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Let I be an m-generated complete intersection monomial ideal in
S = K [x1, . . . , xn]. We show that the Stanley depth of I is n − � m

2 �.
We also study the upper-discrete structure for monomial ideals and
prove that if I is a squarefree monomial ideal minimally generated
by 3 elements, then the Stanley depth of I is n − 1.
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1. Introduction

Let N = {0,1,2, . . .} be the set of non-negative integers. Let K be a field and S = K [x1, . . . , xn]
be a polynomial ring over K . Suppose M is a finitely generated Zn-graded S-module. If u ∈ M is a
homogeneous element and Z is a subset of {x1, . . . , xn}, then the K -subspace uK [Z ] of M is called
a Stanley space. A Stanley decomposition of M is a partition D : M = ⊕m

i=1 ui K [Zi] in the category of
Zn-graded K -vector spaces. The Stanley depth of D is sdepth(D) = min{|Zi |: 1 � i � m} and the Stanley
depth of M is

sdepth(M) = max
{

sdepth(D): D is a Stanley decomposition of M
}
.

The interest in finding Stanley decompositions and Stanley depths can be traced back to the pi-
oneering paper of Stanley [6]. There it was conjectured that depth(M) � sdepth(M). In [4] it was
shown that if M allows a prime filtration F with supp(F ) = min(M), then this conjecture holds. And
if I ⊂ S is a Gorenstein monomial ideal with dim(S) � 5, then [3] showed that this conjecture is also
true for M = S/I . However, in spite of the many supporting facts, the conjecture still remains open.
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One of the main obstacles for verifying the Stanley’s conjecture lies in the difficulty of computing
Stanley depths. Even with the method of Herzog, Vladoiu and Zheng which we will discuss immedi-
ately, it is still practically very difficult to find the Stanley depth for modules from general monomial
ideals. The strongest result known to us that is pertinent to our work concerns the homogeneous
maximal ideal (x1, . . . , xn) ⊂ S , which will be mentioned in Theorem 2.1 below.

In this paper, we will focus on the case where M = I is a monomial ideal in S . Let G(I) =
{v1, . . . , vm} be the set of minimal monomial generators of I , and for c = (c(1), . . . , c(n)) ∈ Nn , denote
xc = ∏

i xc(i)
i . For a fixed g ∈ Nn such that lcm(v1, . . . , vm) divides xg , Herzog, Vladoiu and Zheng in-

troduced in [5] the associated poset P g
I = {c ∈ Nn: c � g and vi |xc for some i} for I . Here � is the

natural partial order in Zn by componentwise comparison. For a,b ∈ P g
I , define the interval [a,b]

to be {c ∈ P g
I : a � c � b}. Corresponding to each (disjoint) partition P : P g

I = ⋃r
i=1[ci,di], there is a

Stanley decomposition D(P ) of I . They showed in [5, Corollary 2.5] that there is a partition P such
that sdepth(I) = sdepth(D(P )).

Recently, Cimpoeaş studied Stanley decomposition of complete intersection ideals. He proved in [2,
Theorem 2.1] that the Stanley depth of a complete intersection monomial ideal is equal to the Stanley
depth of its radical. Therefore, the focus of research is directed to squarefree monomial ideals. Recall
that a Stanley space uK [Z ] is called squarefree, if u is squarefree and supp(u) ⊂ Z . If I is a squarefree
monomial ideal, we can take g = (1, . . . ,1) and write P g

I simply as P I . Recall that a vector d ∈ Zn is
squarefree if d(i) = 0 or 1, for all 1 � i � n. If d ∈ Nn is squarefree, write Zd = {x j: d( j) = 1}. Then for
any partition P : P I = ⋃

i[ci,di], D(P ) : I = ⊕
i xci K [Zdi ] is the associated Stanley decomposition of I

introduced in [5]. Meanwhile sdepth(D(P )) = min{|di |: 1 � i � r}. Here |di | is the sum of components
in di . The Stanley decomposition D(P ) is clearly squarefree. This observation shows in particular that

sdepth(I) = max
{

sdepth(D): D is a squarefree Stanley decomposition of I
}
.

This paper proceeds as follows. We compute in Theorem 2.4 the Stanley depth of complete inter-
section monomial ideals. It turns out that the Stanley depth depends only on the dimension of the
polynomial ring and the minimal number of generators. The third section studies the upper-discrete
partition of squarefree monomial ideals. And in the last section, we prove that the Stanley depth of
a squarefree monomial ideal minimally generated by 3 elements is n − 1. For 4-generated squarefree
monomial ideals, the lower bound of Stanley depth is n − 2.

2. Stanley depth of complete intersection monomial ideals

The Stanley depth of the monomial maximal ideal is known.

Theorem 2.1. (See [1, Theorem 2.2].) Let m = (x1, . . . , xn) be the maximal ideal in S = K [x1, . . . , xn], then
sdepth(m) = � n

2 �.

Herzog, Vladoiu and Zheng computed the Stanley depth of 3-generated complete intersection
monomial ideals.

Proposition 2.2. (See [5, Proposition 3.8].) Let I ⊂ S be a complete intersection monomial ideal minimally
generated by 3 elements. Then sdepth(I) = n − 1.

We want to generalize the above two results and answer Conjecture 2.5 in [2]. For simplicity of
notation, we identify any squarefree vector c ∈ Zn with {i | c(i) = 1}.

Lemma 2.3. Let v1, . . . , vm be squarefree monomials in K [x1, . . . , xn−1]. If I = (v1, . . . , vm−1, vmxn)

and I ′ = (v1, . . . , vm−1, vmxnxn+1) are ideals in S = K [x1, . . . , xn] and S ′ = S[xn+1] respectively, then
sdepth(I ′) = sdepth(I) + 1.
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Proof. By assumption, there is a partition P : P I = ⋃
i[ci,di] for I such that sdepth(D(P )) =

sdepth(I). By [2, Corollary 2.3], sdepth(I ′) � sdepth(I) + 1. Now it suffices to construct a partition
P ′ for P I ′ with sdepth(D(P ′)) = sdepth(I) + 1.

For each interval B = [c,d] in P , we define the corresponding interval B ′:

(1) If n ∈ c, which by our identification means c(n) = 1, let B1 = [c ∪ {n + 1},d ∪ {n + 1}].
(2) If n /∈ c, let B2 = [c,d ∪ {n + 1}]. Furthermore, if n /∈ d, let B3 = [c ∪ {n},d ∪ {n}].
Let B ′ be the union of those Bk ’s defined. Hence B ′ = B1, B ′ = B2 or B ′ = B2 ∪ B3. B ′ is a subset
of P I ′ . We claim that P ′ : P I ′ = ⋃r

i=1 B ′
i is a partition for P I ′ with sdepth(D(P ′)) = sdepth(I) + 1.

First, we prove that the intervals B ′
i cover P ′ . Let u be a proper subset of {1, . . . ,n + 1} in P I ′ .

Depending on whether n + 1 ∈ u, we have two cases.

(1) If n + 1 ∈ u, let u′ = u \ {n + 1}. We have u′ ∈ P I , hence there is an interval B = [c,d] in P such
that u′ ∈ B . If n ∈ c, then u ∈ B1. Otherwise, n /∈ c, and u ∈ B2.

(2) If n + 1 /∈ u, then xu is divisible by some vi 
= vm . Consequently, u ∈ P I and there is an interval
B = [c,d] in P with u ∈ B .
(a) If n /∈ c, then u ∈ B2.
(b) If n ∈ c, then n ∈ u as well. Let u′ = u \ {n} and again we have u′ ∈ P I . There is an interval

B̃ = [c̃, d̃] in P with u′ ∈ B̃ . Since n /∈ u′ , n /∈ c̃. Now depending on whether n ∈ d̃ or n /∈ d̃,
u ∈ B̃2 or u ∈ B̃3.

Now we show that the intervals in P ′ are pairwise disjoint. Suppose B1 = [c1,d1] and B2 = [c2,d2]
are intervals in P . We prove by contradiction that Bi

1 and B j
2 are disjoint for 1 � i 
= j � 3.

Suppose that u ∈ B1
1 ∩ B2

2, then n + 1 ∈ u. Let u′ = u \ {n + 1}. Then u′ ∈ B1 ∩ B2, hence B1 = B2.
But n ∈ c1, n /∈ c2 and c1 = c2. This is a contradiction.

Suppose that u ∈ B1
1 ∩ B3

2, then n + 1 ∈ u. But n + 1 /∈ d, and xd∪{n} is divisible by xu . As a result,
n + 1 /∈ u. This is a contradiction.

Suppose that u ∈ B2
1 ∩ B3

2, then n ∈ u and n + 1 /∈ u. Let u′ = u \ {n}, then u′ ∈ B2. Since n /∈ c1 and

xu is divisible by xc1 , xu′
is also divisible by xc1 . Meanwhile, since n + 1 /∈ u, n + 1 /∈ u′ . Since xd1∪{n+1}

is divisible by xu , xd1 is divisible by xu′
. Thus u′ ∈ B1 as well. Hence B1 = B2. Now since u ∈ B3

2, n ∈ u
and n /∈ d2. Since d1 = d2 and u ∈ B2

1, n /∈ u. This is a contradiction.
Now let i = j. If u ∈ B1

1 ∩ B1
2 or B2

1 ∩ B2
2, let u′ = u \ {n +1}, then u ∈ B1 ∩ B2 and B1 = B2. Likewise,

if u ∈ B3
1 ∩ B3

2, let u′ = u \ {n}. Notice that n + 1 /∈ u′ and u′ ∈ B1 ∩ B2. Hence B1 = B2. �
Theorem 2.4. Let I ⊂ S = K [x1, . . . , xn] be a complete intersection monomial ideal minimally generated by
m elements. Then sdepth(I) = n − �m

2 �.

Proof. Following [2, Theorem 2.1] and [5, Lemma 3.6], one can assume that I is squarefree and every
ring variable shows up in exactly one monomial generator of I . We fix m and prove the theorem by
induction on n � m.

The base case is when n = m and hence I = (x1, . . . , xm) is the maximal ideal. The validity now
follows from Theorem 2.1. Notice that �m

2 � = m − �m
2 �.

Now let n � m and assume that the theorem holds for n. We want to prove that it also holds
for n + 1. Without loss of generality, we consider a squarefree complete intersection monomial
ideal I ′ in S ′ = S[xn+1], minimally generated by monomials v1, . . . , vm−1, vmxn+1 and assume that
xn divides vm . Then the ideal I = (v1, . . . , vm) in S is also a squarefree complete intersection
monomial ideal. Therefore, by the induction hypothesis, sdepth(I) = n − �m

2 �. Now by Lemma 2.3,
sdepth(I ′) = sdepth(I) + 1 and this completes the proof. �
3. Upper-discrete partitions

In this section, we introduce the upper-discrete partitions. It will be the main tool in the next
section to study the 3-generated squarefree monomial ideals.
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Definition 3.1. Let P be the associated poset of monomials in S . P is called upper-discrete of degree k,
if there is a partition P : P = ⋃

i[ci,di], such that |di | � k for all i, and ci = di when |di | > k. And this
partition is called an upper-discrete partition of degree k.

Example 3.2. We use the notations in figure 2 of [5] and consider the ideal I = (x1x2, x2x3, x1x3) ⊂
K [x1, x2, x3]. It is readily seen that P I = [12,12]∪[23,23]∪[13,13]∪[123,123] gives an upper-discrete
partition of degree 2. However, a shorter one P I = [12,123] ∪ [23,23] ∪ [13,13] does not.

Proposition 3.3. If I is a squarefree monomial ideal in S, then the poset P I is upper-discrete of degree k for
k � sdepth(I).

Proof. Let P : P I = ⋃
i[ci,di] be a Stanley decomposition with sdepth(D(P )) = sdepth(I). Hence

|di | � sdepth(I) � k. Now it suffices to show that each interval [ci,di] allows an upper-discrete parti-
tion of degree k. This is equivalent to say that the interval [∅,di \ci] admits an upper-discrete partition
of degree k − |ci|, where [∅,di \ ci] is an interval in the poset P S for the unit ideal S . Since [∅,di \ ci]
is isomorphic to the poset P S ′ where S ′ = K [x1, . . . , x|di |−|ci |], it is enough to show that the poset P S

is upper-discrete of degree k for 0 � k � n.
We prove by induction on n. The base cases when n = 0 or n = 1 are trivial. Now let n � 2

and suppose the claim holds for n − 1. The cases when k = 0 or k = n are clear. Hence we may
assume that 1 � k � n − 1 and let S ′ = K [x1, . . . , xn−1]. Then P S ′ have two upper-discrete partitions
P 1 : P S ′ = ⋃

i[c1
i ,d1

i ] and P 2 : P S ′ = ⋃
i[c2

i ,d2
i ] of degrees k and k − 1, respectively. Clearly

P : P S =
(⋃

i

[
c1

i ,d1
i

]) ∪
(⋃

i

[
c2

i ∪ {n},d2
i ∪ {n}]

)

is an upper-discrete partition of degree k. And this completes the proof. �
Remark 3.4. Let I ⊂ S be a squarefree complete intersection monomial ideal with minimal monomial
generating set G(I) = {v1, . . . , vm}. We further assume that xn divides vm . Let I ′ = (v1, . . . , vmxn+1) ⊂
S ′ = S[xn+1]. If P I has an upper-discrete partition P of degree k, then the proof of Lemma 2.3 can be
modified as follows to give an upper-discrete partition of P I ′ of degree k + 1.

Let B = [c,d] be an interval in P . We construct the interval B ′ in the following way:

(1) If n ∈ c, let B1 = [c ∪ {n + 1},d ∪ {n + 1}].
(2) If n /∈ c,

(a) if |c| � k, let B2 = [c,d ∪ {n + 1}]. Furthermore, if n /∈ d, let B3 = [c ∪ {n},d ∪ {n}];
(b) if |c| > k, hence c = d, then let

• B4 = B ,
• B5 = [c ∪ {n}, c ∪ {n}],
• B6 = [c ∪ {n + 1}, c ∪ {n + 1}].

Let B ′ be the union of those Bk defined. Hence either B ′ = B1, B ′ = B2, B ′ = B2 ∪ B3, or B ′ = B4 ∪
B5 ∪ B6. The rest of the proof is essentially the same.

4. Squarefree monomial ideals

If I is not a complete intersection, the formula in Theorem 2.4 will fail in general. For instance,
let I = (x1x2x3, x1x2x4, x1x3x4, x2x3x4) in S = K [x1, . . . , x4]. Then sdepth(I) = 3 instead of 4 −� 4

2 � = 2.
However, when m = 3, the situation is different.

Theorem 4.1. Let I be a 3-generated squarefree monomial ideal in S = K [x1, . . . , xn]. Then sdepth(I) � n −1.
In particular, if I is not principal, sdepth(I) = n − 1.
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Proof. Let I be generated by monomials v1, v2 and v3. For any ring variable x j , we say x j is of type i,
if there are exactly i of the three generators involve the variable x j .

If xn is of type 0, then for the ideal I ′ = (v1, v2, v3) in K [x1, . . . , xn−1], we have sdepth(I ′) =
sdepth(I) − 1 by [5, Lemma 3.6].

In a like manner, if xn is of type 3, then for the ideal I ′ = (v1/xn, v2/xn, v3/xn) in S , it is readily
seen that I ′ is naturally isomorphic to I in the category of Zn-graded K -vector spaces up to degree
shifting. Thus, sdepth(I ′) = sdepth(I). But then, xn is of type 0 for I ′ .

Hence it suffices to prove the result for the case when all ring variables are of type either 1 or 2.
We call variable x j to be of type 1-(i), if x j is of type 1 and vi involves x j . By Lemma 2.3, we may
assume that for every i, 1 � i � 3, there is at most one ring variable to be of type 1-(i).

After these reductions, it is easily seen that the proof is done once we can show the following:

(I) Fix n � 0 and let I be any ideal in S = K [x1, . . . , xn] generated by squarefree monomials v1, v2
and v3, such that all ring variables are of type 2 for I . We prove that sdepth(I) � n − 1.

(II) For any fixed I in (I), we also consider ideals I1 = (v1xn+1, v2, v3) in S1 = S[xn+1], I2 =
(v1xn+1, v2xn+2, v3) in S2 = S1[xn+2], and I3 = (v1xn+1, v2xn+2, v3xn+3) in S3 = S2[xn+3]. We
prove that sdepth(Ii) � n − 1 + i for 1 � i � 3.

The proof is then carried out in 4 steps.

Step 0. To begin with, we investigate the ideal I in case (I) and assume that all ring variables are of
type 2. We prove by induction on n ∈ N that sdepth(I) � n − 1.

The base cases when n � 1 are easy to verify. Now we assume that the formula holds for a fixed
n � 1 and consider the ideal I ′ = (v1xn+1, v2xn+1, v3) in S ′ = S[xn+1]. Here v1, v2 and v3 are square-
free monomials in S = K [x1, . . . , xn], and all ring variables of S are of type 2 for I = (v1, v2, v3) in S .
We want to show that sdepth(I ′) � n.

By induction hypothesis, sdepth(I) � n − 1. Thus we can find P : P I = ⋃
i[ci,di], an upper-discrete

partition of degree n − 1. For each interval B = [c,d] in P , define B ′ as follows.

(1) Suppose |d| = n − 1. If v3 divides xc , let B1 = [c,d ∪ {n + 1}]. Otherwise, v3 � xc , and let B2 =
[c ∪ {n + 1},d ∪ {n + 1}].

(2) If |d| = n, then c = d = {1, . . . ,n}. Let B3 = [c, c] and B4 = [c ∪ {n + 1}, c ∪ {n + 1}].

Let B ′ be B1, B2 or B3 ∪ B4 correspondingly. B ′ is a subset of P I ′ . We claim that P ′ : P I ′ = ⋃
B ′

i is an
upper-discrete partition of degree n.

We first show that the intervals B ′
i cover P I ′ . Let u ∈ P I ′ , if u = {1, . . . ,n + 1}, then u ∈ B4. Other-

wise, we may assume that |u| � n.

(1) If n + 1 /∈ u, then v3 divides u. For this reason, we have u ∈ P I , and u ∈ B = [c,d] in P . If
u = {1, . . . ,n}, then u ∈ B3. Otherwise, |u| � n − 1. We claim that v3 | xc , hence u ∈ B1. If v3 � xc ,
we have v1 or v2 dividing xc . As a result, xd is divisible by v1 or v2. But xd is also divisible by
v3, thus supp(v1 v3) = supp(v2 v3) = {1, . . . ,n} ⊂ d. At the same time, |d| = n − 1 and this is a
contradiction.

(2) If n + 1 ∈ u, let u′ = u \ {n + 1} and we have u′ ∈ P I . Hence there is an interval B = [c,d] in P
with u′ ∈ B . Then depending on whether v3 | xc or v3 � xc , u ∈ B1 or u ∈ B2.

Now we show the intervals in P ′ are pairwise disjoint. It is straightforward to check that {1, . . . ,n}
and {1, . . . ,n + 1} are only in intervals B3 and B4, respectively.

Now suppose u ∈ B1
1 ∩ B2

2 
= ∅ for B1 = [c1,d1] and B2 = [c2,d2] in P . According to the construc-
tion, v3 | xc1 and c1 � u � d2 ∪ {n + 1}. Hence v3 | xd2∪{n+1} . At the same time, v3 � xc2 , hence v1 | xc2

or v2 | xc2 . Thus xd2 is divisible by either v1 or v2, and d2 = {1, . . . ,n}. This is against the assumption
that |d2| = n − 1.

Likewise, if u ∈ B1
1 ∩ B1

2 or B2
1 ∩ B2

2, then u \ {n + 1} ∈ B1 ∩ B2. Hence B1 = B2. This completes the
proof for the claim.



1290 Y.H. Shen / Journal of Algebra 321 (2009) 1285–1292
Step 1. Let I be the ideal in case (I). Then in Step 0, we showed that sdepth(I) � n − 1. As a result,
we have an upper-discrete partition P : P I = ⋃

i[ci,di] of degree n − 1. Now we construct an upper-
discrete partition of degree n for P I1 , where I1 is constructed in case (II).

For each B = [c,d] in P , we define B ′ as follows.

(1) Suppose |d| = n − 1. If v1 divides xc , then let B1 = [c ∪ {n + 1},d ∪ {n + 1}]. Otherwise, v1 � xc , and
let B2 = [c,d ∪ {n + 1}].

(2) Suppose |d| = n, then c = d = {1, . . . ,n}. Let B3 = [c, c] and B4 = [c ∪ {n + 1}, c ∪ {n + 1}].

Define B ′ = B1, B ′ = B2 or B ′ = B3 ∪ B4 correspondingly. B ′ is a subset of P I1 . We claim that
P1 : P I1 = ⋃

i B ′
i is a partition that satisfies the requirement.

We first show that intervals B ′
i cover P I1 . Let u ∈ P I1 . If |u| = n + 1, then u = {1, . . . ,n + 1},

and u ∈ B4. Otherwise, we may assume that |u| � n.

(1) If v1xn+1 divides xu , then n + 1 ∈ u. Let u′ = u \ {n + 1}, then v1 divides xu′
and u′ ∈ P I . Thus

there is an interval B = [c,d] in P such that u′ ∈ B . Since |u′| � n − 1, |d| = n − 1. We claim
that v1 | xc , hence u ∈ B1. Otherwise, v2 or v3 divides xc . Say it is v2, then v2 also divides xd . On
the other hand, v1 divides xu′

, hence xd is also divisible by v1. Thus supp(v1 v2) = {1, . . . ,n} ⊂ d
and |d| � n. However |d| = n − 1 and this is a contradiction.

(2) If v1 does not divide xu , then neither does v1xn+1. Therefore, v2 or v3 divides xu . Let u′ =
u \ {n + 1}. Then v2 or v3 divides xu′

, and we have u′ ∈ P I . Let u′ ∈ B = [c,d], an interval in P .
Since v1 � xu′

, we have v1 � xc and u ∈ B2.
(3) If v1 divides xu , but v1xn+1 does not, then n + 1 /∈ u. Since u ∈ P I1 , xu is divisible by v2 or v3.

Since supp(v1 v2) = supp(v1 v3) = {1, . . . ,n}, this would force u = {1, . . . ,n}, and u ∈ B3.

Now we show that P1 : P I1 = ⋃
i B ′

i is a disjoint union. Since P is an upper-discrete partition, if
u1 = {1, . . . ,n + 1}, B4 is the only interval containing u1.

Consider u2 = {1, . . . ,n} and suppose that u2 ∈ B1 for some B = [c,d] in P . Then n + 1 ∈ u2 and
this is impossible. On the other hand, suppose u2 ∈ B2 for some B = [c,d] in P . Then c � u2 �
d ∪ {n + 1}. Since n + 1 /∈ u2, we have c � u2 � d and u2 ∈ B . Hence |d| � |u2| = n. On the other hand,
by our assumption on B2, |d| = n − 1 and this is a contradiction.

Let B1 = [c1,d1] and B2 = [c2,d2] be intervals in P . If u ∈ B1
1 ∩ B2

2 
= ∅, then u \ {n + 1} ∈ B1 ∩ B2.
Hence B1 = B2. Meanwhile, v1 | xc1 , while v1 � xc2 . This is a contradiction.

Similarly, if u ∈ B1
1 ∩ B1

2 or B2
1 ∩ B2

2, then u \ {n + 1} ∈ B1 ∩ B2. Thus B1 = B2.

Step 2. Using partition P1 in Step 1, we construct an upper-discrete partition P2 for P I2 with degree
n + 1. For each B = [c,d] in P1, we define B ′ as follows.

(1) Suppose |d| = n. If v2 divides xc , then let B1 = [c ∪ {n + 2},d ∪ {n + 2}]. Otherwise, v2 � xc , and let
B2 = [c,d ∪ {n + 2}].

(2) Suppose |d| = n + 1, then c = d = {1, . . . ,n + 1}. Let B3 = [{1, . . . ,n}, c] and B4 = [c ∪ {n + 2},
c ∪ {n + 2}].

Define B ′ = B1, B ′ = B2 or B ′ = B3 ∪ B4 correspondingly. B ′ is a subset of P I2 . We claim P2 : P I2 =⋃
i B ′

i is a partition that satisfies the requirement.
We first show that intervals B ′

i cover P I2 . Let u ∈ P I2 . If |u| = n + 2, then u = {1, . . . ,n + 2}, and
u ∈ B4. Otherwise, we may assume that |u| � n + 1.

(1) If v2xn+2 divides xu , then n + 2 ∈ u. Let u′ = u \ {n + 2}, then v2 divides xu′
and u′ ∈ P I1 . Thus

there is an interval B = [c,d] in P1 that u′ ∈ B . Since |u′| � n, |d| = n. We claim that v2 | xc , hence
u ∈ B1. Otherwise, v1xn+1 or v3 divides xc .
(a) If v1xn+1 divides xc , then xd is divisible by both v1xn+1 and v2. Thus supp(v1xn+1 v2) =

{1, . . . ,n + 1} ⊂ d and |d| � n + 1. Nevertheless, |d| = n and this is a contradiction.
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(b) If v3 divides xc , then xd is divisible by both v2 and v3. Thus supp(v2 v3) = {1, . . . ,n} ⊂ d.
Since |d| = n, d = {1, . . . ,n}. Thus by the construction of P1, c = d. We still have v2 | xc .

(2) If v2 does not divide xu , then neither does v2xn+2. Hence v1xn+1 or v3 divides xu . Let u′ =
u \ {n + 2}. Then v1xn+1 or v3 divides xu′

, and we have u′ ∈ P I1 . Let u′ ∈ B = [c,d], an interval
in P1. Since v2 � xu′

, we have v2 � xc and u ∈ B2.
(3) If v2 divides xu , but v2xn+2 does not, then n + 2 /∈ u. Thus xu is divisible by v1xn+1 or v3.

(a) If xu is divisible by v1xn+1, since supp(v1xn+1 v2) = {1, . . . ,n + 1}, this would force u =
{1, . . . ,n + 1}, and u ∈ B3.

(b) Otherwise, xu is divisible by v3. At this moment, supp(v2 v3) = {1, . . . ,n} ⊂ u. Since |u| � n+1
and n + 1,n + 2 /∈ u, this forces u = {1, . . . ,n}, and u ∈ B3.

Now we need to show that P2 : P I2 = ⋃
i B ′

i is a disjoint union. The proof is similar to that in
Step 1. However, one still need to consider u3 = {1, . . . ,n}.

If u3 ∈ B1 for some B = [c,d] ∈ P1, then n + 2 ∈ u3. This is impossible. If u3 ∈ B2, then c � u3 �
d ∪ {n + 2}. Since n + 2 /∈ u3, this implies that c � u3 � d, i.e., u3 ∈ B . By our construction of P1, c = d.
Thus v2 divides xc , and instead of B2, we should construct B1. This is a contradiction.

Step 3. Using partition P2 in Step 2, we construct an upper-discrete partition P3 for P I3 with degree
n + 2. For each B = [c,d] in P2, we define B ′ as follows.

(1) Suppose {1, . . . ,n} 
⊂ d, then |d| = n + 1. If v3 divides xc , then let B1 = [c ∪ {n + 3},d ∪ {n + 3}].
Otherwise, v3 � xc , and let B2 = [c,d ∪ {n + 3}].

(2) Suppose {1, . . . ,n} ⊂ d. Then according to the construction of P2, B is one of the following inter-
vals:
• [{1, . . . ,n}, {1, . . . ,n + 1}],
• [{1, . . . ,n,n + 2}, {1, . . . ,n,n + 2}],
• [{1, . . . ,n + 2}, {1, . . . ,n + 2}].
In particular, {1, . . . ,n} ⊂ c. Now define

B3 = [{1, . . . ,n + 1}, {1, . . . ,n + 2}],
B4 = [{1, . . . ,n,n + 2}, {1, . . . ,n,n + 2,n + 3}],

B5 = [{1, . . . ,n,n + 3}, {1, . . . ,n + 1,n + 3}],
and

B6 = [{1, . . . ,n + 3}, {1, . . . ,n + 3}].
Define B ′ = B1, B ′ = B2 or B ′ = B3 ∪ B4 ∪ B5 ∪ B6 correspondingly. B ′ is a subset of P I3 . We claim
P3 : P I3 = ⋃

i B ′
i is a partition that satisfies the requirement.

We first show that intervals B ′
i cover P I3 . Let u ∈ P I3 . If {1, . . . ,n} ⊂ u, then |u| � n + 1 and u is in

exactly one of the Bi for 3 � i � 6. Otherwise, we have |u| � n + 2 and xu is divisible by exactly one
of the monomial generators vi xn+i for I3.

(1) If v3xn+3 divides xu , then n + 3 ∈ u. Let u′ = u \ {n + 3}, then v3 divides xu′
and u′ ∈ P I2 . Thus

there is an interval B = [c,d] in P2 that u′ ∈ B . If v1xn+1 or v2xn+2 divides xc , then xu is also
divisible by it, which is impossible. Hence v3 | xc . Since {1, . . . ,n} 
⊂ u, by our construction of P2,
{1, . . . ,n} 
⊂ d and u ∈ B1.

(2) If v3 does not divide xu , then neither does v3xn+3. Hence v1xn+1 or v2xn+2 divides xu . Let u′ =
u \{n+3}. Then v1xn+1 or v2xn+2 divides xu′

, and we have u′ ∈ P I2 . Let u′ ∈ B = [c,d], an interval
in P2. Since v3 � xu′

, we have v3 � xc and u ∈ B2.
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(3) If v3 divides xu , but v3xn+3 does not, then n + 3 /∈ u. Thus xu is divisible by v1xn+1 or v2xn+2.
Hence supp(v1 v3) = supp(v2 v3) = {1, . . . ,n} ⊂ u, which is a contradiction.

At this stage, we have to show that P2 : P I2 = ⋃
i B ′

i is a disjoint union. Let u ∈ P I3 . If {1, . . . ,n} ⊂
u, then |u| � n + 1 and u ∈ B3 ∪ B4 ∪ B5 ∪ B6. Suppose u ∈ B̃1 or B̃2 for some interval B̃ = [c,d] in P2.
Then {1, . . . ,n} ⊂ d ∪ {n + 3}. This implies that {1, . . . ,n} ⊂ d, which is against the construction of B̃1

or B̃2. The rest of the proof is similar to that in Step 1. �
As shown by the example at the beginning of this section, the Stanley depth of 4-generated square-

free monomial ideal is not necessarily n − 2. Nevertheless, n − 2 is the sharp lower bound.

Proposition 4.2. Let I ⊂ S = K [x1, . . . , xn] be a squarefree monomial ideal generated by 4 elements. Then
sdepth(I) � n − 2.

Proof. We apply the technique in [5, Proposition 3.4] and use their notations. Hence we prove by
induction on n, with n = 1 being trivial. Now consider n � 2 and assume that the claim holds for n−1.
Suppose the minimal monomial generating set is G(I) = {xa1 , . . . , xa4 }. Without loss of generality,
we may assume that a1 ∨ · · · ∨ a4 = (1, . . . ,1). Then there is a disjoint union P I = A0 ∪ A1, where
Ai = {c ∈ P I : c(n) = i} for 0 � i � 1.

It is observed in [5] that Ai = {(c, i): c ∈ P g
Ii
} with g = (1, . . . ,1) ∈ Nn−1, and Ii is the monomial

ideal in K [x1, . . . , xn−1] such that

I ∩ xi
n K [x1, . . . , xn−1] = xi

n Ii .

I0 and I1 are still squarefree. Furthermore, |G(I0)| � 3 and |G(I1)| � 4. Now by Theorem 4.1,
sdepth(I0) � (n −1)−1, and by induction hypothesis sdepth(I1) � (n −1)−2. Therefore, by [5, Propo-
sition 3.3], sdepth(I) � min{sdepth(I0), sdepth(I1) + 1} � n − 2. �

To conclude, we ask the following question for squarefree monomial ideals.

Question 4.3. Let I be an m-generated squarefree monomial ideal in S = K [x1, . . . , xn]. Is it true that
sdepth(I) � n − �m

2 �?
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