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In this article we establish equivariant isomorphisms of Ext 
and Tor modules over different relative complete intersections. 
More precisely, for a commutative ring Q, this paper investi-
gates how Ext∗Q/(f)(M, N) and TorQ/(f)

∗ (M, N) change when 
one varies f among all Koszul-regular sequences of a fixed 
length such that fM = 0 and fN = 0. Of notable interest is 
how the theory of perturbations is used to establish isomor-
phisms of certain DG modules.
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1. Introduction

Fix a commutative ring Q and a pair of Q-modules M and N . In this paper, we study 
the following problem: How do Ext∗Q/(f)(M, N) and TorQ/(f)

∗ (M, N) change as we vary 
f among all Q-regular sequences of a fixed length such that fM = fN = 0?
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This has been studied when Q is local with residue field k, f is a single Q-regular 
element and M = k (see [1], [4], [6], and [10]). The strongest result in this direction is the 
following theorem due to Avramov and Iyengar [6, 2.1(2)]: Let (Q, n, k) be a commutative 
noetherian local ring and I an ideal of Q. If f and g are Q-regular elements in I such 
that f − g ∈ nI, then there is an isomorphism of graded k-vector spaces

TorQ/(f)
∗ (k,N) ∼= TorQ/(g)

∗ (k,N)

for each complex of Q/I-modules N .
One of the main results of this article, which can be found in Theorem 5.7, is the 

following generalization of [6, 2.1(2)]:

Theorem. Let Q be a commutative ring, f = f1, . . . , fn and f ′ = f ′
1 . . . , f

′
n be Q-regular 

sequences in an ideal I of Q, and M a Q/I-module. If fi − f ′
i ∈ annQ(M)I for each i, 

then for each complex of Q/I-modules N we have isomorphisms of graded Q/I-modules:

(1) Ext∗Q/(f)(M, N) ∼= Ext∗Q/(f ′)(M, N)
(2) TorQ/(f)

∗ (M, N) ∼= TorQ/(f ′)
∗ (M, N)

In fact, more is shown in Theorem 5.7. Loosely speaking, the isomorphisms in (1) and 
(2), above, respect the cohomology operators which were first introduced by Gulliksen 
in [9] and later studied by Avramov and Buchweitz [3], Eisenbud [7], and many others. 
As a consequence, even of the weaker result displayed above, if Q is local then the Bass 
series (or Poincaré series) of the pair (M, N) is the same over Q/(f) as over Q/(f ′)
(cf. 5.8 and Corollary 5.9 for precise statements). Hence, other homological invariants, 
like complexity (or Tor-complexity), are the same for the pair (M, N) when computed 
over the ring Q/(f) and computed over Q/(f ′). Furthermore, Theorem 5.10 and Corol-
lary 5.11 recover results of Shamash in [11] by specializing to the case where f consists 
of a single element and N is fixed as the residue field.

Secondly, it is worth remarking that the techniques developed, and used, in this doc-
ument differ from those used in [6, 2.1(2)]; these techniques certainly add value to this 
paper by providing a framework to better understand perturbations of a complex. It 
is the author’s hope that the techniques of Section 4 will be of particular interest to 
researchers in various fields, not just commutative algebraist.

In this paper, we also give a generalization of [6, 2.1(3)]. Again, as a consequence of the 
next theorem below, we obtain information regarding the numerical data of (co)homology 
modules associated to pairs of modules over a relative complete intersection (i.e., a 
commutative ring modulo a regular sequence).

Theorem. Let Q be a commutative ring and let f = f1, . . . , fn be a Q-regular sequence 
in an ideal I of Q, and M a Q/I-module. If (f) ⊆ I annQ(M), we have isomorphisms 
of graded Q/I-modules:
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(3) Ext∗Q/(f)(M, N) ∼= P ⊗Q Ext∗Q(M, N)
(4) TorQ/(f)

∗ (M, N) ∼= P∗ ⊗Q TorQ∗ (M, N)

where P = Q/I[χ1, . . . , χn], each χi has cohomological degree two and P∗ is the graded 
Q-linear dual of P.

In what follows, we give a brief outline of this paper. In Section 2, we review notation 
and tools from DG homological algebra which will be needed to discuss the content in 
the rest of the article. In Section 3, we discuss universal resolutions. This is mostly a 
summary of work in [3]. Universal resolutions allow one to equip projective resolutions 
of Q/(f)-modules with a structure of DG S-module where S is a polynomial ring with n
variables of cohomological degree two. We leverage this extra structure to obtain a finer 
result than the theorems mentioned above (see Section 5).

Section 4 contains most of the new ideas in this article. In [6, 2.1], the authors exploit 
that the minimal free resolution of the residue field over a local ring has a system of 
divided powers. Since the main result in this article is for arbitrary Q/(f)-modules, 
we do not have access to this tool in such a general situation. This is one of the major 
differences in the proof of [6, 2.1] and Theorems 5.7 and 5.10. Instead, Section 4 examines 
when two perturbations yield isomorphic DG modules. The main result in this section 
is Theorem 4.9. Finally, we apply the results in the previous sections in Section 5.

Acknowledgements. I would like to thank Benjamin Briggs who provided comments on a 
preliminary version of this article. I would also like to thank my PhD advisors, Luchezar 
Avramov and Mark Walker, for several discussions regarding this work while I was fin-
ishing my doctorate at the University of Nebraska-Lincoln. Furthermore, I would like to 
thank the referee for their helpful comments, especially their suggestion to mention the 
relation of this work to results in [11]. Finally, the author was partly supported through 
NSF grant DMS 1103176 and NSF RTG grant 1840190.

2. Homological preliminaries

Many results in this article depend on several homological constructions. In this sec-
tion we set terminology and conventions, and list some basic properties regarding these 
constructions. This section can be skipped and referred to as needed. See [2], [5] or [8]
as references.

Fix a commutative ring Q. Let A = {Ai}i∈Z denote a DG Q-algebra. In this article, 
we will always assume that A is graded-commutative. By a DG A-module, we mean a 
left DG A-module.

2.1. Let M be a complex of Q-modules. The differential of M is denoted by ∂M . The 
boundaries and cycles of M are denoted by B(M) := {Im ∂M

i+1}i∈Z and Z(M) :=
{Ker ∂M

i }i∈Z, respectively. The homology of M is defined to be
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H(M) := Z(M)/B(M) = {Hi(M)}i∈Z

which is a graded Q-module.

2.2. Let M be a DG A-module. We let M � denote the underlying graded Q-module. Note 
that A� is a graded Q-algebra and M � is a graded A�-module. Also, H(M) is a graded 
H(A)-module.

2.3. We say that α : M → N is a degree d-map from M to N is a family of Q-linear 
maps α = {αi : Mi → Ni+d}i∈Z such that

α(am) = (−1)d|a|aα(m)

for all a ∈ A and m ∈ M .

2.4. We define HomA(M, N) to be the DG A-module HomA(M, N) = {HomA(M, N)i}i∈Z
determined by

HomA(M,N)d : = {α : M → N : α is a degree d map},
∂HomA(M,N) : = Hom(M,∂N ) − Hom(∂M , N), and

a · α : = aα(−) = (−1)d|a|α(a · −).

We remark that HomA(M, N) is a subcomplex of HomQ(M, N).

2.5. Let α ∈ HomA(M, N)0. We say that α is a morphism of DG A-modules if α ∈
Z0(HomA(M, N)). Equivalently,

α(am) = aα(m)

for all a ∈ A and m ∈ M .

2.6. Let M and N be DG A-modules. We say that degree d maps α and β from M to 
N are homotopic, denoted α ∼ β, if α − β ∈ Bd(HomA(M, N)). That is, there exists 
τ ∈ HomA(M, N)d+1 such that

∂Nτ − (−1)d+1τ∂N = α− β.

A morphism of DG A-modules α : M → N is a homotopy equivalence if there exists a 
morphism of DG A-modules β : N → M such that

βα ∼ idM and αβ ∼ idN .

A morphism of DG A-modules α : M → N is a quasi-isomorphism if H(α) : H(M) →
H(N) is an isomorphism of graded H(A)-modules.
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2.7. A DG A-module P is semiprojective if for every morphism of DG A-modules α :
P → N and each surjective quasi-isomorphism of DG A-modules γ : M → N there 
exists a unique up to homotopy morphism of DG A-modules β : P → M such that 
α = γβ. Equivalently, P � is a projective graded A�-module and HomA(P, −) preserves 
quasi-isomorphisms.

2.8. A semiprojective resolution of a DG A-module M is a surjective quasi-isomorphism 
of DG A-modules ε : P → M where P is a semiprojective DG A-module. Semiprojective 
resolutions exist and any two semiprojective resolutions of M are unique up to homotopy 
equivalence.

3. Universal resolutions

Fix a commutative ring Q. Let f = f1, . . . , fn be a list of elements in Q. Let

E := Q〈ξ1, . . . , ξn|∂ξi = fi〉

be the Koszul complex on f over Q. That is, E is the DG Q-algebra with E� the exterior 
algebra on a free Q-module with basis ξ1, . . . , ξn of homological degree 1, and differential 
induced by ∂ξi = fi. Finally, as indexing is important for several of the constructions it 
is worth mentioning that in this article N denotes {0, 1, 2, 3, . . .}.

Set R := Q/(f). Via the augmentation map E → R, every complex of R-modules is 
a DG E-module. Finally, let S := R[χ1, . . . , χn] be a graded polynomial ring where each 
χi has homological degree -2.

We will also need to refer to the graded R-linear dual of S throughout Section 3. Let 
Γ denote the graded R-linear dual of S and let {y(H)}H∈Nn be the R-basis of Γ dual to 
{χH := χh1

1 . . . χhn
n }H∈Nn the standard R-basis of S. Then Γ is a graded S-module via 

the action

χi · y(H) :=
{

y(h1,...,hi−1,hi−1,hi+1,...,hn) hi ≥ 1
0 hi = 0

3.1. Let M be a DG E-module. We let λM
i denote left multiplication by ξi on M , and 

when M is clear from context we simply write λi. As E is graded-commutative it follows 
that λi ∈ HomE(M, M)1. Moreover, λi is a null-homotopy for f idM .

3.2. Let M be a DG E-module. Define UE(M) to be the DG S ⊗Q E-module with

UE(M)� ∼= (Γ ⊗Q M)�

and differential given by the formula

∂ = 1 ⊗ ∂M +
n∑

χi ⊗ λi.

i=1
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It is a straightforward check that UE(M) is a DG S ⊗Q E-module.

3.3. We say that f is Koszul-regular if the augmentation map E → R is a quasi-
isomorphism. Equivalently,

Hi(E) =
{

R i = 0
0 i 
= 0

If f is a Q-regular sequence, then it is Koszul-regular. When Q is local and f is contained 
in the maximal ideal of Q, the converse holds.

3.4. Assume that f is a Koszul-regular sequence and fix a complex of R-modules M . Let 
ε : F �−→ M be a semiprojective resolution of M over E. By [3, 2.4], UE(F ) → M is a 
semiprojective resolution over R where the augmentation map is given by

y(H) ⊗ x �→
{

ε(x) |H| = 0
0 |H| > 1

In particular, for any complex of R-modules N

Ext∗R(M,N) ∼= H(HomR(UE(F ), N))

TorR∗ (M,N) ∼= H(UE(F ) ⊗R N)

are graded S-modules. When we refer to Ext∗R(M, N) and TorR∗ (M, N) as graded 
S-modules, we are considering the S-module structures determined by the isomorphisms 
above. Moreover, the S-module structure on Ext∗R(M, N) or TorR∗ (M, N) is independent 
of choice F and is natural in both M and N (see [3, 3.1]).

4. Perturbations

Fix a DG algebra A over a commutative ring Q. Fix a DG A-module X. Recall that 
for α, β ∈ HomA(X, X) the commutator of α and β is

[α, β] := αβ − (−1)|α||β|βα.

4.1. Let γ ∈ HomA(X, X). We say that γ is a central map if for each σ ∈ HomA(X, X),

γσ = (−1)|σ||γ|σγ.

That is, [γ, −] = 0 on HomA(X, X).
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4.2. For α ∈ HomA(X, X),

∂HomA(X,X)(α) = [∂X , α].

In particular, [∂X , α] = 0 if and only if α ∈ Z(HomA(X, X)).

4.3. Assume δ ∈ Z−1(HomA(X, X)) satisfies δ2 = 0. Define Xδ to be the perturbation of 
X by δ. That is, Xδ is the DG A-module where (Xδ)� is X� as a graded A-module and 
differential ∂X + δ.

4.4. For H = (h1, . . . , hn) ∈ Nn, we let

|H| := h1 + . . . + hn.

Also, define

Hi :=
{

(h1, . . . , hi−1, hi − 1, hi+1, . . . , hn) hi ≥ 1
0 hi = 0

and

Hi,j := (Hi)j = (Hj)i.

4.5. Fix d ∈ Z. Let α = α1, . . . , αn and β = β1, . . . , βn be sequences of elements in 
HomA(X, X)d. We say that α and β are homotopic, denoted α ∼ β, provided that

αi ∼ βi

for each 1 ≤ i ≤ n.
We say that α and β are strongly homotopic, denoted α ≈ β, if there exists a family 

of maps τ := {τ (H)}H∈Nn in HomA(X, X) satisfying the following:

(1) |τ (H)| = |H|(d + 1),
(2) τ (0) = idX , and
(3) [∂X , τ (H)] =

∑n
i=1 τ

(Hi)αi − βiτ
(Hi) for each |H| > 0. In particular, α and β are 

homotopic, as τ (ei) is a homotopy for αi and βi where ei is the n-tuple with a 1 in 
the ith spot and 0’s everywhere else.

In this case, we say that τ is a system of higher strong homotopies from α to β.

Proposition 4.6. Let X be a DG A-module and suppose α = α1, . . . , αn and β =
β1, . . . , βn are homotopic sequences of central maps on X of positive odd degree d. If 
Hi(HomA(X, X)) = 0 for all i ≥ d, then α and β are strongly homotopic.
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Proof. We set τ (0) := idX and construct the rest by induction. Suppose |H| > 0 and 
assume we have constructed {τ (H′) : |H ′| < |H|} satisfying (1)-(3). For each i, notice 
that

[∂X , τ (Hi)(αi − βi)] = [∂X , τ (Hi)](αi − βi) + τ (Hi)[∂X , αi − βi].

As the homotopic maps αi and βi are central, it follows that [∂X , αi−βi] = 0 and hence,

τ (Hi)[∂X , αi − βi] = 0.

Moreover,

[∂X , τ (Hi)](αi − βi) =

⎛
⎝ n∑

j=1
τ (Hi,j)αj − βjτ

(Hi,j)

⎞
⎠ (αi − βi)

=
n∑

j=1
τ (Hi,j)(αj − βj)(αi − βi)

Now using that αi and βi are central maps of the same odd degree it follows that

n∑
i=1

n∑
j=1

τ (Hi,j)(αj − βj)(αi − βi) = 0.

Thus,
[
∂X ,

n∑
i=1

τ (Hi)(αi − βi)
]

= 0,

and hence,

n∑
i=1

τ (Hi)(αi − βi) ∈ Z(HomA(X,X)).

As Hi(HomA(X, X)) = 0 for all i ≥ d and
∣∣∣∣∣

n∑
i=1

τ (Hi)(αi − βi)

∣∣∣∣∣ = |Hi|(d + 1) + d = (|H| − 1)(d + 1) + d ≥ d,

it follows that there exists a map τ (H) in HomA(X, X) of degree

|Hi|(d + 1) + d + 1 = (|H| − 1)(d + 1) + d + 1 = |H|(d + 1)

satisfying
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[∂X , τ (H)] =
n∑

i=1
τ (Hi)(αi − βi).

Finally, as βi is central for each i, condition (3) in 4.5 is satisfied. Thus, by induction we 
are done. �
Definition 4.7. Let α = α1, . . . , αn and β = β1, . . . , βn be sequences of maps of positive 
odd degree d on X, γ = γ1, . . . , γn is a sequence of central maps on X of degree |γi| =
−d − 1, and set

δ :=
n∑

i=1
γiαi and ε :=

n∑
i=1

γiβi.

We say that (α, β, γ, τ ) is a perturbing system on X if the following hold

(1) τ := {τ (H)}H∈Nn is a system of higher strong homotopies from α to β,
(2) δ, ε ∈ Z−1(HomA(X, X))
(3) δ2 = 0 and ε2 = 0
(4) For each x ∈ X, γH(x) = 0 for all |H| � 0 where γH = γh1

1 . . . γhn
n

Construction 4.8. Let (α, β, γ, τ ) be a perturbing system on X. Using conditions (2) 
and (3) from Definition 4.7, Xδ and Xε are well-defined DG A-modules (see 4.3). Define 
γτ : Xδ → Xε by

x �→
∑

H∈Nn

γHτ (H)(x)

where, by convention, γ0 = idX . As each γi is a central map,

γHτ (H)(x) = τ (H)γH(x)

for each H ∈ Nn. Hence, condition (4) implies that

∑
H∈Nn

γHτ (H)(x)

is a finite sum. Moreover, γτ is A-linear. Since |γi| = −d − 1 it follows that

|γHτ (H)| = |γH | + |τ (H)| = |H|(−d− 1) + H(d + 1) = 0

and so γτ is a degree 0 map in HomA(X, X).
Finally, we claim that γτ is a morphism of DG A-modules. It suffices to check that 

γτ is a chain map. The proof is given with the following string of equalities. We note 
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that we still adopt the convention γ0 = idX and the fifth equality below follows from 
4.5(3):

(∂X + ε)γτ = (∂X + ε)
∑

H∈Nn

γHτ (H)

=
∑

H∈Nn

γH∂Xτ (H) +
n∑

i=1

∑
H∈Nn

γiγ
Hβiτ

(H)

= ∂X +
∑

|H|>0

γH∂Xτ (H) +
∑

|H|>0

n∑
i=1

γHβiτ
(Hi)

= ∂X +
∑

|H|>0

(
γH∂Xτ (H) +

n∑
i=1

γHβiτ
(Hi)

)

= ∂X +
∑

|H|>0

(
γHτ (H)∂X +

n∑
i=1

γHτ (Hi)αi

)

= ∂X +
∑

|H|>0

γHτ (H)∂X +
∑

H∈Nn

n∑
i=1

γiγ
Hτ (H)αi

=
∑

H∈Nn

γHτ (H)∂X +
∑

H∈Nn

γHτ (H)
n∑

i=1
γiαi

= γτ (∂X + δ).

Thus, γτ is a morphism of DG A-modules.

Theorem 4.9. Let X be a DG A-module and suppose (α, β, γ, τ ) is a perturbing system 
on X. Using the notation from Construction 4.8, the morphism of DG A-modules γτ :
Xδ → Xε is an isomorphism.

Proof. For n ∈ N, define

X(n) := {x ∈ Xδ : γH(x) = 0 for all |H| > n}.

Since each γi is central, it follows that X(n) is a DG A-submodule of Xδ. Indeed, for 
x ∈ X(n) and |H| > n we have that

γH(∂X + δ)(x) = (∂X + δ)γH(x) = 0.

Similarly, Y (n) is a DG A-submodule of Xε where Y (n)� = X(n)�. Again using that γi
is central for each i, for each H ∈ Nn it follows that



J. Pollitz / Journal of Algebra 546 (2020) 467–483 477
γH ◦ γτ = γτ ◦ γH .

Thus, γτ (X(n)) ⊆ Y (n). Set γτ (n) := γτ |X(n) : X(n) → Y (n).
We have a chain of DG A-submodules

0 = X(0) ⊆ X(1) ⊆ X(2) . . . and 0 = Y (0) ⊆ Y (1) ⊆ Y (2) . . .

of Xδ and Xε, respectively. Moreover, by assuming condition (4) it follows that

lim−−→X(n) = Xδ, lim−−→Y (n) = Xε, and lim−−→γτ (n) = γτ . (4.1)

Finally, it is clear that γτ (0) is the identity map and that γτ (n) induces the identity 
map

X(n)/X(n− 1) → Y (n)/Y (n− 1)

for each n ∈ N. Hence, by induction γτ (n) is an isomorphism for each n ∈ N. Thus, by 
(4.1) it follows that γτ is an isomorphism. �
5. Equivariant isomorphisms

5.1. Let ϕ : A → A′ be a morphism of DG Q-algebras. Suppose M is a DG A-module 
and M ′ is a DG A′-module. A morphism of complexes ψ : M → M ′ is ϕ-equivariant if

ψ(am) = ϕ(a)ψ(m)

for all a ∈ A and m ∈ M . Similarly, a morphism of complexes ψ′ : M ′ → M is 
ϕ-equivariant if

ψ′(ϕ(a)m′) = aψ′(m′)

for all a ∈ A and m′ ∈ M .
Let ψ be a ϕ-equivariant map. Then ψ is a morphism of DG A-modules when M ′ is 

regarded as an A-module via restriction of scalars along ϕ. If ψ is an isomorphism of 
complexes, we say that ψ is a ϕ-equivariant isomorphism.

First, we fix some notation which will be used throughout the section.

Notation 5.2. Let Q be a commutative ring and fix two lists of elements f = f1, . . . , fn
and f ′ = f ′

1 . . . , f
′
n in Q. Set

E := Q〈ξ1, . . . , ξn|∂ξi = fi〉 E′ := Q〈ξ′1, . . . , ξ′n|∂ξ′i = f ′
i〉

S := Q/(f)[χ1, . . . , χn] S ′ := Q/(f ′)[χ′
1, . . . , χ

′
n]

Γ := HomQ/(f)(S, Q/(f)) Γ′ := HomQ/(f ′)(S ′, Q/(f ′))
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where each χi and χ′
i have homological degree −2. Also, let Λ := E ⊗Q E′. For a DG 

Λ-module X we let λi and λ′
i denote left multiplication on X by ξi and ξ′i, respectively.

Suppose that I is an ideal of Q containing (f , f ′), set R = Q/I and

P := R⊗Q S = R[χ1, . . . , χn] P ′ := R⊗Q S ′ = R[χ′
1, . . . , χ

′
n]

D := HomR(P, R) D′ := HomR(P ′, R)

It is worth noting that Γ, Γ′, D, and D′ are defined above using the graded duals in each 
context.

Remark 5.3. Set Q := Q/(f) and Q
′ := Q/(f ′) and assume that f and f ′ are Koszul-

regular sequences. For complexes of R-modules M and N ,

Ext∗Q(M,N) = H(HomQ(UE(F ), N))

is a graded module over S where F is a semiprojective resolution of M over E (see 3.4). 
As I annihilates Ext∗Q(M, N), Ext∗Q(M, N) is a graded P-module. Moreover, since N is 
an R-module, using adjunction we have the following isomorphism of graded P-modules

Ext∗Q(M,N) ∼= H(HomR(R⊗Q UE(F ), N)). (5.1)

Similarly, there is an isomorphism of graded P ′-modules

Ext∗
Q

′(M,N) ∼= H(HomR(R⊗Q
′ UE′(F ′), N)) (5.2)

where F ′ is a semiprojective resolution of M over E′. There are analogous statements 
for TorQ∗ (M, N) and TorQ

′
(M, N) as graded P- and P ′-modules, respectively.

In this section, first, we will be comparing Ext∗Q(M, N) with Ext∗
Q

′(M, N) and 

TorQ(M, N) with TorQ
′
(M, N) for R-modules M and N when f and f ′ are assumed 

to be Koszul-regular sequences. Roughly speaking, if each λi and λ′
i act similarly on a 

semiprojective resolution of M over Λ, then we have isomorphisms between the corre-
sponding Ext and Tor modules. Later in the section, we will be interested in the case 
when f is Koszul-regular and f ′ is the zero sequence.

Lemma 5.4. For any DG E-module Y and DG E′-module Y ′,

UE(Y ) = (Γ ⊗Q Y )δ and UE′(Y ′) = (Γ′ ⊗Q Y ′)δ
′

where δ :=
∑n

i=1 χi ⊗ λi and δ′ :=
∑n

i=1 χ
′
i ⊗ λ′

i.

Proof. This follows immediately by examining the underlying graded modules and the 
differentials (see 3.2 and 4.3). �
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5.5. Let M be an R-module. Suppose that fi − f ′
i ∈ I annQ(M) for each i, that is,

fi − f ′
i =

∑
j

xi,jgi,j

where xi,j ∈ I and gi,j ∈ annQ(M). We set B := Λ〈ζi,j |∂ζi,j = gi,j〉 and as 
fi, f ′

i , gi,j ∈ annQ(M) it follows that M is a DG B-module. A bounded below semiprojec-
tive resolution of M over B is called a strong Λ-resolution of M . Since B is semiprojective 
over Λ, a strong Λ-resolution of M is a semiprojective resolution of M over Λ.

By 2.7, strong Λ-resolutions of M exist. Moreover, any two strong Λ-resolutions of M
are homotopy equivalent DG Λ-modules (cf. 2.8).

Lemma 5.6 was inspired by, and generalizes, Claim 2 in the proof of [6, 2.1]. The proof 
of Lemma 5.6 relies heavily on the ideas in Section 4.

Lemma 5.6. Let M be an R-module. Suppose that fi − f ′
i ∈ I annQ(M) for each i. For 

any strong Λ-resolution F �−→ M , there is an isomorphism of DG P ⊗QΛ-modules

(D ⊗Q F )δ ∼= (D ⊗Q F )ε,

where δ =
∑n

i=1 χi ⊗ λi and ε =
∑n

i=1 χi ⊗ λ′
i.

Proof. We let σi,j ∈ HomB(F, F )1 denote left multiplication by ζi,j . By assumption,

[∂F , λi − λ′
i] =

⎡
⎣∂F ,

∑
j

xi,jσi,j

⎤
⎦

and hence,

λi − λ′
i −

∑
j

xi,jσi,j ∈ Z1(HomB(F, F )).

As F �−→ M and F is semiprojective over B, it follows that

HomB(F, F ) �−→ HomB(F,M).

Since F is nonnegatively graded and M is concentrated in degree 0,

HomB(F,M)1 = 0

and hence,

0 = H1(HomB(F,M)) = H1(HomB(F, F )).
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Thus, Z1(HomB(F, F )) = B1(HomB(F, F )) and so there exists τ ∈ HomB(F, F )2 such 
that

[∂F , τ ] = λi − λ′
i −

∑
j

xi,jσi,j .

Thus,

λi −
∑
j

xi,jσi,j ∼ λ′
i

for all i. Since λi, λ′
i and σ′

i are central on F over B, we apply Proposition 4.6 to conclude 
that

α̃ ≈ β̃

where

α̃i := λi −
∑
j

xi,jσi,j and β̃i := λ′
i

for each 1 ≤ i ≤ n. Also, as maps on D ⊗Q F ,

1 ⊗ λi = 1 ⊗ λi − 1 ⊗
∑
j

xi,jσi,j

since each xi,j is in I which annihilates D. Therefore, the sequences (1 ⊗ λi)ni=1 and 
(1 ⊗ λ′

i)ni=1 are strongly homotopic maps of degree 1 on D ⊗Q F .
In the notation of Section 4, set

A = P ⊗QB

X = D ⊗Q F

α = 1 ⊗ λ1, . . . , 1 ⊗ λn

β = 1 ⊗ λ′
1, . . . , 1 ⊗ λ′

n

γ = χ1 ⊗ 1, . . . , χn ⊗ 1

and let τ denote the strong homotopy from α to β (the existence of τ was justified 
above). It is easily checked that (α, β, γ, τ ) is a perturbing system on X (see Defini-
tion 4.7). Therefore, Theorem 4.9 yields an isomorphism of DG P ⊗QB-modules

(D ⊗Q F )δ ∼= (D ⊗Q F )ε,

where recall that δ =
∑n

i=1 χi ⊗ λi and ε =
∑n

i=1 χi ⊗ λ′
i. �
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We are now equipped to prove the main results of this paper. Theorem 5.7 generalizes 
[6, 2.1(2)], as discussed in the introduction.

Theorem 5.7. We adopt the notation from Notation 5.2. Further assume that f and f ′

are Koszul-regular sequences. Let ϕ : P → P ′ be the morphism of DG R-algebras given 
by

χi �→ χ′
i.

Assume that M is an R-module such that for each i

fi − f ′
i ∈ I annQ(M).

For each complex of R-modules N , we have the following ϕ-equivariant isomorphisms:

(1) Ext∗Q/(f)(M, N) ∼= Ext∗Q/(f ′)(M, N)
(2) TorQ/(f)

∗ (M, N) ∼= TorQ/(f ′)
∗ (M, N)

Proof. The proof of (2) is similar to the proof of (1). So we only prove (1) and leave 
translating the proof of (1) to the context of (2) as an exercise for the reader.

By 5.5 and Lemma 5.6, there exists a semiprojective resolution F �−→ M over Λ and 
a canonical isomorphism of DG P ⊗QΛ-modules

(D ⊗Q F )δ ∼= (D ⊗Q F )ε, (5.3)

where δ =
∑n

i=1 χi⊗λi and ε =
∑n

i=1 χi⊗λ′
i. Moreover, ϕ induces the ϕ ⊗Λ-equivariant 

isomorphism

(D′ ⊗Q F )δ
′ HomR(ϕ,R)⊗Λ−−−−−−−−−−→ (D ⊗Q F )ε (5.4)

where δ′ =
∑n

i=1 χ
′
i ⊗ λ′

i. Composing the isomorphisms in (5.3) and (5.4), we obtain a 
ϕ ⊗ Λ-equivariant isomorphism

(D ⊗Q F )δ ∼= (D′ ⊗Q F )δ
′
. (5.5)

Using that f and f ′ are Koszul-regular and Lemma 5.4, we obtain the following 
isomorphism of DG P ⊗QΛ-modules and isomorphism of DG P ′ ⊗QΛ-modules

R⊗Q/(f) UE(F ) ∼= (D ⊗Q F )δ and R⊗Q′/(f ′) UE′(F ) ∼= (D′ ⊗Q F )δ
′
,

respectively. Therefore, we have a ϕ ⊗ Λ-equivariant isomorphism

R⊗Q/(f) UE(F )∼=R⊗Q/(f ′) UE′(F )
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using these isomorphisms and (5.5). Applying HomR(−, N) provides us with a ϕ ⊗
Λ-equivariant isomorphism

HomR(R⊗Q/(f) UE(F ), N) ∼= HomR(R⊗Q/(f ′) UE′(F ), N).

Now using (5.1) and(5.2) from Remark 5.3, we obtain (1). �
5.8. Let Q be local and M a Q-module. We let ν(M) denote the minimal number of 
generators of M . For a complex of Q-modules N , the Bass series of M and N is

IM,N
Q (t) =

∞∑
i=0

ν(ExtiQ(M,N))ti.

When M = k, this recovers the classical Bass series of N .
The Poincaré series of M and N is

PQ
M,N (t) =

∞∑
i=0

ν(TorQi (M,N))ti.

When M = k, this recovers the classical Poincaré series of N .

From Theorem 5.7 we get the following immediate corollary.

Corollary 5.9. Further assume that Q is local. For each complex of R-modules N , the 
following hold:

(1) IM,N
Q/(f)(t) = IM,N

Q/(f ′)(t)
(2) PQ/(f)

M,N (t) = PQ/(f ′)
M,N (t)

Our last main theorem of this article is given below in Theorem 5.10. The techniques 
from Section 4 are again applied to establish this result. Corollary 5.11 is an immediate 
consequence of Theorem 5.10. Finally, as mentioned in the introduction, Theorem 5.10
and Corollary 5.11 greatly generalize work of Shamash in [11].

Theorem 5.10. We adopt the notation from Notation 5.2. If (f) ⊆ I annQ(M) is a 
Koszul-regular sequence, we have isomorphisms of graded P-modules:

(1) Ext∗Q/(f)(M, N) ∼= P ⊗R Ext∗Q(M, N)
(2) TorQ/(f)

∗ (M, N) ∼= P∗ ⊗R TorQ∗ (M, N)

Proof. The proof of (1) and (2) are similar, and hence, we only show (1).
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Let f ′
i = 0 for all 1 ≤ i ≤ n and fix a strong Λ-resolution F �−→ M . By Lemma 5.6, 

we have an isomorphism of DG P ⊗QΛ-modules

(D ⊗Q F )δ ∼= D ⊗Q F.

Therefore, we have the following isomorphisms of graded P-modules

Ext∗Q/(f)(M,N) = H(HomR((D ⊗Q F )δ, N))
∼= H(HomR(D ⊗Q F,N))
∼= H(HomR(D, R) ⊗Q HomQ(F,N))
∼= H(P ⊗R HomQ(F,N))
∼= P ⊗RH(HomQ(F,N)).

As F is semiprojective over E, and E is semiprojective over Q, it follows that F �−→
M is a semiprojective resolution of M over Q. Thus, (3) holds by the isomorphisms 
exhibited. �
Corollary 5.11. Further assume that Q is local.

(1) IM,N
Q/(f)(t) =

IM,N
Q (t)

(1 − t2)n .

(2) PQ/(f)
M,N (t) =

PQ
M,N (t)

(1 − t2)n .
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