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The purpose of this short note is to show that there is in general
no containment

I(3) ⊂ I2

for an ideal I of points in P2. This answers in the negative a
question asked by Huneke and generalized by Harbourne. The sets
of points constituting counterexamples come from the dual of the
Hesse configuration and more generally from Fermat arrangements.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let I ⊂ S = C[x0, . . . , xn] be a homogeneous ideal in the graded ring of polynomials. The m-th
symbolic power I(m) of I is defined as

I(m) = S ∩
( ⋂

p∈Ass(I)

Im Sp

)
,

where the intersection is taken in the field of fractions of S .

* Corresponding author.
E-mail addresses: Marcin.Dumnicki@im.uj.edu.pl (M. Dumnicki), szemberg@up.krakow.pl (T. Szemberg),

Halszka.Tutaj@im.uj.edu.pl (H. Tutaj-Gasińska).
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There has been considerable interest in containment relations between usual and symbolic powers
of homogeneous ideals over the last two decades. The most general results in this direction have been
obtained with multiplier ideal techniques in characteristic zero by Ein, Lazarsfeld and Smith [7] and
using tight closures in positive characteristic by Hochster and Huneke [10]. Applying these results
to a homogeneous ideal I in the coordinate ring S of the projective space we obtain the following
containment statement

I(nr) ⊂ Ir for all r � 0.

Quite a number of examples has suggested that the following statement could be true, see [2, Con-
jecture 8.4.2], [4, Conjecture 1.1], [9, Conjecture 4.1.1].

Conjecture 1.1. Let I ⊂ C[Pn] be a homogeneous ideal. For m � rn − (n − 1) there is the containment

I(m) ⊂ Ir .

This conjecture asserts in particular that an earlier question raised by Huneke has a positive an-
swer; see [11, Problem 0.4], see also [3, page 400] and [9, Section 4.1]. The referee has kindly informed
us that Huneke had been raising this question verbally for a few years before 2006 but [11, Prob-
lem 0.4] seems to be its first occurrence in print.

Question 1.2 (Huneke). Let I be a homogeneous radical ideal of points in the projective plane. Is there
then the containment

I(3) ⊂ I2?

This question has been affirmatively answered for general points, see [3], star configurations,
see [9], complete intersections and some special configurations of points, see [5].

We show here that the containment in Question 1.2 fails in general. This implies also that Con-
jecture 1.1 is false. There is quite a number of closely related yet distinct conjectures concerning
containment relations between symbolic and usual powers of ideals in the literature. For the conve-
nience of the reader we mention here that the results of this note show that the following conjectures
are false: [9, Conjecture 4.1.1 and Conjecture 4.1.5] (for N = r = 2), [2, Conjecture 8.4.2], [4, Conjec-
ture 1.1], [5, Conjecture 3.9] (for N = t = 2 and m = 1), also Questions 4.2.2 and 4.2.3 in [5] have a
negative answer.

2. The dual Hesse configuration

We begin with an explicit realization of the dual Hesse configuration. Note that up to projective
change of coordinates there is a unique configuration of that type [12, Example 7.3].

Let ε be a primitive root of 1 of order 3. We consider the radical ideal I of the following set of 12
points in P

2:

P1 = (1 : 0 : 0), P2 = (0 : 1 : 0), P3 = (0 : 0 : 1),

P4 = (1 : 1 : 1), P5 = (
1 : ε : ε2), P6 = (

1 : ε2 : ε)
,

P7 = (ε : 1 : 1), P8 = (1 : ε : 1), P9 = (1 : 1 : ε),

P10 = (
ε2 : 1 : 1

)
, P11 = (

1 : ε2 : 1
)
, P12 = (

1 : 1 : ε2).
These points form a 12394 configuration, i.e. there are 9 lines
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L1: x − y, L2: y − z, L3: z − x,

L4: x − εy, L5: y − εz, L6: z − εx,

L7: x − ε2 y, L8: y − ε2z, L9: z − ε2x,

such that exactly 3 configuration lines pass through each of configuration points and exactly 4 points
lie on a configuration line. This is the dual of the well known Hesse configuration, see [1] for a lot
more on this beautiful subject.

Turning back to the ideal I, we exhibit first its generators.

Lemma 2.1. The ideal I is generated by polynomials

f1 := z
(
x3 − y3), f2 := x

(
y3 − z3) and f3 = y

(
z3 − x3).

Proof. We have obviously ( f1, f2, f3) ⊂ I, so it remains to check the opposite inclusion. To this end
let first J be the radical ideal of points P4, . . . , P12.

Claim. Polynomials

g1 = z3 − x3, and g2 = y3 − z3

generate J.

Let g ∈ J be a homogeneous element. Using identities

x3 = −(
z3 − x3) + z3, y3 = (

y3 − z3) + z3

we can write g = g′ + g′′ with some homogeneous g′ , g′′ satisfying g′′ ∈ (g1, g2) and g′ such that
degx g′ � 2 and degy g′ � 2. Note that g′ = g − g′′ ∈ J.

Now we set h(x, y) = g′(x, y,1) and let K be the radical ideal of points P1, . . . , P12 in the affine
chart z = 1. Then h ∈K. Note that h is supported on the following set of monomials

supp(h) ⊂ Q = {
1, x, y, x2, xy, y2, x2 y, xy2, x2 y2}.

Observe that the set Q is a monomial basis for the algebra C[x, y]/K. Indeed, since (x − 1)(x −ε)(x −
ε2) and (y − 1)(y − ε)(y − ε2) belong to K the set Q generates C[x, y]/K. Since dimCC[x, y]/K= 9
(we have 9 points), Q is a basis.

Now the inclusion h ∈ K with h supported on Q implies h = 0, thus g′ = 0 and consequently
g = g′′ ∈ (g1, g2). This exactly means that J= (g1, g2).

Now we turn back to the inclusion

I ⊂ ( f1, f2, f3).

All polynomials in the subsequent argument are supposed to be homogeneous. Let g ∈ I be an arbi-
trary element. Of course g ∈ J, hence

g = h1(x, y, z) · (z3 − x3) + h2(x, y, z) · (y3 − z3)

for some polynomials h1 and h2. We can split
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h1(x, y, z) = zh3(x, y, z) + h4(x, y)

into monomials containing z and those depending only on x and y. Hence we can also write

g = h4(x, y) · (z3 − x3) + (
h2(x, y, z) − zh3(x, y, z)

) · (y3 − z3) − h3(x, y, z) · z
(
x3 − y3).

Gathering together terms divisible by y(z3 − x3), x(y3 − z3) and z(x3 − y3) we can write

g = h5(x)
(
z3 − x3) + h6(y, z)

(
y3 − z3) + h7(x, y, z)

for some h7 ∈ ( f1, f2, f3). Obviously

h5(x)
(
z3 − x3) + h6(y, z)

(
y3 − z3)

vanishes at P1, P2, P3. This implies

h5(x) = 0 and consequently yz divides h6(y, z).

Since

yz
(

y3 − z3) = −z · y
(
z3 − x3) − y · z

(
x3 − y3) ∈ ( f1, f2, f3)

this completes the proof. �
We have the following two relations between the generators of I:

xyf1 + yzf2 + zxf3 = 0 and z2 f1 + x2 f2 + y2 f3 = 0.

It is easy to check that these relations determine the minimal resolution of I:

0 →
2⊕

S(−6) →
3⊕

S(−4) → I → 0.

Hence the Castelnuovo–Mumford regularity of I is reg(I) = 5. Then [8, Theorem 1.1] implies that

(
I(2)

)
t = (

I2)
t for t � 10

and hence

(
I(3)

)
t ⊂ (

I(2)
)

t = (
I2)

t for t � 10.

Thus the containment problem I(3) ⊂ I2 reduces to finding an element of degree less than 10 in I(3)

which is not in I2.

Theorem 2.2. The polynomial

f = L1 · · · · · L9 = x3 y6 − x6 y3 + y3z6 − y6z3 + z3x6 − z6x3 = (
x3 − y3)(y3 − z3)(z3 − x3)

is contained in I(3) but it is not contained in I2 .
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Proof. The geometry of the configuration implies that f ∈ I(3) . In fact this is the only nonzero element
(up to a multiplicative constant) of degree 9 in the third symbolic power of I, which can be easily
checked by Bezout’s theorem.

For the second claim we assume to the contrary that f ∈ I2. Using Lemma 2.1 we can write

f = (ax + by + cz) f 2
1 + other terms divisible by xy or z4. (1)

Substituting x = 0 in (1) we get

y3z6 − y6z3 = (by + cz)y6z2 + terms divisible by z4.

Comparing coefficients at y6z3 we obtain c = −1.
Substituting in turn y = 0 in (1) we get

z3x6 − z6x3 = (ax + cz)x6z2 + terms divisible by z4,

which comparing again coefficients at x6z3 gives c = 1, a contradiction. �
One can use the following Singular [6] script in order to verify all above claims, in particular that

f /∈ I2.

ring R=(0,e),(x,y,z),dp; option(redSB);
minpoly=e2+e+1;
ideal P1=y,z; ideal P2=x,z; ideal P3=x,y;
ideal P4=x-z,y-z; ideal P5=y-e*x,z-e^2*x; ideal P6=y-e^2*x,z-e*x;
ideal P7=x-e*z,y-z; ideal P8=x-z,y-e*z; ideal P9=y-x,z-e*x;
ideal P10=x-e^2*z,y-z; ideal P11=x-z,y-e^2*z; ideal P12=y-x,z-e^2*x;
ideal I=intersect(P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12);
regularity(mres(I,0));
ideal I3=intersect(P1^3,P2^3,P3^3,P4^3,P5^3,

P6^3,P7^3,P8^3,P9^3,P10^3,P11^3,P12^3);
poly F=I3[1];
reduce(F,std(I^2));
quit;

3. Fermat arrangements

The dual Hesse configuration from Section 2 is a special case of Fermat arrangements, see [13,
Example II.6]. More specifically, the 3d lines in a Fermat arrangement are defined as the zero locus of
the polynomial

fd = (
xd − yd)(yd − zd)(zd − xd).

If η is a primitive root of 1 of order d, then the intersection points of these lines are Q a,b =
(1 : ηa : ηb) for a,b = 1, . . . ,d and the three coordinate points P1 = (1 : 0 : 0), P2 = (0 : 1 : 0) and
P3 = (0 : 0 : 1). There are exactly d lines meeting in a coordinate point and exactly 3 lines passing
through every point Q a,b . Taking Id as the radical ideal of the union of all points Q a,b and Pi , it
follows that fd ∈ I(3) . It turns out that fd is not an element of I2. So also in this case we have

I(3) �⊂ I2.
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The arguments are similar as in Section 2 and we don’t pursue any exact proofs here. Note that for
d = 3 we recover exactly the dual Hesse configuration.

It is natural to wonder if Conjecture 1.1 could be true after some modifications. The constructions
carried out in this note do not exclude the following variant of Conjecture 1.1.

Question 3.1. Let I be a homogeneous radical ideal of points in the projective plane. Is there then the
containment

I(m) ⊂ Ir

for m � 2r − 1 and r � 3?

The first problem to decide would be the containment I(5) ⊂ I3.

Acknowledgments

We would like to thank Brian Harbourne for helpful remarks. We thank also the referee for nu-
merous remarks which improved the readability of this note.

References

[1] M. Artebani, I. Dolgachev, The Hesse pencil of plane cubic curves, Enseign. Math. (2) 55 (2009) 235–273.
[2] Th. Bauer, S. Di Rocco, B. Harbourne, M. Kapustka, A. Knutsen, W. Syzdek, T. Szemberg, A primer on Seshadri constants,

in: D.J. Bates, G.-M. Besana, S. Di Rocco, C.W. Wampler (Eds.), Interactions of Classical and Numerical Algebraic Geometry,
Proceedings of a Conference in Honor of A.J. Sommese, Notre Dame, May 22–24, 2008, in: Contemp. Math., vol. 496, 2009,
362 pp.

[3] C. Bocci, B. Harbourne, Comparing powers and symbolic powers of ideals, J. Algebraic Geom. 19 (2010) 399–417.
[4] C. Bocci, B. Harbourne, The resurgence of ideals of points and the containment problem, Proc. Amer. Math. Soc. 138 (2010)

1175–1190.
[5] C. Bocci, S. Cooper, B. Harbourne, Containment results for ideals of various configurations of points in PN , arXiv:1109.1884.
[6] W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, Singular 3-1-3 — A computer algebra system for polynomial compu-

tations, http://www.singular.uni-kl.de, 2011.
[7] L. Ein, R. Lazarsfeld, K. Smith, Uniform bounds and symbolic powers on smooth varieties, Invent. Math. 144 (2001) 241–252.
[8] A. Geramita, A. Gimigliano, Y. Pitteloud, Graded Betti numbers of some embedded rational n-folds, Math. Ann. 301 (1995)

363–380.
[9] B. Harbourne, C. Huneke, Are symbolic powers highly evolved?, J. Ramanujan Math. Soc. (2013), in press, arXiv:

1103.5809v1, 2013.
[10] M. Hochster, C. Huneke, Comparison of symbolic and ordinary powers of ideals, Invent. Math. 147 (2002) 349–369.
[11] C. Huneke, Open problems on powers of ideals, Notes from a workshop on Integral Closure, Multiplier Ideals and Cores,

AIM, December 2006, www.aimath.org/WWN/integralclosure/Huneke.pdf.
[12] K. Pałka, Recent progress in the geometry of Q-acyclic surfaces, in: Affine Algebraic Geometry, in: CRM Proc. Lecture Notes,

vol. 54, Amer. Math. Soc., Providence, RI, 2011, pp. 271–287.
[13] G.A. Urzúa, Arrangements of curves and algebraic surfaces, Ph.D. thesis, University of Michigan, ISBN 978-0549-82049-9,

2008, 166 pp.

http://refhub.elsevier.com/S0021-8693(13)00398-0/bib417274446F6C3039s1
http://refhub.elsevier.com/S0021-8693(13)00398-0/bib505343s1
http://refhub.elsevier.com/S0021-8693(13)00398-0/bib505343s1
http://refhub.elsevier.com/S0021-8693(13)00398-0/bib505343s1
http://refhub.elsevier.com/S0021-8693(13)00398-0/bib505343s1
http://refhub.elsevier.com/S0021-8693(13)00398-0/bib426F63486172313061s1
http://refhub.elsevier.com/S0021-8693(13)00398-0/bib426F63486172313062s1
http://refhub.elsevier.com/S0021-8693(13)00398-0/bib426F63486172313062s1
http://refhub.elsevier.com/S0021-8693(13)00398-0/bib424348s1
http://www.singular.uni-kl.de
http://refhub.elsevier.com/S0021-8693(13)00398-0/bib454C533031s1
http://refhub.elsevier.com/S0021-8693(13)00398-0/bib4747503935s1
http://refhub.elsevier.com/S0021-8693(13)00398-0/bib4747503935s1
http://refhub.elsevier.com/S0021-8693(13)00398-0/bib48614875s1
http://refhub.elsevier.com/S0021-8693(13)00398-0/bib48614875s1
http://refhub.elsevier.com/S0021-8693(13)00398-0/bib486F48753032s1
http://www.aimath.org/WWN/integralclosure/Huneke.pdf
http://refhub.elsevier.com/S0021-8693(13)00398-0/bib50616C3131s1
http://refhub.elsevier.com/S0021-8693(13)00398-0/bib50616C3131s1
http://refhub.elsevier.com/S0021-8693(13)00398-0/bib55727A3038s1
http://refhub.elsevier.com/S0021-8693(13)00398-0/bib55727A3038s1

	Counterexamples to the I(3) ⊂ I2 containment
	1 Introduction
	2 The dual Hesse conﬁguration
	3 Fermat arrangements
	Acknowledgments
	References


