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We classify the Ext-quivers of hearts in the bounded derived
category D(An) and the finite-dimensional derived category
D(ΓN An) of the Calabi–Yau-N Ginzburg algebra ΓN An . This pro-
vides the classification for Buan–Thomas’ colored quivers for
higher clusters of A-type. We also give an explicit combinatorial
constructions from a binary tree with n + 2 leaves to a torsion
pair in mod k

−−→
An and a cluster tilting set in the corresponding

cluster category, for the straight oriented A-type quiver
−−→
An . As

an application, we show that the orientation of the n-dimensional
associahedron induced by poset structure of binary trees coincides
with the orientation induced by poset structure of torsion pairs in
mod k

−−→
An (under the correspondence above).
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Summary

Assem and Happel [1] gave a classification of repeatedly tilted algebras of A-type using tilting the-
ory decades ago. In the first part of the paper (Section 1 and Section 2), we generalize their result to
classify (Theorem 2.11) the Ext-quivers of hearts of A-type (i.e. in Db(An)), in terms of graded gentle
trees. As an application, we describe (Corollary 2.12) the Ext-quivers of hearts in D(ΓN An), the finite-
dimensional derived category of the Calabi–Yau-N Ginzburg algebra ΓN An , which correspond (cf. [10,
Theorem 8.6]) to colored quivers for (N − 1)-clusters of A-type, in the sense of Buan–Thomas [3].

In the second part of the paper (Section 3), we give explicit combinatorial constructions (Propo-
sition 3.2 and Proposition 3.3), from a binary tree with n + 2 leaves (for parenthesizing a word with
n + 2 letters) to a torsion pair in mod k

−−→
An and a cluster tilting sets in the (normal) cluster cate-

gory C(An), where
−−→
An is a straight oriented An quiver. Thus, we obtain the bijections between these

sets. As an application, we show (Theorem 3.5) that under the bijection above, the orientation of the
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n-dimensional associahedron induced by poset structure of binary trees (cf. [11]) coincides with the
orientation induced by poset structure of torsion pairs (or hearts, in the sense of King–Qiu [10]).

Note that there are many potential orientations for the n-dimensional associahedron, arising from
the representation theory of quivers, cf. [10, Fig. 4 and Theorem 9.6]. These orientations are also
of interest in physics (see [4]), as they are related to wall crossing formula, quantum dilogarithm
identities and Bridgeland’s stability conditions (cf. [7] and [12]).

1. Preliminaries

1.1. Derived category and cluster category

Let Q be a quiver of A-type with n vertices and k a fixed algebraic closed field. Let kQ be the
path algebra, HQ = mod kQ its module category and let D(Q ) = Db(HQ ) be the bounded derived
category. Note that D(Q ) is independent of the orientation of Q and we will write An for Q some-
times.

Denote by τ the AR-functor (cf. [2, Chapter IV]). Let C(An) be the cluster category of D(An), that is
the orbit category of D(An) quotiented by [−1] ◦ τ . Denote by πn be the quotient map

πn :D(An) → C(An).

1.2. Calabi–Yau category

Let N > 1 be an integer. Denote by ΓN Q the Calabi–Yau-N Ginzburg (dg) algebra associated to Q ,
which is constructed as follows (cf. e.g. [10, Section 7]):

• Let Q N be the graded quiver whose vertex set is Q 0 and whose arrows are: the arrows in Q with
degree 0; an arrow a∗ : j → i with degree 2 − N for each arrow a : i → j in Q ; a loop e∗ : i → i
with degree 1 − N for each vertex e in Q .

• The underlying graded algebra of ΓN Q is the completion of the graded path algebra kQ N in the
category of graded vector spaces with respect to the ideal generated by the arrow of Q N .

• The differential of ΓN Q is the unique continuous linear endomorphism homogeneous of degree 1
which satisfies the Leibniz rule and takes the following values on the arrow of Q N

d
∑

e∈Q 0

e∗ =
∑

a∈Q 1

[
a,a∗].

Write D(ΓN Q ) for D f d(mod ΓN Q ), the finite-dimensional derived category of ΓN Q and HΓ its canon-
ical heart.

Notice that the derived categories are always triangulated. Again, since D(ΓN Q ) is independent of
the orientation of Q , we will write ΓN An for ΓN Q .

1.3. Hearts of triangulated categories

A torsion pair in an abelian category C is a pair of full subcategories 〈F ,T 〉 of C , such that
Hom(T ,F) = 0 and furthermore every object E ∈ C fits into a short exact sequence 0 → ET →
E → EF → 0 for some objects ET ∈ T and EF ∈F .

A t-structure on a triangulated category D is a full subcategory P ⊂D with P[1] ⊂P such that, if
one defines P⊥ = {G ∈D: HomD(F , G) = 0, ∀F ∈P}, then, for every object E ∈D, there is a unique
triangle F → E → G → F [1] in D with F ∈P and G ∈P⊥ . A t-structure P is bounded if

D =
⋃

i, j∈Z
P⊥[i] ∩P[ j].
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The heart of a t-structure P is the full subcategory

H = P⊥[1] ∩P

and any bounded t-structure is determined by its heart. In this paper, we only consider bounded
t-structures and their hearts.

Recall that we can forward/backward tilt a heart H to get a new one, with respect to any tor-
sion pair in H in the sense of Happel–Reiten–Smalø ([5], see also [10, Proposition 3.2]). Further, all
forward/backward tilts with respect to torsion pairs in H, correspond one–one to all hearts between
H and H[±1] (in the sense of King–Qiu [10]). In particular there is a special kind of tilting which
is called simple tilting (cf. [12, Definition 3.6]). We denote by H�

S and H�
S , respectively, the simple

forward/backward tilts of a heart H, with respect to a simple S .
We define the exchange graph of a triangulated category D to be the oriented graph, whose vertices

are all hearts in D and whose edges correspond to the simple forward titling between them. Denote
by EG(An) the exchange graph of D(An), and EG◦(ΓN An) the principal component of the exchange
graph of D(ΓN An), that is, the connected component containing HΓ .

2. Ext-quivers of A-type

2.1. Graded gentle tree

In [1], there is a complete description of all repeatedly tilted algebras of type An , namely:

Definition 2.1. (See [2].) Let A be a quiver algebra with acyclic quiver T A . The algebra A ∼= kT A/I is
called gentle if the bound quiver (T A,I) has the following properties:

1◦ . Each vertex of T A is the source and the target of at most two arrows.
2◦ . For each arrow α ∈ (T A)1, there is at most one arrow β and one arrow γ such that αβ /∈ I and

γα /∈ I .
3◦ . For each arrow α ∈ (T A)1, there is at most one arrow ξ and one arrow ζ such that αξ ∈ I and

ζα ∈ I .
4◦ . The ideal I is generated by the paths in 3◦ .

If T A is a tree, the gentle algebra A ∼= kT A/I is called a gentle tree algebra.

Theorem 2.2. Let A be a quiver algebra with bound quiver (T A,I). Then A is (repeatedly) tilted algebras of
type An if and only if (T A,I) is a gentle tree algebra (cf. [1], also [2]).

Considering the special properties of T A , we can color the arrows of T A with two colors, such that
any two neighbor arrows α, β has the same color if and only if αβ ∈ I or βα ∈ I . Alternatively, we
can also color it with two colors, such that any two neighbor arrows α, β has the different colors
if and only if αβ ∈ I or βα ∈ I . By the properties above, either coloring is unique up to swapping
colors. Hence we have another way to characterize gentle tree algebra as follows.

Definition 2.3. A gentle tree is a quiver T with a 2-coloring, such that each vertex has at most one
arrow of each color incoming or outgoing.

For a colored quiver T , there are two natural ideals

I+
T : generated by all unicolor-paths of length two;

I−
T : generated by all alternating color paths of length two.
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Proposition 2.4. Let A = kT /I be a bound quiver algebra. We have the following equivalent statement:

• A is a gentle tree algebra.
• T is some gentle tree with I = I+

T or I = I−
T .

Proof. By the one of two ways of coloring, the relations in the ideal and the coloring of the gentle
tree can be determined uniquely by each other. �
Remark 2.5. In fact, there is an interesting result (but not used in this paper) for a gentle tree T , that
kT /I+

T and kT /I−
T are Koszul dual to each other.

We are going to generalize Theorem 2.2 to describe all hearts in D(An).

2.2. Ext-quivers of hearts

Recall that a heart H is finite, if the set of its simples, denoted by SimH, is finite and generates
H by means of extensions,

Definition 2.6. Let H be a finite heart in a triangulated category D and S = ⊕
S∈SimH S . The Ext-

quiver Q(H) is the (positively) graded quiver whose vertices are the simples of H and whose graded
edges correspond to a basis of End•(S,S) (where the grading is given by the degree of Hom).

Note that, by [10], H is finite, rigid and strongly monochromatic for any H in D(An). By [10,
Lemma 3.3], we know that there is at most one arrow between any two vertices in Q(H).

Definition 2.7. A graded gentle tree G is a gentle tree with a positive grading for each arrow. The
associated quiver Q(G) of G , is a graded quiver with the same vertex set and an arrow a : i → j for
each unicolored path p : i → j in G , with the natural grading of p.

Define a mutation μ on graded gentle tree as follow.

Definition 2.8. For a graded gentle tree G , let V be a vertex with neighborhood

R1
γ1

B2
δ2

V

B1

δ1

R2

γ2

where Bi,Ri are the sub trees and γi, δi are degrees of G , i = 1,2. The straight line represents one
color and the curly line represent the other color. Define the forward mutation μV at vertex V (on G)
as follows:

• if δ1 � 1, μV on the lower part of the quiver is:

V

B1

δ1

R2

γ2

μi V

B1

δ1−1

R2

γ2+1
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• if δ1 = 1, denote

B1

E1
θ1

W

L1

β1

E2

θ2

and μV on the lower part of the quiver is:

E1
θ1

V
1 γ2

W R2

L1

β

E2

θ2

μi V
β 1

E
×
2

θ2

L1 W

E
×
1

θ1

R2

γ2

(2.1)

where X× is the operation of swapping colors on a graded gentle trees X.
• μV on the upper part follows the mirror of the lower part.

Dually, define the backward mutation μ−1
V to be the reverse of μV (which follows a similar rule).

Clearly, the set of all graded gentle trees with n vertexes is closed under such mutation. In fact,
this set is also connected under (forward/backward) mutation.

Lemma 2.9. Any graded gentle tree with n vertices can be repeatedly mutated from another graded gentle tree
with n vertices.

Proof. Use induction, starting from the trivial case when n = 1. Suppose that the lemma holds for
n = m and consider the case for n = m + 1. We only need to show that any graded gentle tree G with
m + 1 vertices can be repeatedly mutated from a unicolor graded gentle tree with all degrees equal
one. Let V be a sink in G and the subtree of G by deleting V is G′ while the connecting arrow from
G′ to V has degree d. By backward mutating on V , we can increase d as large as possible without
changing G′ . Then the mutation at a vertex other than V on G restricted to G′ will be the same as
mutating at that vertex on G′ . Thus, by the induction assumption, we can mutate G such that G′
becomes unicolor with all degrees equal zero. Then, repeatedly forward mutating many times on V
will turn G into unicolor with all degrees equal zero. �

Using Lemma A.4, a direct calculation gives the following proposition.

Proposition 2.10. Let G be a graded gentle tree and H be a heart in D(An). If Q(G) = Q(H) with vertex V
in G corresponding to the simple S in H, then

Q
(
H�

S

) = Q(μV G), Q
(
H�

S

) = Q
(
μ−1

V G
)
. (2.2)

Now we can describe all Ext-quiver of hearts of A-type.
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Fig. 1. A parenthesizing of four words on the left and G4 on the right.

Theorem 2.11. The Ext-quivers of hearts in D(An) are precisely the associated quivers of graded gentle trees
with n vertices.

Proof. Note that any heart in D(An) can be repeatedly tilted from the standard heart HQ , by [9].
Without loss of generality, let Q have straight orientation. Then Q(HQ ) certainly is the associated
quiver for the graded gentle tree GQ with the same orientation and alternating colored arrows. Then,
inducting from HQ and using (2.2), we deduce that the Ext-quiver of any heart in D(An) is the asso-
ciated quivers of some graded gentle tree with n vertices. On the other hand, the set of graded gentle
trees with n vertices is connected (Lemma 2.9). Then, also by induction, we deduce that the associated
quiver of any graded gentle tree with n vertices is the Ext-quiver of some heart, because (2.2) and the
fact that we can forward/backward tilt any simples in any heart in D(An) [10, Theorem 5.7]. �

Recall that we can Calabi–Yau-N (CY-N) double a graded quiver in the sense of [10, Definition 6.2].
Then we have the following corollary.

Corollary 2.12. The Ext-quivers of hearts in EG◦(ΓN An) are precisely the CY-N double of the associated quivers
of graded gentle trees with n vertices.

Proof. By [10, Corollary 8.3], any heart H in EG◦(ΓN An) is induced from some heart H′ in D(An),
while Ext-quiver Q(H) is the CY-N double of Q(H′) by [10, Proposition 7.5]. Thus the corollary
follows from Theorem 2.11. �

By [10, Proposition 8.6], the augmented graded quivers of colored quivers for (N − 1)-clusters
(cf. [10, Definition 6.1] and [3]) of type An are also precisely the CY-N double of the associated
quivers of graded gentle trees.

3. Associahedron

3.1. Binary trees

Let BTm be the set of binary trees with m + 1 leaves (and hence with m internal vertices), which
can be used to parenthesize a word with m + 1 letters (see Fig. 1 and cf. [11]). Let Gm be the full
subgraph of the grid Z

2 induced by

Gm = {
(x, y)

∣∣ x � 0, y � 0, x + y � m
} ⊂ Z

2.

It is well-known that a binary tree with m + 1 leaves has a normal form as a subgraph of Gm , such
that the leaves are {(x,m − x)}m

x=0, and we will identify the binary tree with such normal form (see
Fig. 1).
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Fig. 2. G+
5 (red) and G∗

4 (blue) sit inside G5. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Example 3.1. Let

G+
m = Gm ∩{

(x, y)
∣∣ xy > 0

}
, G∗

m = Gm −{
(0,0)

}
.

Consider the An-quiver
−−→
An :n → ·· · → 1 and let Hn = mod k

−−→
An with corresponding simples

S1, . . . , Sn . Then, there are canonical bijections (cf. Fig. 2)

ξn : G+
n+1 → Ind(Hn),

ςn : G∗
n → IndHn ∪ ProjHn[1]

satisfying ξn(i, j) = ςn(i − 1, j) = Mi, j , where Mi, j ∈ IndHn is determined by

[Mi, j] =
n+1− j∑

i

[Sk]. (3.1)

Let ζn = πn ◦ ςn : G∗
n → IndC(An).

It is known that the following sets (see [6] for more possible sets) can parameterize the vertex set
of an n-dimensional associahedron:

1◦ . the set BTn+1 of binary trees with n + 2 leaves;
2◦ . the set of triangulations of regular (n + 3)-gon;
3◦ . the set CEG(An) of (2-)cluster tilting sets in C(An);
4◦ . the set TP(

−−→
An) of torsion pairs in Hn (cf. [10] and [5]);

5◦ . the set EG(Hn,Hn[1]) of hearts in D(An) between Hn and Hn[1] (in the sense of King–Qiu, [10]).

There are natural bijections between these sets (cf. [10,6,8]).
Furthermore, by [10, Section 9], the poset structure of torsion pairs (hearts) gives an orientation O t

of the n-dimensional associahedron, i.e. the orientation of EG(Hn,Hn[1]) (considered as a subgraph
of EG(An)).

On the other hand, there is a natural poset structure on binary trees, inducing by locally flipping a
binary tree (as shown in Fig. 3), or equivalently, changing the corresponding parenthesizing of words
from (A · B) · C to A · (B · C) (see [11] for details). This poset structure also gives an orientation O p

for the associahedron. We aim to prove O t = O p this section.
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Fig. 3. A local flip of a binary tree (at the word B).

Fig. 4. A short exact sequence in Gn+1.

3.2. Combinatorial constructions

First, we give explicit construction of torsion pairs from binary trees. For any p ∈ Z
2 with coordi-

nate (xp, yp), let L(p) be the edge connecting (xp − 1, yp) and p and R(p) be the edge connecting
(xp, yp − 1) and p. Given a tree b in BTn+1, define

T (b) = 〈
ξn(p)

∣∣ p ∈ G+
n+1, L(p) ∈ b

〉
, F(b) = 〈

ξn(p)
∣∣ p ∈ G+

n+1, R(p) ∈ b
〉
, (3.2)

where 〈 〉 means generating by extension.

Proposition 3.2. There is a bijection Θn : BTn+1 → TP(
−−→
An), sending b ∈ BTn+1 to 〈T (b),F(b)〉.

Proof. We only need to show that Θn: b �→ 〈T (b),F(b)〉 is well-defined (and obviously injective) and
hence bijective since both sets have the nth Catalan number many elements.

To do so, we first show that any object M ∈Hn admits a short exact sequence

0 → T → M → F → 0 (3.3)

for some T ∈ T (b) and F ∈ F(b). Let m = ξ−1
n (M) ∈ G+

n+1. If m ∈ b then M ∈ T (b) ∪ F(b) and we
have a trivial short exact sequence (3.3). If m /∈ b, let t be the vertex in b ∩ {(xm, j) | j � ym} with
minimal y-coordinate and f be the vertex in b ∩ {(i, ym) | i � xm} with minimal x-coordinate; let a
and b be the vertices with coordinates (n + 1 − yt , yt) and (x f ,n + 1 − x f ), see Fig. 4. By construction
and the property of the binary tree, we know that

• edges in the line segments, from m to t and from m to f , are not in b;
• edges in the line segments, from a to t and from b to f , are in b;
• (xa, ya) + (1,−1) = (xb, yb), i.e. a,b are neighbors in the line x + y = n + 1;
• L(t) and R( f ) are in b.



68 Y. Qiu / Journal of Algebra 393 (2013) 60–70
Fig. 5. An interval vertex of a binary tree in Gn+1.

Thus T = ξn(t) ∈ T (b) and F = ξn( f ) ∈F(b). By (3.1), a direct calculation shows that [M] = [T ] + [F ],
which implies we have (3.3), by Lemma A.1, as required.

To finish, we need to show that Hom(T (b),F(b)) = 0. Let F = ξn( f ) ∈ F(b). As above, edges in
the line segments from b to f are in b. By the property of binary tree, the horizontal edges (i.e.
parallel to x-axis) in the shaded area in Fig. 4 are not in b, which implies, by Lemma A.2, that the
modules in Hn that have nonzero maps to F are not in T (b), as required. �

Next, we identify cluster tilting sets from binary trees via ζn . For any b ∈ BTn+1, let iv(b) be
set of the internal vertices expect (0,0) so that # iv(b) = n. Denote by ProjH a complete set of
indecomposable projectives of a heart H. Recall [10, Section 2] that

P ∈ ProjH ⇐⇒ P ∈ Ind
(
P ∩ τ−1P⊥)

, (3.4)

where P is the t-structure corresponding to H.

Proposition 3.3. Let b ∈ BTn+1 and H(b) be the heart corresponding to the torsion pair Θn(b) in Hn. Then
we have ProjH(b) = ςn(iv(b)) and there is a bijection ζn ◦ iv : BTn+1 → CEG(An).

Proof. By [10, Corollary 5.12], we know that πn ProjH(b) ∈ CEG(An) and hence the second claim
follows immediately from the first one.

Let p ∈ iv(b), which is the intersection of the edges L(r) and R(q), where q, r be the points with
coordinates (xp, yp + 1) and (xp + 1, yp) (see Fig. 5). Note that p is not in the line xp + yp = n and
thus q, r ∈ Gn+1. Let P(b) be the t-structure corresponding to H(b). Note that

P(b) = T (b) ∪
⋃

j>0

Hn[ j], P(b)⊥ = F(b) ∪
⋃

j<0

Hn[ j].

If r ∈ G+
n+1, then P = ςn(p) = ξn(r) is in T (b); otherwise, yp = 0 and then P ∈ Hn[1]. Either way,

P ∈P(b). Similarly, if q ∈ G+
n+1, then τ P = ξn(q) is in F(b); otherwise, xp = 0 and then τ P ∈Hn[−1].

Either way, τ P ∈ P(b)⊥ . Therefore P ∈ ProjH(b) by (3.4). Thus ProjH(b) contains, and hence equals
ςn(iv(b)) as required, noticing that # ProjH(b) = n = # iv(b).

Example 3.4. Keep the notation in Example 3.1. Then the binary tree in Fig. 1 corresponds to the
torsion pair T = 〈M2,2, M1,2〉, F = 〈M1,3, M3,1〉 and the cluster tilting set {M1,2, M2,2, M1,1[1]}.

3.3. The orientation

Now we apply the constructions above to show that O t = O p .
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Fig. 6. The orientation of the 2-dimensional associahedron.

Theorem 3.5. Under the bijection Θn in Proposition 3.2, the orientations O t and O p of the n-dimensional
associahedron coincide.

Proof. Consider an edge e : b1 → b2 in BTn+1, which corresponds to a local flip as in Fig. 3. Let H(bi)

forward tilt of Hn with respect to Θn(bi). We only need to show that H(b2) is a simple forward tilt
of H(b1).

By Proposition 3.3, we know that ProjH(bi) = ςn(iv(bi)), for i = 1,2, differ by one object. Denote
by Pi ∈ ProjH(bi) the different objects. Thus, πn ProjH(bi) ∈ CEG(An) are related by one mutation,
which implies H(bi) are related by a single simple tilting, by [10, Corollary 5.12], and P1, P2 are
related by some triangle

P j → M → Pk → P j[1]
in D(An) for some ordering { j,k} = {1,2}. By Lemma A.3, P j is a predecessor of Pk . But, from the flip
we know that P1 is the predecessor of P2, which implies j = 1 and k = 2. Thus the forward simple
tilting is from H(b1) to H(b2) as required. �
Example 3.6. Fig. 6 is the orientation of the 2-dimensional associahedron, induced by poset structure
of binary trees, which is the oriented pentagon in [10, Fig. 3] and [12, (3.5)], cf. also [7, Fig. 5].
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Appendix A. Maps and triangles in D(An)

In this appendix, we collect several facts about the maps and triangles in D(An). See [2, Chap-
ter IX] for the proofs of the first three lemmas.

Recall there are notions of sectional paths and predecessors in D(An) cf. [12, Section 2.2].

Lemma A.1. Let M, A, B ∈ IndD(An) such that A ∈ Ps−1(M) and B ∈ Ps(M) − Ps(A). Then there is a short
exact sequence 0 → A → M → B → 0 if and only if [M] = [A] + [B].

Lemma A.2. Let M, L ∈ IndD(An). Then Hom(M, L) �= 0 if and only if

L ∈ [
Ps(M),Ps−1(τ

(
M[1]))], M ∈ [

Ps
(
τ−1(L[−1])),Ps−1(L)

]
.
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Lemma A.3. If Hom(L, M[1]) �= 0 for some M and L in IndD(An), then M is a predecessor of L. Any two
non-isomorphic indecomposables in D(An) cannot be predecessors of each other.

Lemma A.4. Let H be a heart in D(An). For any the following sub-quivers

S

a

T

1

a+1
A

S

b

T

1

B

S

c+1

T

1

C
c

S

d+1

T

1

D

in the Ext-quiver Q(H) for some S, T , A, B, C, D ∈ SimH and positive integers a, b, c, d, they become

S[1]
a+1

R

1

A

S[1]
b+1

R

1

b
B

S[1]
c

R

1

C

S[1]
d

R

1

D
d+1

in the Ext-quiver Q(H�
S ), where R is the nontrivial extension of T on top of S.

Proof. We only prove the first case while the other cases are similar. By [10, Theorem 5,7], we know
that the simples in H�

S corresponding to S , T and A are S[1], R and A. By [12, Lemma 3.3], we have
an isomorphism Hom1(T , S) ⊗ Homa(S, A) → Homa+1(T , A). Thus, applying Hom(−, A) to the trian-
gle S → R → T → S[1] gives Hom•(R, A) = 0. Similarly, a direct calculation of other Hom• between
S[1], R , A shows the new sub-quiver is as required. �
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