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A complex C is called Gorenstein injective if there exists an ex-
act sequence of complexes · · · → I−1 → I0 → I1 → ·· · such that
each Ii is injective, C = Ker(I0 → I1) and the sequence remains ex-
act when Hom(E,−) is applied to it for any injective complex E .
We show that over a left Noetherian ring R , a complex C of left
R-modules is Gorenstein injective if and only if Cm is Gorenstein
injective in R-Mod for all m ∈ Z. Also Gorenstein injective dimen-
sions of complexes are considered.

© 2008 Published by Elsevier Inc.

1. Introduction and preliminaries

Throughout this paper, R denotes a ring with unity. A complex

· · · → C−1 δ−1−−→ C0 δ0−−→ C1 δ1−−→ · · ·

of left R-modules will be denoted (C, δ) or C .
It is an important question to establish relationships between a complex C and the modules

Cm , m ∈ Z. It is well known that a complex (C, δ) is injective (respectively projective) if and only
if each left R-module Ker(δm) is injective (respectively projective) in R-Mod and C is exact; and
C is finitely generated if and only if C is bounded and Cm is finitely generated in R-Mod for all m ∈ Z

[6, Lemma 2.2]. It is natural to consider the relationships of Gorenstein injectivity of a complex C
and Gorenstein injectivity of all R-modules Cm , m ∈ Z. If R is an n-Gorenstein ring (that is, R is left
and right Noetherian and the injective dimensions of R R and R R are at most n), then E.E. Enochs
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and J.R. Garcia Rozas in [5] (also, see [12]) showed that a complex C is Gorenstein injective if and
only if Cm is Gorenstein injective in R-Mod for all m ∈ Z. In this paper we will show that the same
result holds if R is a left Noetherian ring. We also consider the Gorenstein injective dimensions of
complexes by showing that if R is a left Noetherian ring and C a complex of left R-modules, then
Gid(C) = sup{Gid(Cm) | m ∈ Z} where Gid(−) denotes Gorenstein injective dimension.

In the following C will be the abelian category of complexes of left R-modules. This category
has enough projectives and injectives. For complexes C and D , Hom(C, D) is the abelian group of
morphisms from C to D in the category of complexes and Exti(C, D) for i � 1 will denote the groups
we get from the right derived functor of Hom.

Let B be a class of objects in an abelian category D. Let X be an object of D. We recall the
definition introduced in [4]. A homomorphism α : B → X , where B is in B, is called a B-precover
of X if the diagram

B ′
γ

β

B
α

X

can be completed for each homomorphism β : B ′ → X with B ′ in B. If furthermore, when B ′ = B and
β = α the only such γ are automorphisms of B , then α : B → X is called a B-cover of X . Dually we
have the concepts B-preenvelope and B-envelope. If B is the class of all injective objects of D, then
B-precover and B-cover are called injective precover and injective cover, respectively. There are a lot
of results concerning covers and envelopes (see, for example, [6–9,14,1]).

Given a left R-module M , we will denote by M the complex

· · · → 0 → 0 → M id−→ M → 0 → 0 → ·· ·

with the M in the −1 and 0th position. Given a complex C and an integer m, C[m] denotes the
complex such that C[m]n = Cm+n and whose boundary operators are (−1)mδm+n .

Throughout the paper we use both the subscript notation for complexes and the superscript no-
tation. When we use superscripts for a complex we will use subscripts to distinguish complexes: for
example, if (Ki)i∈I is a family of complexes, then K n

i denotes the degree-n term of the complex Ki .
General background material can be found in [10,12,13].

2. Gorenstein injective complexes

Lemma 1. Let C be a complex and α : E → C an injective precover of C . If Cm is Gorenstein injective for all
m ∈ Z, then α is surjective.

Proof. Suppose that I is an injective left R-module and f : I → Cm an R-homomorphism. Consider
the complex I[−m − 1] and define a map of complexes γ : I[−m − 1] → C as following

0

0

I

f

I

δm
C f

0

0

Cm−1 Cm Cm+1 Cm+2 .
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Since I[−m − 1] is an injective complex and α : E → C an injective precover of C , there exists a map
of complexes β : I[−m − 1] → E such that αβ = γ . Thus we have a communicative diagram

I
βm

f

Em
αm

Cm.

This means that αm : Em → Cm is an injective precover of Cm .
Since Cm is a Gorenstein injective left R-module, it is easy to see that there exists an epimorphism

I → Cm with I injective. Hence αm is an epimorphism. Therefore α is surjective. �
According to [12], a complex C is called Gorenstein injective if there exists an exact sequence of

complexes

· · · → I−1 → I0 → I1 → ·· ·

such that

(1) each Ii is injective;
(2) C = Ker(I0 → I1);
(3) the sequence remains exact when Hom(E,−) is applied to it for any injective complex E .

Lemma 2. Let C be a complex. Then C is Gorenstein injective if and only if there exists an exact sequence of
complexes

· · · → I−1 → I0 → I1 → ·· ·

such that

(1) each Ii is injective;
(2) C = Ker(I0 → I1);
(3) Ext1(E, Ki) = 0 for all injective complexes E and all Ki = Ker(Ii → Ii+1), i ∈ Z.

Proof. It follows from the definition. �
Note that the similar result holds for left R-modules.

Lemma 3. Let k be a positive integer. If a complex C satisfies Extk(E, C) = 0 for all complexes E with finite
injective dimension, then Extk(M, Cm) = 0 for all m ∈ Z and all left R-modules M with finite injective dimen-
sion.

Proof. Let M be a left R-module with finite injective dimension. Then there exists exact sequence

0 → M → I0 → I1 → ·· · → In → 0

of left R-modules with each I j injective. Thus we have the following exact sequence of complexes

0 → M[−m − 1] → I0[−m − 1] → I1[−m − 1] → · · · → In[−m − 1] → 0.
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Hence the injective dimension of M[−m − 1] is finite since each I j[−m − 1] is injective. Consider
exact sequence

0 → Q → Pk−1 → Pk−2 → ·· · → P0 → M → 0

with each P j projective. Let H = Im(Pk−1 → Pk−2) (if k = 1, then let H = M). Then Extk(M, Cm) ∼=
Ext1(H, Cm). Now from the exact sequence

0 → Q → Pk−1 → H → 0

it follows that the sequence

0 → Q [−m − 1] → Pk−1[−m − 1] → H[−m − 1] → 0

is exact and Pk−1[−m − 1] is projective. By the hypothesis, Extk(M[−m − 1], C) = 0. Thus, from the
exact sequence

0 → H[−m − 1] → Pk−2[−m − 1] → · · · → P0[−m − 1] → M[−m − 1] → 0

it follows that

Ext1(H[−m − 1], C
) ∼= Extk(M[−m − 1], C

) = 0

since each P j[−m − 1] is projective. Hence we have an exact sequence

Hom
(

Pk−1[−m − 1], C
) → Hom

(
Q [−m − 1], C

) → 0.

Let f : Q → Cm be an R-homomorphism. Define αm = f , αm+1 = δm
C f and αn = 0 for any n �= m,

m + 1. Then α : Q [−m − 1] → C is a map of complexes. Thus there exists β : Pk−1[−m − 1] → C such
that the diagram

Q [−m − 1]
α

Pk−1[−m − 1]

β

C

commutes. Hence, considering the degree-m term of the complexes yields that the sequence

Hom
(

Pk−1, Cm) → Hom
(

Q , Cm) → 0

is exact. On the other hand we have an exact sequence

Hom
(

Pk−1, Cm) → Hom
(

Q , Cm) → Ext1(H, Cm) → 0.

Thus Extk(M, Cm) ∼= Ext1(H, Cm) = 0. �
Corollary 4. If a complex C satisfies Ext1(E, C) = 0 for all injective complexes E, then Ext1(I, Cn) = 0 for all
n ∈ Z and any injective left R-module I .

Proof. It follows by analogy with the proof of Lemma 3. �
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Corollary 5. If C is a Gorenstein injective complex, then Cm is a Gorenstein injective left R-module for all
m ∈ Z.

Proof. Suppose that C is a Gorenstein injective complex. We use the notation of Lemma 2. Then, for
each m ∈ Z, the following sequence

· · · → Im−1 → Im
0 → Im

1 → ·· ·

is exact, each Im
i is injective and Cm = Ker(Im

0 → Im
1 ). Also by Lemma 2, Ext1(E, Ki) = 0 for all injective

complexes E . Thus, by Corollary 4, Ext1(I, K m
i ) = 0 for any injective left R-module I and for all m ∈ Z.

Now, by the version for modules of Lemma 2, Cm is Gorenstein injective. �
A left R-module K is called an nth syzygy of a left R-module N , if there exists an exact sequence

0 → K → Pn−1 → ·· · → P1 → P0 → N → 0

such that each P j is projective.

Lemma 6. Let M be a Gorenstein injective left R-module. Then for any syzygy K of an injective left R-module I ,
Exti(K , M) = 0 for all i � 1.

Proof. Let I be an injective left R-module and K an nth syzygy of I . Then There exists an exact
sequence

0 → K → Pn−1 → ·· · → P1 → P0 → I → 0

such that each P j is projective. Thus for any i � 1,

Exti(K , M) ∼= Exti+n(I, M) = 0

since M is Gorenstein injective and I is injective. �
Lemma 7 (Dual version of [13, Corollary 2.11]). Let 0 → M → N → L → 0 be a short exact sequence of left
R-modules where N and L are Gorenstein injective. If Ext1(I, M) = 0 for all injective left R-modules I , then
M is Gorenstein injective.

Now we are in the position to give our main result. Note that the same result was shown in [5,12]
if R is an n-Gorenstein ring.

Theorem 8. Let R be a left Noetherian ring and G a complex of left R-modules. Then the following conditions
are equivalent.

(1) G is a Gorenstein injective complex;
(2) Gm is a Gorenstein injective left R-module for all m ∈ Z.

Proof. (1) ⇒ (2). It follows from Corollary 5.
(2) ⇒ (1). Let I be an injective left R-module. Consider an exact sequence

0 → K → Pn−1 → ·· · → P1 → P0 → I → 0



L. Zhongkui, Z. Chunxia / Journal of Algebra 321 (2009) 1546–1554 1551
where each P j is projective. Let K j = Ker(P j−1 → P j−2) for j � 2, K1 = Ker(P0 → I) and K0 = I . Then
for any m ∈ Z the following sequence

0 → K [−m] → Pn−1[−m] → · · · → P1[−m] → P0[−m] → I[−m] → 0

is exact and each P j[−m] is a projective complex. Then

Exti(I[−m], G
) ∼= Ext1(Ki−1[−m], G

)
.

Let

0 → G → X → Ki−1[−m] → 0

be an exact sequence. Consider the following commutative diagram:

0 Gm−2 Xm−2 0 0

0 Gm−1 Xm−1
αm−1

Ki−1 0

0 Gm Xm
αm

Ki−1 0

0 Gm+1 Xm+1 0 0.

Since Gm−1 is Gorenstein injective and Ki−1 is a syzygy of injective left R-module I , by Lemma 6,
it follows that Ext1(Ki−1, Gm−1) = 0. Thus the exact sequence 0 → Gm−1 → Xm−1 → Ki−1 → 0
splits. Hence there exists h : Ki−1 → Xm−1 such that αm−1h = 1. Now define a map of complexes
γ : Ki−1[−m] → X via γ m−1 = h, γ m = δm−1

X h and γ n = 0 for n �= m − 1,m. Then αγ = 1 and so the
sequence 0 → G → X → Ki−1[−m] → 0 splits. Thus Ext1(Ki−1[−m], G) = 0. Hence Exti(I[−m], G) = 0
for all i � 1, for all m ∈ Z and for all injective left R-modules I .

Now suppose that E is an injective complex. Then E is a direct sum of complexes in the form I[m]
with I an injective left R-module. Thus Exti(E, G) = 0 for all i � 1 and for all injective complexes E .

Since R is left Noetherian, by [11], there is a set X of injective left R-modules such that any
injective left R-module is the direct sum of modules each isomorphic to an element of X . Set

S = {
I[m] ∣∣ I ∈ X , m ∈ Z

}
.

Then it is clearly that every injective complex is the direct sum of complexes each isomorphic to an
element of S . Thus, by [2, Theorem 3.2], any complex has an injective cover. (Or, by analogy with
the proof of [4, Proposition 2.2], any complex has an injective precover. Now apply Zorn’s Lemma for
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categories (see, [12]).) Suppose that α−1 : E−1 → G is an injective cover of G . Then, by Lemma 1, we
have an exact sequence

0 → H−2 → E−1 → G → 0

where H−2 = Ker(α−1). A standard argument yields that Exti(E, H−2) = 0 for all i � 1 and for all
injective complexes E .

Now consider exact sequence

0 → Hm−2 → Em−1 → Gm → 0.

By the hypothesis, Gm is Gorenstein injective. Since E−1 is an injective complex, Em−1 is injective and

hence Gorenstein injective. By Corollary 4, Ext1(I, Hm−2) = 0 for all injective left R-modules I since

Ext1(E, H−2) = 0 for all injective complexes E . Thus, from Lemma 7, it follows that Hm−2 is Gorenstein
injective for all m ∈ Z.

By analogy with above discussion, we have an exact sequence

0 → H−3 → E−2 → H−2 → 0

where E−2 → H−2 is an injective cover of H−2, H−3 = Ker(E−2 → H−2) and Hm−3 is Gorenstein injec-
tive for all m ∈ Z.

Continuing this process yields the following exact sequence:

· · · → E−2 → E−1 → G → 0

where E−1 is an injective cover of G and E−n is an injective cover of H−n = Ker(E−(n−1) → H−(n−1))

for all n � 2 (set H−1 = G). Note that this sequence remains exact when Hom(E,−) is applied to it
for any injective complex E .

Taking injective envelopes yields the following exact sequence:

0 → G → E0 → E1 → ·· · .

Since Exti(E, G) = 0 for all i � 1 and for all injective complexes E , it is easy to see that this sequence
remains exact when Hom(E,−) is applied to it for any injective complex E .

Hence G is Gorenstein injective. �
3. Gorenstein injective dimensions

Let C be a complex of left R-modules. The Gorenstein injective dimension, Gid(C), of C is de-
fined as Gid(C) = inf{n | there exists an exact sequence 0 → C → E0 → E1 → ·· · → En → 0 with each
Ei Gorenstein injective}. If no such n exists, set Gid(C) = ∞. Similarly, the Gorenstein injective dimen-
sion, Gid(M), of a left R-module M is defined. Details and results on Gorenstein injective dimension
of modules appeared in [3,13].

Theorem 9. Let R be a left Noetherian ring and G a complex of left R-modules. Then Gid(G) = sup{Gid(Gm) |
m ∈ Z}.

Proof. If sup{Gid(Gm) | m ∈ Z} = ∞, then Gid(G) � sup{Gid(Gm) | m ∈ Z}. So naturally we may as-
sume that sup{Gid(Gm) | m ∈ Z} = n is finite. Consider an injective resolution

0 → G → E0 → E1 → ·· · → En−1 → Kn → 0
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of G , where each Ei is an injective complex. Then K m
n is Gorenstein injective for all m ∈ Z by [13,

Theorem 2.22]. Now, by Theorem 8, Kn is a Gorenstein injective complex. This shows that Gid(G) � n
and so Gid(G) � sup{Gid(Gm) | m ∈ Z}.

Now it is enough to show that sup{Gid(Gm) | m ∈ Z} � Gid(G). Naturally we may assume that
Gid(G) = n is finite. Then there exists an exact sequence

0 → G → E0 → E1 → ·· · → En−1 → En → 0

with each Ei Gorenstein injective. By Theorem 8, Em
i is Gorenstein injective for all m ∈ Z and all

i = 0,1, · · · ,n. Thus Gid(Gm) � n and so sup{Gid(Gm) | m ∈ Z} � n = Gid(G). �
For a general ring R , Propositions 10, 11 and Corollary 12 can be proved by applying the proofs of

[13, Theorems 2.22, 2.15, 2.6 and (dual of) Corollary 2.11]. If R is left Noetherian, Propositions 10, 11
and Corollary 12 can be proved more easily by combining Theorem 9 with references to [13] given
above.

Proposition 10. Let G be a complex with finite Gorenstein injective dimension and n an integer. Then the
following conditions are equivalent.

(1) Gid(G) � n;
(2) Exti(E, G) = 0 for all i > n and all injective complexes E;
(3) Exti(L, G) = 0 for all i > n and all complexes L with finite injective dimension.

Proposition 11. Let C be a complex with finite Gorenstein injective dimension n. Then there exists an exact
sequence 0 → C → K → L → 0 with C → K a Gorenstein injective preenvelope and L a complex with finite
injective dimension n − 1 (if C is Gorenstein injective, then this should be interpreted as L = 0).

Corollary 12. Let 0 → L → M → N → 0 be an exact sequence of complexes.

(1) If L is Gorenstein injective, then M is Gorenstein injective if and only if N is Gorenstein injective.
(2) If M and N are Gorenstein injective, and if Ext1(E, L) = 0 for all injective complexes E, then L is Gorenstein

injective.
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