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1. Introduction

In recent papers [3-5], we developed the theory of correspondence functors, namely
functors from the category C of finite sets and correspondences to the category k-Mod
of all k-modules, where k is a commutative ring. The main motivation for this work lies
in its fundamental nature and in the fact that the whole theory turns out to be very
rich. We describe here another piece of structure. We introduce the tensor product of
any two correspondence functors (Section 3) and analyse some of its main properties,
such as projectivity, finite generation, and behavior under induction (Section 5).

Whenever M and M’ are correspondence functors, we not only define their tensor
product M ® M’, but also their internal hom H(M, M’), which satisfies the usual ad-
jointness property (Section 6). Instead of proving this by some standard arguments of the
representation theory of categories, we show more. We prove that the internal hom can
be constructed in a very simple way by making use of the symmetric monoidal structure
on C given by the disjoint union of finite sets. By means of this monoidal structure, we
also define bilinear pairings of functors and show that they are related in a standard
way to the tensor product. This is an instance of the general construction known as Day
convolution [6].

A main example of correspondence functor is the functor Fr associated to a finite
lattice T, as defined in [4]. We prove in Section 4 that Fr ® Fr & Fryr. Finally, in
Section 7, we show that Fr carries the additional structure of a commutative algebra in
the tensor category Fy of all correspondence functors. Conversely, we prove the rather
remarkable fact that, over a field k& (or more generally if Spec(k) is connected), any com-
mutative algebra in the tensor category Fy is isomorphic to Fr for some finite lattice T',
provided it satisfies two additional conditions, one of them being of an exponential nature
(see Theorem 7.4). This result establishes a very strong link between finite lattices and
correspondence functors having a commutative algebra structure. Finally, a few small
examples are discussed in Section 8.

Throughout this paper, k£ denotes a fixed commutative ring and all modules are left
k-modules.

2. Correspondence functors

In this section, we recall the definitions and basic properties of correspondence functors.
We refer to Sections 24 of [3] and Section 2 of [4] for more details. We denote by C
the category of finite sets and correspondences. Its objects are the finite sets and the
set C(Y, X) of morphisms from X to Y (using a reverse notation which is convenient for
left actions) is the set of all correspondences from X to Y, namely all subsets of Y x X.
Given two correspondences V C Z xY and U C Y x X, their composition VU is defined
by

VU :={(z,2) € Zx X | 3y €Y such that (z,y) €V and (y,z) e U}.
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The correspondence Ax = {(z,z) | x € X} is a unit element for this composition. A
correspondence from X to X is also called a relation on X. In particular,

Rx = kC(X,X)

is a k-algebra, the algebra of the monoid of all relations on X.

For our fixed commutative ring k, we let kC be the k-linearization of C. The objects
are again the finite sets and kC(Y, X) is the free k-module with basis C(Y, X). A cor-
respondence functor over k is a k-linear functor from kC to the category k-Mod of all
k-modules. We let Fj be the category of all correspondence functors over k (for some
fixed commutative ring k).

If M is a correspondence functor and U € C(Y, X) is a correspondence, then U acts
as a linear map M (U) : M(X) — M(Y) and we simply write U for this left action. In
other words, for any m € M (X), we define

Um :=M{U)(m) e M(Y) .

In particular, we have (VU)m = V(Um) for any correspondence V € C(Z,Y).
The following examples have been introduced in [3] and [4] respectively.

2.1 Example. For any finite set E, the representable functor kC(—, E) is a projective
correspondence functor by Yoneda’s lemma. More generally, for any left R g-module W,
there is a correspondence functor Lg w defined by

This is left adjoint to the evaluation at F, in the sense that it satisfies the adjointness
property
This example is used in [3], but it is in fact a general construction for representations of

categories which goes back to [1]. In particular, it is used for the construction of simple
functors.

2.2 Example. The constant functor k is defined by k(X) = k for any finite set X and
UM = M for any A € k(X) and any correspondence U € C(Y, X). Actually, it is elementary
to check that k = kC(—, (), so in particular k is projective.

2.3 Example. For any finite lattice T, let Fr(X) = kT for any finite set X, where TX
is the set of all maps X — T and kT¥ denotes the free k-module with basis 7. The
action of a correspondence U € C(Y, X) on a function ¢ € T is a function Uy € TV
defined by the join

Ue)y) =\ o),

rzeX
(y,)€U
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with the usual comment that the join over an empty set yields the least element 0 of the
lattice. It is easy to check that this defines a correspondence functor Fr (see [4]).

Recall that a join-morphism f : T — T’ of finite lattices is a map such that
F(Vieat) = Vyca f(t) for any subset A of T'. In particular, f must be order-preserving.
Moreover, the case when A is empty shows that f (0) = 0, where 0 denotes the least
element of any lattice. Any join-morphism f : T — T’ induces a morphism of correspon-
dence functors Fr — Fp by composition with f.

3. Tensor product

The tensor product of functors always exists in the representation theory of small cat-
egories. In this section, we recall the definition and discuss the basic properties of the
tensor product in the special case of correspondence functors.

3.1 Definition. Let M and M’ be correspondence functors over k. The tensor product
of M and M’ is the correspondence functor M ®@ M’ defined as follows. For any finite
set X,

(Mo M) (X)=MX)e, M'(X) .
If Y is a finite set and U € C(Y, X), then U acts as a k-linear map

U:(M@M)(X)— (Mo M)Y)

defined by
Umem')=UmeUm', Yme M(X), vm' € M'(X) .
This action of the generators C(Y, X) is extended to kC(Y, X) by k-linearity.

3.2 Proposition. Let M, M’ and M" be correspondence functors over k.

(a) The assignment (M, M') — M @ M’ is a k-linear bifunctor F, x Fr — Fi and is
right exact in M and M’.
(b) There are natural isomorphisms of correspondence functors

MMM 2 (MeM)o M
MeoM =M e@M
Mo (MoM"Y2(MeM)d (Mo M)
k@M=M,

where k is the constant functor introduced in Fxample 2.2.

Proof. (a) This is a straightforward consequence of the usual properties of tensor prod-
ucts.
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(b) For any finite set X, the standard k-linear isomorphisms

M) @ (M) @1 M(X)) 2 (M(X) @ M'(X)) @ M ()
M()®HWM3%M%)®UWX)

M(X)® (M'(X)® M"(X)) = (M(X) ® M (X)) ® (M(X) ® M"(X))

E(X) @p M(X) = k@ M(X) = M(X )

are clearly compatible with the action of correspondences. O

An additional property of the tensor product uses the symmetric monoidal structure
on C given by the disjoint union of finite sets, which we write LI throughout this paper.
More precisely, if X, X', Y, Y’ are finite sets, and if U € C(X',X) and V € C(Y',Y),
then the disjoint union U UV can be viewed as a subset of (X'UY’) x (X UY"). We will
represent this correspondence in the matrix form

(vv)

This yields a bifunctor C x C — C, still denoted by a disjoint union symbol.
We also use the following matrix notation. If U € C(X’, X) and V € C(X", X), then

U
cC(X'UX" X
(1) e )
denotes the obvious subset of (X' U X”) x X. Similarly, if U € C(X,X’) and V €
C(X,X"), then
(U, V)elC(X, X" LuX")

denotes the obvious subset of X x (X' X").

The monoidal structure of C is used to define bilinear pairings. If M, M’, and M" are
correspondence functors over k, the k-module of bilinear pairings M’ x M — M" is the
k-module of natural transformations from the bifunctor

C x C — k-Mod , (X,Y) = M'(X)®r M(Y)
to the bifunctor

C x C — k-Mod , (X, V)~ M"(XUY).

The connection with the tensor product of functors is established by the following stan-
dard result.

3.3 Theorem. Let M, M’ and M" be correspondence functors over k. The k-module of
all bilinear pairings M’ x M — M" is isomorphic to the k-module Homz, (M’ @ M, M").
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Proof. Given a morphism of correspondence functors ¢ : M’ @ M — M", we need to
construct a bilinear pairing 1Z : M’ x M — M". For any finite set X, there is a k-linear
map Yx : M'(X) ®, M(X) — M"”(X) with the property that, for any finite set Z and
any correspondence U € C(Z, X), the diagram

M/(X) @ M(X) —2 M (X)

= |v

M(Z) @) M(Z) —2> M"(2)

is commutative. If X and Y are finite sets, we define a map
Vxy : M(X) @ M(Y) — M"(X UY)
as the following composition

(A(AX)‘X’(A@Y) PYXUY

MXUY)®,M(XUY) —— M"(XUY).

M'(X) @r M(Y)

If X’ and Y’ are finite sets, if U € C(X', X) and V € C(Y',Y), then we claim that the
diagram

(A@X)@(A@Y) YXUY

M'(X) @ M(Y) M(XUY)®, M(XUY) —2% M"(XUY)

o 6o | @Y 9|
M'(X") @ M(Y') ﬁ M'(X'UY") @, M(X'UY") o~ M"(X'UY")
RN X

is commutative. The left hand side square is commutative because

() -()-()
(V) ()= -2

The right hand side square is commutative by the defining property of the morphism
Vv M @ M — M. It follows that

and similarly

(g 3) QZX,Y = JX/,Y’(U(@ V),
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so that the family of maps zZX,y define a natural transformation from the bifunctor
(X,Y) —» M'(X) ®, M(Y) to the bifunctor (X,Y) — M"”(X UY), in other words a

bilinear pairing 12)\: M x M — M".
Conversely, given a bilinear pairing n : M’ x M — M", we have to construct a
morphism of correspondence functors 77 : M’ @ M — M". For any finite sets X,Y, there

is a k-linear map
nxy : M'(X) @ M(Y) — M"(X UY)
such that, for any finite set X’ and any correspondences U € (X', X)and V € C(Y',Y),

the diagram

Nx,y

M'(X) @ M(Y) M"(XUY)

U@VL l 49 (3.4)

Nx’ y!

M'(X") @ M(Y') — > M"(X' UY")

is commutative.

In particular, for X =Y, we have a map nx x : M'(X) @, M(X) - M"(X U X)
which we can compose with the map M" (X U X) — M”(X) given by the action of the
correspondence (Ax,Ax) € C(X, X UX), to get a map

Nx = (AX;AX)UX,X :M/(X) Rk M(X) — M”(X) .
If Z is a finite set and U € C(Z, X)), we claim that the diagram

Ax,A
M/(X) @ M(X) 22 a(x 0 x) 208 ppmex)y

vou | L6 v
M'(Z) @k M(Z) ——= M"(Z U Z) e M"(Z)

is commutative. The commutativity of the left hand side square is a special case of the
commutativity of the diagram (3.4). The right hand side square is commutative because

U(Ax,Ax) = (U,U) = (Az,Az) (g g) :

It follows that
Unx =nz(U®U)
and therefore the family of maps 7x define a morphism of correspondence functors 7
from M' @ M to M".
The constructions 1 — 1 and n — 77 are k-linear and we need to prove that they are

inverse to each other. First let v : M’ ® M — M" be a morphism of correspondence
functors. For any finite set X, we have
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@fx = (Ax,Ax)dxx = (AXaAX)1/JXI_IX((A(Z)X) ® <A®X))

= ux ((Ax, Ax) @ (Ax, Ax)) ((A@X> © (wa>>

=Yx(Ax ® Ax),

because (AX,AX)(AQX) = Ax and (AX,AX)(A@X) = Ax. Since Ax ® Ax acts as the

identity on M'(X) ®; M(X), we get ’(ZJ\X = 1x, as required.
Now let n : M’ x M — M" be a bilinear pairing. For any finite sets X and Y, the
definition of 9 x y applied to ¢ = 17 and the definition of xy yield

W xy = ﬁXuY((A@X) ® (A@y))
= (Axuy,Axuy) nXuY,XI_lY((A@X) ® (X)y))

= (Axuy,Axuy) <( ) )> X,y

N

the latter equality coming from the commutative diagram (3.4) for the sets X' =Y’ =
X UY and the correspondences U = (A(DX ) and V = ( Awy). Now it is easy to check that

%) 0 A 0
(Axuy, Axuy) <( 3) (AQY)> = ( @X Ay> )

and this acts as the identity on M'(X) ®j M (Y'). Therefore /ﬁ\x,y =1nx,y, as was to be
shown. O

Theorem 3.3 shows that we have a special case of the general construction due to Day,
known as Day convolution [6].

4. Lattices

We want to apply the tensor product construction to functors of the form Fp, where
T is a finite lattice, as defined in Example 2.3. As in [4], we define the category kL of
finite lattices as follows. Its objects are the finite lattices and Homy,(T,T") is the free
k-module with basis the set of all join-morphisms from T to T".

The direct product T x T” of two lattices is defined using componentwise operations.
Our next lemma shows that there is also a direct product for morphisms in kL.
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4.1 Lemma. Let S, T, S’, T’ be finite lattices.

(a) If f: S — T and ' : 8" — T are join-morphisms, then f X f': S x S =T x T’ is
a join-morphism.
ztending this direct product by k-bilinearity defines a k-linear bifunctor X —
b) E d his d duct by k-bil defi k-1 bif kL X kL
kL.

Proof. Given a subset A C S x S, let B C S (respectively B’ C S’) denote the first
projection of A (respectively the second projection). Then

0N ) =0x( VY (0)v0,s)

(s,8")EA (s,8")EA
= x (V) vV 6.5)
seB s'eB’
=MV s V9)
seB s’eB’

as required. The second assertion follows by bilinearity. O

4.2 Theorem. The bifunctors
kL X kL — F, (T,T/)*—)FT@)FT/

and
kL X kL — Fr, (T,T") — Fryr

are isomorphic.

Proof. Let T and T” be finite lattices. For any finite set X, there is a unique isomorphism
of k-modules

7x : (Fr @ Fp:)(X) = k(TX) @, k(T' ) — k(T x T')*,
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mapping ¢ @ ¢’ to ¢ x ¢'. Here of course, the map ¢ x ¢’ : X — T x T’ is obtained
by direct product from the maps ¢ : X — T and ¢’ : X — T". If Y is a finite set and
U e C(Y,X), then for any y € Y,

Uexey) = \ (e),¢(2))

(y,x)eU
=(V e, \V @)
(y,2)€U (y,@')eU

= (Ue(y), U¢'(y)) -
Thus U(p x ¢') =Up x Uy/, that is, Utx(p @ ¢') = 7v (Up @ Ug'). Therefore
T Fr ® Frio — Fpype

is an isomorphism of correspondence functors.
If f: S—Tand f': 8 — T are join-morphisms, then f x f': Sx 8 =T xT'is a

join-morphism, by Lemma 4.1. Moreover, we claim that the diagram

Fs® Fsy —— Fsxsr

Ff®Ff/l \Lfof/

Fr ® Fro —— Fryr
is commutative, where o : Fg ® Fs» — Fgxgs denotes the corresponding isomorphism
for the lattices S and S’. This is because, for any finite set X, any map ¢ : X — S, and
any map ¢’ : X’ — §’, we have

Fixprox(p® @) = Fyxp (@ x ¢') = (fo) x (f'¢') = mx (Fy(9) ® Fp:(¢)) -

It follows that the family of isomorphisms 7 yields an isomorphism between the two

bifunctors of the statement. O

In the representation of a small category D, it can be shown that D has a monoidal
structure if and only if the constant functor is representable and the tensor product of two
representable functors is again representable. Thus the symmetric monoidal structure
of C comes again into play. We now show in a direct way that the tensor product of
representable functors is again representable.

4.3 Corollary. If E and E' are finite sets, then
kC(—, E) @ kC(—,E") 2 kC(—, EUE") .

Proof. This follows from Theorem 4.2 applied to the lattice T of subsets of E and the
lattice T" of subsets of E’. Then Fr & kC(—, E) and Fr» = kC(—, E’), because a map
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from X to T corresponds to a subset of X x E. Moreover T' x T" is isomorphic to the
lattice of subsets of ELUE'. O

5. More properties of tensor product

We first discuss projectivity. Recall that any correspondence functor M is isomorphic

to a quotient of @ kC(—, E;) where each E; is a finite set and I is some index set.
il

This is because if m; € M(E;), Yoneda’s lemma gives a morphism ; : kC(—, E;) = M

mapping Ag, to m;. Choosing a set {m; | i € I} of generators of M, the sum of

ser KC(—, B;) — M, as required. In

particular, any projective correspondence functor is isomorphic to a direct summand of

the morphisms v; yields a surjective morphism €
a direct sum of representable functors.

5.1 Proposition. Let M and N be correspondence functors over k. If M and N are
projective, then so is M & N.

Proof. By the observation above, it suffices to assume that M = @ kC(—, E;) and
i€l
N = @ kC(—, F}), where E; and Fj are finite sets and where I and J are some index
jed
sets. By Corollary 4.3, we obtain

MeN= @ k(- E)okl(-,F)= @ k(- EUF),
iel,jed iel, jeJ

so M ® N is projective. 0O

It should be observed that, since k @ M = M for any correspondence functor M
(Proposition 3.2) and since k is projective (Example 2.2), tensoring with a projective
functor does not yield a projective functor in general, contrary to the case of finite group
representations.

Next we consider the functors Lg v introduced in Example 2.1, where F is a finite set
and V is an Rg-module. Recall that Rg := kC(E, E). There is an induction procedure

VAE = kC(F,E)®r, V ,

where F is any finite set. Clearly V 1£ is a left Rp-module. Notice that we have
Lgy(F)= V1L by the definition of Lgy.

5.2 Theorem. Let E and F be finite sets and let G = EUF. Let V be a Rg-module and
W be a Rp-module. Then there is an isomorphism of correspondence functors

Leyv ® Lrw = Lg yv1¢e,wits
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where the kC(G, G)-module structure on V 1§ @x W 1S is induced by the comultiplication
v: kC(G,GQ) — kC(G,G) ®, kC(G,G) defined by v(U) = U @ U for any relation U €
C(G,G).

Proof. Since (Lgyv ® Lrw)(G) = Lev(G) @k Lrw(G) = V1§ @, W%, the identity
map V1€ @, W1¥ — (Lp,v ® Lrw)(G) corresponds, by the adjointness property of
Laviee,wrg, to a morphism

®: Lgwvieg,wre — Leyv @ Lrw
which we need to described explicitly. For a finite set X,
L vigoawig (X) = kC(X,G) @rg ((KC(G, E) @, V) @4 (KC(G, F) &, W)
and
(Lev ® Lew)(X) = (kC(X, E) ®r, V) @k (kC(X, F) @r, W) -
It is easy to check that the morphism ®x maps the element
C @rg (AQR, v) Ok (BRR, w)) € Lavigg,wre (X)
to the element
(CA®R, v) ®k (OB ®rpw) € (Lpyv ® Lrw)(X),

where C € C(X,G), A€C(G,E),veV,BeC(G,F),and w e W.
Conversely, there is a morphism

Ux : (Lpyv @ Lepw)(X) = Lgvige,wre(X)

defined as follows. For any P € C(X,E),v eV, Q € C(X,F), and w € W, it maps the
element
(P @R, v) @k (QOr, w) € (Leyv ® Lew)(X)

to the element
(1 Q) ®Re ((< > ORE U) Rk (( ) QORp w)) S LG V1E® IVTG(X)
’ @ AF‘ ? Bk F ’

where (P,Q) € C(X, E UF), and where (AmE) €C(EUF,E) and (A@p) €C(EUF,F).
The map Uy is well defined, for if R € R and S € Ry, then

Ux (P ®r, Ro) @1 (Q ®r, Sw)) =

~ Qe (((F) ore r) o () ) on, 50)
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= (P, Q) ®rg (((g) ORp V) Ok ((2‘> DRy w))
~raren (§ 8 () oo ont() onew)

= Pr.@3)((“) ore 0) o () o )
= Ux ((PR@R, v) @ (QS Or, w)) -

Moreover, if Y is a finite set and U € C(Y, X), then

U (U((P er, Bo) 03 (Q R, Sw)) ) =

= (UP,UQ) ®nr, (((A@E) DRy V) Ok (< A(Z)F> ORp w))
=U¥x((P®r, Rv) @ (Q @R, Sw)) .

It follows that the maps ¥ x define a morphism of correspondence functors

Moreover, setting u = (P Qr, v) ® (Q ®r, w), we have
@X\le(u) =0 ((P7 Q) ®ORe (((A@E> Ry ’U) Rk (<A®F> QR p w))>

- (.9 (A@E> @, v) @ ((PQ) (A@F> Erp w)
= (PR, v) ® (QOrp w) =u,

so @V is equal to the identity morphism.
Similarly, setting s = C ®r., ((4A ®ry v) @k (B @r, w)),

Ux®x(s) = Ux ((CA®r, v) &% (CB®r, w))
= (CA,CB) @y, <((A®E> DRy V) O (( AQ)F) DR w))

— C(A, B) 9., (((A@E> ®ry V) Ok (<A®p> ®

)

= C@r, (4, B)(((A@E> ®Rp V) Ok (<A®F
=C®re (A®r, V) @) (BRgr, w)) =5,

so U is also equal to the identity morphism. O
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Finally we consider finite generation. Recall from [3] that a correspondence functor M
has bounded type if there is a finite set F such that M is generated by M (FE), that is,
M(X) =kC(X, E)M(E) for every finite set X. Moreover, M is finitely generated if there
is a finite set E' and a finite subset A of M (FE) such that M is generated by A, that is,
M(X) = kC(X, E)A for every finite set X (see Proposition 6.4 in [3]).

5.3 Theorem. Let M and N be correspondence functors over k.

(a) If M and N have bounded type, so has M & N.
(b) If M and N are finitely generated, so is M @ N.

Proof. (a) Let F and F be finite sets such that M is generated by M(E) and N is
generated by N(F). Then the counit morphisms Lg apy — M and Lpypy — N
are surjective. Therefore M ® N is isomorphic to a quotient of Lg rr(g) ® Lp n(r)- By
Theorem 5.2,

Leye) @ Lenr) = L mEyngeyN (g

where G = EUF. Since Lg rr(p)y16e, N(F)1¢ 1S generated by its evaluation at G, so is
M®N.

(b) Assume now that M is generated by a finite subset A of M(E) and N is generated
by a finite subset B of N(F). In particular, M (F) is generated by A as an R g-module
and N(F) is generated by B as an Rpr-module. Therefore, as Rg-modules, M(E) 1%
is generated by the finite set C(G,E) ®r, A and N(F) 1% is generated by the finite
set C(G, F) @, B, where G = E U F as before. It follows that M(E) 14 @, N(F) 1% is
generated as an Rg-module by the finite set

S = (C(G, E) Qrp A) Ok (C(G,F) ORp B) .

Since Lg ar(py16e, N(F)re 1S generated by its evaluation at G, namely the k-module
M(E) 1§ @, N(F) 1%, it is also generated by the finite set S. Now M ® N is isomorphic
to a quotient of Lg rj(py1¢e, N(F)16, SO it is generated by the image of S. Thus M @ N
is finitely generated. 0O

6. Internal hom

In the representation theory of a small category D, the tensor product M ® N exists and
therefore an internal hom H (M, N) also exists, given by

H(M,N)(E) =Hom(Pg ® M,N) (6.1)

where Pp denotes the representable functor Pp = kD(—, E). For our category C of
correspondences, we have an additional symmetric monoidal structure and we use it
to obtain another very simple description of the internal hom. The proof that both
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approaches produce isomorphic results will be given in Corollary 6.7. We first introduce
a useful construction.

6.2 Definition. Let E be a finite set and let M be a correspondence functor over k.

(a) We let tg : kC — kC be the endofunctor defined on objects by tg(X) = X U E and
on correspondences U € C(Y, X) by

tp(U) =UUid = (lé AQ)E) .

(b) We denote by Mg the correspondence functor obtained from M by precomposition
with the endofunctor tg : kC — kC.

(¢) Let F beafinite set and V' € C(F, E). We define My : Mg — MF to be the morphism
obtained by precomposition with the natural transformation idUV : tgp — tp.

Explicitly, we see that Mp(X) = M(XUFE) and My : M(XUE) - M(XUF) is
given by the action of the correspondence

Ax 0
iduv = .
6.3 Definition. Let M and M’ be correspondence functors over k. We denote by H (M, M)
the correspondence functor defined on a finite set E by

H(M, M")(E) = Homp, (M, Mp) ,
and for V € C(F, E), by composition with M, : My — M.

6.4 Lemma. The assignment (M, M') — H(M,M’) is a k-linear bifunctor F;* x Fj, —
Fi, left exact in M and M’'.

Proof. This is straightforward. O

Now we prove the basic adjointness property which shows that H (M, M’) is an internal
hom in the category Fy.

6.5 Theorem. There are isomorphisms of k-modules
Homgz, (M' ® M, M") = Hompg, (M, H(M',M"))

natural in M, M’ , M". In particular, for any correspondence functor M' over k, the
endofunctor

Fr — Fk, MMM
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is left adjoint to the endofunctor

Fr — Fi, M*—)H(M’,M).

Proof. Let v : M’ ® M — M" be a morphism of correspondence functors. By Theo-
rem 3.3, we get a bilinear pairing M’ x M — M", hence, for any finite sets X and Y, a
k-linear map

dxy : M'(X) @, M(Y) = M"(XUY),

or equivalently, a k-linear map
EY’X : M(Y) — Homyg, (M’(X)7M”(X I_IY))

defined by ¥y x (m)(m’) = Jx,y(m’ ®@m), for m € M(Y) and m’ € M'(X).
Now M"(X UY) = M{(X). Moreover, for any finite set X’ and any U € C(X', X),
the commutative diagram (3.4), for Y/ =Y and V = Ay, becomes

M'(X) ®j M(Y) ex M'(XUY) ——s MI(X)

ey

M' (XY@ M(Y) —> M"(X'UY) ——= M{y(X')

URAy l

or in other words 1y, x,(m)(Um’) = Utpy. x (m)(m’) for any m € M(Y) and m’ € M'(X).
Therefore, for a fixed set Y and a fixed m € M (Y), the maps EY, x(m) define a morphism
of correspondence functors

aY(m) M’ — M)/i ;
hence an element of H(M’, M")(Y). Allowing m to vary, we obtain a k-linear map
Py M(Y) — H(M',M")(Y) .
Now if Y’ is a finite set and V € C(Y”",Y’), the commutative diagram (3.4), for X' = X

and U = Ax, becomes

M'(X) @ M(Y) KM”(XI_IY) — = MU(X)

Ax®V l . l <A@X 3) l My

Vx,y! =
M'(X) @, MY") — M"(XUY") —= ML(X),

and it follows that the maps - define a morphism of correspondence functors ¢ : M —
H(M', M.



162 S. Bouc, J. Thévenaz / Journal of Algebra 558 (2020) 146-175
Conversely, a morphism of correspondence functors £ : M — H(M’', M") is deter-
mined by maps
€yt M(Y) — H(M', M")(Y) = Homy, (M', ML) ,

for all finite sets Y. Furthermore, for m € M(Y"), the morphism &y (m) is in turn deter-
mined by maps

&y(m)x : M'(X) — My(X)=M"(XUY)
for all finite sets X. We claim that the family of maps

Exy : M'(X) @ M(Y) ——= M"(XUY)
m' ®m = &y (m)x(m’)

defines a bilinear pairing £ : M’ x M — M". We must show that, for any finite sets
X,Y, X' Y’ and any correspondences U € C(X’, X) and V € C(Y',Y), the diagram

M'(X) @ M(Y) o M"(XUY)
l 0 l 49
Exr v

M/(X') @, M(Y') —= M"(X'UY")

is commutative. First observe that we have

(lg 3>£X,y<m'®m>=<(é 3>ey<m>x<m’>
Ax: 0 U 0 /
:<5< v)(@ Ay)ﬁy(m)X(m)
_<A¢’" £>§y<m>X/<Um'>,

because &y (m) is a morphism of correspondence functors M’ — M;{/. Now the action
AX/ (b
0 v

which is in turn the action of V' within the correspondence functor H(M’, M"). Therefore

of the correspondence ( > is the composition with M{; : M{/(X') — My, (X'),

we obtain

(Ag/ 3) &y (m)x (Um') = & (Vm)x/(Um') = Exy (Um’ @ Vim)

using the fact that £ : M — H(M', M") is a morphism of correspondence functors. This
proves the claim.
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By Theorem 3.3, the pairing f defines a morphism of correspondence functors
=M @M — M" .

Now it is straightforward to check that the maps 1 — 1 and & — «5 are inverse isomor-
phisms between Homz, (M’ ® M, M") and Homg, (M, H(M',M")). O

In the case of a representable functor, there is the following useful isomorphism.

6.6 Proposition. Let P = kC(—, E) be the representable functor represented by a finite
set E and let N a correspondence functor over k. There is an isomorphism of correspon-
dence functors H(PE, N) =~ Ng.

Proof. Let X be a finite set. By Yoneda’s lemma, we get
H(Pg,N)(X) = Homg, (Pg,Nx) = Nx(E) .

Moreover, Nx(FE) = N(EU X) 2 N(X UE) = Ng(X). Tt is straightforward to check
that the resulting isomorphism

H(Pp. N)(X) = Np(X)

is compatible with correspondences, so that it yields an isomorphism of correspondence
functors H(PE,N) = Ng. O

We have mentioned in (6.1) a general construction of the internal hom. We can now
show that both approaches coincide (up to isomorphism).

6.7 Corollary. Let M and N be correspondence functors and let Py = kC(—, E) where E
s a finite set. There is an isomorphism

H(M, N)(E) := Homz, (M, Ng) = Homy, (Pg © M, N) .

Proof. By Proposition 6.6, we have an isomorphism Hompz, (M, Ng) = Hompg, (M,
H(Pg,N)). Now the adjunction of Theorem 6.5 yields Homg, (M, H(Pg,N)) =
HOHl]:k(PE(X)M,N). O

In the case of the constant functor, we obtain two quite different results.

6.8 Proposition. Let M be a correspondence functor over k.

(a) There is an isomorphism of correspondence functors H(k, M) = M.
(b) There is an isomorphism of correspondence functors

H(M, k) = k @ M(0)*
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where M(0)* = Homy, (M (0),k). In particular, if k is a field and if M () is finite-
dimensional, H(M, k) is isomorphic to a direct sum of dim(M (D)) copies of k.

Proof. (a) Take E = () in Proposition 6.6. Then kC(—, ) = k because C(X, 0) is the set
of subsets of @, which is a singleton. On the other hand we clearly have Ny = N.

(b) Let E be a finite set. It is straightforward to see that ky = k. Therefore
H(M, k)(E) = Homp, (M, kp) = Homgz, (M, k) = Homy, (M (0), k) = M(0)* .

It is then easy to check that the action of a correspondence U € C(F, E) yields the identity
endomorphism of M (()%, so that we get the constant functor tensored with M (()%. If k
is a field and if M () is finite-dimensional, it follows that H(M, k) is isomorphic to a
direct sum of copies of k, their number being dim (M (0)*) = dim(M (0)). O

In the same vein as in Theorem 5.3, we now consider bounded type and finite gener-
ation.

6.9 Theorem. Let M and N be correspondence functors over k.

(a) Let E and F be finite sets. If M is generated by M(E), then Mg is generated
by Mp(E). Therefore, if M has bounded type, so has Mp. If M is finitely generated,
s0 is Mp.

(b) Assume that the ring k is noetherian. If M is finitely generated and if N has bounded
type (respectively is finitely generated), then H(M, N) has bounded type (respectively
is finitely generated).

Proof. (a) By assumption, M(X) = kC(X, E)M(FE) for each finite set X. Replacing X
by X U F gives

M(XUF)=kC(X UF,E)M(E) .
Vv
Therefore M(X U F) is k-linearly generated by the elements (W) (m), where V €

C(X,E), W eC(F,E), and m € M(E), because any correspondence in C(X U F, E) can

\%4
be written W) But we have

Wm=(5 o) G

and this is the image of (m) € Mp(E) by the correspondence V within the

E
W
functor Mp. It follows that

(v‘;) (m) € kC(X, E)Mp(E) .
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Therefore M (X U F) is k-linearly generated by kC(X, E)Mp(E), that is,
Mp(X) = kC(X, E)Mp(E) ,

as was to be shown. The other two assertions follow immediately.

(b) Since M is finitely generated, there is a finite subset A C M (FE) such that

M =kC(—, E)A, so M is isomorphic a quotient of the finite direct sum @ kC(—, E) of
acA
representable functors. Since H(—, N) is exact by Lemma 6.4, we deduce an embedding

H(M,N) EBAH(kC(—,E),N) = @ANE ,

using also Proposition 6.6. If N has bounded type, then Ng has bounded type, by (a), so

the finite direct sum € Ng also has bounded type. Therefore H(M, N) is isomorphic
acA
to a subfunctor of a functor of bounded type. Since k is noetherian, this implies that

H(M, N) has bounded type, by Corollary 11.5 in [3]. The same argument with “bounded
type” replaced by “finitely generated” goes through, completing the proof. O

7. Algebra functors

For any finite lattice T', the functor Fr has more structure, namely it is a commutative
algebra in the tensor category JFj, of all correspondence functors. This section is devoted
to a closer analysis of this additional structure. By a k-algebra, we always mean an
associative k-algebra with an identity element.

7.1 Definition. An algebra correspondence functor over k is a correspondence functor A
with values in the category k-Alg of k-algebras satisfying the following two conditions.
For any finite sets X and Y, and for any correspondence U € C(Y, X), the diagrams

nx

A(X) @ A(X) —= A(X) and L AX)

= v ml v

A(Y) @ AY) —— A(Y) e A®Y)
are commutative, where px : A(X) ® A(X) — A(X) denotes the multiplication map
of the k-algebra A(X) and ex : k — A(X) denotes the map A\ — X-14(x).

An algebra correspondence functor A is called commutative if A(X) is a commutative
k-algebra for any finite set X.

The commutativity of all the diagrams in the definition can be interpreted in two
different ways:
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(a) The action of any correspondence U € C(Y, X) is a map of k-algebras A(X) — A(Y),
mapping 14(x) to 14¢v)y.

(b) The family of multiplication maps px defines a morphism of correspondence functor
#:A® A — A and the family of maps ex defines a morphism of correspondence
functors € : K — A, where k denotes the constant functor of Example 2.2. In other
words, the triple (A4, u, ) is an algebra in the tensor category Fy.

7.2 Lemma. Let A be an algebra correspondence functor, let n : A ® A — A be the
multiplication map, let i : A x A — A be the associated pairing (see Theorem 3.3), and
let X andY be finite sets.

(a) The map
ﬁX’y : A(X) (g A(Y) — A(X (] Y)

is obtained as the composite of the action of (A(DX) ® (Aﬂy) and the multiplication

Hxuy -
(b) If A is commutative, then jixy s an algebra homomorphism.

(c) The composite (Ax,Ax)lix x is equal to px.

Proof. (a) This follows from the proof of Theorem 3.3.

(b) The action of (A@X ) ® ( A@y) is an algebra homomorphism and, whenever A is
commutative, so is the multiplication pux y.

(c) Using (a), we obtain
A
(Ax,Ax)lixx = (AX7AX)MXLIY(( ®X> ® <A®Y))

= px ((AXaAX) ® (AX’AX)) ((A@X> @ (A@y))
=pux(Ax ®Ax)=px . O

We consider now the functor Fr of Example 2.3, associated to a finite lattice T

7.3 Proposition. Let T be a finite lattice and let 0 be its least element.

(a) Commutative algebra. Fr is a commutative algebra correspondence functor, with

respect to the multiplication maps
px : Fr(X) o Fr(X) — Fr(X), PRY eV,

where X is a finite set and ¢, : X — T are maps. Here ¢ V1 : X — T denotes
the map defined by (p V)(x) = p(x) V(x) for every x € X. The identity element
of Fr(X) is the constant map onto 0.
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(b) Exponential property. Fr(0) = k and, for any finite sets X and Y, the bilinear
pairing

ﬁX7y : FT(X) Ok FT(Y) — FT(X (] Y)

associated with p is an isomorphism of k-modules.
More precisely, for any maps ¢ : X - T and ¢ : Y — T, the element lix y(p ®
Y) € Fp(XUY) is the function XUY — T equal to ¢ on X and to ¢ on'Y, providing
a bijection between the canonical bases of Fr(X) & Fr(Y) and Fr(X UY).
(c) Splitting property. If o denotes a set of cardinality one, then Fr(e) is isomorphic to
a finite direct product k x k X ... X k as k-algebras.

Proof. (a) We claim that the map
v:TxT—>T, v(ab=aVb,

is a join-morphism. Given a subset C' C T x T, let A C T be its first projection and
B C T its second projection. Then

oV @h)=v( V (@0)v©n))

(a,b)eC (a,b)eC
—o((V @0)v (V@)
acA beB
=v(( \/ a, \/ b)
acA beB
=(Vav(Vb
a€A beB
= \/ (aVDb)
(a,b)eC
= \/ v(a,b) ,
(a,b)eC

proving the claim. By Example 2.3, the map v induces a morphism Fr.p — Fp. Since
Fry«r &2 Fr @ Fr by Theorem 4.2, we obtain a morphism u : Fr ® Fr — Fp. For any
finite set X, the map

px : Fr(X) o Fr(X) — Fr(X)

is easily seen to be the map of the statement. Clearly px is associative and commutative
and the constant map onto 0 is an identity element. We obtain in this way an algebra
correspondence functor Fp because p : Fr ® Fr — Fp is a morphism of functors, and
soise: k — Fr.
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(b) One checks easily that (A@X)cp is the function from X LY to T equal to ¢ on
X, and to 0 on Y. Similarly (A®Y)¢ is the map equal to 0 on X and to ¢ on Y. Thus

((A@X)go> \Y ((Awy)w) is the map equal to p on X and to ¢ on Y.

(c) Since e has cardinality one, Frr(e) is a free k-module with basis

{9: |t €T}

where g; : ® — T is defined by g;(e) = ¢t (with e being also the unique element of the
set ). Moreover, on restriction to this basis, the multiplication map corresponds to the
map v of the beginning of the proof, namely g:g: = gv+ . In that case, there is a standard
procedure for finding another k-basis consisting of orthogonal idempotents f; € T" whose
sum is the identity element (namely 0) These idempotents are defined by

ft = ZX(t75)gS ’

seT

s>t
where x(t, s) denotes the Mobius function of the poset T' (see the appendix in [2]). Then
we obtain isomorphisms of k-algebras

Pr(e) = [[ kfi = kxkx...xk,

teT

as required. O

Our final main result asserts that, with a small assumption on k, the converse of
Proposition 7.3 holds. It is rather remarkable to obtain such a strong connection between
finite lattices and algebra correspondence functors.

7.4 Theorem. Assume that k does not contain a nontrivial idempotent (i.e. Spec(k) is
connected). Let A be a correspondence functor over k and suppose that A has the following
three properties:

(a) Commutative algebra. A is a commutative algebra correspondence functor (with mul-
tiplication written ).
(b) Exponential property. For any finite sets X and Y, the associated bilinear pairing

//L\X’y : A(X) Rk A(Y) — A(X L Y)

is an isomorphism of k-modules (hence an isomorphism of k-algebras, by commuta-
tivity of A). Moreover, A(D) = k.

(c) Splitting property. If ® denotes a set of cardinality one, then A(e) is isomorphic to
a finite direct product k x k x ... X k as k-algebras.

Then there exists a finite lattice T such that A = Fr (isomorphism of algebra correspon-
dence functors).
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We need a preliminary lemma.

7.5 Lemma. With the assumptions above, define a comultiplication
5u: Ale) —> Ale) @1 Ale)

as the composition of the action of (2:) : A(e) — A(e U e) and the isomorphism

~—1

fleo: AleUe) — A(e) @y A(e) .

(a) de is an algebra homomorphism.

(b) de is coassociative and cocommutative.

(C) ,u.é. = idA(.).

(d) The map ne : A(e) = A(D) = k induced by the action of the empty correspondence
0 €C(D,8) is a counit for the comultiplication d, and is an algebra homomorphism.

Proof. (a) The action of (2:) : A(e) — A(e Ll e) is an algebra homomorphism. So is the

map fise by Lemma 7.2, hence so is the composite ig 3 (ﬁ:)

(b) This is left as an exercise for the reader. For the cocommutativity, use both the

twist of A(e) ®; A(e) and the action of the correspondence <A® AQ]. ) .

(c) We compute

pade = (B Bl afic (1) = (e 2) (37) =i

(d) A special case of diagram (3.4) yields the commutative diagram

He,e

A(e) @ A(e) —— A(e L)

"]-®Ao \L \L (Q)Ao)

"

Ale) —= = A(0) @p Ale) —2% AU o) —> Ae)

and it is easy to check that the bottom composite is the identity id 4(s). We deduce the
commutative diagram

(a2) rae

A(0)) 22 A(oUe) " Ae) @ A(e)

_l (@,A.)l ln.@A.

Ale) — == AU o) 2 A(D) @5 Als) —~ A(s)

and since the composite of the first row is equal to de, we obtain that (7e ® A4)de is the
identity id 4(s), as required for a counit. 0O
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Proof of Theorem 7.4. By the splitting property, the k-algebra A(e) contains a k-basis

{filteT}

consisting of orthogonal idempotents such that »°, . fi = 1), where T' is a finite
index set. Our first aim is to show that 7" has a lattice structure.
Now {fa ® fp | a,b € T} is a k-basis of orthogonal idempotents of A(e) @ A(e), so

we can write

Se(f) =D Xasfa®fo,  Map€k.
a,beT
Since 0o : A(e) —> A(e) ®j, A(e) is an algebra homomorphism by Lemma 7.5, de(f2) is
an idempotent of A(e) ®j A(e). Therefore A, is an idempotent of k, hence A, € {0,1}
by our assumption on k, and

6o(ft): Z fa®fb

(a,b)€B;

where By is a subset of T'x T'. Since the idempotents f; are orthogonal and sum to 14,
the idempotents dq (f;) are orthogonal and sum to 1 A(e)®1 4(e)- This shows that BsNB; =

() for any pair (s,t) of distinct elements of T', and that |_| By =T x T. Hence we can
teT
define an operation A on 1" by

aNb=t < (a,b) € B, .
In other words, for any ¢t € T,

6o(ft) = Z fa ®fb .

a,beT

aAb=t
Since d, is coassociative by Lemma 7.5, this operation A is associative. Similarly, since
de is cocommutative, A is commutative. Finally, by Lemma 7.5 again, for any t € T, we
have

fo=neba(fe) = D fafs= D fa,

a,beT aeT
a/Ab=t aNa=t

because f, f, = 0if a # b. It follows that t At = ¢ for any ¢t € T'. Hence T' is a commutative
idempotent semigroup. Equivalently, if we define a relation < on T by

a<b < aANb=a,

we get an order relation on T', and any pair {a,b} of elements of T has a greatest lower
bound a A b. Thus T is a meet semilattice.
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Since the counit 7 : A(e) — k is an algebra homomorphism by Lemma 7.5 and since
the only idempotents of k are 0 and 1, we have ne(f;) € {0,1} for any ¢t € T'. Moreover

=nNe(lace)) = U-(th) = Zno(ft)

teT teT

so there exists u € T such that ne(f,) = 1. This element u is unique because if u,v € T'

are such that ne(fu) = ne(fy) = 1, then ne(fufy) = 1, so fuf, # 0, hence u = v.
Moreover, since 7, is a counit, we have, for any ¢t € T,

fo=me®id)oa(f) = > melfa)o= > fo

a,beT beT
aAb=t uAb=t

and it follows that w At = ¢, hence ¢ < u. Therefore T' is a meet semilattice with a
greatest element u, so it is a lattice. We write V for its join operation and 0 for its least
element.

Now, for any ¢t € T', we define

gt:Zfs'

seT
s>t

The elements {g: | ¢ € T} form another basis of A(e), because the transition matrix is
unitriangular. Now for any ¢,t’ € T, we have

gtgyv = Z fsfs’ = Z fs = gtvt/

s>t s>tV
s>t

and also

g():Zfs :Zfs = 1A(o) .
seT seT
s>0

This means that the map t — g, from T to A(e), induces an algebra homomorphism
Oo : Fip(e) = kT* — A(e), O goe), Y ET®,

and this is an isomorphism because it maps a basis to a basis.
Whenever we have a disjoint union X = W U Z, there is a bilinear pairing

Bw,z - AW) @i A(Z) - A(X) ,

which is an isomorphism by the exponential property. Decomposing X as a union of
singletons, we obtain by induction an isomorphism of k-algebras

fii (X A(s) — A(X).

zeX
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By part (a) of Lemma 7.2, the isomorphism i maps ®az to the product H Cray,
zeX
where C,, := {(z,¢)} C X x o. We then obtain a bequence of isomorphisms of k-algebras

—>®FT —>®A H—A( ).

zeX O Oe zeX

It is easy to check that the first isomorphism p~! maps a function ¢ : X — T to the

element ® hy(a), where hy,y : @ — T is defined by hy,;)(e) = ¢(x). The second
zeX

isomorphism maps ® hy(z) to ® 9y(x), Which in turn maps to H Cigy(x) via the
reX zeX rzeX
third isomorphism fi. Therefore we get the composite isomorphism of k-algebras

reX

We are going to show that the isomorphisms Ax are compatible with the action of
correspondences, but we first need a lemma.

7.6 Lemma. Let Y be a finite set and let W and Z be subsets of Y x e. Let t € T and let
gt € A(e) as defined above. Then, in the k-algebra A(Y'), we have an equality

Wae)(Zg) = (WU Z)gq
Proof. By (3.4), there is a commutative diagram

i

Afs) —= A(s) @ Als)

(elle)
%2
V) & AW

U
]
U
and we compute the image of g; using both paths. For the top path, the definition of J,

fesdala) = (37 )

and since (Ay, Ay)(vg g) (2:) =W U Z, we obtain the element

Yy,

v,
A(Y) @ AY) — A(Y

gives

(WU Z)g, € A(Y) .

For the bottom path, we first have

D= 0(f) =D > fa@fi= > fa®h=(D_f)@ (D f)=0®an

s>t s>t a,beT a,beT a>t b>t
aAb=s aAb>t
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and this is mapped to Wg, ® Zg; by the vertical map W ® Z. Since the composition of
the two bottom maps is (Ay, Ay )fly,y = py, we obtain

This completes the proof of the lemma. O

Now we return to the proof of the theorem and we let U C Y x X and ¢ € TX. Since

Up)(y) = \/ o(z) and since gove = gagp , Va,b € T, we obtain

reX
(y,x)€U

wUe) =1 Cawpw =116 II 9w

yey yey rzeX
(y,x)€U
= H ( H Cy 9@@)) = H ( |_}|/ Cy)gso(m)
x x €
& (yz:/f)éU & (yljz)GU

using Lemma 7.6. Therefore

)‘Y(UQO) = H ( LI Cv)QLp(z) = H (Ucm)ggo(m) =U H Ca:gcp(x) = U/\X(SO) .

z€X yey xeX zeX
(y,x)€U

This proves that A\ : Fp — A is an isomorphism of algebra correspondence functors. 0O

7.7 Remark. In Theorem 7.4, the algebra structure on A(X) is uniquely determined
from that of A(e). More precisely, since A(e) is isomorphic to a product of |T'| copies
of k, the exponential property, which is an algebra isomorphism by Lemma 7.2, implies
that A(X) is isomorphic to a product of |T|IX! copies of k. However, the structure of
correspondence functor is not determined by the algebra structure of A(e). Explicitly,
in order to recover the lattice T from A(e), one needs more than the algebra structure.
In fact, the proof shows that the additional necessary ingredient is the comultiplication
0o introduced in Lemma 7.5. In other words, if A and A’ are correspondence functors

satisfying the three properties of Theorem 7.4 and if moreover there is an isomorphism
of co-algebras A(e) = A’(e), then A = A’.

7.8 Remark. The assumption on k is necessary in Theorem 7.4. Let k = k1 X ko be the
direct product of two nontrivial rings and, for ¢ = 1,2, let F}’:’i) be the functor over k;
associated to a lattice T;, but viewed as a functor over k (with the other factor ks_;
acting by zero). It can be shown that, if 77 and T5 have the same cardinality but are not
isomorphic, then Fq(ffl) X ng) satisfies the three assumptions of Theorem 7.4 but is not
isomorphic to Fr for any lattice T'.
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8. Examples

Finding the decomposition of tensor products is not straightforward, due in particular to
fast increasing dimensions. We only give here a few small examples, based on [4] and [5].
We refer to those two papers for details. For simplicity, we assume that k is a field.

For any n € N, we let [n] = {1,2,...,n} and n = {0} U [n]. Then n is a totally
ordered lattice and [n] is its subset of irreducible elements. There is a simple correspon-
dence functor S,, introduced in Section 11 of [4]. It appears as a direct summand of the
functor F,, associated to the lattice n.

8.1 Example. When n = 0, then Iy = Sy is the constant functor k£ of Example 2.2. For
any correspondence functor M, we have Sg ® M = M, by Proposition 3.2.

8.2 Example. When n = 1, we have F} = Sy @ Sy, by Theorem 11.6 of [4]. Moreover, by
Theorem 4.2, we know that
FLeF 2 Fia=1F,
where ¢ := 1 x 1 denotes the lattice of subsets of a set of cardinality 2. Applying
Example 8.1, we obtain
Fo 2 F®F
= (So®S1) ® (So @ S1)
~Syh2S;: P (S1®S1)

On the other hand, by Example 8.7 of [5], there is a direct sum decomposition
Fo=2So®3S1 D252 S, ,

where S,, is the fundamental functor associated to the poset oo of cardinality 2 ordered
by the equality relation.

We now have two expressions for Fy, and we apply the Krull-Remak-Schmidt theorem,
which holds by Proposition 6.6 in [3]. It follows that

S1®S1=S182S,8S., .

8.3 Example. When n = 2, we have Fy = Sq@2S;1®S3, by Theorem 11.6 of [4]. Moreover,
by Theorem 4.2, we know that

FL®@Fy,=Fixy=Fp,

where P := 1 x 2. Applying the previous two examples, we obtain
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Fp2FioR
> (So®S1)®(So @2S1 @ S»)
~2Se®3S1 DS @2(S1®S1) B (S1®Ss)
> Sy @ 3S1 B Sy ®2S; B4Sy & 2S.. B (S1 ®S3)
> S) @ 5S1 @ 5S2 @ 2S,, B (S1 ® Sa)

On the other hand, by Example 8.11 of [5], there is a direct sum decomposition

FpgS0@5S1@782@383@3Sw@80\;’ EBS/O\ oU,

where S o (respectively S , ) denotes the fundamental functor associated to the poset
A

A
indicated as a subscript, and where U is an indecomposable projective functor of Loewy
length 3 described in Example 8.11 of [5].

We now have two expressions for Fp and it follows from the Krull-Remak-Schmidt

theorem that
Sl®82g282@383@800@80\fEBS/O\ oU.

We note that both S; and Sy are projective functors, hence so is S; ® Sy by Proposi-
tion 5.1.
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