
JID:YJABR AID:17322 /FLA [m1L; v1.260; Prn:3/09/2019; 11:00] P.1 (1-24)
Journal of Algebra ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Construction of the irreducible modular 

representations of a finite group

John J. Cannon, Allan K. Steel, William R. Unger ∗,1

School of Mathematics and Statistics, University of Sydney, Sydney, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 December 2018
Available online xxxx
Communicated by Derek Holt

Dedicated to the memory of Charles 
Sims who opened our eyes to the 
power of computation in group 
theory

Keywords:
Representation theory
Brauer characters
Irreducible modules
Finite groups

A complete procedure is described for constructing the 
irreducible KG-modules and their Brauer characters, where K
is a finite field of characteristic p and G is a finite permutation 
or matrix group. The central idea is to construct a sequence 
{S1, . . . , Sn} of KG-modules, each having relatively small 
dimension, such that each Si has one or more irreducible 
constituents that are not constituents of S1, . . . , Si−1. The 
Meataxe, used in conjunction with condensation, is used to 
extract the new irreducibles from each Si. The algorithm has 
been implemented in Magma and is capable of constructing 
irreducibles of dimension over 200 000.
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1. Introduction

An important goal in computational representation theory is to find algorithms for 
constructing the Brauer characters and irreducible KG-modules for a finite group G, 
where K is a finite field of characteristic p (a prime). We present an algorithm that 
constructs all of the irreducible KG-modules, together with the corresponding Brauer 
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characters, given only a set of permutation or matrix generators for G. A variation 
constructs all of the irreducible modules belonging to a specified p-block.

While a number of papers [10,35] describe approaches to constructing all complex irre-
ducibles, there is little published on the problem of constructing the set of all p-modular 
irreducibles for an arbitrary group. The reason for this may partly be due to the fact 
that the table of ordinary characters of G can be constructed quickly without the need 
to construct any irreducibles but this is currently not the case for the table of Brauer 
characters unless G is soluble. For soluble groups the irreducible KG-modules can be 
obtained using an algorithm originally due to Schur which constructs the irreducibles 
by inductively working up a composition series for G. The modules for the i-th term of 
the composition series are obtained by applying induction and extension to the modules 
constructed for the (i − 1)-th term [4]. In the case of arbitrary non-soluble groups, no 
effective algorithm is known for directly constructing the p-modular irreducibles. Ap-
proaches such as those used in MOC [13] require considerable user direction as well as 
the explicit construction of some irreducible KG-modules.

A number of papers describe the construction of a specific irreducible KG-module 
M for some group of interest [28,41,29,12,14]. In most cases a KG-module S having 
M as a constituent is constructed by applying theoretical knowledge as well as specific 
knowledge of the structure of G. Then the irreducible module M is extracted for S
using the Meataxe algorithm [27,16] to split S into its irreducible constituents. The 
module S is typically constructed from known KG-modules by applying operations such 
as tensoring, induction and extension. The latter two operations require some knowledge 
of the subgroup structure of G.

Our approach is based on the Burnside-Steinberg-Brauer Theorem [3] (referred to 
here as the BSB Theorem) which states that given a faithful KG-module M , then each 
irreducible KG-module occurs as a constituent of some tensor power of M . A key as-
sumption is that conjugacy classes and subgroups of G are easily computed, something 
which is made possible through the notions of base and strong generating set (BSGS) 
as conceived by Charlie Sims. The algorithm makes extensive use of the table of ordi-
nary characters and although the table of Brauer characters is not known at the outset, 
use is made of individual Brauer characters. The actual construction of the irreducible 
modules makes use of techniques mentioned in the previous paragraph as well some new 
ones.

The algorithm has been implemented in Magma [2] and it is capable of determining 
all of the irreducible KG-modules for a wide collection of groups. For example, it can 
compute the Brauer characters for all of the simple groups and most of the “simple 
groups with decorations” appearing in [18]. But its range extends far beyond this col-
lection. For example, applying the algorithm to the Rudvalis, Suzuki and third Conway 
sporadic groups produces the Brauer characters for all modular characteristics in 110, 
287 and 105 hours respectively, when the algorithm is boosted by parallelising the linear 
algebra.
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This algorithm has many potential applications including:

• Identification and correction of errors in the tables of Brauer characters appearing in 
[18]. Researchers close to that project have indicated that they expect a significant 
number of errors to surface.

• Expansion of the collection of tables of Brauer characters appearing in [18] to a much 
wider body of groups.

• There is interest in having irreducible modules/Brauer characters tabulated for the 
maximal subgroups of the simple groups listed in the Atlas of Finite Groups.

• There is a range of areas, including some outside of mathematics, where specific 
irreducible KG-modules need to be constructed.

2. Overview of the algorithm

It is convenient to construct absolutely irreducible KG-modules since the irreducible 
modules over GF (pn), for a positive integer n, can be obtained from the absolutely 
irreducible modules with little effort. While the method described in this paper will work 
well for soluble groups, the Schur method [4] may be faster in some cases. Consequently, 
our primary interest is to devise an effective method for non-soluble groups.

The algorithm proceeds by constructing a sequence

{S1, . . . , Sn}

of KG-modules, each having dimension as small as possible, such that each Si has one 
or more irreducible constituents that are not constituents of S1, . . . , Si−1. The subse-
quent terms include tensor products of earlier terms. For efficiency reasons subsequent 
terms may also be constructed using induction of KH-modules, H a subgroup of G, and 
p-reduction of QG-modules. Since the number of absolutely irreducible KG-modules is 
equal to the number of p-regular classes of G, there is a natural termination condition. 
As each new irreducible is found its Brauer character is calculated. Thus, the algorithm 
returns both the irreducible KG-modules and the corresponding Brauer characters. The 
two main computational problems are finding good candidates for the modules Si, and 
splitting them into irreducible modules.

The first approach to identifying a suitable source Si of new irreducibles is to examine 
tensor products of the known irreducibles. Since their Brauer characters are known it 
is straightforward to determine if such a tensor product has an irreducible constituent 
that is new. In a similar way the induction of KH-modules, H a subgroup of G, is 
used to generate candidates for Si. The second approach for finding a suitable Si is to 
consider a quotient of a p-reduction of the irreducible QG-module T corresponding to 
some ordinary character χ. The p-reduction of χ is used to determine whether T will 
yield new irreducibles. An algorithm previously developed by A. Steel [35, Sec. 3.5] con-
structs a QG-module T affording a given irreducible rational character χ by extracting it 
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from a virtual permutation or induced module T using condensation. An important ad-
vance described in this paper is a variant of this algorithm which computes a non-trivial 
submodule of a p-reduction Tp of T without explicitly constructing the QG-module T . 
A key feature is the use of the ordinary characters of G to identify a submodule of the 
condensed version of T which corresponds to a non-trivial submodule of Tp.

The modules Si are split using the Meataxe algorithm [16] in conjunction with con-
densation [29]. Because the dimension of a module Si will often be much larger than 
the dimensions of its new irreducible constituents, the time spent splitting the Si can 
dominate runtimes.

In order to construct KG-modules Si that have new irreducibles as constituents we 
need to be able to compute considerable information about the structure of potentially 
very large groups G and for this we use the large body of algorithms based on the 
notions of base and strong generating set (BSGS) that were introduced in 1967 and 1970 
by Charlie Sims [32,33]. Let G be generated by permutations acting on the set Ω. A base 
for G is a sequence B = [β1, . . . , βk] of distinct points of Ω with the property that only 
the identity of G fixes B pointwise. A strong generating set for G is a set of generators 
that includes generators for each stabilizer

G ⊇ Gβ1 ⊇ Gβ1,β2 . . . ⊇ Gβ1,...,βk
= 1.

It is easy to see that if a BSGS is known for G then we can immediately deduce its 
order. Further, given a permutation π acting on Ω, it is straightforward to decide if 
π is an element of G. If so we can write π as a word in the strong generators of G. 
Building on this a range of algorithms for computing many aspects of group structure 
has been constructed. Descriptions of many of these algorithms can be found in the 
Handbook of Computational Group Theory [15]. In particular, algorithms based on the 
BSGS concept make it possible to compute with an arbitrary subgroup [33], find the 
conjugacy classes [8,34], determine some or all of the subgroup structure [7,5,6,9], and 
construct the table of ordinary characters [11,31,40]. For groups G where the length of 
its base B is small compared to its degree, these algorithms can be quite fast. Finally, 
efficient algorithms have been developed for constructing the BSGS for quite large groups. 
While Sims introduced the BSGS in the context of permutation groups, it was soon 
extended to matrix groups by Butler and Cannon. The BSGS concept also plays an 
important role in algorithms for testing isomorphism and finding the automorphism 
group of combinatorial objects such as graphs, codes [20], designs and Hadamard matrices 
etc.

Knowledge of the appropriate character table of G is central to finding an efficient 
strategy for constructing a given irreducible. In the case of arbitrary groups there are 
very efficient methods due to Dixon [11], Schneider [31], and Unger [40] available for 
computing the table of ordinary characters. For soluble groups the table of irreducible 
Brauer characters is easily computed using the Fong-Swan Theorem [25, Theorem 10.1]. 
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However, in the case of a non-soluble group, no effective algorithm is known for directly 
constructing the p-modular character table.

3. Some background

In this section we state some results which will be needed later. Let G be a finite 
group, p a prime and pa the p-part of |G|. The symbol G0 will be used to denote the 
set of p-regular elements of G. If χ is an ordinary character of G the symbol χ0 will 
denote the restriction of χ to G0. It is assumed that the table of ordinary characters of 
G together with the character table of any of its subgroups can be computed.

3.1. The Burnside-Steinberg-Brauer Theorem

Theorem 1 (Burnside-Steinberg-Brauer). Let K be a field of characteristic p ≥ 0 and let 
M be a faithful KG-module. Let α be the Brauer character of M and suppose α takes 
on n distinct values. Then every absolutely irreducible p-modular KG-module occurs as 
a constituent in some tensor power M⊗k, with 0 ≤ k < n.

Proof. See [17, Theorem 4.3] for this result in characteristic zero. See [3, Remark 4] for 
non-zero characteristic. �

We will describe a set of representations of G as jointly faithful when the intersection 
of the kernels of the representations is trivial. In practice we do not consider higher 
tensor powers of a module, but instead consider irreducible modules which are jointly 
faithful, and tensor products of these in pairs (not neglecting to take squares). These 
tensor product modules are split into irreducibles and the process continued with any 
newly found irreducible modules. It is clear from considering the Brauer characters and 
the BSB Theorem that this will result in finding all irreducible modules.

Nakayama’s formulas [25, Chapter 8] show that every irreducible G-module occurs 
as a constituent of a module induced from a proper subgroup. Indeed this remains true 
if we restrict ourselves to the special case of transitive permutation modules of G. We 
have now three methods for finding all absolutely irreducible G-modules given an initial 
faithful KG-module. For reasons of computational efficiency we do not restrict ourselves 
to a particular choice from these methods in what follows, but employ all three.

3.2. Brauer characters

A general reference for the theory of Brauer characters is Navarro [25]. In addition, 
Chapter 15 of Isaacs [17] provides a useful introduction. The definition of the Brauer 
characters of a group depends upon the choice of a maximal ideal in a ring of algebraic 
integers. This corresponds to the choice of irreducible polynomial used to define the finite 
field GF(pn). In order to make a unique choice the Conway polynomial [21, Chapter 4]
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is normally used to define the finite field. Exactly one Conway polynomial is defined for 
any finite field. Apart from the uniqueness property for GF(pn), it is compatible with the 

Conway polynomials defining each of its subfields. So when lifting elements of GF(pn)
to a complex value, a root α of the Conway polynomial of degree n over GF(p) lifts to 

ζ = exp(2π/(pn − 1)), and, noting that α is a primitive element of the field, αm lifts to 

ζm. The definition and proof of existence of Conway polynomials for any degree may be 

found in [21, Chapter 4].
Magma includes a library of Conway polynomials. However, as these polynomials are 

extremely expensive to compute they are only available for moderate sized fields. In the 

implementation of the algorithms described here it is assumed that for any finite field K

arising a Conway polynomial is known.
A key step of the main algorithm is based on the observation that if we can construct 

a G-module Si, whose Brauer character does not lie in the span of the known Brauer 
characters of G, then that G-module contains an absolutely irreducible constituent that 
is new. As we can often deduce the Brauer character of a prospective module Si without 
computing it directly from the module Si, the above observation enables us to identify 

a module Si that contains at least one irreducible that is not a constituent of any of 
the modules S1, . . . , Si−1. Examples of such constructions are tensor products of known 

irreducibles, permutation modules and induced modules of subgroups of G. Thus, only 

modules Si that are guaranteed to yield a new irreducible have to be split.
When a new irreducible KG-module M of G is found its Brauer character has to be 

determined. If M is a tensor product or an induced representation, where the Brauer 
characters of the base KG-modules are known, this is straightforward. However, it is 
often necessary to compute the Brauer character directly from M and the following 

procedure is used to reduce the number of p-regular classes on which the representation 

has to be computed. At the outset the power map of the group is used to identify a 

subset of the conjugacy classes (special classes) which has the property that every class 
is a power of one of the special classes. To compute the Brauer character, the matrix 

corresponding to a class representative of a special class is found, and its eigenvalues 
computed. These are lifted to the complex numbers as described above. For the remaining 

p-regular classes, appropriate powers of the eigenvalues are lifted.
A step in the algorithm involves finding a characteristic zero representation of G, 

with known character χ, which is reduced modulo p to obtain a representation with 

Brauer character χ0. While the p-modular reduction of an ordinary representation is not 
unique, character theory guarantees that the modular absolutely irreducible constituents 
of the reduced representation depend only on χ. Every irreducible Brauer character is 
a constituent of some χ0 where χ ∈ Irr(G), so this process provides one way to find all 
absolutely irreducible G-modules.
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4. Condensation

4.1. Introduction

Let ρ : G → GLd(F ) be a representation of the finite group G and let M be the 
corresponding A-module, where A is the group algebra FG, and F is a field of any 
characteristic. When ρ can be described by a compact construction (such as a permu-
tation representation) instead of explicit d × d image matrices for the generators alone, 
condensation can yield a large speedup in the splitting of M , while also avoiding the 
explicit construction of M and the direct application of the Meataxe to M . The original 
examples go back to Parker and Thackray in 1979 [39]; see also [29, Sec. 2], [38] for 
more basic theory. Here we use fixed-point condensation, which is as follows. Let U be a 
fixed subgroup of G (called the condensation subgroup), whose order is coprime to the 
characteristic of F . Define

e := 1
|U |

∑

u∈U

u ∈ A.

Then it is easy to see that e is an idempotent, and after setting Ã = eAe and M̃ = Me, 
it is elementary to show that M̃ is an Ã-module and if S is a submodule of M , then 
Se is a submodule of M̃ . We call Ã the condensed algebra of A and M̃ the condensed 
module of M .

We develop techniques so that condensation can be used automatically for con-
structing irreducible FG-modules. To compute one or more submodules of M without 
constructing M itself explicitly, one well-known basic approach is as follows:

1. Choose a condensation subgroup U of G whose order is coprime to the characteristic 
of F and let e be the idempotent 1

|U |
∑

u∈U u ∈ A, where A = FG.
2. Let {x1, . . . , xr} be random elements of G and let Ã0 be the subalgebra of Ã = eAe

generated by {ex1e, . . . , exre} and let M̃0 be the corresponding Ã0-module. Set up 
a reduced basis for M̃0 and the corresponding reduced action on M̃0 by Ã0.

3. Compute a proper submodule S̃0 of M̃0 (by any method).
4. Embed S̃0 in M by the natural vector space embedding of M̃ in M (this is usually 

called ‘uncondensing’). Then compute the submodule S of M which is spanned by 
this embedding of S̃0 into M . This is usually done by the spin algorithm, which 
computes a basis of the invariant subspace generated by a set of vectors under the 
action by A.

In Step 2, it is not easy in general to determine cheaply whether Ã0 equals Ã, so that 
is why Ã0 has to be used in practice. If there is inequality, then M̃0 may split more 
than M̃ , but this issue will be addressed below. Steps 3 and 4 may be repeated for other 
submodules of M̃0. This approach has been used in many situations where theoretical 
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considerations in the particular setting yield (1) a good choice of the subgroup U and 
(2) information on how to identify a suitable submodule S̃0 of M̃0. But in general, an 
automatic choice of U is difficult: if U is too large, then submodules of M may map to 
zero in M̃0 so there may be no useful result, while the smaller U becomes, the larger 
M̃0 becomes and the closer the whole method approaches to splitting M directly by the 
Meataxe, which is what we want to avoid. Also, in an automatic setting, one cannot 
easily identify a suitable submodule S̃0 in general if only one specific submodule of M
with certain properties is desired.

4.2. Modular condensation

We first describe an automatic modular condensation algorithm to construct irre-
ducible KG-modules for a finite field K. We use three types of condensation to work 
with a given virtual representation ρ, while avoiding the explicit construction of the 
matrices describing the action of the KG-module M corresponding to ρ; in each case 
we also note how the dimension of a condensed module M̃ can be precomputed from ρ
and a potential condensation subgroup U which determines M̃ , without explicit use of 
characters (see the references for more details):

1. Permutation condensation [23, 3.4]: Here ρ is a permutation representation of G and 
the construction of a condensed module involves counting orbit intersections under 
the action given by ρ. The dimension of M̃ for a potential U can simply be computed 
as the number of orbits of ρ(U) as a permutation group.

2. Induction condensation [24]: Here a representation ρH of a subgroup H < G is 
given, and ρ is the induced representation ρH ↑ G. Constructing a condensed module 
needs a special transversal of G over H which involves H-U -double cosets of G. The 
dimension of M̃ for a potential U can be computed as the rank of a matrix obtained 
by summing images under ρH of the union of a list of subgroups of H easily computed 
from the double cosets.

3. Tensor condensation [22]: Here representations ρ1 and ρ2 of G are given and ρ is 
the tensor representation ρ1 ⊗ ρ2. The construction of a condensed module is quite 
elaborate and involves matching the decompositions of the restrictions of ρ1, ρ2 to 
U . The dimension of M̃ for a potential U can be computed from the dimensions of 
the endomorphism rings of the components in these decompositions.

The modular algorithm, given the virtual representation ρ : G → GLd(K) with as-
sociated methods for condensation, where K = GF(p), returns a set of irreducible 
KG-modules, and proceeds as follows:

1. Let d be the degree of ρ. Set B to a target dimension for the condensed module 
(typically around d/10; see discussion below). Loop over a suitable set of small sub-
groups {U1, . . . , Ul} of G (each with order coprime to p) and let U be the Ui such 
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that the dimension di of the condensed module determined by Ui is closest to B (us-
ing the relevant method mentioned above to compute di). Let e be the idempotent 
corresponding to U .

2. Let r be some small positive integer (typically 20), and set Ã0 to the algebra gen-
erated by ex1e, . . . , exre for random elements {x1, . . . , xr} of G. Let M̃0 be the 
corresponding Ã0-module, and let 0 = S̃0 < S̃1 < . . . < S̃k = M̃0 be a composition 
series of M̃0 (computed by recursive use of the modular Meataxe).

3. Set V0 = 0 and for i = 1, . . . , k − 1, uncondense and spin a set of generators of S̃i

modulo Vi−1 to obtain submodule Vi of M and let Qi = Vi/Vi−1. Let Qk = M/Vk−1.
4. Compute the irreducible constituents of Q1 . . . , Qk (by recursive use of the modular 

Meataxe) and return their union to obtain the irreducible constituents of M .

Since 0 ≤ V1 ≤ . . . Vk−1 ≤ M form an ascending sequence of submodules of M by 
construction, the Qi contain all constituents of M and so the output is clearly correct.

In Step 1, B is heuristically chosen so that the dimension of M̃0 will be sufficiently 
smaller than M so that the splitting of M̃0 will be much faster than the splitting of M
itself would be, while trying to avoid the fact that the smaller the dimension of M̃0 is, 
the more likely it is that the Qi will be reducible, so Step 4 will be more expensive. The 
value of B should also depend on the type of representation being condensed, since this 
affects the cost of setting up the condensed module relative to the cost of the composition 
series computation in Step 2. In the Magma implementation, B is set to 	d/10
 in the 
permutation and induction case, and 	d/8
 in the tensor case. One could also use the 
methods of Noeske [26] to ensure that Ã0 = Ã, but the random choice of generators 
works well enough in practice to yield a useful result. In the Magma implementation, 
the candidate Ui condensation subgroups are taken to be the cyclic subgroups generated 
by the p-regular class representatives of the group and the Sylow subgroups and all their 
subgroups (up to conjugacy) for all primes different to p. In practice, this is sufficient to 
find a suitable U .

In the Magma implementation, the modular Meataxe algorithm used in Steps 2 
and 4 essentially uses the method of Holt/Rees [16], but with some optimisations. First, 
asymptotically-fast matrix multiplication is used in all characteristics (including Strassen 
multiplication [36] in all characteristics and blocking methods for p ≤ 7, as in [1]), and 
matrix echelonisation and the spinning algorithm also map to this fast matrix multiplica-
tion. Next, since the computation of the characteristic polynomial of a random algebra 
element is typically much more expensive than any other operation, in the case that 
p ≤ 7 Magma typically generates more random elements of the algebra and searches for 
elements of small nullity (via random shifts by random scalars) before computing the 
characteristic polynomial (unlike Holt/Rees, which immediately computes the character-
istic polynomial for each new random element). Also, when the dimension is greater than 
10000, Magma uses the asymptotically-fast algorithm of Keller-Gehrig [19] to compute 
a characteristic polynomial, which is particularly effective when p > 7.
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One main limitation of this algorithm is that it eventually has to construct a basis 
of rank r, where r is the dimension of Vk−1, and this may be close to the degree of ρ. 
Also, for the induction case, the representation of H must first be constructed and it 
may be difficult to know beforehand which induced representations will yield useful 
representations of G. The rational reduction algorithm in the next subsection is usually 
better for the permutation and induction cases, but the modular algorithm remains very 
useful for the splitting of tensor products, because an irreducible module S can often 
be extracted from a tensor product of much smaller dimension than any permutation or 
induced representation which has S as a constituent.

4.3. Modular reduction of rational representations

For a finite group G, let IrrQ(G) denote the set of characters of all irreducible 
Q-representations of G. These can be constructed by summing the Galois orbits of the 
complex irreducible characters of G, and multiplying by the Schur index common to the 
orbit in each case [17, Theorem 9.21].

An algorithm was developed by A. Steel [35, Sec. 3.8] which takes an irreducible 
rational character χ for G and constructs an ordinary G-module (written over Q); the 
algorithm is completely automatic and uses condensation techniques in characteristic 
zero. More recently he has developed an extension which, given an irreducible rational 
character χ for G and a prime p, constructs a submodule of a modulo-p reduction of a 
QG-module M which affords χ. This is done without explicitly constructing M , and is 
described by the algorithm below.

Note first the following well-known lemma: given a potential condensation subgroup U
it can be used to predict the trace of an element of Ã or the dimension of a submodule of 
M̃ , where M̃ is the condensed Ã-module corresponding to U (while avoiding the explicit 
construction of Ã or M̃).

Lemma 4.1. Let M , U ≤ G and the idempotent e corresponding to U be as in Subsec-
tion 4.1. Then:

1. The Trace Equation (first stated in [37, p. 279]) gives the trace of the matrix repre-
senting the action of ege on Me, as follows:

TrMe(ege) = TrM (ege) = TrM (gee) = TrM (ge) =

1
|U |

∑

u∈U

TrM (gu) = 1
|U |

∑

u∈U

χM (gu),

where χM is the character of M .
2. Setting g = 1G in the above formula, the dimension of the condensed submodule 

S̃ = Se for a submodule S of M and a potential U can be computed as:
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1
|U |

∑

u∈U

χS(u) = 〈χS ↓ U, 1U 〉,

where χS is the character of S and 1U is the trivial character of U .

The following notation (based on the Lemma) will be used:

1. Write Trace(χ, U, g) = 1
|U |

∑
k∈U χ(gk) for character χ, U ≤ G and g ∈ G (using the 

Trace Equation).
2. Write CondDim(χ, U) = 〈χ ↓ U, 1U 〉 for character χ and for U ≤ G, where 1U is the 

trivial character for U (giving the condensed dimension of χ w.r.t. U).

The rational reduction algorithm, given an irreducible rational character χ from 
IrrQ(G) and a prime p, returns a non-zero submodule Sp of a mod-p reduction Mp

of a QG-module M which affords χ, and proceeds as follows:

1. Perform a search for a minimal-degree virtual rational representation ρ of G whose 
character χρ includes χ as a Q-irreducible constituent. The search loops over: (1) 
characters of permutation representations of G of increasing degree; (2) induced 
characters, which are found by constructing subgroups of G of increasing index, 
computing their character tables and inducing all their characters to G. The search 
maintains a priority queue (sorted by character degree) and tests each potential χρ in 
order until one containing χ is found (extending the queue by permutation/induced 
characters of increasing degree each time the queue is exhausted).

2. If induction from a subgroup H is to be used, construct the relevant rational rep-
resentation of H by any method, conjugate this to an integral representation ρH , 
and let ρ denote ρH ↑ G; otherwise let ρ denote the relevant permutation representa-
tion affording ρχ. Set up the relevant machinery for condensation of ρ at any given 
subgroup U using the methods referenced in Subsec. 4.2 and let M (not explicitly 
constructed) denote the QG-module corresponding to ρ.

3. Let

χρ =
k∑

i=1
mi · χi, χi ∈ IrrQ(G)

(with each mi > 0) be the decomposition of χρ into irreducible rational characters 
and let I be the index such that χ = χI .

4. Choose a positive integer r for the number of algebra generators (typically 20 ini-
tially).

5. If r > |G|, then set r = |G|. Let R = {x1 = 1, x2, . . . , xr} be r distinct elements of 
G (randomly chosen except for x1).

6. Find condensation subgroup U of G suitable for χρ, χ:
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Set L to a suitable list of small subgroups (U1, . . . , Ul) of G which at least contains 
the trivial subgroup. Set Dbest := ∞, Ubest := 〈1〉.
For i = 1, . . . , l, do the following:
(i) Let U = Ui. Set D := CondDim(χρ, U). If D ≥ Dbest or if CondDim(χj , U) = 0

for any j (1 ≤ j ≤ k) then skip to the next i.
(ii) For 1 ≤ j ≤ k, set Tj := (Trace(χj , U, x1), . . . , Trace(χj , U, xr)) ∈ Zr. Using 

a recursive search algorithm, determine whether there is a unique solution for 
the linear equation 

∑k
j=1 cjTj = mITI , where the c1, . . . , ck variables are all 

non-negative. If there is a unique solution (which must have cI = mI and 
cj = 0 for j �= I), then set Dbest := D, Ubest := U .

7. Construct the partial condensed algebra Ã0 = 〈ex1e, . . . , exre〉 and Ã0-module M̃0

derived from χρ, R, Ubest and corresponding idempotent e.
8. Use a rational Meataxe to obtain a direct sum decomposition of M̃0 into Q-irreducible 

non-isomorphic submodules:

M̃0 = ⊕l
i=1 ⊕ni

j=1 S̃i.

9. If 
∑l

i=1 ni >
∑k

i=1 mi, then M̃0 splits more than the correct condensed Ã-module 
M̃ (for the full condensed algebra Ã) does, so Ã0 must be invalid (i.e., we must have 
Ã0 � Ã = eGe, where e is the idempotent for U), so increase r by a small positive 
integer (typically 10), and return to Step 5.

10. Let i be such that the r traces of the generators of the action on S̃i equals the trace 
vector TI for U (as defined in Step 6 (ii)).

11. Uncondense a set of generators of S̃i back to the underlying vector space of M , clear 
denominators and remove the content (GCD of all entries) for each vector to obtain 
a set VZ ⊂ Zd of integral vectors (where d is the degree of ρ), and spin these modulo
p under the mod-p reduction of the action given by ρ to obtain a non-zero submodule 
Sp of the mod-p reduction of M and return Sp.

Theorem 2. The above algorithm is correct.

Proof. In Step 2, the representation of H can always be conjugated to an integral rep-
resentation in finite time in the induction case since G is finite. Step 6 finds the best 
condensation subgroup U of L (yielding the smallest dimension for the corresponding 
condensation module) which satisfies the following conditions: (1) all constituents of M
do not map to zero in the condensed module M̃ derived from ρ and U ; (2) the simple 
constituent S̃ of M̃ corresponding to χ can be uniquely identifiable via the Tj trace 
vectors. In Step 6 (ii), the first coordinate dj of each Tj equals CondDim(χj , U) (since 
x1 = 1) and is thus strictly positive, so whether the linear equation has a unique solution 
or not can be determined in finite time by a simple recursive search with a bound on each 
coordinate cj given by 1 ≤ cj ≤ mI� dj �. Some U satisfying the conditions will always 
dI



JID:YJABR AID:17322 /FLA [m1L; v1.260; Prn:3/09/2019; 11:00] P.13 (1-24)
J.J. Cannon et al. / Journal of Algebra ••• (••••) •••–••• 13
be found, since the conditions are satisfied by the trivial subgroup, which is included 
in L.

Since Ã0 is a subalgebra of Ã (the full condensed algebra eAe), the splitting of M̃0

corresponds to a possible refinement of the splitting of the correct condensed module 
M̃ = eMe, which must have exactly 

∑k
i=1 mi Q-irreducible components (counting multi-

plicities). If the component counts match in Step 9, then there is no proper refinement, so 
the submodules of M̃0 match those of M̃ exactly. Then the unique condition on the trace 
vectors ensures that the S̃i corresponding to χ is identified correctly, so the uncondensing 
will be correct (matching the uncondensing of the relevant component of the correct con-
densed module M̃) and so the module Sp returned in the final step must be a submodule 
of the mod-p reduction of a submodule S of M with character χ (since ρ is integral and 
the vectors in VZ are integral and non-zero modulo p after the content removal, the spin 
can be done modulo p without any denominators occurring). In the case that M̃0 is invalid 
in Step 9, the algorithm repeats with more generators in R and thus for Ã0. In the worst 
case, R eventually equals G, in which case Ã0 = Ã and so termination is assured. �

In the Magma implementation, the rational representation ρH in the induction case 
in Step 2 is constructed by the algorithm described in [35, Sec. 3.8], while the Rational 
Meataxe algorithm used in Step 8 is described in [35, Sec. 2.4]. In Step 6, the algorithm 
for determining the solutions to the non-negative linear equation is clearly related to 
the Knapsack problem. A heuristic algorithm which greatly speeds up a simple recursive 
search is described in [35, Section 3.2]; this uses all coordinates of the trace vectors to 
add extra conditions in the solution coordinates, and drastically reduces the search space 
so that the algorithm takes very little time in practice. The Ui subgroups are chosen in 
the same way as in the modular condensation algorithm above, except that subgroups 
with order divisible by p are included (since the characteristic is zero in the application 
of condensation here). Finally, in Step 11 the Magma implementation also effectively 
first reduces S̃i mod p, computes a composition series of this and then uncondenses and 
spins generators of the quotient sections as in the above modular condensation algorithm. 
This often yields a non-trivial pre-splitting of Sp, thus avoiding the need to apply the 
modular Meataxe directly to Sp. Note also that the full integral rank (the dimension of 
S) may not be reached in the final spin modulo p, but in practice we find that the deficit 
is small in general (any missing submodules modulo p tend to be small and are easily 
constructed by other means in the main algorithm in the next section).

The key feature of this algorithm is that it exploits the information given by the 
ordinary characters so as to achieve the following goals (which cannot be achieved with 
the above modular condensation algorithm):

1. Automatically find suitable permutation/induced representations from which we can 
extract desired representations: this is done purely with ordinary characters and no 
construction of any modules; in particular, the search phase identifies which induced 
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representations will yield the desired representation affording χ, without having to 
create any representations of subgroups explicitly.

2. Determine a condensation subgroup so that the dimension of the corresponding con-
densed Ã-module M̃ is as small as possible and correctly constructed (i.e., with 
enough generators for Ã), while ensuring that the desired condensed component S̃
does not map to zero.

3. Determine only a single submodule S of M corresponding to χ (by using the decom-
position of χρ into irreducible rational characters), thus avoiding the construction of 
mod-p reductions of a full composition series of M ; this typically saves a huge amount 
of time and memory and allows the modules to be extracted from much higher-degree 
permutation/induced representations than would be otherwise feasible (see Table 4
below for large examples).

On the other hand, the bulk of the time in this algorithm is typically taken in the 
spin algorithm in the last step, so it benefits from doing the large matrix operations 
with matrices in a small finite field, thus avoiding very expensive computations with 
large matrices in characteristic zero, while also saving memory in the case that p is very 
small because of the efficient packing of the matrix entries. If induction is used, even 
though the representation ρH of the subgroup H has to be constructed in characteristic 
zero, this generally does not take much time compared to the final modular spin (and 
monomial representations arise commonly, which are easy to construct).

5. Construction of absolutely irreducible modules

Throughout this section K will denote a finite field of characteristic p. Our goal is 
to construct the absolutely irreducible KG-modules for G. It is assumed that the group 
G is given as a set of generators consisting of permutations or matrices defined over 
a finite field having the same characteristic as the field K. The absolutely irreducible 
KG-modules are found by constructing a sequence

{S1, . . . , Sn}

of G-modules, such that each Si (i = 2, . . . , n) has one or more irreducible constituents 
that are not constituents of S1, . . . , Si−1. For practical reasons, the dimensions of the Si

should be chosen to be as small as possible.

5.1. Construction of the modules S1, . . . , Sn

The methods used fall into two groups: those that generate the modules starting from 
a faithful KG-module and those that are obtained as a p-reduction of an irreducible 
QG-module. The first group uses tensor products and induction to construct the modules 
Si and will be referred to collectively as TI-modules. The various TI-constructions used 
are:
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- Tensor product: Given KG-modules M and N , a new KG-module can be obtained 
by taking their tensor product. New irreducibles will commonly be found in the 
product.

- Exterior and symmetric powers: Of particular interest are the exterior square E and 
symmetric square S of a d-dimensional KG-module M . These are quotients of the 
tensor product P = M⊗M having dimensions d(d −1)/2, and d(d +1)/2, respectively. 
It is often possible to split E or S when it is impossible or too expensive to split P . 
While higher symmetric powers may also be used we currently restrict to squares.

- Permutation modules: Given a subgroup H of moderate index in G it is straight-
forward to construct the permutation action of G on the cosets of H. Once the 
permutation representation ρ of G is constructed, the modular condensation algo-
rithm can be applied to ρ and p.

- Induction from a subgroup: Let H be a subgroup of G. A KH-module L of degree 
d can be induced to G giving a KG-module of dimension de, where e is the index 
of H in G. Consequently, this induction is only practical for subgroups H of modest 
index in G and KH-modules of modest dimension.

In general, modules M generated by the above constructions will be split into irre-
ducibles using the modular condensation algorithm (Subsec. 4.2). For each of the above 
applications of condensation the procedure used is guaranteed to return an irreducible 
from each isomorphism class of irreducible modules appearing as constituents in M . This 
observation ensures that the conditions of the Burnside-Steinberg-Brauer theorem (or 
variants) are satisfied and so the algorithm is guaranteed to construct all irreducibles.

The second source of modules comes from p-modular reductions of irreducible 
QG-modules using the algorithm in Subsec. 4.3. These will be referred to as rational-
reduction modules (RR-modules).

5.2. Algorithm 1: absolutely irreducible modules for a group

The number of absolutely irreducible G-modules of characteristic p will be denoted 
by l. The algorithm returns a sequence IrrM containing the l absolutely irreducible 
KG-modules and a sequence IrrB containing the corresponding list of Brauer characters.

1. The conjugacy classes of G are found using the algorithms described in Cannon and 
Holt [8]. Given the classes, it is a trivial matter to write down the p-regular classes 
of G and hence determine the value of l for G.

2. The character table X of G is constructed using Unger’s algorithm [40].
3. The set U of representatives of conjugacy classes of subgroups of G down to some 

index limit B are computed using the low index subgroups algorithm [9]. The sub-
groups will be used for the construction of permutation modules and, more generally, 
modules induced from subgroups as choices for the modules Si. Permutation repre-
sentations are highly desirable candidates since splitting them using condensation 
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has the least cost of any method and is generally practical up to degree 1,000,000 or 
more.

4. The linear characters are computed and stored in the list IrrM of modular irre-
ducibles.

5. If G is given by a permutation representation take S1 to be the corresponding per-
mutation module over GF (p). If G is given as a matrix group in characteristic p then 
take S1 to be the natural G-module. In both of the above cases proceed to Step 7.

6. The next module M = Si is chosen as follows.
• TI-modules: The character φ of a tensor product or induced KG-module M is 

easily deduced given that the characters of the known irreducibles are available. 
Obtaining the character of a permutation module is straightforward. By testing 
whether φ lies in the space spanned by the known irreducible Brauer characters, 
we can decide if a given candidate for M will yield new irreducibles, at very 
little cost. Those TI-module candidates that contain new irreducibles are noted 
in a list L. The permutation and induction representations are derived from the 
subgroups in U ; if every such subgroup has already been tried, then the index 
limit B is suitably increased and further subgroups of G up to the new bound B
are constructed and inserted into U and so on until the list L is non-empty.

• RR-modules: An RR-module derived from an irreducible rational character χ
can yield new irreducibles if the Brauer character χ0 does not lie in the Brauer 
character space spanned by the known irreducibles. Such modules identified as 
possibly yielding new KG-modules are added to the list L.

Finally, M is selected from L on the basis that it can be split for the least cost. Note 
that no module is constructed during this step so that it takes very little time.

7. If M is a TI-module, then the modular condensation algorithm (Subsec. 4.2) is 
used to construct the set T of irreducible constituents of M ; otherwise the rational 
reduction algorithm (Subsec. 4.3) combined with the modular Meataxe applied to 
the output is used to construct the set T of irreducible constituents of M . Any new 
module N that is not absolutely irreducible is rewritten over a splitting field and then 
split into conjugates which replace N in the list T (a minimal-degree splitting field E
and an absolutely irreducible constituent of M written over E are constructed by the 
algorithm described in [16, Sec. 3]). Then T is reduced to a list of non-isomorphic 
modules which are also not isomorphic to any previously constructed irreducible 
module (isomorphism testing for two irreducible modules is performed using the 
algorithm described in [16, Sec. 4]).

8. The characters of the new irreducible KG-modules are determined as follows:
• TI-modules: The character of each module M was calculated when choosing M , 

and we also know the Brauer character for each known constituent of M . If there is 
a single new constituent, then its character can be obtained by simple character 
arithmetic. If there are r new constituents of M then it will be necessary to 
compute the characters of r−1 of the new irreducible modules by direct calculation 
of the characters from the modules.



JID:YJABR AID:17322 /FLA [m1L; v1.260; Prn:3/09/2019; 11:00] P.17 (1-24)
J.J. Cannon et al. / Journal of Algebra ••• (••••) •••–••• 17
• RR-modules: This is similar to the TI case, except that if the rank of the submod-
ule Sp returned by the rational reduction algorithm is less than the degree of the 
rational character χ, then the Brauer character of the last constituent cannot be 
inferred by simple character arithmetic. However, in the case that χ is absolutely 
irreducible, has Schur index one and lies in a p-block having zero deficiency, then 
the Brauer character is χ0.

9. The set T is replaced by its closure under the operations of duality and Galois con-
jugacy. The lists IrrM and IrrB are updated with the new modules and characters. 
If l absolutely irreducible modules have been found the algorithm returns IrrM and 
IrrB and terminates. Otherwise, we return to Step 6.

We consider the termination and correctness of the algorithm. The algorithm ter-
minates when l distinct absolutely irreducible modules have been found, which is well 
known to be the full set of such modules. To show correctness we must show that all the 
absolutely irreducible modules will be found.

Since Op(G) lies in the kernel of every irreducible representation of G, in what follows 
‘faithful representation’ will refer to a faithful representation of G/Op(G). Once a set 
of jointly faithful irreducible representations of G is computed, Theorem 1, and the 
discussion following its statement, guarantees that every absolutely irreducible G-module 
occurs as a constituent of some tensor product which will be considered as a TI-module. 
The methods used to split these tensor product modules find all constituents, so we need 
only show that such a jointly faithful set will be found.

In this paper it is assumed that G is given either by a permutation representation or 
as a matrix group over a finite field of characteristic p, so that the constituents of S1

form such a jointly faithful set.
The selection of the modules Si is quite difficult. The cost of splitting them depends to 

a significant degree upon how the module is constructed. For example, the time taken to 
split a permutation module of dimension 100,000 is much less than the cost of splitting a 
tensor product of that dimension. Often there are several choices for Si and it is difficult 
to obtain good estimates of the cost of splitting a particular choice.

RR-modules alone can be used to obtain most of the modular irreducibles. However, 
in some cases the reduction stage of this approach can be very time-consuming or even 
impossible while one of the TI type constructions is faster. The TI constructions are 
often faster for finding irreducibles of smaller dimension while increasing the chances 
of success with large examples. On the other hand the RR construction can often find 
irreducible modules whose dimension is beyond the capability of TI constructions.

The algorithm finds the irreducibles roughly in order of increasing degree and it can 
be terminated at the point where irreducibles of a specified degree d have been found. 
While there is no guarantee that all irreducibles of degree less than d have been found, 
this feature frequently makes it possible to find an irreducible of specified degree in a 
situation where it is not possible to construct all the irreducibles of that characteristic.
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5.3. Algorithm 2: absolutely irreducible modules for a block

In many situations knowledge of only some of the irreducible modules is required. If, 
say, a single irreducible module N is required where either its Brauer character or the 
corresponding complex irreducible character is known then it can be found at the cost 
of splitting a single module. Unfortunately this knowledge is rarely available. However, 
it is possible to compute all the irreducible modules belonging to a specified p-block 
by considering at most l modules S1, . . . , Sl, where l is the number of nonequivalent 
irreducible modules in the block.

The block algorithm is a simple variation of Algorithm 1. Let B be a p-block for G. 
Using characters we can easily calculate the number of KG-modules associated with B. 
As RR-modules are defined by the irreducible complex characters of G we know imme-
diately from the p-blocks which RR-modules belong to B. Given an arbitrary Brauer 
character we can compute its projections onto the blocks and thereby determine if any 
of the constituents of its module belong to B. These two observations replace the test 
for a candidate module M having new constituents in B in Step 6 of Algorithm 1. The 
module associated with a defect zero block can be obtained by applying the RR method 
to the appropriate rational character. More generally, there are sometimes advantages in 
producing the irreducibles block-by-block. Knowing the complex characters that belong 
to a given block may allow us to tighten our upper bound on the possible dimensions of 
its KG-modules.

6. Performance

The algorithm presented here is a general-purpose algorithm designed to work for any 
type of finite group. While there are undoubtedly better methods for particular types of 
group, such as soluble groups, the goal was to design an algorithm which would work for 
any type of finite group. From our experience there is demand to calculate the Brauer 
characters and/or irreducible KG-modules for a wide range of group types.

The availability of both the rational reduction (RR) construction together with the 
tensor/induction (TI) constructions results in an algorithm capable of succeeding with 
a wide range of groups. When constructing irreducibles, the TI-approach is often faster 
for modules M of dimension up to a few thousand while the RR-approach comes into its 
own for higher degrees. Failure to find all irreducibles by either method is usually due 
to not being able to find a module Si containing new irreducibles that is small enough 
to split.

The operations that are most expensive are the modular spin algorithm in both of 
the condensation algorithms, splitting a module, testing two modules for equivalence, 
testing whether a module is absolutely irreducible and computing the Brauer character 
of a module directly. The complexity of all of these is at least cubic in the dimension of 
the module. The size of the characteristic p plays a significant role as multiplication of 
matrices over fields of cardinality less than 8 will be significantly faster than say over 
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Table 1
Timings for calculating the Brauer characters and the irreducible 
G-modules for a selection of non-simple groups.

2 3 5 7 11

l 9 89
S4 � S4 d 64 486

t 1 9

T42–2100 l 28 20 162
37.26.7.2 d 448 14 448

t 13 6.6 252

T42–2500 l 81 20 477
37.26.7.3.2 d 448 14 448

t 34 14 10470

T42–2000 l 38 20 132
37.22.L2(7) d 336 7 336

t 3.1 1.8 75

Max Co2 l 8 79 104 103
(24 × 21+6).A8 d 64 2520 2520 2520

t 1 219 392 333

Max Co2 l 6 63 74 71 78
210 : M22 : 2 d 140 13860 13860 13860 13860

t 1 3453 25286 11359 105690

Max Co2 l 8 59 94 95
21+8.S6(2) d 512 6480 7680 7560

t 5 629 3435 2225

T42–4612 l 74 72 378
32.(2 × A2

7).2
2 d 1600 600 4900

t 107 101 18862

GF(17). Other factors include the existence of many classes of Galois conjugates and the 
degree of extensions of GF(p) that are needed to realise the absolutely irreducible mod-
ules. In particular, splitting a module over large degree extension significantly degrades 
the performance of the Meataxe.

All examples in Tables 1, 2 and 3 were run on an Intel Core i7-7700 CPU @ 3.60GHz 
with 64GB of memory.

Table 1 presents timings for a selection of non-simple groups. The first three groups 
are soluble, the next four are non-soluble with large soluble radicals, and the final group 
has two copies of A7 with small soluble groups above and below. The first group is the 
wreath product of S4 with itself, a permutation group of degree 16. Groups labelled T42 
are transitive groups of degree 42, where the number in the list of transitive groups is 
given after the hyphen, and chief factors are noted. The remaining are maximal sub-
groups of Co2, with the structures noted. The line labelled ‘l’ is the number of p-regular 
classes of the group, the line labelled ‘d’ gives the dimension of the largest absolutely 
irreducible module found, while the line labelled ‘t’ gives the time in seconds for the com-
putation. Columns 2 to 6 give information about the computation of the KG-modules 
for characteristics p = 2, 3, 5, 7, respectively.
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Table 2
Timings for calculating the Brauer characters and the irreducible G-modules for each 
of the maximal subgroups of Co3.

2 3 7 2 3 7

l 9 10 28 10 14 26
A4 × S5 d 4 18 18 U3(5) : S3 288 288 252

t 0.1 0.1 0.2 3.2 3.4 9.4

l 16 6 30 8 21 41
S3 × L2(8) : 3 d 24 27 42 2.S6(2) 512 405 560

t 0.2 0.1 0.3 1.5 3.5 56

l 5 26 45 11 16 37
[21033] d 6 36 72 35 : (2 × M11) 880 45 880

t 1.4 1.7 2.7 1.6 0.5 29

l 6 27 30 11 13 13
2 × M12 d 144 99 176 M23 896 1035 1034

t 0.3 0.54 1.4 16 17 96

l 8 16 25 7 26 42
L3(4) : D12 d 128 126 252 U4(3).(22)133 1280 729 1120

t 1.3 1.4 2.0 5.1 5.1 96

l 8 17 21 9 19 23
24.A8 d 64 315 315 HS 1408 2520 2520

t 0.3 1.4 2.9 23 61 307

l 12 18 54 10 20 31
31+4 : 4.S6 d 320 12 360 McL : 2 19712 16038 20790

t 2.1 1.4 20 589 547 4361

In order to present an unbiased sample of diverse groups, Table 2 gives some informa-
tion about the computation of modular representations and Brauer characters for each of 
the 14 maximal subgroups of Co3 in characteristics p = 2, 3, 7. (The computations have 
been done for all characteristics but the information for those greater than 7 have been 
omitted to save space.) The groups given as input to the algorithm were permutation 
groups of degree 276 as constructed by Magma’s MaximalSubgroups function.

Timings for a selection of simple groups are given in Table 3. Generators for most of 
the groups in this table are taken from the online Atlas of Finite Group Representations 
[42]. The generators for those simple groups of Lie type included in Table 3 but which 
have no generators in the Atlas are provided by the Lie group construction functions in
Magma. These generators were compiled by Rylands and Taylor [30].

Table 4 describes the computation of all Brauer characters for the sporadic simple 
groups Ru, Suz and Co3 respectively, for all modular characteristics, running on an In-
tel Xeon Gold 6146 CPU @ 3.2GHz, where the linear algebra is also parallelised in the 
very large matrix multiplications. This uses a simple variant of the algorithm where 
the irreducible modules corresponding to the defect-zero characters with degree greater 
than 5000 are not explicitly constructed, since the corresponding Brauer characters are 
trivially determined (while the irreducible modules of dimension up to 5000 are still 
constructed since they may be useful for tensor products). For each group (indicated in 
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Table 3
Timings for calculating the Brauer characters and the irreducible G-modules for a 
sample of simple groups.

2F4(2)′ McL He A13 O+
8 (2) O−

8 (2) U3(11) S4(8)

l 5 13 16 21 16 16 20 64
2 d 2048 9856 21504 8008 4096 4096 1440 4096

t 21 263 3108 3231 49 15 355 43

l 18 13 22 25 21 19 42 37
3 d 1728 8019 14400 10296 6075 2835 1440 5265

t 43 2163 3847 596 89 852 5082 7534

l 20 17 30 41 44 30 32 70
5 d 1300 9625 22050 21450 6075 5355 1440 5265

t 44 6157 13182 7579 278 1661 2710 21278

l 20 18 48 52 36 44
7 d 10395 23324 15015 4200 5355 4096

t 14050 7574 24532 804 3344 20170

l 22 54 41
11 d 10395 21450 1331

t 24974 19237 361

l 20 53 68
13 d 1374 21450 5265

t 105 19232 77222

l 31 35
17 d 20825 5355

t 85975 5867

l 36
37 d 1332

t 13354

the column labelled by ‘G’) the columns labelled by p, ‘#C’, ‘#M’, ‘Time’ and ‘Mem’ 
give each modular characteristic p, the number of p-regular classes (and thus the number 
of Brauer characters mod p), the number of non-isomorphic irreducible modules actu-
ally constructed, the total run time (in hours) and total memory usage (in gigabytes), 
respectively. The other columns are as follows:

• The columns headed by ‘Max Tensor’ describe the most expensive step which uses 
the modular condensation algorithm applied to a tensor product (Subsec. 4.2); here 
d⊗ labels the dimension of the virtual tensor product module T and dSp

labels the 
dimension of the largest irreducible constituent (not already constructed at that 
point) which is extracted from T .

• The columns headed by ‘Max Rational’ describe the most expensive step which 
uses the rational reduction algorithm (Subsec. 4.3); here dρ labels the degree of 
the virtual permutation or induced rational representation ρ which is selected by 
the algorithm, dχ labels the degree of the given irreducible rational character χ
afforded by a constituent of ρ, and dSp

labels the dimension of the largest irreducible 
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Table 4
Computation of the Brauer characters for larger simple groups.

G p # 
C

# 
M

Max Tensor Max Rational Time 
(hrs)

Mem 
(GB)

d⊗ dSp
dρ dχ dSp

Ru 2 9 9 34888 16036 417600 102400 102400 1.4 25
3 29 16 (Not used) 579072 91350 91350 5.4 59
5 28 22 142884 65975 316680 95004 58099 8.2 60
7 32 13 164836 80650 377000 75400 75400 4.0 59

13 32 17 142884 75342 1319500 110592 23346 76.6 157
29 34 17 142884 12531 593775 98280 85749 102.3 250

Suz 2 17 17 31240 9328 370656 79872 79872 1.6 12
3 20 20 306240 160380 673596 93555 5103 16.9 150
5 35 22 51909 40040 926640 243243 116127 54.3 259
7 39 19 283920 183052 370656 146432 135707 35.8 249

11 42 13 20449 3432 648648 189540 125099 77.2 211
13 41 13 20449 5005 720720 197120 191181 101.1 230

Co3 2 16 16 206184 88000 655776 226688 131584 3.2 77
3 22 22 97020 55891 860706 184437 93312 5.2 145
5 33 24 246400 173075 170775 73600 73325 11.0 146
7 39 27 162932 98164 860706 184437 154836 16.2 253

11 38 22 20608 22999 708400 26082 25186 18.7 164
23 40 19 245504 158753 708400 93312 83687 57.8 311

A16 2 37 37 826880 536576 1681680 582400 501760 47.6 350

mod-p constituent (not already constructed at that point) which is extracted from 
the corresponding virtual integral module S.

In addition, the last line of the table describes the computation of all mod-2 irreducible 
modules and their Brauer characters for A16, with the same information given for the 
most expensive tensor product condensation and rational reduction steps.
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