemma 1.5. This 
implies that h + I �= I. Hence, g + I �= I is a zerodivisor. �

The following corollary is an immediate consequence of Lemma 2.2.

Corollary 2.3. If Z(f) ∩ intXZ(g) �= ∅, then g + (f) is a zerodivisor in C(X)/(f).

The converse of the above result is not necessarily true. To see this, take r ∈ r(X) \
U(X), then 0 �= r

1
3 + (r) ∈ C(X)/(r) is a zerodivisor since (r 1

3 + (r))(r 2
3 + (r)) = (r). 

But Z(r 1
3 ) ∩ intXZ(r) = ∅.

Lemma 2.4. Let f ∈ C(X). Then Z(f) is open if and only if C(Z(f)) ∼= C(X)/(f).

Proof. Suppose Z(f) is open. We define ϕ : C(X) → C(Z(f)) with ϕ(g) = g|Z(f), for 
all g ∈ C(X). Clearly, ϕ is a homomorphism with Kerϕ = (f). In fact, g ∈ Kerϕ if 
and only if g|Z(f) = 0, and this is equivalent to saying that Z(f) ⊆ Z(g). But Z(f) is 
open, hence g ∈ Kerϕ if and only if Z(f) ⊆ intZ(g), which implies that g ∈ (f) by 
1D in [6]. Therefore, C(X)/(f) ∼= C(Z(f)). Conversely, if C(Z(f)) ∼= C(X)/(f), then 
f + (f) = (f) implies that f 1

3 + (f) = (f) since C(Z(f)) is a reduced ring. Hence, 
f

1
3 ∈ (f) and this implies that Z(f) is open. �
Now, we are ready to prove our main result of this section which states that whenever 

every non-almost P -point in a zero-set Z(f) is contained in ∂Z(f) (in particular, if 
intXZ(f) = ∅), then every element of C(X)/(f) is either a unit or a zerodivisor. Note 
that, if A is a subset of a space X, then ∂A means the boundary of A.

Theorem 2.5. Let f be a non-unit element of C(X). Then the following statements hold.

(1) If every element of intXZ(f) is an almost P -point (or equivalently intXZ(f) is an 
almost P -space), then every non-unit element of C(X)/(f) is a zerodivisor.
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(2) If every non-unit element of C(X)/(f) is a zerodivisor, then either every point of 
intXZ(f) is an almost P -point of X or ∂Z(f) �= ∅.

Proof. (1). Suppose that g + (f) �= 0 is a non-unit element of C(X)/(f). We show that 
g+(f) is a zerodivisor. By Lemma 1.5, Z(f) ∩Z(g) �= ∅. Whenever intXZ(f) ∩intXZ(g) �=
∅, then by Corollary 2.3, g+(f) is a zerodivisor. Now, suppose that intXZ(f) ∩intXZ(g) =
∅. If we take y ∈ Z(f) ∩Z(g) and r = f2 + g2, then y ∈ Z(r) and r ∈ r(X). This means 
that y is a non-almost P -point of X, and hence y ∈ Z(f) \ intXZ(f) = ∂Z(f), by our 
hypothesis. Now, we define

h(x) =
{

g(x)
f

2
3 (x)+g

2
3 (x)

x /∈ Z(g) ∩ Z(f)

0 x ∈ Z(g) ∩ Z(f),

k(x) =
{

f(x)
f

2
3 (x)+g

2
3 (x)

x /∈ Z(g) ∩ Z(f)

0 x ∈ Z(g) ∩ Z(f).

Clearly, h, k ∈ C(X) (note, |h| ≤ |g 1
3 | on X \(Z(g) ∩Z(f))) and for each x /∈ Z(g) ∩Z(f), 

we have f(x)h(x) = f(x)g(x)
f

2
3 (x)+g

2
3 (x)

= g(x)k(x). This implies that fh and gk coincide on X, 
so (g + (f))(k + (f)) = (f). Now, it is enough to show that k /∈ (f). Whenever k ∈ (f), 
then k = ft for some t ∈ C(X). Hence, for each x /∈ Z(f), we have t(x) = 1

f
2
3 (x)+g

2
3 (x)

. 
Using this, we observe that t is not continuous at y. In fact, since y ∈ ∂Z(f), we may 
take a net (yλ) in X \ Z(f) such that yλ → y and hence we get t(yλ) → ∞. Therefore, 
h /∈ (f).

(2). Let every element of C(X)/(f) be a unit or a zerodivisor. Suppose on the contrary, 
that ∂Z(f) = ∅ and there exists x ∈ intXZ(f) which is not an almost P -point of X. 
Hence, Z(f) = intXZ(f) and using Lemma 1.4, x is not an almost P -point of Z(f) as 
well. Therefore, C(Z(f)) contains a non-unit regular element. But C(Z(f)) ∼= C(X)/(f)
by Lemma 2.4, so C(X)/(f) also contains a non-unit regular element, a contradiction. �

Now, using Theoerm 2.5(1), the following corollaries are evident.

Corollary 2.6. Let r ∈ r(X) be a non-unit. Then every element of C(X)/(r) is either a 
unit or a zerodivisor.

Corollary 2.7. C(X) does not contain a regular sequence of length ≥ 2.

By definition, a space X is an almost P -space if and only if C(X) has no regular 
non-units, and this is equivalent to saying that C(X) has no regular sequence. This means 
that depth(C(X)) = 0 if and only if X is an almost P -space. Now, using Corollary 2.6, 
C(X) has a sequence of length 1 (i.e., depth(C(X)) = 1) if and only if the space X
contains at least one non-almost P -point.
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Remark 2.8. In contrast to the ring C(X)/(r), every non-unit element of a factor ring 
of C(X) modulo any arbitrary ideal I of C(X) is not necessarily a zerodivisor. That is, 
Corollary 2.6 is not true in general. For instance, C(R)/O0 contains both a zerodivisor 
and a non-unit regular element. Whenever we take the identity function i ∈ C(R) and if 
g ∈ C(R) such that ig ∈ O0, then g ∈ O0 which means that i + O0 is not a zerodivisor. 
On the other hand if ig−1 ∈ O0, then ig = 1 on a neighborhood of 0 which is impossible, 
for i(0) = 0, so i + O0 is not a unit. This implies that i + O0 is a non-unit regular in 
C(R)/O0.

For an example of a zerodivisor in C(R)/O0, we may take f ∈ C(R) with Z(f) = [0, 1]. 
We also take g ∈ C(R) with Z(g) = [−1, 0]. Clearly, f, g /∈ O0, i.e., f +O0 and g+O0 are 
nonzero and since fg ∈ O0, we have (f+O0)(g+O0) = O0, i.e., f +O0 is a zerodivisor in 
C(R)/O0. Moreover, using Lemma 1.5, the set of all h +O0, h ∈ C(R) such that 0 /∈ Z(h)
is exactly the set of all units of C(R)/O0. More generally, whenever x ∈ X is not an 
almost P -point and Ox is not prime, then C(X)/Ox contains both a zerodivisor and a 
non-unit regular element. To this end, let r ∈ r(X) and x ∈ Z(r). Then clearly r+Ox is a 
regular element for if g ∈ C(X), then rg ∈ Ox implies x ∈ intX(Z(r) ∪Z(g)) = intXZ(g), 
i.e., g ∈ Ox. On the other hand, since Ox is not prime, C(X)/Ox is not an integral domain 
and thus it contains a nonzero zerodivisor element.

Corollary 2.6 is not even true for a factor ring of C(X) modulo the smallest z-ideal 
containing a principal ideal generated by a regular element r ∈ C(X). For example, if 
we take r, s ∈ C(R) with Z(r) = {0, 1, 12 , 

1
3 , . . .} and Z(s) = {0, −1, −1

2 , −
1
3 , . . .}, then 

both r and s are regular elements and the smallest z-ideal containing the principal ideal 
(r) is Mr. Now, s + Mr is neither a unit nor a zerodivisor in C(R)/Mr. In fact, since 
Z(s) ∩ Z(r) �= ∅, s + Mr is not a unit and for g ∈ C(R), sg ∈ Mr implies that g ∈ Mr, 
i.e., s + Mr is not a zerodivisor.

In Remark 2.8 we observed that for r ∈ r(R), the factor rings C(R)/O0 and C(R)/Mr

contain a non-unit regular element. But it is not known for us that what is the maximum 
length of regular sequences in such factor rings? In the last section we investigate the 
depth and regular sequences of some special factor rings of C(X). Also in Theorem 2.5, 
we have shown that whenever every point of intXZ(f) is an almost P -point of X, then 
the factor ring C(X)/(f) has no regular sequence of length 1, i.e., depth(C(X)/(f)) = 0. 
Now, it is natural to ask what is the maximum length of the regular sequences in a factor 
ring of C(X) modulo a principal ideal? In the following proposition, we prove that it is 
at most 1 if (f) is a z-ideal.

Proposition 2.9. Let (f) be a principal z-ideal in C(X). Then every regular sequence in 
C(X)/(f) is of length 0 or 1.

Proof. Since (f) is a z-ideal, Z(f) is open. Therefore, using Corollary 2.7, C(Z(f)) has 
a regular sequence of length at most 1. Now, using Lemma 2.4, every regular sequence 
of C(X)/(f) has length at most 1 as well. �
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3. Depth of maximal ideals of C(X)

Whenever an ideal I in C(X) is considered as a C(X)-module, then by our definition 
in Section 2, f ∈ C(X) is I-regular if it is not a zerodivisor on I, i.e., if �= 0 for all 
0 �= i ∈ I or equivalently I ∩Ann(f) = 0. I-regular sequences are also defined similar to 
M -regular sequences, where the module M is considered to be the C(X)-module I. We 
denote the set of all I-regular elements of C(X) by rI(X). In this section we obtain the 
depth of maximal ideals of C(X) and characterize almost P -spaces and P -spaces via the 
depth of some ideals of C(X). First, we need the following lemmas and corollary.

Lemma 3.1. Let R be a reduced ring. Then the following statements hold.

(1) If a, b ∈ R, then a is Mb-regular if and only if b ∈ Pa.
(2) If I is a z-ideal of R, then a ∈ R is I-regular if and only if I ⊆ Pa.

Proof. (1). By definition, a is Mb-regular if and only if Mb ∩ Ann(a) = (0). But Mb ∩
Ann(a) = (0) is equivalent to saying that Ann(a) ⊆ Ann(b). In fact, if c ∈ Ann(a) \Ann(b)
for some c ∈ R, then 0 �= cb ∈ Mb ∩ Ann(a), a contradiction. Conversely, let Ann(a) ⊆
Ann(b) and c ∈ Mb ∩ Ann(a), c ∈ R. Since every minimal prime ideal in R is a z-ideal 
by Theorem 1.1 in [9], c ∈ Mb ⊆ Pb, which means Ann(b) ⊆ Ann(c). Now, c ∈ Ann(c)
implies that c2 = 0, so c = 0 as well because R is a reduced ring. Thus, Mb∩Ann(a) = (0).

(2). Clearly, a is I-regular if and only if a is Mb-regular for each b ∈ I, because Mb ⊆ I

as I is a z-ideal. Now, using (1), this is equivalent to saying that b ∈ Pa for each b ∈ I, 
i.e., I ⊆ Pa. �
Corollary 3.2. Let I be an ideal of C(X) and f ∈ C(X). Then the following statements 
hold.

(1) If g ∈ C(X), then f is Mg-regular if and only if intXZ(f) ⊆ Z(g), if and only if 
g ∈ Pf .

(2) The element f is I-regular if and only if it is Iz-regular.
(3) The element f is I-regular if and only if intXZ(f) ⊆

⋂
Z[I] if and only if I ⊆ Pf .

Proof. (1). Since g ∈ Pf if and only if intXZ(f) ⊆ Z(g), the proof is evident by part (1) 
of the above lemma.

(2). Let f be I-regular and 0 �= g ∈ Iz. Then there is h ∈ I such that Z(g) = Z(h). 
Since h �= 0, we have fh �= 0. Hence, fg �= 0, for Z(fg) = Z(fh). Conversely, let f be 
Iz-regular. Then clearly f is I-regular because I ⊆ Iz.

(3). By part (2), we may consider I to be a z-ideal. Now, using part (2) of the above 
lemma, f is I-regular if and only if I ⊆ Pf . On the other hand, I ⊆ Pf if and only 
if intXZ(f) ⊆ Z(g) for each g ∈ I which is equivalent to intXZ(f) ⊆

⋂
g∈I Z(g) =⋂

Z[I]. �
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In view of Corollary 3.2, f ∈ C(X) is always Pf -regular and among the ideals I
in C(X) for which f is I-regular, the ideal Pf is the largest one. Moreover, for every 
f ∈ C(X), we have f is (f)-regular and it is Mf -regular as well. More generally, for 
every f ∈ C(X), the set of (f)-regular elements, the set of Mf -regular elements and the 
set of Pf -regular elements in C(X) coincide.

Lemma 3.3. The following statements hold.

(1) An ideal I in C(X) is essential if and only if rI(X) = r(X).
(2) The depth of each ideal of C(X) is zero if and only if X is a P -space.
(3) The depth of each essential ideal of C(X) is zero if and only if X is an almost 

P -space.

Proof. (1). Let f ∈ C(X). If f ∈ rI(X) \r(X), then I
⋂

Ann(f) = (0) but Ann(f) �= (0)
which means that I is not essential. Conversely, suppose that rI(X) = r(X), but I is 
not essential. Hence, intX

⋂
Z[I] �= ∅ by Lemma 1.1. Take x0 ∈ intX

⋂
Z[I] and define 

g ∈ C(X) such that x0 ∈ intXZ(g) and g(X \ intX
⋂
Z[I]) = 1. By Corollary 3.2, g is 

I-regular, i.e., g ∈ rI(X). But g /∈ r(X), for intXZ(g) �= ∅, a contradiction.
(2). Let X be a P -space and I be an ideal in C(X). Let a non-unit f ∈ C(X) be 

I-regular. Then Z(f) is open and for each i ∈ I, we may define hi ∈ C(X) as follows:

hi(x) =
{

i(x)
f(x) x /∈ Z(f)
0 x ∈ Z(f).

Inasmuch as Z(i) ⊆ Z(hi) and I is a z-ideal, we infer that hi ∈ I. We have also i = fhi, 
which means fI = I, so depth(I) = 0. Conversely, let the depth of every ideal of C(X)
is zero and let f ∈ C(X) be a non-unit. By Corollary 3.2, f is Mf -regular and since 
depth(Mf ) = 0 by our hypothesis, we must have fMf = Mf . Hence, there exists g ∈ Mf

(whence Z(f) ⊆ Z(g)) such that f = fg or f(1 −g) = 0. Therefore, Z(f) ∪Z(1 −g) = X

and Z(f) ∩Z(1 − g) = ∅ imply that Z(f) is open and hence X is a P -space by 4J in [6].
(3). Let X be an almost P -space and I be an essential ideal in C(X). Then r(X) =

U(X) and by part (1), we have rI(X) = U(X). This means that there is no non-unit 
I-regular and hence depth(I) = 0. Conversely, let the depth of every essential ideal of 
C(X) be zero. Suppose, on the contrary, that X is not an almost P -space. Thus, there 
exists a non-unit regular element r ∈ r(X). If we consider the principal ideal I = (r), 
then I is essential, since Ann(I) = 0. Now, by part (1), rI(X) = r(X) and hence r is 
I-regular. But depth(I) = 0 by our hypothesis, so we must have (r) = I = rI = r(r). 
This means that r = r2k or r(1 −rk) = 0 for some k ∈ C(X). But r is a non-zerodivisor, 
then rk = 1 which is impossible, because r is a non-unit. �

Part (3) of the above lemma is also true in any reduced ring, in the sense that the 
depth of each essential ideal of a reduced ring R is zero if and only if R is a classical ring. 
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The proof of this algebraic case will be done by the arguments similar to those above 
word-for-word if we replace C(X) with R, U(X) with U(R) and r(X), rI(X) with r(R), 
rI(R) respectively.

To prove our main result of this section, we need the following lemmas and corollary.

Lemma 3.4. Let I be an ideal in C(X) and r, s ∈ C(X) such that rI + sI �= I. Then 
Z(r) ∩ Z(s) �= ∅.

Proof. Let Z(r) ∩ Z(s) = ∅ and f ∈ I. Then f = r2

r2+s2 f + s2

r2+s2 f ∈ rI + sI, i.e., 
rI + sI = I, a contradiction. �
Lemma 3.5. Let I be an ideal of C(X) and suppose r, s ∈ C(X). Let there exists f ∈ I

such that ∂Z(r) ∩ Z(s) \ Z(f) �= ∅. Then s is not I
rI -regular.

Proof. Suppose f ∈ I and ∂Z(r) ∩ Z(s) \ Z(f) �= ∅. We define

r̂(x) =
{

r(x)
r

2
3 (x)+s

2
3 (x)

x /∈ Z(r) ∩ Z(s)

0 x ∈ Z(r) ∩ Z(s),

ŝ(x) =
{

s(x)
r

2
3 (x)+s

2
3 (x)

x /∈ Z(r) ∩ Z(s)

0 x ∈ Z(r) ∩ Z(s).

Clearly, r̂, ̂s ∈ C(X) (note that, |r̂| ≤ |r1/3| and |ŝ| ≤ |s1/3| on X) and sf r̂ = rf ŝ ∈ rI. To 
prove that s is not I

rI -regular, we show that f r̂ /∈ rI. In fact, f r̂ ∈ rI implies that f r̂ = rt

for some t ∈ I and hence t = f

r
2
3 +s

2
3

on X \Z(r). Now, if we take y ∈ ∂Z(r) ∩Z(s) \Z(f), 
then there exists a net (yλ) in (X \ Z(f)) ∩ (X \ Z(r)) such that yλ → y (note that 
(X \ Z(f)) ∩ (X \ Z(r)) �= ∅, for X \ Z(f) is a neighborhood of y ∈ ∂Z(r)). Clearly, 
t(yλ) → ∞ which implies that t is not continuous at y, a contradiction. �
Corollary 3.6. Let I be a free ideal of C(X). Then depth(I) is either 0 or 1.

Proof. If X is an almost P -space, then depth(I) = 0 by Lemma 3.3(3), as a free ideal 
of C(X) is essential. Whenever X has at least one non-almost P -point, then a non-unit 
r ∈ r(X) exists. Clearly, r is I-regular and rI �= I. In fact, if x ∈ Z(r), there exists 
f ∈ I such that f(x) �= 0 since I is free. Thus, for each i ∈ I, ri �= f which means 
f ∈ I \ rI. Therefore, depth(I) ≥ 1. Now, we show that there is no any I-regular 
sequence in C(X) of length more than 1. Suppose on the contrary, that r, s is an I-regular 
sequence in C(X). Hence, r is I-regular, s is I

rI -regular and rI + sI �= I. By Lemma 3.4, 
Z(r) ∩Z(s) �= ∅. On the other hand, since r is I-regular and I is free, using Corollary 3.2, 
intXZ(r) = ∅ and so ∂Z(r) = Z(r). Now, we have two cases and for each case we are to 
get a contradiction. Either for each f ∈ I we have Z(r) ∩ Z(s) ⊆ Z(f), or there exists 
f ∈ I such that ∂Z(r) ∩ Z(s) \ Z(f) = Z(r) ∩ Z(s) \ Z(f) �= ∅. The first case implies 
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Z(r) ∩ Z(s) ⊆
⋂

Z[I] = ∅, a contradiction. The second case implies that s is not an 
I
rI -regular by Lemma 3.5 which is again a contradiction. �

Now, we are ready to prove our main result of this section.

Theorem 3.7. Let M be a maximal ideal of C(X). Then depth(M) is either 0 or 1.

Proof. If M is a free maximal ideal of C(X), then by Corollary 3.6, depth(M) is either 0 
or 1 and so we are done. Thus, we suppose M is fixed and show that depth(M) ≤ 1. Let 
M = Ma for some a ∈ X. Suppose, on the contrary, that r, s is an Ma-regular sequence 
in C(X). Hence, r is Ma-regular, s is Ma

rMa
-regular and rMa + sMa �= Ma. Since r is 

Ma-regular, using Corollary 3.2, we have two cases: intXZ(r) = ∅ or intXZ(r) = {a}. 
We are to get a contradiction for each case.

First, let intXZ(r) = ∅. In this case if there exists f ∈ Ma such that Z(r) ∩ Z(s) \
Z(f) �= ∅, then using Lemma 3.5, s is not Ma

rMa
-regular, a contradiction. Otherwise, if for 

every f ∈ Ma, Z(r) ∩ Z(s) ⊆ Z(f), then Z(r) ∩ Z(s) ⊆
⋂

Z[M ] = {a}. By Lemma 3.4, 
Z(r) ∩ Z(s) �= ∅, and thus Z(r) ∩ Z(s) = {a}. Therefore, r, s ∈ Ma and so sr ∈ rMa, 
which implies r ∈ rMa as s is Ma

rMa
-regular. Hence, there exists m ∈ Ma such that r = rm. 

Now, since r is regular by Lemma 1.2, we have m = 1, a contradiction.
Next, let intXZ(r) = {a}. Then a is an isolated point. We claim that there exists 

a �= y ∈ Z(r) ∩ Z(s). Suppose on the contrary, that Z(r) ∩ Z(s) = {a}. We take t ∈ Ma

and define

g(x) =
{

t(x)
r2(x)+s2(x) x �= a

0 x = a.

Then g ∈ C(X) and t = r(rg) + s(sg) ∈ rMa + sMa. Therefore, Ma = rMa + sMa which 
is impossible. Therefore, there exists a �= y ∈ Z(r) ∩ Z(s). Now, take an f ∈ C(X) such 
that Z(f) = {a}. Thus, f ∈ Ma and y ∈ ∂Z(r) ∩ Z(s) \ Z(f). Now, using Lemma 3.5, 
we conclude that s is not an Ma

rMa
-regular, a contradiction. �

The following proposition characterizes almost P -spaces via the depth of maximal 
ideals of C(X). Using Theorem 3.7, this proposition also states that for a given space 
X, there are no two maximal ideals in C(X) with different depths.

Proposition 3.8. The following statements are equivalent.

(1) X is an almost P -space.
(2) The depth of each maximal ideal of C(X) is zero.
(3) There exists a maximal ideal M in C(X) such that depth(M) = 0.

Proof. (1) ⇒ (2). Suppose X is an almost P -space and M is a maximal ideal of C(X). If 
M is free or M is a fixed maximal ideal Ma, where a ∈ X is not an isolated point, then 
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it is essential and hence using Lemma 3.3, we have depth(M) = 0. Now, suppose that 
M = Ma, where a is an isolated point. Let r ∈ C(X) be Ma-regular. Then intXZ(r) ⊆
{a} by Corollary 3.2. Since X is an almost P -space, intXZ(r) �= ∅, so intXZ(r) = {a}. 
If t ∈ Ma, we define g ∈ C(X) such that g(a) = 0 and g(x) = t(x)

r(x) , for x �= a. Hence, 
t = rg implies that Ma = rMa and this means that depth(Ma) = 0.

(2) ⇒ (3). It is evident.
(3) ⇒ (1). On the contrary, suppose X is not an almost P -space and let M be an 

arbitrary maximal ideal of C(X) whose depth is zero. Since X is not an almost P -space, 
there is a non-unit r ∈ r(X). Clearly, r is M -regular and we claim that rM �= M . First, 
we let rM = M and r ∈ M . Then r = mr for some m ∈ M , so r(1 −m) = 0. But r is 
not a zerodivisor, hence 1 = m ∈ M which is impossible. Next, suppose rM = M and 
r /∈ M . Then there is f ∈ M such that Z(f) ∩Z(r) = ∅ by Theorem 2.6 in [6]. Now, we 
must have f = rm for some m ∈ M which is again impossible because Z(f) ∩Z(r) = ∅. 
Therefore, depth(M) ≥ 1, a contradiction. �

The following result is an immediate corollary of Theorem 3.7 and Proposition 3.8.

Corollary 3.9. The following statements are equivalent.

(1) X contains at least one non-almost P -point.
(2) The depth of each maximal ideal of C(X) is 1.
(3) There exists a maximal ideal M in C(X) such that depth(M) = 1.

The following proposition shows that the depth of each principal z-ideal of C(X) is 
at most 1. Notice that for each f ∈ C(X), the principal ideal (f) is a z-ideal if and only 
if Z(f) is an open subset of X.

Proposition 3.10. Let f ∈ C(X) and Z(f) ⊆ X be open. Then depth((f)) ≤ 1.

Proof. Suppose, on the contrary, that r, s is (f)-sequence. Thus, r is (f)-regular, s is 
(f)
r(f) -regular and r(f) + s(f) �= (f). Since r is (f)-regular, intXZ(r) ⊆ Z(f) by Corol-
lary 3.2 and since s is (f)

r(f) -regular, Z(r) ∩ Z(s) \ Z(f) = ∂Z(r) ∩ Z(s) \ Z(f) = ∅ by 
Lemma 3.5. Therefore, Z(r) ∩ Z(s) ⊆ Z(f). Now, we take t ∈ (f) and define

h(x) =
{

t(x)
r2(x)+s2(x) x /∈ Z(f)
0 x ∈ Z(f).

Since Z(f) is open, h ∈ C(X). Moreover, h ∈ (f), for Z(f) ⊆ Z(h) and (f) is a z-ideal. 
Clearly, t = r(rh) + s(sh) ∈ r(f) + s(f) and this implies that r(f) + s(f) = (f), a 
contradiction. �
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Corollary 3.11. Let f ∈ C(X) and Z(f) be open. Then depth((f)) = 1 (resp., 
depth((f)) = 0) if and only if coz f contains a non-almost P -point of X (resp., ev-
ery point of coz f is an almost P -point of X).

Proof. Suppose that coz f contains a non-almost P -point of X which it will be also 
a non-almost P -point of coz f by Lemma 1.4. Hence, there exists a non-unit regular 
element s ∈ C(coz f). Take r ∈ C(X) such that intXZ(r) ⊆ Z(f) and define a function 
g with g = r on Z(f) and g = s on coz f . Clearly, g ∈ C(X) and intXZ(g) = intXZ(r) ∪
intXZ(s) = intXZ(r) ⊆ Z(f) for intXZ(s) = intcoz fZ(s) = ∅, hence g is (f)-regular 
by Corollary 3.2. On the other hand, g(f) �= (f). In fact, if the equality g(f) = (f)
holds, then f = gft for some t ∈ C(X) and this implies that f(1 − gt) = 0. So gt = 1
on coz f which means that g|cozf t|cozf = st|cozf = 1 and this contradicts the fact that 
s ∈ C(coz f) is a non-unit. Now, using Proposition 3.10, depth((f))=1.

Conversely, let depth((f)) = 1. Suppose on the contrary, that every point of coz f
is an almost P -point of X and r ∈ C(X) is (f)-regular. We claim that r(f) = (f)
which implies depth((f)) = 0 and we get a contradiction. By Corollary 3.2, we have 
intXZ(r) ⊆ Z(f) and this implies that Z(r) ⊆ Z(f). In fact, if Z(r) � Z(f), then 
Z(r) ∩ coz f is a nonempty Gδ-set whose points are almost P -points. Hence, its interior 
must be nonempty, but intX(Z(r) ∩ coz f) = intXZ(r) ∩ coz f ⊆ Z(f) ∩ coz f = ∅, a 
contradiction. Therefore, Z(r2) = Z(r) ⊆ Z(f) and since Z(f) is open, f = r2t for 
some t ∈ C(X) by 1D in [6]. Since Z(rt) = Z(f), we have rt ∈ (f) again by 1D in [6]. 
Therefore, rt = sf for some s ∈ C(X), so rsf = r2t = f , i.e., r(f) = (f). �
Proposition 3.12. For every x ∈ βX, depth(Ox) ≤ 1.

Proof. If x ∈ βX \ X, then Ox is free and hence depth(Ox) ≤ 1 by Corollary 3.6. 
Whenever x ∈ X is an isolated point, then Ox = Mx, so depth(Ox) ≤ 1 by Theorem 3.7. 
Now, suppose that x ∈ X is not an isolated point. We claim that depth(Ox) ≤ 1. 
To see this, let r, s be an Ox-sequence, i.e., r is Ox-regular, s is Ox/rOx-regular and 
rOx + sOx �= Ox. Using Corollary 3.2, intXZ(r) ⊆ {x} which implies that intXZ(r) = ∅
and so ∂Z(r) = Z(r). On the other hand, Z(r) ∩Z(s) = ∂Z(r) ∩Z(s) ⊆

⋂
Z[Ox] = {x}

by Lemma 3.5. But Z(r) ∩ Z(s) �= ∅ by Lemma 3.4, so Z(r) ∩ Z(s) = {x}. Take f ∈ Ox

and define

h(y) =
{

f(y)
r2(y)+s2(y) y �= x

0 y = x.

Clearly, h ∈ C(X). To see this, it is enough to take a net (xλ) in intXZ(f) such that 
xλ → x. Evidently, we have h(xλ) → 0. Moreover, h ∈ Ox, for Z(f) ⊆ Z(h) and Ox is a 
z-ideal. Now, f = r2h + s2h implies that Ox = rOx + sOx, a contradiction. Therefore, 
depth(Ox) ≤ 1. �
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As we have shown in this section, many of the ideals of C(X) such as maximal ideals, 
free ideals and principal z-ideals have depth 0 or 1. These facts lead us to have a guess 
that the depth of every ideal of C(X) is either 0 or 1. We could not settle our guess and 
so we cite it as a conjecture.

Conjecture. depth(I) ≤ 1 for each ideal I of C(X).

4. When is the depth of a factor ring of C(X) zero?

We recall from [7, page 320] that a ring R is a classical ring if its every non-unit element 
is a zerodivisor. It is clear that a ring R is a classical ring if and only if depth(R) = 0. We 
observed in Theorem 2.5 that the factor ring of C(X) modulo a principal ideal (f) may 
be a classical ring. In particular, whenever r ∈ r(X), then C(X)/(r) is a classical ring; 
see Corollary 2.6. As we also observed in Remark 2.8, the factor ring of C(R) modulo 
O0 is not a classical ring. It is also well known that C(X) is a classical ring if and only 
if X is an almost P -space. In this section, motivated by these observations, we are going 
to obtain conditions on a space X or on a given ideal I for which depth(C(X)/I) = 0
or equivalently C(X)/I is a classical ring.

We remind that in a commutative reduced ring R, every element is either a unit or a 
zerodivisor if and only if 

⋃
M∈Max(R) M =

⋃
P∈Min(R) P . In fact, 

⋃
P∈Min(R) P is the set 

of all zerodivisors of R and 
⋃

M∈Max(R) M is the set of all non-unit elements of R and 
the coincidence of these two sets is equivalent to saying that R is classical. In particular, 
C(X) is a classical ring if and only if for every x ∈ X, we have Mx ⊆

⋃
P∈Min(X) P , and 

this is equivalent to saying that each point of X is an almost P -point; see Lemma 1.3. 
Thus, whenever I is an ideal of R, then depth(R/I) = 0 is equivalent to the equality ⋃

I⊆M∈Max(R) M =
⋃

P∈Min(I) P , where Min(I) is the set of all prime ideals minimal 
over I. We cite this fact for the ring C(X) as a proposition for later use. Note that every 
maximal ideal of C(X) containing an ideal I of C(X) is precisely of the form Mp, where 
p ∈ θ(I).

Proposition 4.1. Let I be an ideal of C(X). Then C(X)/I is a classical ring if and only 
if 
⋃

p∈θ(I) M
p =

⋃
P∈Min(I) P .

If we consider I = Op, for some p ∈ βX in Proposition 4.1, then C(X)/Op is a classical 
ring if and only if Mp coincides with the union of all minimal prime ideals contained 
in Mp. Any point p ∈ βX with this property is called a UMP -point by the authors in 
[4]. They also called a space Y a UMP -space if every maximal ideal M of C(Y ) is the 
union of minimal prime ideals contained in M . Clearly, every P -space is a UMP -space 
and every UMP -space is an almost P -space but neither of the converses is true; see [4]
for more details.
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In the next proposition we observe that X is a UMP -space if and only if 
depth(C(X)/Op) = 0 for every p ∈ βX. This proposition also gives a topological char-
acterization of UMP -points. First, we need the following lemma

Lemma 4.2. Let x ∈ βX and f ∈ C(X). Then f ∈
⋃

P∈Min(Ox) P if and only if there 
exists g ∈ C(X) such that x ∈ clβXcoz g ⊆ clβXZ(f).

Proof. Let f ∈
⋃

P∈Min(Ox) P . Then f ∈ P for some P ∈ Min(Ox) and hence fg = 0
for some g /∈ P . Thus, coz g ⊆ Z(f) and g /∈ Ox as Ox ⊆ P . Now, using Lemma 2.3 in 
[4], we have x ∈ clβXcoz g ⊆ clβXZ(f). Conversely, let there exists g ∈ C(X) such that 
x ∈ clβXcoz g ⊆ clβXZ(f). Then coz g ⊆ Z(f) implies that fg = 0 and x ∈ clβXcozg
implies that g /∈ Ox, by the same lemma. Therefore, there exists P ∈ Min(Ox) such 
that g /∈ P . Now, fg = 0 ∈ P implies f ∈

⋃
P∈Min(Ox) P . �

Using Lemma 4.2 and the argument preceding this lemma, the following proposition 
is now evident.

Proposition 4.3. The following statements are equivalent for every p ∈ βX.

(1) The point p is a UMP -point.
(2) If p ∈ clβXZ(f) for some f ∈ C(X), then there exists g ∈ C(X) such that p ∈

clβXcoz g ⊆ clβXZ(f).
(3) The factor ring C(X)/Op is classical, i.e., depth(C(X)/Op) = 0.

Corollary 4.4. Let x ∈ X. Then C(X)/Ox is a classical ring if and only if whenever 
x ∈ Z(f) for some f ∈ C(X), then there exists g ∈ C(X) such that x ∈ clXcoz g ⊆ Z(f).

In the rest of the paper, we are to obtain equivalent topological conditions for which 
some factor rings of C(X) modulo some familiar fixed closed ideals of C(X) such as 
annihilator of a principal ideal and the smallest z-ideal (or z◦-ideal) containing a principal 
ideal are classical or equivalently have depth zero. Note that the aforementioned ideals 
are closed ideal, i.e., each of them is of the form of an intersection of maximal ideals. 
In fact, if f ∈ C(X), then Ann(f) = MclXcozf , Mf = MZ(f) and Pf = MclX intXZ(f). 
First, we focus our attention to the annihilator ideals. We need the following lemma and 
corollary before giving respective result.

Lemma 4.5. Let f, g ∈ C(X). Then g + Ann(f) is a zerodivisor in C(X)/Ann(f) if and 
only if intXZ(g) � Z(f).

Proof. Let intXZ(g) � Z(f) and take x ∈ intXZ(g) \ Z(f). Define h ∈ C(X) such that 
h(X \ intXZ(g)) = 0 and h(x) = 1. Hence, hf �= 0 and hgf = 0, i.e., g + Ann(f) is a 
zerodivisor in C(X)/Ann(f). Conversely, suppose that g + Ann(f) is a zerodivisor and 
intXZ(g) ⊆ Z(f). Therefore, there exists h ∈ C(X) such that hf �= 0 and hgf = 0. 
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So Z(f) ∪ Z(g) ∪ Z(h) = X and hence Z(f) ∪ Z(h) = Z(f) ∪ intXZ(g) ∪ Z(h) = X

(note that Z(t) ∪ Z(s) = X implies X \ Z(t) ⊆ Z(s), whence X \ Z(t) ⊆ intXZ(s), so 
Z(t) ∪ intXZ(s) = X) which implies that fh = 0, a contradiction. �
Corollary 4.6. Let f ∈ C(X). Then

r(C(X)/Ann(f)) = {g + Ann(f) : intXZ(g) ⊆ Z(f)}.

By the following proposition, every cozero-set whose closure is an almost P -space 
must be closed.

Proposition 4.7. Let f ∈ C(X). Then the following statements are equivalent.

(1) The depth of C(X)/Ann(f) is zero.
(2) The zero-set Z(f) is open and cozf is an almost P -space.
(3) The subspace clXcozf is an almost P -space.

Proof. (1) ⇒ (2). Since C(X)/Ann(f) is a classical ring by our hypothesis, we have

r(C(X)/Ann(f)) = U(C(X)/Ann(f)).

Since f + Ann(f) ∈ r(C(X)/Ann(f)) by Corollary 4.6, it must be a unit. Now, using 
Lemma 1.5, there exists h ∈ Ann(f) such that Z(h) ∩Z(f) = ∅. But hf = 0 implies that 
Z(f) ∪ Z(h) = X. Hence, Z(f) and Z(h) are both open sets.

To prove that cozf is an almost P -space, suppose on the contrary, that there exists 
x ∈ cozf which is not an almost P -point of cozf . Thus, using Lemma 1.4, x is not an 
almost P -point of X as well. Then there exists r ∈ r(X) such that x ∈ Z(r). Now, 
r + Ann(f) is not a unit, in fact, if there exists g ∈ C(X) such that rg − 1 ∈ Ann(f), 
then x ∈ Z(r) ⊆ X \ Z(rg − 1) ⊆ Z(f), i.e., x ∈ cozf ∩ Z(f) which is impossible. 
Therefore, r+Ann(f) should be a zerodivisor by our hypothesis. Hence, using Lemma 4.5, 
∅ = intXZ(r) � Z(f), a contradiction. So, cozf is an almost P -space.

(2) ⇒ (1). Since Z(f) is open, Ann(f) = (g), for some g ∈ C(X) with Z(g) = cozf . 
But Z(g) is an almost P -space, hence every point of Z(g) is an almost P -point of X by 
Lemma 1.4. Now, using Theorem 2.5(1), depth(C(X)/Ann(f))) = depth(C(X)/(g)) = 0

(2) ⇒ (3). It is evident.
(3) ⇒ (2). It is enough to show that clXcoz f = coz f . Let f̂ := f |clXcoz f ∈

C(clXcoz f). Since f̂ is nonzero at every point of coz f , then f̂ is nonzero at every point 
of clXcoz f as coz f is a dense subset of the almost P -space clXcoz f , by the argument 
preceding Lemma 1.3. This means that clXcoz f ⊆ coz f̂ = coz f , and we are done. �

Now, we are to investigate functions f ∈ C(X) and topological conditions on X for 
which depth(C(X)/Mf ) = 0. First, we need the following lemma which characterizes the 
set of all regular elements of the factor ring C(X)/MA, where A is an arbitrary subset 
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of X. Note that if Y is a subspace of a topological space X and x ∈ A ⊆ Y ⊆ X, 
then x ∈ intY A if and only if there exists an open set G in X containing x such that 
G ∩ (Y \A) = ∅. Thus, A has empty interior in Y if and only if for each element x ∈ A, 
every neighborhood of x intersects Y \A.

Lemma 4.8. Let A be a subset of X. Then

r(C(X)/MA) = {g + MA : intA(Z(g) ∩A) = ∅}

Proof. Let g ∈ C(X) and intA(Z(g) ∩ A) = ∅. Suppose h ∈ C(X) and gh ∈ MA. Thus, 
A ⊆ Z(g) ∪Z(h) and so A \Z(g) ⊆ Z(h). Since A \Z(g) = A \ (Z(g) ∩A) and Z(g) ∩A

has empty interior with respect to A, we conclude that A \Z(g) is a dense subset of A. 
Therefore,

A = clA(A \ Z(g)) ⊆ clX(A \ Z(g)) ⊆ Z(h).

Hence h ∈ MA, which implies that g + MA is a regular element of C(X)/MA.
Conversely, let g ∈ C(X) and intA(Z(g) ∩ A) �= ∅. Take a ∈ intA(Z(g) ∩ A). There 

exists an open set V in X containing a such that V ∩ (A \ Z(g)) = ∅, by the argument 
preceding the lemma. On the other hand, there is a function h ∈ C(X) such that h(a) = 1
and h(X \ V ) = 0. Thus, A ⊆ Z(g) ∪ Z(h), which means gh ∈ MA. Now, as h /∈ MA we 
conclude that g + MA is a zerodivisor. �
Proposition 4.9. Let f be a non-unit element in C(X). Then the following statements 
are equivalent.

(1) The depth of C(X)/Mf is zero.
(2) Every nonempty Gδ-set contained in Z(f) has nonempty interior in Z(f), i.e., when-

ever G ⊆ Z(f) is a Gδ-set in X, then intZ(f)G �= ∅.
(3) If g is a non-unit element in C(X) and Mf ⊆ Mg, then g|Z(f) is a zerodivisor in 

C(Z(f)).
(4) The zero-set Z(f) is an almost P -space.

Proof. Clearly, parts (2) and (3) are equivalent. Also, (2) is equivalent to (4) since every 
Gδ-subset of Z(f) is a Gδ-subset of X contained in Z(f). So, it is enough to show that 
(1) implies (2), and (4) implies (1).

(1) ⇒ (2). Let depth(C(X)/Mf ) = 0. Suppose, on the contrary, that there exists a 
nonempty Gδ-set G contained in Z(f) with intZ(f)G = ∅. Clearly there is g ∈ C(X) such 
that ∅ �= Z(g) ⊆ G ⊆ Z(f). Thus, intZ(f)Z(g) = ∅ and hence g +Mf ∈ r(C(X)/Mf ) by 
Lemma 4.8. Since Z(g) ∩ Z(f) �= ∅, g + Mf is a non-unit in C(X)/Mf by Lemma 1.5. 
Therefore, depth(C(X)/Mf ) ≥ 1, a contradiction.

(4) ⇒ (1). Let g + Mf be a non-unit element of C(X)/Mf . Then by Lemma 1.5 we 
have Z(g) ∩Z(f) �= ∅. Since Z(g) ∩Z(f) is a nonempty zero-set in Z(f) and Z(f) is an 
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almost P -space, we have intZ(f)(Z(g) ∩ Z(f)) �= ∅. Therefore, g + Mf is a zerodivisor, 
by Lemma 4.8, i.e., depth(C(X)/Mf ) = 0. �

If every point of a zero-set Z(f) is an almost P -point of X, then for every nonempty 
Gδ-set G of X contained in Z(f), we have intZ(f)G �= ∅. Thus, by Proposition 4.9, 
depth(C(X)/Mf ) = 0, or equivalently Z(f) is an almost P -space. But the converse 
is not necessarily true. For instance, if we take the identity function i ∈ C(R) and 
f = i(i − 1), then clearly each point of Z(f) = {0, 1} is a non-almost P -point of R. But 
depth(C(X)/Mf ) = 0 by the above proposition. More generally, if Z(f) is a discrete 
subset of a topological space X, then depth(C(X)/Mf ) = 0.

Recall that a closed subset A of a topological space X is regular closed whenever 
clX intXA = A. Notice that for every f ∈ C(X), we have Mf = MZ(f) and Pf =
MclX intXZ(f). Thus, Z(f) is regular closed if and only if Mf = Pf . Using Lemma 1.3, 
whenever every point of a zero-set Z is an almost P -point of X, then it is regular closed, 
but the converse is not true. For example, consider the zero-set [0, 1] ⊆ R, which is regular 
closed, but non of its point is an almost P -point of R. By the following corollary whenever 
f ∈ C(X) and Z(f) is regular closed containing at least one non-almost P -point, then 
we have depth(C(X)/Mf ) ≥ 1

Corollary 4.10. Let f ∈ C(X). Then Z(f) is regular closed and depth(C(X)/Mf ) = 0 if 
and only if every point of Z(f) is an almost P -point of X.

Proof. Let every point of Z(f) be an almost P -point of X. Then by the argument preced-
ing the corollary, we conclude that Z(f) is regular closed and also depth(C(X)/Mf ) = 0.

Conversely, suppose on the contrary that there is x ∈ Z(f) which is not an almost 
P -point of X. Then there exists r ∈ r(X) such that x ∈ Z(r). Hence, ∅ �= Z(r) ∩Z(f) ⊆
Z(r) ∩ Z(g), for each g ∈ Mf . Therefore, the element r + Mf ∈ C(X)/Mf is not a unit 
by Lemma 1.5. Also r + Mf is not a zerodivisor. For otherwise if rg ∈ Mf = Pf , for 
some g ∈ C(X), then intXZ(f) ⊆ intX(Z(r) ∪Z(g)) = intXZ(g), i.e., g ∈ Pf = Mf and 
this implies that depth(C(X)/Mf ) ≥ 1, a contradiction. �

The following proposition shows that the implication (1) ⇒ (4) in Proposition 4.9
also holds for each subset A of X, i.e., whenever the depth of C(X)/MA is zero, then A
is an almost P -space. The converse is true if A is C-embedded, but it is not true if A is 
even C∗-embedded as we see in Example 4.12 below.

Proposition 4.11. Let A be a subset of X. If depth(C(X)/MA) = 0, then A is an almost 
P -space. The converse is also true whenever the subset A is C-embedded.

Proof. Let depth(C(X)/MA) = 0. Suppose, on the contrary, that there exists a non-
almost P -point a ∈ A. Then there is a non-unit regular element r in C(A) (i.e., 
intAZ(r) = ∅) such that a ∈ Z(r). Since Z(r) is a Gδ-subset of A, we have Z(r) =
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⋂
n∈N(Gn ∩ A), where Gn is an open subset of X, for every n ∈ N. Now, there exists 

g ∈ C(X) such that a ∈ Z(g) ⊆
⋂

n∈N Gn. Therefore,

∅ �= Z(g) ∩A ⊆
( ⋂

n∈N
Gn

)
∩A =

⋂
n∈N

(Gn ∩A) = Z(r).

By Lemma 1.5, g + MA is a non-unit element of C(X)/MA. On the other hand, since 
intA(Z(g) ∩A) ⊆ intAZ(r) = ∅, using Lemma 4.8 we conclude that g + MA is a regular 
element of C(X)/MA, a contradiction.

To prove the second part of the proposition, let A be a C-embedded subset of 
X. Clearly the homomorphism η : C(X) → C(A) defined by η(f) = f |A is onto. 
Since Ker η = {g ∈ C(X) : A ⊆ Z(g)} = MA, we have C(X)/MA

∼= C(A). Now, 
depth(C(X)/MA) = 0 if and only if depth(C(A)) = 0 which is equivalent to saying that 
A is an almost P -space. �

The following example shows that the condition “A is C-embedded” is essential in 
Proposition 4.11.

Example 4.12. Consider the non-normal space Λ = βR \ (βN \N) presented in 6P in [6]. 
The subset N is C∗-embedded in Λ, but it is not C-embedded. Using Theorem 1.18 in 
[6], there exists a zero-set Z(g) in Λ disjoint from N which is not completely separated 
from N. Thus Z(g) ∩Z(f) �= ∅, for every f ∈ MN and so g+MN is a non-unit element of 
C(Λ)/MN , by Lemma 1.5. On the other hand, Z(g) ∩N = ∅ implies that intN(Z(g) ∩N) =
∅. Therefore, g + MN is regular, by Lemma 4.8. Thus, depth(C(Λ)/MN) ≥ 1.

We conclude this section by investigating conditions for which depth(C(X)/Pf ) = 0, 
where f ∈ C(X). If X is a compact (or a normal) space, we have depth(C(X)/Pf ) =
0 if and only if clX intXZ(f) is an almost P -space by Proposition 4.11 as Pf =
MclX intXZ(f). Also, whenever Z(f) is regular closed, we observe by Corollary 4.10 that 
depth(C(X)/Pf ) = 0 if and only if every point of Z(f) is an almost P -point of X, as 
Pf = Mf in this case. For the general case, we need the following lemma which char-
acterizes the zerodivisors of C(X)/Pf . First, let P be a family of minimal prime ideals 
of C(X) and consider I =

⋂
P. Then 

⋃
P∈Min(I) P =

⋃
P. In fact, 

⋃
P ⊆

⋃
P∈Min(I) P

as P ⊆ Min(I), and to prove the reverse inclusion, let f /∈
⋃
P and suppose fg ∈ I

for some g ∈ C(X). Thus, g ∈ I which means f + I is a non-zerodivisor in C(X)/I, so 
f /∈

⋃
P∈Min(I) P .

Lemma 4.13. Let f, g ∈ C(X). Then g + Pf is a zerodivisor element of C(X)/Pf if and 
only if intXZ(f) ∩ intXZ(g) �= ∅.
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Proof. Let g + Pf be a zerodivisor in C(X)/Pf . Then

g ∈
⋃

Q∈Min(Pf )

Q =
⋃

f∈Q∈Min(C(X))

Q,

by the argument preceding the lemma, as Pf =
⋂

f∈Q∈Min(C(X)) Q. Thus, there exists a 
minimal prime ideal Q0 of C(X) containing g such that Pf ⊆ Q0. Also, there is h /∈ Q0
such that gh = 0, as C(X) is a reduced ring. Therefore, h /∈ Pf implies that intXZ(f) �
Z(h), so intXZ(f) ∩ cozh �= ∅. Now, since cozh ⊆ Z(g) (whence cozh ⊆ intXZ(g)), we 
conclude that intXZ(f) ∩ intXZ(g) �= ∅. Conversely, let y ∈ intXZ(f) ∩ intXZ(g). Define 
h ∈ C(X) such that h(y) = 1 and h(X \ (intXZ(f) ∩ intXZ(g))) = 0. Thus, hg = 0 ∈ Pf

but h /∈ Pf , as y ∈ intXZ(f) \Z(h) which means g+Pf is a zerodivisor in C(X)/Pf . �
Corollary 4.14. Let f ∈ C(X). Then

r(C(X)/Pf ) = {g + Pf : intXZ(g) ∩ intXZ(f) = ∅}

Before presenting the next proposition, we should emphasize here that a maximal 
z◦-ideal in C(X) is an ideal which is maximal among the collection of all z◦-ideals of 
C(X) and it is not necessarily a maximal ideal. But a maximal ideal which is a z◦-ideal 
is also a maximal z◦-ideal; see [3] for more details of maximal z◦-ideals of C(X).

Proposition 4.15. Let f ∈ C(X). Then the following statements are equivalent.

(1) The depth of C(X)/Pf is zero.
(2) Every maximal ideal of C(X) containing Pf is a z◦-ideal.
(3) If x ∈ θ(Pf ), then g ∈ C(X) and x ∈ clβXZ(g) imply that x ∈ clβX intXZ(g).

Proof. (1) ⇒ (2). Let M be a maximal ideal of C(X) containing Pf and g ∈ M . Then 
g + Pf is a non-unit element of C(X)/Pf and thus it is a zerodivisor by our hypothesis. 
Hence, using Lemma 4.13, we have ∅ �= intXZ(f) ∩ intXZ(g) ⊆ intXZ(g) which means g
is a zerodivisor of C(X), by Lemma 1.2. Therefore, every element of M is a zerodivisor 
and since M is maximal, it is a z◦-ideal by Theorem 1.21 in [2].

(2) ⇒ (1). Let r + Pf be a non-unit element of C(X)/Pf . Using Lemma 1.5, Z(r) ∩
Z(g) �= ∅ for every g ∈ Pf , and thus there is a maximal ideal M containing both r and 
Pf . Since r2 + f2 ∈ M and M is a z◦-ideal by (2), r2 + f2 is a zerodivisor and so by 
Lemma 1.2, intXZ(f) ∩ intXZ(r) = intXZ(f2 + r2) �= ∅. Now, using Lemma 4.13, r+Pf

is a zerodivisor of C(X)/Pf , which means depth(C(X)/Pf ) = 0.
(2) ⇔ (3). If (2) holds, then x ∈ θ(Pf ) ∩clβXZ(g) implies that g ∈ Mx which contains 

Pf , so Mx is a z◦-ideal. Therefore, Mx is a maximal z◦-ideal and using Proposition 3.2 
in [3], x ∈ clβX intXZ(g). Conversely, suppose (3) holds and Mx, x ∈ βX is a maximal 
ideal containing Pf . Let g ∈ Mx. Then by the hypothesis we have x ∈ clβX intXZ(g)
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which implies that intXZ(g) �= ∅, i.e., g is a zerodivisor, so every element of Mx is a 
zerodivisor and using Theorem 1.21 in [2], Mx is a z◦-ideal. �
Corollary 4.16. Let X be a compact space. Then the following statements hold for each 
f ∈ C(X).

(1) The depth of C(X)/Pf is zero.
(2) The subspace clX intXZ(f) is an almost P -space.
(3) Every element of clX intXZ(f) is an almost P -point of X.

Proof. Using the argument preceding Lemma 4.13, the equivalence of (1) and (2) is clear. 
Since X ∩ θ(Pf ) = clX intXZ(f), (1) implies (3) by Lemma 1.3 and part (3) of the above 
proposition. To complete the proof we show that (3) implies (1). Let every element of 
clX intXZ(f) be an almost P -point of X and r + Pf be a non-unit in C(X)/Pf . Since 
X is compact, Z(r) ∩ clX intXZ(f) �= ∅, by Lemma 1.5. If x ∈ Z(r) ∩ clX intXZ(f), then 
x ∈ Z(r) ∩ Z(f) and since x is an almost P -point of X by our hypothesis, intXZ(r) ∩
intXZ(f) �= ∅. Now, using Lemma 4.13, we conclude that r + Pf is a zerodivisor, so 
depth(C(X)/Pf ) = 0. �
Remark 4.17. Using the argument preceding Proposition 4.1, a reduced ring is classical if 
and only if every maximal ideal of the ring consists entirely of zerodivisors. Moreover, if 
R is a reduced ring with “property A” (i.e., every finitely generated ideal of R consisting 
of zerodivisors has a nonzero annihilator), then R is a classical ring if and only if every 
maximal ideal of R is a z◦-ideal or equivalently every z-ideal of R is a z◦-ideal. In fact, 
in such rings a maximal ideal M consists entirely of zerodivisors if and only if M is 
a z◦-ideal; see Theorem 1.21 in [2]. Thus, whenever I is a semiprime ideal of C(X), 
then C(X)/I is a classical ring if and only if every maximal ideal M/I in C(X)/I is 
a z◦-ideal. In contrast to part (2) of the above proposition, if M is a maximal ideal 
containing I and if M/I is a z◦-ideal of C(X)/I, then M is not necessarily a z◦-ideal of 
C(X). For example, whenever r ∈ r(X), then every maximal ideal M/(r) in C(X)/(r) is 
a z◦-ideal, by Corollary 2.6. But M is not a z◦-ideal in C(X). Moreover, a maximal ideal 
M containing an ideal I ⊆ C(X), may be a z◦-ideal, but M/I may not be a z◦-ideal in 
C(X)/I. For instance, consider a z◦-ideal Mx in C(X), where x is an almost P -point 
of X which is not a P -point (resp., which is not a UMP -point). Let Q be an arbitrary 
prime ideal contained in Mx. Then Mx/Q (resp., Mx/Ox) is not a z◦-ideal in C(X)/Q
(resp., C(X)/Ox).
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