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Recently it was shown that the notion of flow equivalence of shifts
of finite type in symbolic dynamics is related to the Morita theory
and the Grothendieck group in the theory of Leavitt path algebras
(Abrams et al., 2011, [4]). In this paper we show that the notion of
the conjugacy of shifts of finite type is closely related to the graded
Morita theory and consequently the graded Grothendieck group.
This fits into the general framework we have in these two theories:
Conjugacy yields the flow equivalence, and the graded Morita
equivalence can be lifted to the Morita equivalence. Starting from a
finite directed graph, the observation that the graded Grothendieck
group of the Leavitt path algebra associated to E coincides with
the Krieger dimension group of the shift of finite type associated
to E provides a link between the theory of Leavitt path algebras
and symbolic dynamics. It has been conjectured that the ordered
graded Grothendieck group as Z[x, x−1]-module (we call this the
graded dimension group) classifies the unital Leavitt path algebras
completely (Hazrat, 2013, [20]). Via the above correspondence,
utilising the results from symbolic dynamics, we prove that for
two purely infinite simple unital Leavitt path algebras, if their
graded dimension groups are isomorphic, then the algebras are
isomorphic.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

One of the central objects in the theory of symbolic dynamics is a shift of finite type (i.e., a topo-
logical Markov chain). Every finite directed graph E with no sinks and sources gives rise to a shift of
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finite type XE by considering the set of bi-infinite paths and the natural shift of the paths to the left.
This is called an edge shift. Conversely any shift of finite type is conjugate to an edge shift.

There are two notions of equivalences in the classifications of shifts of finite type: the conjugacy
and the weaker notion of flow equivalence. Two shifts of finite type XE and X F are conjugate if
E can be obtained from F by a series of in/out-splitting and their inverses (see [26, Theorem 7.1.2,
Corollary 7.1.5]). Furthermore, XE and X F are flow equivalent if E can be obtained from F by a series
of in/out-splitting, expansion and their inverses (see [26, p. 456] and [28]).

On the other hand, to a directed graph one can associate an analytical object, called a graph C∗-
algebra [29] and an algebraic object called a Leavitt path algebra [1,6].

The relations between symbolic dynamics and (graph) C∗-algebras were explored in the work of
Cuntz and Krieger [12] and later Bates and Pask [10], among others. The algebraic counter part of
graph C∗-algebras, i.e., Leavitt path algebras, are related to symbolic dynamics by the recent work
of Abrams, Louly, Pardo and Smith [4]. In both settings, it was observed that the notion of flow
equivalence is related to the theory of Morita equivalence and the Grothendieck group K0. It was
shown that for two essential finite graphs E and F , if XE is flow equivalent to X F , then C∗(E) is
Morita equivalent to C∗(F ) and L(E) is Morita equivalent to L(F ) (see [10] and [4], respectively).

Inspired by this connection between symbolic dynamics and graph algebras, in this note we show
that, whereas, the flow equivalence is related to the Morita theory and the Grothendieck group K0,
the notion of the conjugacy in symbolic dynamics is closely related to the graded Morita theory and
consequently the graded Grothendieck group K gr

0 in the setting of Leavitt path algebras. This fits into
the general framework we have in these two theories: Conjugacy yields the flow equivalence and the
graded Morita equivalence can be lifted to the Morita equivalence (see Section 2).

Thanks to the deep work of Williams [37], there is a matrix criterion when two edge shifts are
conjugate; XE and X F are conjugate if and only if the adjacency matrices of E and F are strongly
shift equivalent (see Section 6). Williams further introduced a weaker notion of the shift equivalence.
Inspired by the success of K -theory in classification of AF C∗-algebras [14], Krieger introduced a
variation of K0 which he showed is a complete invariant for the shift equivalence [24]. It can be
observed that Krieger’s dimension group (and Wagoner’s dimension module [35,36]) coincides with
the graded Grothendieck group of associated Leavitt path algebras. This provides a bridge from the
theory of Leavitt path algebras to symbolic dynamics.

Throughout this paper, we only will consider finite graphs with no sinks (and no sources in several
occasions). The reason is, considering the edge shift XE of a graph E , no arrow that begins at a source
and no arrow that ends at a sink appear in any bi-infinite path (see the paragraph before the defi-
nition of essential graphs [26, Definition 2.2.9]). Thus only graphs with no sinks and sources appear
in symbolic dynamics. Furthermore, one of the most interesting classes of Leavitt path algebras, i.e.,
purely infinite simple unital algebras are within this class of graphs.

The results of the paper are summarised as follows. Let E and F be two finite directed graphs with
no sinks and sources and AE and A F be their adjacency matrices, respectively.

Corollary 12: The matrices AE and A F are shift equivalent if and only if there is an order preserving
Z[x, x−1]-module isomorphism K gr

0 (L(E)) ∼= K gr
0 (L(F )).

Proposition 15: If AE and A F are strongly shift equivalent then L(E) and L(F ) are graded Morita
equivalent. Conversely, if L(E) and L(F ) are graded Morita equivalent, then AE and A F are
shift equivalent.

Example 18: The strongly shift equivalence does not imply graded isomorphisms between Leavitt
path algebras.

Theorem 21: Suppose L(E) and L(F ) are purely infinite simple unital algebras. Then L(E) ∼=L(F ) if
there is an order preserving Z[x, x−1]-module isomorphism

(
K gr

0

(
L(E)

)
,
[
L(E)

]) ∼= (
K gr

0

(
L(F )

)
,
[
L(F )

])
.

For a graph E , let P(E) be the associated path algebra and Gr -P(E) be the category of
Z-graded right P(E)-modules and Fdim -P(E) be its full (Serre) subcategory of modules that
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are the sum of their finite-dimensional submodules. Paul Smith [31–33] recently studied the
quotient category

QGr -P(E) := Gr -P(E)/ Fdim -P(E).

Theorem 23: There is an ordered abelian group isomorphism K gr
0 (L(E)) ∼= K gr

0 (L(F )) if and only if
QGr -P(E) ≈ QGr -P(F ).

The main aim of this paper is to provide evidence that the graded Grothendieck group is a capable
invariant which could eventually provide a bridge between the theories of graph C∗-algebras and
Leavitt path algebras via symbolic dynamics. This group comes equipped with a pre-ordered abelian
group structure, plus an action of Z on it (which corresponds to the shifting in a shift space), which
makes it a Z[x, x−1]-module, and a distinguished element, namely the identity (see Section 4). In
Section 8 we show that there is a product formula for this K -group. Section 6 relates it to conjugacy
in symbolic dynamics. And in Section 7 we show that only the pre-order part of this group is sufficient
to classify the quotient category of path algebras.

The paper is organised as follows. In Section 2 we recall the notion of graded Morita theory. For
an arbitrary group Γ , one can equip the Leavitt path algebra L(E) associated to the graph E with
a Γ -graded structure. This is recalled in Section 3. The graded Grothendieck group as an invariant
for classification of Leavitt path algebras was first considered in [20]. In Section 4 we recall this
group. In fact the graded Grothendieck group is not only an ordered abelian group, but has Z[x, x−1]-
modules structure. The action of x on the group captures the shifting in the corresponding shift of
finite type. In Section 5 we observe that for a finite directed graph, the graded Grothendieck group
of the Leavitt path algebra associated to E coincides with the Krieger dimension group of the shift
of finite type associated to E . This provides a link between the theory of Leavitt path algebras and
symbolic dynamics. This has also been recently observed by Ara and Pardo, using a different approach
in [5]. In fact Ara and Pardo settle the graded conjecture [20,21] positively for the class of graphs with
no sinks and sources.

Section 6 is the main part of the paper, where the relations between strongly shift equivalence
and graded Morita equivalence are studied. Section 7 shows that the graded Grothendieck group is a
complete invariant for the quotient category of path algebras. In fact, here, we only need the structure
of ordered abelian group (not the module structure) of the graded Grothendieck group to classify the
quotient categories.

In Section 8 we study the behaviour of the graded Grothendieck group on the product of the
graphs. We will establish a formula to express K gr

0 of the product of the graphs as the tensor product
of K gr

0 of the graphs. We close the paper with Appendix A.

2. Graded Morita theory

For a graded ring A, the graded Grothendieck group K gr
0 (A) is constructed from the category of

graded finitely generated projective A-modules. Thus it is natural to consider categories of graded
modules which are equivalent, which in turn induces isomorphic graded Grothendieck groups. We
will see that the graded equivalence of categories are closely related to the notion of shift equivalence
in symbolic dynamics in Section 6.

In this section we gather results on graded Morita theory that we need in the paper. For the theory
of graded rings, we refer the reader to [27] and for (nongraded) Morita theory to [25].

For an abelian group Γ and a Γ -graded ring A, by Gr -A, we denote the category consisting of
graded right A-modules as objects and graded homomorphisms as the morphisms. For α ∈ Γ , the
α-suspension functor or shift functor

Tα : Gr -A −→ Gr -A,

M �−→ M(α)
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is an isomorphism with the property TαTβ = Tα+β , α,β ∈ Γ . Throughout the note all functors are
additive functors.

Definition 1. Let A and B be Γ -graded rings.

(1) A functor φ : Gr -A → Gr -B is called a graded functor if φTα = Tαφ.
(2) A graded functor φ : Gr -A → Gr -B is called a graded equivalence if there is a graded functor

ψ : Gr -B → Gr -A such that ψφ ∼= 1Gr -A and φψ ∼= 1Gr -B .
(3) If there is a graded equivalence between Gr -A and Gr -B , we say A and B are graded equivalent

or graded Morita equivalent and we write Gr -A ≈gr Gr -B , or GrΓ -A ≈gr GrΓ -B to emphasis the
categories are Γ -graded.

(4) A functor φ : Mod -A → Mod -B is called a graded functor if there is a graded functor φ′ : Gr -A →
Gr -B such that the following diagram, where the vertical functors are forgetful functors, com-
mutes:

Gr -A
φ′

U

Gr -B

U

Mod -A
φ

Mod -B.

(1)

The functor φ′ is called an associated graded functor of φ.
(5) A functor φ : Mod -A → Mod -B is called a graded equivalence if it is graded and an equivalence.

Note that throughout the paper, if two graded rings A and B are graded isomorphic, we write
A ∼=gr B , whereas if they are graded Morita equivalent, we write Gr -A ≈gr Gr -B .

For a ring A, and a full idempotent element e ∈ A (i.e., e2 = e and Ae A = A), it is well known that
the ring A is Morita equivalent to e Ae. In Example 2 we establish a similar statement in the graded
setting which will be used in Proposition 13 and Theorem 30.

Example 2. Let A be a graded ring and e be a full homogeneous idempotent of A, i.e., e2 = e and
Ae A = A. Clearly e has degree zero. Consider P = e A. One can readily see that P is a right graded
progenerator. Then P∗ = HomA(e A, A) ∼=gr Ae as graded left A-module and B = EndA(e A, e A) ∼=gr e Ae
as graded rings. The A–A-bimodule graded homomorphism φ : Ae ⊗e Ae e A → A and the e Ae–e Ae-
bimodule graded homomorphism ψ : e A ⊗A Ae → e Ae are isomorphism. Consequently one can check
that the functors −⊗A Ae : Gr -A → Gr -e Ae and −⊗e Ae e A : Gr -e Ae → Gr -A are inverse of each other.
Thus we get a (graded) equivalence between Gr -A and Gr -e Ae which lifts to a (graded) equivalence
between Mod -A and Mod -e Ae, as it is shown in the diagram below:

Gr -A
−⊗A Ae

U

Gr -e Ae

U

Mod -A
−⊗A Ae

Mod -e Ae.

Example 2 shows that a graded equivalence between the categories Gr -A and Gr -e Ae can be lifted
to an equivalence between the categories Mod -A and Mod -e Ae. This lifting of the graded equivalence
is a general phenomenon as proved by Gordon and Green in the case of Z-graded rings [18, Proposi-
tion 5.3, Theorem 5.4]. Since we need this result in several occasions, we record it here.
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Theorem 3. Let A and B be two Γ -graded rings. The following are equivalent:

(1) Mod -A is graded equivalent to Mod -B;
(2) Gr -A is graded equivalent to Gr -B;
(3) B ∼=gr EndA(P ) for a graded A-progenerator P ;
(4) B ∼=gr eMn(A)(δ)e for a full homogeneous idempotent e ∈Mn(A)(δ), where δ = (δ1, . . . , δn), δi ∈ Γ .

3. Grading on Leavitt path algebras

For an arbitrary group Γ , one can equip L(E) with a Γ -graded structure. This will be needed
in the note (see the proof of Theorem 30). We first recall the definition of a Leavitt path algebra
associated to a directed graph (see [1,6]) and then discuss the grading on these algebras.

A directed graph E = (E0, E1, r, s) consists of two countable sets E0, E1 and maps r, s : E1 → E0.
The elements of E0 are called vertices and the elements of E1 edges. If s−1(v) is a finite set for every
v ∈ E0, then the graph is called row-finite. In this setting, if the number of vertices, i.e., |E0|, is finite,
then the number of edges, i.e., |E1|, is finite as well and we call E a finite graph. In this paper we
only consider finite graphs.

For a graph E = (E0, E1, r, s), a vertex v for which s−1(v) is empty is called a sink, while a vertex
w for which r−1(w) is empty is called a source. An edge with the same source and range is called
a loop. A path μ in a graph E is a sequence of edges μ = μ1 . . .μk , such that r(μi) = s(μi+1), 1 �
i � k − 1. In this case, s(μ) := s(μ1) is the source of μ, r(μ) := r(μk) is the range of μ, and k is the
length of μ which is denoted by |μ|. We consider a vertex v ∈ E0 as a trivial path of length zero with
s(v) = r(v) = v . By En , n ∈ N, we denote the set of paths of length n. If μ is a nontrivial path in E ,
and if v = s(μ) = r(μ), then μ is called a closed path based at v . If μ = μ1 . . .μk is a closed path
based at v = s(μ) and s(μi) 
= s(μ j) for every i 
= j, then μ is called a cycle.

Definition 4 (Leavitt path algebras). For a row-finite graph E and a ring R with identity, the Leavitt
path algebra of E , denoted by LR(E), is the algebra generated by the sets {v | v ∈ E0}, {α | α ∈ E1} and
{α∗ | α ∈ E1} with the coefficients in R , subject to the relations

(1) vi v j = δi j vi for every vi, v j ∈ E0;
(2) s(α)α = αr(α) = α and r(α)α∗ = α∗s(α) = α∗ for all α ∈ E1;
(3) α∗α′ = δαα′r(α), for all α,α′ ∈ E1;
(4)

∑
{α∈E1, s(α)=v} αα∗ = v for every v ∈ E0 for which s−1(v) is non-empty.

Here the ring R commutes with the generators {v,α,α∗ | v ∈ E0, α ∈ E1}. Throughout this note
the coefficient ring is a fixed field K and we simply write L(E) instead of LK (E). The elements α∗
for α ∈ E1 are called ghost edges. One can show that L(E) is a ring with identity if and only if the
graph E is finite (otherwise, L(E) is a ring with local identities).

Recall that a ring A is called a Γ -graded ring, or simply a graded ring, if A = ⊕
γ ∈Γ Aγ , where Γ is

an (abelian) group, each Aγ is an additive subgroup of A and Aγ Aδ ⊆ Aγ +δ for all γ , δ ∈ Γ .
The set Ah = ⋃

γ ∈Γ Aγ is called the set of homogeneous elements of A. The non-zero elements of
Aγ are called homogeneous of degree γ and we write deg(a) = γ if a ∈ Aγ \{0}. We call the set

ΓA = {γ ∈ Γ | Aγ 
= 0}
the support of A. We say A has a trivial grading, or A is concentrated in degree zero if the support of
A is the trivial group, i.e., A0 = A and Aγ = 0 for γ ∈ Γ \{0}. For a Γ -graded ring A (with identity
element 1), one can prove that 1 is a homogeneous element of degree 0, A0 is a subring of A and for
an invertible element a ∈ Aγ , its inverse a−1 is homogeneous of degree −γ , i.e., a−1 ∈ A−γ .

A Γ -graded ring A = ⊕
γ ∈Γ Aγ is called a strongly graded ring if Aγ Aδ = Aγ +δ for all γ , δ ∈ Γ .

One can show that A is strongly graded if and only if 1 ∈ Aγ A−γ for any γ ∈ Γ . For the theory of
graded rings, we refer the reader to [22,27].
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Let Γ be an arbitrary group with the identity element e. Let w : E1 → Γ be a weight map and
further define w(α∗) = w(α)−1, for α ∈ E1 and w(v) = e for v ∈ E0. The free K -algebra generated by
the vertices, edges and ghost edges is a Γ -graded K -algebra. Furthermore, the Leavitt path algebra is
the quotient of this algebra by relations in Definition 4 which are all homogeneous. Thus LK (E) is a
Γ -graded K -algebra.

Example 5 (Different gradings on a Leavitt path algebras). Consider the graphs

E : • f • e F : •

g

•

h

Assigning 0 to vertices and 1 to edges in the graphs in the usual manner, by [19, Theorem 4.2]
we obtain L(E) ∼=gr M2(K [x, x−1])(0,1) whereas L(F ) ∼=gr M2(K [x2, x−2])(0,1) and one can easily
observe that LK (E) �gr LK (F ).

However assigning 1 for the degree of f and 2 for the degree of e in E and 1 for the degrees of
g and h in F , the proof of [19, Theorem 4.2] shows that LK (E) ∼= M2(K [x2, x−2])(0,1) and LK (F ) ∼=
M2(K [x2, x−2])(0,1). So with these gradings, LK (E) ∼=gr LK (F ).

The natural and standard grading given to a Leavitt path algebra is a Z-grading by setting
deg(v) = 0, for v ∈ E0, deg(α) = 1 and deg(α∗) = −1 for α ∈ E1. If μ = μ1 . . .μk , where μi ∈ E1,
is an element of L(E), then we denote by μ∗ the element μ∗

k . . .μ∗
1 ∈ L(E). Further we de-

fine v∗ = v for any v ∈ E0. Since α∗α′ = δαα′r(α), for all α,α′ ∈ E1, any word in the generators
{v,α,α∗ | v ∈ E0, α ∈ E1} in L(E) can be written as μγ ∗ where μ and γ are paths in E (vertices
are considered paths of length zero). The elements of the form μγ ∗ are called monomials.

Taking the grading into account, one can write L(E) = ⊕
k∈ZL(E)k where

L(E)k =
{∑

i

riαiβ
∗
i

∣∣∣ αi, βi are paths, ri ∈ K , and |αi| − |βi| = k for all i

}
.

The following theorem was proved in [19] which determined finite graphs whose associated Leavitt
path algebras are strongly Z-graded (see also [21] for another proof by realising Leavitt path algebras
as corner skew Laurent polynomial rings).

Theorem 6. Let E be a finite graph. Then L(E) is strongly graded if and only if E does not have sinks.

This theorem along with Dade’s theorem (see Section 4.2) will be used throughout this paper
to pass from the graded K -theory to the nongraded K -theory of ring of homogeneous elements of
degree zero.

4. Graded Grothendieck groups and graded dimension groups

For an abelian monoid V , we denote by V + the group completion of V . This gives a left adjoint
functor to the forgetful functor from the category of abelian groups to abelian monoids. When the
monoid V has a Γ -module structure, where Γ is a group, then V + inherits a natural Γ -module
structure, or equivalently, Z[Γ ]-module structure.

The graded Grothendieck group of a graded ring is constructed as the completion of the abelian
monoid of isomorphic classes of graded finitely generated projective modules (i.e., graded finitely
generated modules which are also projective). Namely, for a Γ -graded ring A and a graded finitely
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generated projective (right) A-module P , let [P ] denote the class of graded finitely generated projec-
tive modules graded isomorphic to P . Then the monoid

Vgr(A) = {[P ] ∣∣ P is graded finitely generated projective A-module
}

(2)

has a Γ -module structure defined as follows: for γ ∈ Γ and [P ] ∈ Vgr(A), γ .[P ] = [P (γ )]. The group
Vgr(A)+ is called the graded Grothendieck group and is denoted by K gr

0 (A), which as the above dis-
cussion shows is a Z[Γ ]-module. This extra Z[Γ ]-module carries a substantial information about the
graded ring A.

The main aim of this note is to concentrate on the graded Grothendieck group of Leavitt path
algebras as a capable invariant for these algebras. This line of study started in [20].

4.1. Let V be an abelian monoid, Γ a group and V be a (left) Γ -module. Let � be a reflexive and
transitive relation on V which respects the monoid and the module structures, i.e., for γ ∈ Γ and
x, y, z ∈ V , if x � y, then x + z � y + z and γ x � γ y. We call V a Γ -pre-ordered module. We call V
a pre-ordered module when Γ is clear from the context. The cone of V is defined as {x ∈ V | x � 0}
and denoted by V+ . The set V+ is a Γ -submonoid of V , i.e., a submonoid which is closed under the
action of Γ . In fact, V is a Γ -pre-ordered module if and only if there exists a Γ -submonoid of V .
(Since V is a Γ -module, it can be considered as a Z[Γ ]-module.) An element u ∈ V+ is called an
order-unit if for any x ∈ V , there are α1, . . . ,αn ∈ Γ , n ∈N, such that

n∑
i=1

αiu � x. (3)

As usual, in this setting, we only consider homomorphisms which preserve the pre-ordering, i.e.,
a Γ -homomorphism f : V → W , such that f (V+) ⊆ W+ .

For a Γ -graded ring A, K gr
0 (A) is a pre-ordered abelian group with the set of isomorphism classes

of graded finitely generated projective right A-modules as the cone of ordering, denoted by K gr
0 (A)+

(i.e., the image of Vgr(A) under the natural homomorphism Vgr(A) → K gr
0 (A)). Furthermore, the fol-

lowing shows that [A] is an order-unit for the pre-ordered group K gr
0 (A). If x ∈ K gr

0 (A), then there are
graded finitely generated projective modules P and P ′ such that x = [P ] − [P ′]. But there is a graded
module Q such that P ⊕ Q ∼= An(α), where α = (α1, . . . ,αn), αi ∈ Γ . Now

[
An(α)

] − x = [P ] + [Q ] − [P ] + [
P ′] = [Q ] + [

P ′] = [
Q ⊕ P ′] ∈ K gr

0 (A)+.

This shows that
∑n

i=1 αi[A] = [An(α)] � x which satisfies (3).
We call the triple (K gr

0 (A), K gr
0 (A)+, [A]) the graded dimension group (see Section 5 for some back-

ground on dimension groups).
In [20] it was conjectured that the graded dimension group is a complete invariant for unital

Leavitt path algebras. Namely, for finite graphs E and F , L(E) ∼=gr L(F ) if and only if there is an order
preserving Z[x, x−1]-module isomorphism

φ : K gr
0

(
L(E)

) → K gr
0

(
L(F )

)
(4)

such that φ([L(E)]) =L(F ). We denote the existence of such an order isomorphism by

(
K gr

0

(
L(E)

)
, K gr

0

(
L(E)

)
+,

[
L(E)

]) ∼= (
K gr

0

(
L(F )

)
, K gr

0

(
L(F )

)
+,

[
L(F )

])
.

It was shown in [20] that the conjecture is valid for the so-called polycephaly graphs, which include
acyclic, comets and multi-headed graphs.
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4.2. Let A be a strongly Γ -graded ring. By Dade’s theorem (see [13, Theorem 2.8] and [27,
Theorem 3.1.1]), the functor (−)0 : Gr -A → Mod -A0, M �→ M0, is an additive functor with an in-
verse − ⊗A0 A : Mod -A0 → Gr -A so that it induces an equivalence of categories. This implies that
K gr

0 (A) ∼= K0(A0), where A0 is the ring of homogeneous elements of degree zero. Furthermore, under
this isomorphism, K gr

0 (A)+ maps onto K0(A0)+ and [A] to [A0].
In the case of Leavitt path algebras, combining Dade’s theorem with Theorem 6, we get the fol-

lowing corollary.

Corollary 7. Let E be a finite graph with no sinks. Then

(1) Gr -L(E) is equivalent to Mod -L(E)0 via the functor M �→ M0;
(2) the equivalence in (1) induces an isomorphism of pre-ordered groups

(
K gr

0

(
L(E)

)
, K gr

0

(
L(E)

)
+,

[
L(E)

]) ∼= (
K0

(
L(E)0

)
, K0

(
L(E)0

)
+,

[
L(E)0

])
.

Since the ring L(E)0 of homogeneous part of degree zero is an ultramatricial K -algebra (see Sec-
tion 4.3), the above corollary coupled with Goodearl–Handelman version [16] of Elliott’s theorem [14]
below gives us a tool for the classification of Leavitt path algebras.

Theorem 8. Let A and B be ultramatricial K -algebras. Then

(1) A is Morita equivalent to B if and only if K0(A) ∼= K0(B) are pre-ordered abelian groups;
(2) A is isomorphic to B as a K -algebra if and only if

(
K0(A), K0(A)+, [A]) ∼= (

K0(B), K0(B)+, [B]).
4.3. For the Leavitt path algebra L(E), the structure of the ring of homogeneous elements of degree

zero, L(E)0, is known and can be represented by a stationary Bratteli diagram. Ordering the vertices
of the finite graph E , say, {u1, u2, . . . , un}, then there are AE(i, j)-lines connecting ui from the one
row of the Bratteli diagram to the u j of the next row. Here AE is the adjacency matrix of E . Since we
need to calculate K0(L(E)0), we recall the description of L(E)0 in the setting of finite graphs with no
sinks (see the proof of Theorem 5.3 in [6] which is inspired by [12, Proposition 2.3] in the setting of
graph C∗-algebras). Let L0,n be the linear span of all elements of the form pq∗ with r(p) = r(q) and
|p| = |q| � n. Then

L(E)0 =
∞⋃

n=0

L0,n, (5)

where the transition inclusion L0,n → L0,n+1 is to identify pq∗ with r(p) = v by

∑
{α|s(α)=v}

pα(qα)∗.

Note that since E does not have sinks, for any v ∈ E0 the set {α | s(α) = v} is not empty.
For a fixed v ∈ E0, let Lv

0,n be the linear span of all elements of the form pq∗ with |p| = |q| = n
and r(p) = r(q) = v . Arrange the paths of length n with the range v in a fixed order pv

1 , pv
2 , . . . , pv

kv
n

,

and observe that the correspondence of pv
i pv

j
∗ to the matrix unit ei j gives rise to a ring isomorphism

Lv
0,n

∼= Mkv (K ). Furthermore, Lv
0,n , v ∈ E0, form a direct sum. This implies that
n
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L0,n ∼=
⊕
v∈E0

Mkv
n
(K ),

where kv
n , v ∈ E0, is the number of paths of length n with the range v . The inclusion map L0,n →

L0,n+1 is

At
E :

⊕
v∈E0

Mkv
n
(K ) −→

⊕
v∈E0

Mkv
n+1

(K ). (6)

This means (A1, . . . , Al) ∈ ⊕
v∈E0 Mkv

n
(K ) is sent to

(
l∑

j=1

n j1 A j, . . . ,

l∑
j=1

n jl A j

)
∈

⊕
v∈E0

Mkv
n+1

(K ),

where n ji is the number of edges connecting v j to vi and

l∑
j=1

k j A j =

⎛
⎜⎜⎝

A1
A1

. . .

Al

⎞
⎟⎟⎠

in which each matrix is repeated k j times down the leading diagonal and if k j = 0, then A j is omitted.
Writing L(E)0 = lim−→n

L0,n , since the Grothendieck group K0 respects the direct limit, we have
K0(L(E)0) ∼= lim−→n

K0(L0,n). Since K0 of (Artinian) simple algebras are Z, the ring homomorphism
L0,n → L0,n+1 induces the group homomorphism

ZE0 At
E−→ ZE0

,

where At
E :ZE0 → ZE0

is multiplication from left which is induced by the homomorphism (6).
For a finite graph E with no sinks, with n vertices and the adjacency matrix A, by Theorem 6,

K gr
0 (L(E)) ∼= K0(L(E)0). Thus K gr

0 (L(E)) is the direct limit of the ordered direct system

Zn At−→ Zn At−→ Zn At−→ · · · , (7)

where the ordering in Zn is defined point-wise (i.e., the positive cone is Nn).

4.4. Since for a finite graph with no sinks, the graded Grothendieck group of its associated Leavitt
path algebra is the direct limit of the form (7), here we recall two different presentations for the
direct limit of abelian groups. This will be used in Example 10 and Lemma 11.

In Section 4.3 it was shown that for a finite graph with no sinks its graded Grothendieck group is
a direct limit of a direct system of ordered free abelian groups with a matrix A (the transpose of the
adjacency matrix of the graph) acting as an order preserving group homomorphism (from the left) as
follows

Zn A−→ Zn A−→ Zn A−→ · · · , (8)

where the ordering in Zn is defined point-wise. The direct limit of this system, lim−→A
Zn , is an ordered

group and can be described as follows. Consider the pair (a,k), where a ∈ Zn and k ∈ N, and define
the equivalence relation (a,k) ∼ (b,k′) if Ak′′−ka = Ak′′−k′

b for some k′′ ∈ N. Let [a,k] denote the
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equivalence class of (a,k). Clearly [Ana,n + k] = [a,k]. Then it is not difficult to show that the direct
limit of the system (8) is the abelian group consisting of equivalence classes [a,k], a ∈ Zn , k ∈N, with
addition defined by

[a,k] + [
b,k′] = [

Ak′
a + Akb,k + k′].

The positive cone of this ordered group is the set of elements [a,k], where a ∈ Z+n , k ∈ N. Further-
more, there is automorphism δA : lim−→A

Zn → lim−→A
Zn defined by δA([a,k]) = [Aa,k].

There is another presentation for lim−→A
Zn which is sometimes easier to work with. Consider the

set

	A = {
v ∈ AnQn

∣∣ Ak v ∈ Zn, for some k ∈N
}
. (9)

The set 	A forms an ordered abelian group with the usual addition of vectors and the positive cone

	+
A = {

v ∈ AnQn
∣∣ Ak v ∈ Z+n

, for some k ∈N
}
. (10)

Furthermore, there is automorphism δA :	A → 	A defined by δA(v) = Av . The map

φ :	A −→ lim−→
A

Zn

v �−→ [
Ak v,k

]
, (11)

where k ∈ N such that Ak v ∈ Zn , is an isomorphism which respects the action of A and the ordering,
i.e., φ(	+

A ) = (lim−→A
Zn)+ and φ(δA(v)) = δAφ(v).

In the case of finite graphs with no sinks, there is a good description of the action of the group on
the graded Grothendieck group which we recall here.

Lemma 9. Let E be a finite graph with no sinks and let A=L(E).

(1) Any graded finitely generated projective right A-module is generated by uA(i) up to isomorphism, where
u ∈ E0 and i ∈ Z, i.e.,

Vgr(A) = 〈[
uA(i)

] ∣∣ u ∈ E0, i ∈ Z
〉
.

(2) For i � 0,

x
[
uA(i)

] = [
uA(i + 1)

] =
∑

{α∈E1|s(α)=u}

[
r(α)A(i)

]
. (12)

Proof. (1) We first observe that for α ∈ E1 we have

αA ∼=gr r(α)A,

α∗A ∼=gr r(α)A(−1). (13)

For the first isomorphism, consider the right A-module homomorphism
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θ :αA −→ r(α)A

αa �−→ α∗αa.

Clearly θ is an isomorphism. Furthermore, for n ∈ Z, and αa ∈ (αA)n = αAn , a is homogeneous of
degree n. So θ(αa) = α∗αa = r(α)a ∈ r(α)An = (r(α)A)n . This shows that θ is a graded A-module
isomorphism.

For the second isomorphism in (13), consider the identity map

α∗A −→ r(α)A(−1)

α∗a �−→ r(α)α∗a.

One can see that this map respects the grading and this gives the graded isomorphism between the
two modules. Putting the two isomorphisms of (13) together, one can easily see that, for two paths α
and β with r(α) = r(β) one has

αβ∗A ∼=gr r(β)A
(−|β|). (14)

Now let P be a graded finitely generated projective A-module. Since A is strongly graded (Theo-
rem 6), P0 is a finitely generated projective A0-module such that P0 ⊗A0 A ∼=gr P (see Section 4.2).
On the other hand since A0 is an ultramatricial algebra (see (5)), P0 extends from a finitely gener-
ated projective module of a ring in the direct limit of A0, i.e., there is a finitely generated projective
L0,n module P ′ such that P ′ ⊗L0,n A0 = P0 (see [16, Lemma 15.10]). On the other hand since L0,n is
a semisimple algebra, P ′ is generated by the projective modules pq∗L0,n for paths p and q of length
n with r(p) = r(q). Then by (14)

(
pq∗L0,n ⊗L0,n A0

) ⊗A0 A ∼=gr pq∗A ∼=gr r(q)A(−n).

This shows that, up to isomorphism, P is generated by uA(i), where u ∈ E0 and i ∈ Z.
(2) First notice that for i � 0,

Ai+1 =
∑
α∈E1

αAi .

It follows

uAi+1 =
⊕

{α∈E1|s(α)=u}
αAi

as A0-modules. Using the fact that An ⊗A0 A ∼= A(n), n ∈ Z, and the fact that αAi ∼= r(α)Ai as
A0-module, we get

uA(i + 1) ∼=
⊕

{α∈E1|s(α)=u}
r(α)A(i)

as graded A-modules. This gives (12). �
Recall that K gr

0 (A) is the group completion of Vgr(A). The action of N[x, x−1] on Vgr(A) and thus
the action of Z[x, x−1] on K gr

0 (A) is defined on generators by x j[uA(i)] = [uA(i + j)], where i, j ∈ Z.
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Example 10. For the graph

E : • •

with the adjacency AE = ( 1 2
1 0

)
, the Bratteli diagram associated to L(E)0 is

• • •

• • •

and L(E)0 is the direct limit of the system

K ⊕ K
At

E−→M2(K ) ⊕M2(K )
At

E−→M4(K ) ⊕M4(K )
At

E−→ · · ·
(a,b) �→

(
a 0
0 b

)
⊕

(
a 0
0 a

)
.

So K gr
0 (L(E)) is the direct limit of the direct system

Z2 At
E−→ Z2 At

E−→ Z2 At
E−→ · · · .

Since det(At
E ) = −2, one can easily calculate that

K gr
0

(
L(E)

) ∼= Z[1/2] ⊕Z[1/2].

Furthermore [L(E)] ∈ K gr
0 (L(E)) is represented by (1,1) ∈ Z[1/2] ⊕ Z[1/2]. Adopting (9) for the de-

scription of K gr
0 (L(E)), since the action of x on K gr

0 (L(E)) represented by action of At
E from the left,

we have x(a,b) = (a + b,2a). Furthermore, considering (10) for the positive cone, At
E

k
(a,b) is eventu-

ally positive, if v(a,b) > 0, where v = (2,1) is the Perron eigenvector of AE (see [26, Lemma 7.3.8]).
It follows that

K gr
0

(
L(E)

)+ = 	+
At

E
= {

(a,b) ∈ Z[1/2] ⊕Z[1/2] ∣∣ 2a + b > 0
} ∪ {

(0,0)
}
.

5. Krieger’s dimension groups and Wagoner’s dimension modules

The Grothendieck group K0 is a pre-ordered abelian group with the set of isomorphism classes of
finitely generated projective modules as its positive cone. For the category of ultramatricial algebras,
K0 along with its positive cone and the position of the identity is a complete invariant (see [14]
and [17, §15]). Motivated by this, Krieger in [24] defined an invariant for the irreducible shifts of
finite type. In general, a nonnegative integral n × n matrix A gives rise to a stationary system. This in
turn gives a direct system of ordered free abelian groups with A acting as an order preserving group
homomorphism as follows

Zn A−→ Zn A−→ Zn A−→ · · · ,
where the ordering in Zn is defined point-wise. The direct limit of this system, 	A := lim−→A

Zn (i.e.,

the K0 of the stationary system), along with its positive cone, 	+ , and the automorphism which is in-
duced by multiplication by A on the direct limit, δA :	A → 	A , is the invariant considered by Krieger,



254 R. Hazrat / Journal of Algebra 384 (2013) 242–266
now known as Krieger’s dimension group. Following [26], we denote this triple by (	A,	+
A , δA). It

can be shown that two matrices A and B are shift equivalent (see Section 6) if and only if their
associated Krieger’s dimension groups are isomorphic ([24, Theorem 4.2] and [26, Theorem 7.5.8], see
also [26, §7.5] for a detailed algebraic treatment). Wagoner noted that the induced structure on 	A

by the automorphism δA makes 	A a Z[x, x−1]-module (where the action of δA is multiplication by
x−1, see Lemma 11) which was systematically used in [35,36] (see also [11, §3]).

The graded Grothendieck group of a Z-graded ring has a natural Z[x, x−1]-module structure (see
Section 4) and the following observation (Lemma 11) shows that the graded Grothendieck group of
the Leavitt path algebra associated to a matrix A coincides with the Krieger dimension group of the
shift of finite type associated to At , i.e., the graded dimension group of a Leavitt path algebra coincides
with Krieger’s dimension group,

(
K gr

0

(
L(E)

)
, K gr

0

(
L(E)

)+) ∼= (
	At ,	+

At

)
.

This will provide a link between the theory of Leavitt path algebras and symbolic dynamics. This
lemma was also proved differently by Ara and Pardo in [5].

Lemma 11. Let E be a finite graph with no sinks with the adjacency matrix A. Then there is an isomorphism
φ : K gr

0 (L(E)) → 	At such that φ(xα) = δAt φ(α), α ∈L(E), x ∈ Z[x, x−1] and φ(K gr
0 (L(E))+) = 	+

At .

Proof. Since by Theorem 6, L(E) is strongly graded, there is an ordered isomorphism K gr
0 (L(E)) →

K0(L(E)0). Thus by Section 4.3, (see (7)) the ordered group K gr
0 (L(E)) coincides with the ordered

group 	At . We only need to check that their module structures are compatible. It is enough to show
that the action of x on K gr

0 coincides with the action of At on K0(L(E)0), i.e., φ(xα) = δAt φ(α).
Set A = L(E). Since graded finitely generated projective modules are generated by uA(i), where

u ∈ E0 and i ∈ Z, it suffices to show that φ(x[uA]) = δAt φ([uA]). Since the image of uA in K0(A0) is
[uA0], and A0 = ⋃∞

n=0 L0,n , (see (5)) using the presentation of K0 given in Section 4.4, we have

φ
([uA]) = [uA0] = [uL0,0,1] = [u,1].

Thus

δAt φ
([uA]) = δAt

([u,1]) = [
At u,1

] =
∑

{α∈E1|s(α)=u}

[
r(α),1

]
.

On the other hand,

φ
(
x[uA]) = φ

([
uA(1)

]) = φ

( ∑
{α∈E1|s(α)=u}

[
r(α)A

]) =
∑

{α∈E1|s(α)=u}

[
r(α)A0

]

=
∑

{α∈E1|s(α)=u}

[
r(α)L0,0,1

] =
∑

{α∈E1|s(α)=u}

[
r(α),1

]
. (15)

Thus φ(x[uA]) = δAt φ([uA]). This finishes the proof. �
It is easy to see that two matrices A and B are shift equivalent if and only if At and Bt are shift

equivalent. Combining this with Lemma 11 and the fact that Krieger’s dimension group is a complete
invariant for shift equivalent we have achieved our first main result.
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Corollary 12. Let E and F be finite graphs with no sinks and AE and A F be their adjacency matrices, re-
spectively. Then AE is shift equivalent to A F if and only if there is an order preserving Z[x, x−1]-module
isomorphism K gr

0 (L(E)) ∼= K gr
0 (L(F )).

6. Conjugacy, shift equivalence and graded Morita equivalence

6.1. The notion of the shift equivalence for matrices was introduced by Williams [37] (see also [26,
§7]) in an attempt to provide a computable machinery for determining the conjugacy between two
shifts of finite type. Recall that two square nonnegative integer matrices A and B are called elementary
shift equivalent, and denoted by A ∼ES B , if there are nonnegative matrices R and S such that A =
R S and B = S R . The equivalence relation ∼S on square nonnegative integer matrices generated by
elementary shift equivalence is called strong shift equivalence. The weaker notion of shift equivalence
is defined as follows. The nonnegative integer matrices A and B are called shift equivalent if there
are nonnegative matrices R and S such that Al = R S and Bl = S R , for some l ∈ N, and AR = R B and
S A = B S .

6.2. We recall the type of the graphs which are of interest in symbolic dynamics. It turns out the
Leavitt path algebras associated to this class of graphs are very interesting algebras (i.e., purely infinite
simple unital algebras [2]).

Let E be a finite directed graph. Then E is irreducible if given any two vertices v and w in E , there
is a path from v to w . E is called essential if there are neither sources nor sinks in E , and E is trivial
if E consists of a single cycle with no other vertices or edges (see [26, Definition 2.2.13] and [15]).
A set of graphs which is simultaneously irreducible, essential, and nontrivial is of great interest in
the theory of shifts of finite type. Indeed, an edge that begins at a source or ends at a sink does
not appear in any bi-infinite path so the only part of an arbitrary finite graph E which appears in
symbolic dynamic is the graph with no sources and sinks which is obtained by repeatedly removing
all the sources and sinks from E (see [26, the remark after Example 2.2.8 and Proposition 2.2.10]).
The following result connects this class of graphs to a very interesting class of Leavitt path algebras.
Let E be a finite graph. Then E is irreducible, nontrivial, and essential if and only if E contains no
sources, and L(E) is purely infinite simple (see [4, Lemma 1.17]).

Starting from a graph E , and a partition P of the edges, one can obtain new graphs, called out-
splitting, denoted by Es(P), and in-splitting, denoted by Er(P). The converse of these processes are
called out-amalgamation and in-amalgamation (see [26, §2.4] and [4, Definitions 1.9 and 1.12]). Fur-
thermore, when the graph has a source, say v , there is a source elimination graph E\v , which is
obtained by removing v and all the edges emitting from v from E (see [4, Definition 1.2]).

The following observation will be used in Proposition 15. Let E be a finite graph, let v ∈ E0, and let
P be a partition of the edges of E . Then E is essential (resp. nontrivial, resp. irreducible) if and only
if Es(P), Er(P), and E\v are each essential (resp. nontrivial, resp. irreducible) (see [4, Lemma 1.16]).

In [4, Proposition 1.4] it was shown that for a finite graph E such that L(E) is simple, removing
a source vertex would not change the category of the corresponding Leavitt path algebra up to the
Morita equivalence. We need a similar result in the graded setting without an extra assumption of
simplicity (see [4, Proposition 3.1] for the general case in the nongraded setting). Thanks to Theo-
rem 3, once this is proved it gives the nongraded statement naturally.

Proposition 13. Let E be a finite graph with no sinks and at least two vertices. Let v ∈ E0 be a source. Then
L(E\v ) is graded Morita equivalent to L(E). Consequently L(E\v) is Morita equivalent to L(E).

Proof. Since E\v is a complete subgraph of E , there is a (non-unital) graded algebra homomorphism
φ :L(E\v) → L(E), such that φ(u) = u, φ(e) = e and φ(e∗) = e∗ , where u ∈ E0\{v} and e ∈ E1. The
graded uniqueness theorem [34, Theorem 4.8] implies φ is injective. Thus L(E\v ) ∼=gr φ(L(E\v )). It
is not difficult to see that φ(L(E\v )) = pL(E)p, where p = ∑

u∈E0\v
u. This immediately implies that

L(E\v ) is graded Morita equivalent to pL(E)p. On the other hand, the (graded) ideal generated by
p = ∑

u∈E0 u coincides with the (graded) ideal generated by {u | u ∈ E0\v }. But the smallest hereditary

\v
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and saturated subset of E0 containing E0\v is E0. Thus by [6, Theorem 5.3] the ideal generated by

{u | u ∈ E0\v} is L(E). This shows p is a full homogeneous idempotent in L(E). Thus pL(E)p is graded
Morita equivalent to L(E) (see Example 2). Putting these together we get L(E\v ) is graded Morita
equivalent to L(E). The last part of the proposition follows from the Green–Gordon theorem (see
Section 2). �
Remark 14. The Morita equivalence of Proposition 13 induces an isomorphism between K gr

0 (L(E\v))

and K gr
0 (L(E)). However this isomorphism does not take [L(E\v )] to [L(E)].

We are in a position to relate the notion of (strongly) shift equivalent in matrices with the graded
Morita theory of Leavitt path algebras associated to those matrices, so that we achieve our second
main result.

Proposition 15.

(1) Let E be an essential graph and F be a graph obtained from an in-splitting or out-splitting of the graph E.
Then L(E) is graded Morita equivalent to L(F ).

(2) For essential graphs E and F , if the adjacency matrices AE and A F are strongly shift equivalent then L(E)

is graded Morita equivalent to L(F ).
(3) For graphs E and F with no sinks, if L(E) is graded Morita equivalent to L(F ), then the adjacency matrices

AE and A F are shift equivalent.

Proof. (1) First suppose E is an essential graph and Er(P) the in-split graph from E using a parti-
tion P . For each v ∈ E0, define Q v = v1, which exists by the assumption that E has no sources. For e ∈
E v

i , define Te = ∑
f ∈s−1(v) e1 f i f ∗

1 and T ∗
e = ∑

f ∈s−1(v) f1 f ∗
i e∗

1. In [4, Proposition 1.11], it was proved

that {Q v , Te, T ∗
e | v ∈ E0, e ∈ E1} is an E-family which in turn induces a K -algebra homomorphism

π :L(E) −→ L
(

Er(P)
)
,

v �−→ Q v = v1,

e �−→ Te =
∑

f ∈s−1(v)

e1 f i f ∗
1 ,

e∗ �−→ T ∗
e =

∑
f ∈s−1(v)

f1 f ∗
i e∗

1. (16)

Furthermore, it was shown that π(L(E)) = pL(Er(P))p where p = π(1L(E)) = ∑
v∈E0 v1.

Since π(v) = v1 
= 0 (see [16, Lemma 1.5]), the graded uniqueness theorem [34, Theorem 4.8]
implies π is injective. Furthermore (16) shows that π is a graded map. Thus

L(E) ∼=gr pL
(

Er(P)
)

p.

We will show that p is a full idempotent in L(Er(P)). The (graded) ideal generated by p = ∑
v∈E0 v1

coincides with the (graded) ideal generated by {v1 | v ∈ E0}. But the smallest hereditary and saturated
subset of Er(P)0 containing {v1 | v ∈ E0} is Er(P)0. Thus by [6, Theorem 5.3] the ideal generated by
{v1 | v ∈ E0} is L(Er(P)). This shows p is a full homogeneous idempotent in L(E). Now in Theo-
rem 3(4) by setting e = p, n = 1, B = L(E) and A = L(Er(P)), we get that L(E) is graded Morita
equivalent to L(Er(P)).

On the other hand, if Es(P) is the out-split graph from E using a partition P , then by [3, Theo-
rem 2.8], there is a graded K -algebra isomorphism π :L(E) →L(Es(P)). Again, Theorem 3(4) implies
that L(E) is graded Morita equivalent to L(Es(P)).
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(2) If AE is strongly shift equivalent to A F , a combination of the Williams theorem [26, Theo-
rem 7.2.7] and the Decomposition theorem [26, Theorem 7.1.2, Corollary 7.1.5] implies that the graph
F can be obtained from E by a sequence of out-splittings, in-splittings and the inverses of these,
namely, out-amalgamations and in-amalgamation. All the graphs which appear in this sequence are
essential (see Section 6.2). Now a repeated application of part (1) gives that L(E) is graded Morita
equivalent to L(F ).

(3) Since Gr -L(E) ≈gr Gr -L(F ), there is an order preserving Z[x, x−1]-module isomorphism
K gr

0 (L(E)) ∼=gr K gr
0 (L(F )) (see Section 2). Thus by Corollary 12, AE and A F are shift equivalent. �

Remark 16. Proposition 15(3) shows that if L(E) ≈gr L(F ) then the adjacency matrices of E and F
are shift equivalent. One thinks that the converse of this statement is also valid. In fact, if AE is
shift equivalent to A F then by Corollary 12, there is an order preserving Z[x, x−1]-module isomor-
phism K gr

0 (L(E)) ∼= K gr
0 (L(F )). Since L(E) and L(F ) are strongly graded, this implies K0(L(E)0) ∼=

K0(L(F )0) as partially ordered abelian groups. Since L(E)0 and L(F )0 are ultramatricial algebras,
by [17, Corollary 15.27] L(E)0 is Morita equivalent to L(F )0. Now the following diagram shows that
Gr -L(E) is equivalent to Gr -L(F ):

Mod -L(E)0

−⊗L(E)

Mod -L(F )0

−⊗L(F )

Gr -L(E) Gr -L(F ).

However it is not clear whether this equivalence is graded as in Definition 1(1).

Recall that for a graph, the associated Leavitt path algebra is purely infinite simple unital, if and
only if the graph is finite, any vertex is connected to a cycle and any cycle has an exit (see [2] and
[4, p. 205]). Note that for a finite graph, the condition of not having a sink is equivalent to any vertex
be connected to a cycle. Thus by Theorem 6, purely infinite simple unital Leavitt path algebras are
strongly graded.

Example 17 (Purely infinite simple and its transpose are not graded Morita equivalent). We have seen most
of the results already proved in the literature on Morita equivalence, such as in-splitting, out-splitting,
and removing of the sources can be extended to a stronger graded Morita equivalence. However this
is not always the case. In [4, Proposition 3.10], it was shown that for a finite graph E without sources
such that L(E) is purely infinite simple, L(E) and L(Eop) are Morita equivalent. (Here Eop is the
opposite or transpose of the graph E , i.e., Eop is obtained from E by reversing the arrows, so At

E = AEop .
In [4], Eop is denoted by Et .) However there are examples of the graph E such that L(E) and L(Eop)

are not graded Morita equivalent. Consider the graph E with the adjacency matrix

AE =
(

19 5
4 1

)
.

The Leavitt path algebra L(E) is a purely infinite simple unital algebra with no sources. If L(E) is
graded Morita equivalent to L(Eop), by Proposition 15(3), AE and AEop = At

E are shift equivalent.
However, it is known that AE and At

E are not shift equivalent (see [26, Example 7.4.19]).

Example 18 (Strongly shift equivalence does not imply isomorphism). By Proposition 15 if two essential
graphs are strongly shift equivalent then their associated Leavitt path algebras are graded Morita
equivalent. The following example shows that the strongly shift equivalence does not however imply
that the Leavitt path algebras are isomorphic.
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Consider the graphs

E : • • Eop : • • (17)

The adjacency matrices of E and Eop are strongly shift equivalent as the following computation
shows. Thus by Proposition 15, L(E) ≈gr L(Eop). However we will show L(E) �gr L(Eop).

First, AE = ( 1 2
1 0

)
and AEop = ( 1 1

2 0

)
. Notice that AE = At

Eop . Let R1 = ( 1 1 0
0 0 1

)
and S1 =

( 1 1
0 1
1 0

)
. Then

AE = R1 S1 and set E1 := S1 R1 =
( 1 1 1

0 0 1
1 1 0

)
. Let R2 =

( 0 1 1
1 0 0
0 0 1

)
and S2 =

( 0 0 1
0 0 1
1 1 0

)
. Then E1 = R2 S2 and set

E2 := S2 R2 =
( 0 0 1

0 0 1
1 1 1

)
. Finally, let R3 =

( 1 0
1 0
1 1

)
and S3 = ( 0 0 1

1 1 0

)
. Then E2 = R3 S3 and AEop = S3 R3. This

shows

AE ∼ES E1 ∼ES E2 ∼ES AEop .

Thus AE ∼S AEop .
Now suppose L(E) ∼=gr L(Eop) which induces an order preserving Z[x, x−1]-module isomorphism

φ : K gr
0 (L(E)) → K gr

0 (L(Eop)), such that φ([L(E)]) = [L(Eop)]. Since as abelian groups

K gr
0

(
L(E)

) ∼= K gr
0

(
L

(
Eop)) ∼= Z[1/2] ⊕Z[1/2],

φ is an invertible 2 × 2 matrix of the form
( a b

c d

)
, where a,b, c,d ∈ Q. Furthermore, [L(E)] = (1,1) ∈

Z[1/2] ⊕ Z[1/2] and similarly, [L(Eop)] = (1,1) ∈ Z[1/2] ⊕Z[1/2]. Since φ([L(E)]) = [L(Eop)], using
the matrix representation we have (

a b
c d

)(
1
1

)
=

(
1
1

)
. (18)

But then (see also Example 10)

φ
(

AEt (1,1)
) = AEopt φ(1,1) = AEopt (1,1).

Replacing the corresponding matrices into this equation we have(
a b
c d

)(
1 1
2 0

)(
1
1

)
=

(
0 1
2 1

)(
1
1

)
. (19)

Comparing (18) and (19) leads to a contradiction.
This example shows that although there is an order isomorphism K gr

0 (L(E)) ∼= K gr
0 (L(Eop)) as

Z[x, x−1]-modules, but L(E) �gr L(Eop). This implies that in the classification conjecture (see Sec-
tion 4.1), the assumption of pointed isomorphisms can’t be relaxed.

Theorem 21 below uses two main results of [4] which we recall here for the convenience of the
reader.

Theorem 19. (See [4].) Let E and F be finite graphs. If

(1) L(E) and L(F ) are purely infinite simple rings, and
(2) det(I − At

E) = det(I − At
F ), and

(3) K0(L(E)) ∼= K0(L(F )),

then L(E) is Morita equivalent to L(F ).



R. Hazrat / Journal of Algebra 384 (2013) 242–266 259
The next result depends on the work of Huang [23] on shifts of finite type.

Theorem 20. (See [4].) Let E and F be finite graphs. If

(1) L(E) and L(F ) are purely infinite simple rings, and
(2) L(E) is Morita equivalent to L(F ), and
(3) K0(L(E)) ∼= K0(L(F )) via an isomorphism which sends [L(E)] to [L(F )],

then L(E) is isomorphic to L(F ).

We are in a position to settle the graded conjecture (see Section 4.1 and [20, Conjecture 1]) for
the case of purely infinite simple Leavitt path algebras up to grading. Namely, we are able to show
that if the graded dimension groups are isomorphic, then the Leavitt path algebras are isomorphic.
The theorem guarantees an isomorphism between the algebras, but not a graded isomorphism.

Theorem 21. Let E and F be graphs such that L(E) and L(F ) are purely infinite simple unital algebras. Then
L(E) ∼=L(F ) if there is an order preserving Z[x, x−1]-module isomorphism

(
K gr

0

(
L(E)

)
, K gr

0

(
L(E)

)
+,

[
L(E)

]) ∼= (
K gr

0

(
L(F )

)
, K gr

0

(
L(F )

)
+,

[
L(F )

])
. (20)

Proof. Eq. (20) gives an isomorphism φ : K gr
0 (L(E)) → K gr

0 (L(F )), where [L(E)] is sent to [L(F )]. The
main result of [21] shows that the diagram below is commutative, where U is the forgetful functor
and T1 is the suspension functor and the isomorphism φ1 is induced from the commutativity of the
left diagram (note that on the level of category of graded projective modules, (T1 − id)(P ) = P (1)− P ,
which induces an endomorphism on the graded Grothendieck group):

K gr
0 (L(E))

φ

T1−id
K gr

0 (L(E))

φ

U
K0(L(E))

φ1

0

K gr
0 (L(F ))

T1−id
K gr

0 (L(F ))
U

K0(L(F )) 0.

Thus we have an induced isomorphism

φ1 : K0
(
L(E)

) −→ K0
(
L(F )

)
[
L(E)

] �−→ [
L(F )

]
. (21)

Next we show that L(E) is Morita equivalent to L(F ). Let E ′ and F ′ be graphs with no sources
by repeatedly removing the sources from E and F , respectively. By repeated application of Propo-
sition 13 we have Gr -L(E) ≈gr Gr -L(E ′) and Gr -L(F ) ≈gr Gr -L(F ′), which in turn shows that
there are order preserving Z[x, x−1]-modules isomorphisms K gr

0 (L(E)) ∼= K gr
0 (L(E ′)) and K gr

0 (L(F )) ∼=
K gr

0 (L(F ′)). Combining these with Eq. (20), we get an order preserving Z[x, x−1]-modules isomor-
phism K gr

0 (L(E ′)) ∼= K gr
0 (L(F ′)). Now Corollary 12 implies that AE ′ is shift equivalent to A F ′ . By [26,

Theorem 7.4.17], BF(AE ′ ) ∼= BF(A F ′), where BF stands for the Bowen–Franks groups. On the other hand,
by [26, Exercise 7.4.4, for p(t) = 1− t], det(1− AE ′ ) = det(1− A F ′). Since the matrices AE ′ and A F ′ are
irreducible, the main theorem of Franks [15] gives that AE ′ is flow equivalent to A F ′ . Thus A F ′ can
be obtained from AE ′ by a finite sequence of in/out-splitting and expansion of graphs (see [28]). Each
of these transformations preserves the Morita equivalence (see the proof of Theorem 1.25 in [4]). So
L(E ′) is Morita equivalent to L(F ′). Again using Proposition 13, we get that L(E) is Morita equivalent
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to L(F ). Now by Theorem 20, this Morita equivalence together with K -group isomorphism (21), gives
L(E) ∼=L(F ). �

Very recently Ara and Pardo [5] settled the graded conjecture for the class of graphs with no sinks
and sources using the theory of fractional skew monoid rings. Recall that a graded Morita equivalence
between two graded rings induces an order preserving module isomorphism between their graded
Grothendieck groups. So one hoped Proposition 13 combined with the Ara–Pardo theorem would give
the graded conjecture for graphs with no sinks. However, since in Proposition 13 the position of
identity is not preserved (see Remark 14) one cannot use this argument directly.

7. Noncommutative algebraic geometry

Let K be a field. If R is a commutative K -algebra which is generated by a finite number of
elements of degree 1, then by the celebrated work of Serre [30], the category of quasi-coherent
sheaves on the scheme Proj(R) is equivalent to QGr -R := Gr -R/ Fdim -R , where Gr -R is the cate-
gory of Z-graded modules over R and Fdim -R is the Serre subcategory of (direct limit of) finite-
dimensional submodules. In particular when R = K [x0, x1, . . . , xn], then QCohPn is equivalent to
QGr -K [x0, x1, . . . , xn].

Inspired by this, noncommutative algebraic geometry associates to a Z-graded K -algebra A, with
support N, a “noncommutative scheme” Projnc(A) that is defined implicitly by declaring that the
category of “quasi-coherent sheaves” on Projnc(A) is QGr -A := Gr -A/ Fdim -A. When A is coherent
with gr -A its category of finitely presented graded modules then qgr -A := gr -A/ fdim -A is viewed
as the category of “coherent sheaves” on Projnc(A) (see [30,7,31] for more precise statements).

For a finite graph E , Paul Smith [32] gave a description of the category QGr -P(E), where P(E) is
the path algebra associated to E , in terms of easier to study categories of graded modules over Leavitt
path algebras and ultramatricial algebras. Note that free algebras (on n generators) are examples of
path algebras (of the graph with one vertex and n loops). Further, in [33] he showed that for two
finite graphs E and F with no sinks or sources, if their adjacency matrices are shift equivalent, then
the “noncommutative schemes” represented by their path algebras are the same, i.e., QGr -P(E) ∼=
QGr -P(F ).

Recall that, by assigning 1 to edges and 0 to vertices, the path algebra P(E) is a Z-graded algebra
with support N. The category of Z-graded right P(E)-modules with degree-preserving homomor-
phisms is denoted by Gr -P(E) and we write Fdim -P(E) for its full subcategory of modules that
are the sum of their finite-dimensional submodules. Since Fdim -P(E) is a localising subcategory of
Gr -P(E) we can form the quotient category

QGr -P(E) := Gr -P(E)/ Fdim -P(E).

Theorem 22. (See [32, Theorem 1.3].) Let E be a finite graph and let E ′ be the graph without sources and sinks
that is obtained by repeatedly removing all sources and sinks from E. Then

QGr -P(E) ≈ Gr -L
(

E ′) ≈ Mod -L
(

E ′)
0.

The following theorem shows that the graded Grothendieck group can be considered as a complete
invariant for the quotient category of path algebras.

Theorem 23. Let E and F be graphs with no sinks. Then K gr
0 (L(E)) ∼= K gr

0 (L(F )) as ordered abelian groups if
and only if QGr -P(E) ≈ QGr -P(F ).

Proof. Using Dade’s theorem (see Section 4.2) and the fact that L(E) and L(F ) are strongly graded
(Theorem 6), as ordered abelian groups, K gr

0 (L(E)) ∼= K gr
0 (L(F )) if and only if K0(L(E)0) ∼= K0(L(F )0).

On the other hand, since L(E)0 and L(F )0 are ultramatricial algebras (see Section 4.3), by [17, Corol-
lary 15.27] K0(L(E)0) ∼= K0(L(F )0) as ordered abelian groups if and only if L(E)0 is Morita equivalent
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to L(F )0. Furthermore, a repeated application of Proposition 13 shows that repeatedly removing all
the sources from E and F (call the new graphs obtained in this way with no sources E ′ and F ′ ,
respectively) do not alter the corresponding categories modulo equivalence, i.e., L(E) ≈gr L(E ′) and
L(F ) ≈gr L(F ′), which implies L(E)0 ≈L(E ′)0 and L(F )0 ≈L(F ′)0.

Now combining this with Theorem 22 we have K gr
0 (L(E)) ∼= K gr

0 (L(F )) if and only if QGr -P(E) ≈
QGr -P(F ). �

Theorem 23 gives the following corollary which is the main result of [33].

Corollary 24. Let E and F be graphs with no sinks. If A E is shift equivalent to A F then QGr -P(E) ≈
QGr -P(F ).

Proof. Since AE is shift equivalent to A F , the Krieger dimension groups associated with E and F are
isomorphic. But by Lemma 11 the Krieger dimension group coincides with the graded Grothendieck
group, and so the corollary follows from Theorem 23. �

The converse of Corollary 24 is not valid as the following example shows. Let E be a graph with
one vertex and two loops and F be a graph with one vertex and four loops. Then K gr

0 (E) = Z[1/2] and
K gr

0 (F ) = Z[1/2]. So the identity map gives an order preserving group isomorphism between the K gr
0 -

groups. (Note that this isomorphism is not Z[x, x−1]-module isomorphism.) Then Theorem 23 shows
that QGr -P(E) ≈ QGr -P(F ). However one can readily see that AE is not shift equivalent to A F .

8. Product of graphs and graded Grothendieck groups

In [36, p. 149], Wagoner considered the product of two shift spaces and showed that the dimension
module of the product is isomorphic to the tensor product of the dimension module of the shift
spaces. In this section we carry over this to the case of Leavitt path algebras and graded Grothendieck
groups.

Let A and B be the adjacency matrices of the graphs E and F , respectively, where |E0| = m and
|F 0| = n. Note that A and B can be considered as endomorphisms in EndZ(Zm) and EndZ(Zn), re-
spectively. We define the product of the graphs E and F , denoted by E ⊗ F , to be the graph associated
to the matrix A ⊗ B ∈ EndZ(Zm+n). Concretely, if A = (aij)1�i, j�m and B = (blk)1�l,k�n , then

A ⊗ B = (
aij(blk)1�l,k�n

)
1�i, j�m, (22)

i.e., the i jth entry of A ⊗ B is the matrix block (aijblk)1�l,k�n . Note that this representation is inde-
pendent of considering A and B as matrices acting from left or right.

If the matrices A and B have no zero rows, i.e., their associated Leavitt path algebras are strongly
graded (Theorem 6), then so is the Leavitt path algebra associated to A ⊗ B .

Example 25. Consider the graphs

E : • • F : • • •

with their adjacency matrices

A =
(

1 1
1 0

)
and B =

( 0 1 0
1 0 1
0 1 0

)
.

Then
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A ⊗ B =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 1 0
1 0 1 1 0 1
0 1 0 0 1 0
0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

and the graph associated to this matrix is

E ⊗ F :

•

• • •

• •

In the following theorem we consider the tensor product of two pre-ordered Z[x, x−1]-modules
G1 and G2, over Z. We define the action of x on G1 ⊗Z G2 diagonally, i.e., x(g1 ⊗ g2) = xg1 ⊗ xg2
and extend it to the whole Z[x, x−1] naturally. This makes G1 ⊗Z G2 a Z[x, x−1]-module. Further, the
monoid G+

1 ⊗ G+
2 (i.e., the set of direct sums of images of G+

1 and G+
2 in G1 ⊗Z G2), makes G1 ⊗Z G2

a pre-order group respecting the module structure.

Theorem 26. Let L(E) and L(F ) be Leavitt path algebras associated to finite graphs with no sinks E and F .
Then there is an order preserving Z[x, x−1]-module isomorphism

K gr
0

(
L(E ⊗ F )

) ∼= K gr
0

(
L(E)

) ⊗ K gr
0

(
L(F )

)
,

which sends [L(E ⊗ F )] to [L(E)] ⊗ [L(F )].

Proof. Let AE and A F be the adjacency matrices of the graphs E and F , respectively, where |E0| = m
and |F 0| = n. Set A = At

E and B = At
F . Observe that A ⊗ B = (AE ⊗ A F )t . Now by (7) the vertical maps

of the following diagram are isomorphisms:

K gr
0 (L(E)) ⊗ K gr

0 (L(F )) K gr
0 (L(E ⊗ F ))

lim−→A
Zm ⊗ lim−→B

Zn
φ

lim−→A⊗B
Zm+n.

Using the description of Section 4.4 for the direct limits, define φ on generators as follows:

φ
([a,k] ⊗ [b, l]) = [

Ala ⊗ Bkb,k + l
]
.

One checks easily that this map is well-defined and is a homomorphism of groups. Further,

xφ
([a,k] ⊗ [b, l]) = x

[
Ala ⊗ Bkb,k + l

]
= [

(A ⊗ B)
(

Ala ⊗ Bkb
)
,k + l

] = [
Al+1a ⊗ Bk+1b,k + l

]
= φ

([Aa,k] ⊗ [Bb, l]) = φ
(
x
([a,k] ⊗ [b, l]))
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shows that φ is a Z[x, x−1]-module homomorphism. Define

ψ : lim−→
A⊗B

Zm+n −→ lim−→
A

Zm ⊗ lim−→
B

Zn

[c,k] �−→
∑

i

[ai,k] ⊗ [bi,k],

where f (c) = ∑
i ai ⊗ bi under a natural isomorphism f :Zm+n → Zm ⊗ Zn . One can check that ψ is

indeed well-defined and φψ and ψφ are the identity maps of the corresponding groups.
Finally, [L(E)]⊗[L(F )] is represented by [1̄,0]⊗[1̄,0] in lim−→A

Zm ⊗ lim−→B
Zn and φ([1̄,0]⊗[1̄,0]) =

[1̄,0] which represents [L(E ⊗ F )] in K gr
0 (L(E ⊗ F )). �

Example 27. For the graph E in Example 25, one can calculate its dimension group as follows:

K gr
0

(
L(E)

) ∼= Z⊕Z;

K gr
0

(
L(E)

)+ ∼=
{
(a,b)

∣∣∣ 1 + √
5

2
a + b � 0

}
;

[
L(E)

] = (1,1);
x(a,b) = (a + b,a).

Furthermore for the graph F , we have

K gr
0

(
L(F )

) ∼= Z[1/2] ⊕Z[1/2];
K gr

0

(
L(F )

)+ ∼= N[1/2] ⊕N[1/2];[
L(F )

] = (2,1);
x(a,b) = (2b,a).

This information along with Theorem 26, will easily determine the graded dimension group associated
to the graph E ⊗ F in Example 25.

Appendix A

In Proposition 15 we observed that the Leavitt path algebras associated to out-splitting and in-
splitting graphs are graded Morita equivalent to the Leavitt path algebra of the original graph; these
have been shown separately. Using Ashton and Bates notion of elementary shift equivalence defined
for two graphs, one can uniformly show the above results. Namely, if two graphs E1 and E2 are
elementary shift equivalent via a graph E3, then L(E1) and L(E2) are graded Morita equivalent. It is
not difficult to see that the out-splitting and in-splitting are elementary shift equivalent to the original
graph [10]. However, the price to be paid for this unified approach is, due to the construction of E3,
we need to change the grading of Leavitt path algebras and the eventual graded Morita equivalent is
(1/2)Z-graded.

The following definition given in [8,9] for directed graphs with no sinks, provides graph theoretical
conditions, when the adjacency matrices of two graphs are elementary shift equivalent (see also [26,
p. 227]). Throughout, we work with finite graphs although the results can be extended to arbitrary
graphs as in [9,10].
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Definition 28. Let Ei = (E0
i , E1

i , ri, si), for i = 1,2, be graphs. Suppose there is a graph E3 =
(E0

3, E1
3, r3, s3) such that

(1) E0
3 = E0

1 ∪ E0
2 and E0

1 ∩ E0
2 = ∅,

(2) E1
3 = E1

12 ∪ E1
21, where E1

i j := {e ∈ E1
3 | s3(e) ∈ E0

i , r3(e) ∈ E0
j },

(3) for i = {1,2}, there are range and source-preserving bijections θi : E1
i → E2

3(E0
i , E0

i ), where for
i ∈ {1,2}, E2

3(E0
i , E0

i ) := {α ∈ E2
3 | s3(α) ∈ E0

i , r3(α) ∈ E0
i }.

Then we say that E1 and E2 are elementary shift equivalent (E1 ∼ES E2) via E3.

Remark 29. In [8,9], for Definition 28, the term elementary strong shift equivalent is used.

One can prove that E1 ∼ES E2 via a graph E3 if and only if AE1 ∼ES AE2 (see [8, Proposition 3.10]).
The equivalence relation ∼S on directed graphs generated by elementary strong shift equivalence

is called strong shift equivalence. In [9, Theorem 5.2] it was shown that if two row-finite graphs are
strongly shift equivalent then their associated graph C∗-algebras are strongly Morita equivalent. We
establish a similar statement in the setting of graded Leavitt path algebras.

In the following by (1/2)Z we denote the cyclic subgroup of rational numbers Q generated by
1/2.

Theorem 30. Let E1 and E2 be graphs with no sinks which are elementary strong shift equivalent via the
graph E3 . Then L(E1) and L(E2) are (1/2)Z-graded Morita equivalent.

Proof. First observe that if E1 ∼ES E2 via E3 and E1 and E2 have no sinks, then E3 does not have
sinks either.

We first give a (1/2)Z-graded structure to the Leavitt path algebras L(Ei), i = 1,2,3. We then
show that L(E1) and L(E2) are (1/2)Z-graded Morita equivalent to L(E3). This implies that L(E1) is
(1/2)Z-graded Morita equivalent to L(E2).

Let Γ = (1/2)Z and set deg(v) = 0, for v ∈ E0
i , deg(α) = 1 and deg(α∗) = −1 for α ∈ E1

i , where
i = 1,2. By Section 3, we then obtain a natural (1/2)Z-grading on L(E1) and L(E2) with support Z.

Furthermore, set deg(v) = 0, for v ∈ E0
3, deg(α) = 1/2 and deg(α∗) = −1/2 for α ∈ E1

3. Thus we
get a natural (1/2)Z-grading on L(E3), with support (1/2)Z.

Next we construct a (1/2)Z-graded ring homomorphism φ :L(E1) → L(E3) such that φ(L(E1)) =
pL(E3)p, where p = ∑

v∈E0
1

v ∈L(E3). Define φ(v) = v for v ∈ E0
1 and φ(l) = ef , where l ∈ E1

1 (and is

of degree 1) and ef is a path of length 2 in E3 (and is of degree 1) assigned uniquely to l via θ1 in
Definition 28(3). We check that the set {φ(v), φ(l) | v ∈ E0

1, l ∈ E1
1} is an E-family in L(E3).

Let v ∈ E0
1 and φ(v) = v ∈ E0

3. Then

v =
∑

{e∈E1
3|s3(e)=v}

ee∗

=
∑

{ef ∈E2
3(E0

1,E0
1)|s3(ef )=v}

ef (ef )∗

=
∑

{l∈E1
1|s1(l)=v}

φ(l)φ(l)∗

where the last equality uses condition (3) in Definition 28. On the other hand for l ∈ E1
1,

φ(l)∗φ(l) = (ef )∗(ef ) = f ∗e∗ef = f ∗ f = r( f ) = φ
(
r(l)

)
,



R. Hazrat / Journal of Algebra 384 (2013) 242–266 265
since the map θ1 in Definition 28 is range-preserving bijection. The rest of the relations of an E-family
is easily checked and thus there is a map φ :L(E1) →L(E3).

Clearly φ(L(E1)) ⊆ pL(E3)p. Since pL(E3)p is generated by elements of the form pαβ∗ p, where
α,β ∈ E∗

3, we check that pαβ∗ p ∈ φ(L(E1)). Clearly either pαβ∗ p = αβ∗ if s3(α), s3(β) ∈ E0
1 or

pαβ∗ p = 0 otherwise. Furthermore, for αβ∗ 
= 0, we should have r3(α) = r3(β). Thus for an element
pαβ∗ p 
= 0, we have either s3(α), s3(β), r3(α), r3(β) ∈ E0

1 or s3(α), s3(β) ∈ E0
1 and r3(α), r3(β) ∈ E0

2.
In the first case, by the construction of E3, the lengths of α and β are even and since θ1 is bijective,
α and β are in the images of the map φ. In the second case, since E3 has no sinks, we have

αβ∗ =
∑

{e∈E1
3|s(e)=r(α)}

αee∗β∗ =
∑

{e∈E1
3|s(e)=r(α)}

αe(βe)∗.

Now, again by the construction of E3, for each e, s3(αe), s3(βe), r3(αe), r3(βe) ∈ E0
1 and by the first

case, they are in the image of the map φ. So φ(L(E1)) = pL(E3)p.
Since φ(v) = v 
= 0 (see [16, Lemma 1.5]) by the graded uniqueness theorem [34, Theorem 4.8]

(which is valid for (1/2)Z-graded Leavitt path algebras as well) φ is injective. Thus L(E1) ∼=gr
pL(E3)p. This immediately implies L(E1) is (1/2)Z-graded Morita equivalent to pL(E3)p. On the
other hand, the (graded) ideal generated by p = ∑

v∈E0
1

v in L(E3) coincides with the (graded) ideal
generated by {v | v ∈ E0

1}. But the smallest hereditary and saturated subset of E0
3 containing E0

1 is E0
3.

Thus by [6, Theorem 5.3] the ideal generated by E0
1 is L(E3). This shows p is a full homogeneous

idempotent in L(E3). Thus pL(E3)p is graded Morita equivalence to L(E3) (see Example 2). Putting
these together we get L(E1) ≈gr L(E3). In a similar manner L(E2) ≈gr L(E3). Thus L(E1) ≈gr L(E2)

as (1/2)Z-graded rings. This finishes the proof. �
Remark 31. Since throughout this paper we are interested in purely infinite simple Leavitt path alge-
bras, which are (graded) simple, we could have specialised Theorem 30 to graphs associated to these
algebras, and instead of using [16, Lemma 1.5] and [6, Theorem 5.3] in the proof, we could only use
the simplicity of the algebras.

In [4], it was shown that if E is a finite graph with no sources and sinks such that L(E) is
simple, then the Leavitt path algebras obtained from the in-splittings of E [4, Proposition 1.11] or
out-splittings of E [4, Proposition 1.14] are Morita equivalent to L(E). For a graph E with no sinks, it
was shown that an in-splitting of a graph E [10, Proposition 6.2] or an out-splitting of E [10, Proposi-
tion 6.3] is elementary shift equivalent to the graph E . Now using Theorems 30 and 3, we can obtain
these results in a unified manner. Finally, one would like to know whether in Theorem 30, L(E1) and
L(E2) are actually Z-graded Morita equivalent.
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