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1. Introduction

Let us denote by F (R2, n) the space of n-tuples of pairwise different points in R2:

F (R2, n) = {(p1, . . . , pn) ∈ (R2)n : pi �= pj for i �= j}.

It is called the ordered configuration space of n points on a plane.
The pure braid group Pn can be defined as the fundamental group of the ordered 

configuration space Pn = π1(F (R2, n). The symmetric group Σn acts on F (R2, n) by 
permutations and Artin’s braid group [1,2] is the fundamental group of the orbits of 
this action Bn = π1(F (R2, n)/Σn. Artin gave a presentation of the braid group which 
became standard, it has generators σi, i = 1, . . . , n − 1 and two types of relations:

{
σiσj = σj σi, if |i− j| > 1,
σiσi+1σi = σi+1σiσi+1.

(1.1)

Generator σi permutes the strands with numbers i and i + 1 leaving all the rest non-
permuted and unlinked.

Let us define the elements ai,j , 1 ≤ i < j ≤ n, of the braid group Bn by the formula:

ai,j = σj−1...σi+1σ
2
i σ

−1
i+1...σ

−1
j−1.

These elements belong to the pure braid group and together with the following Burau 
relations [7,22]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ai,jak,l = ak,lai,j for i < j < k < l or i < k < l < j,

ai,jai,kaj,k = ai,kaj,kai,j for i < j < k,

ai,kaj,kai,j = aj,kai,jai,k for i < j < k,

ai,kaj,kaj,la
−1
j,k = aj,kaj,la

−1
j,kai,k for i < j < k < l,

(1.2)

give a presentation of the pure braid group.
Geometrically generator of this type is depicted at Fig. 1.
A braid is called Brunnian if (1) it is a pure braid and (2) it becomes trivial braid by 

removing any of its strands. Since the composition of any two Brunnian braids and the 
inverse of a Brunnian braid are still Brunnian, the set of Brunnian braids is a subgroup 
of the braid group which is denoted by Brunn. By a direct geometric observation, Brunn

is a normal subgroup of Pn. It is proved that, as a subgroup of Pn, Brunn is the normal 
closure of finitely many elements given by iterated commutators [3,15].

Brunnian braids have connections with homotopy theory as described in [4,16,3].
We recall that for a group G the descending central series

G = Γ1 ≥ Γ2 ≥ · · · ≥ Γi ≥ Γi+1 ≥ . . .
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Fig. 1. Generator a1,j .

is defined by the formulae

Γ1 = G, Γi+1 = [Γi, G].

The descending central series of a discrete group G gives rise to the associated graded 
Lie algebra (over Z) L(G)

Li(G) = Γi(G)/Γi+1(G).

The descending central series and the associated Lie algebras of the pure braid groups 
have been studied in particular in the works [8,10,13,14,21]. It is also an ingredient in 
the study of Vassiliev invariants of braids. The associated graded algebra of the Vassiliev 
filtration for the pure braid group ring coincides with the associated algebra of the 
filtration by the powers of augmentation ideal of the group ring of pure braids. The 
latter by Quillen’s theorem [18] is connected with the universal enveloping algebra of the 
associated Lie algebra of the descending central series of the pure braid group.

In this work, we consider the restriction {Γq(Pn) ∩ Brunn} of the descending central 
series of Pn to Brunn. This gives a relative Lie algebra

LP(Brunn) =
∞⊕
q=1

(Γq(Pn) ∩ Brunn)/(Γq+1(Pn) ∩ Brunn), (1.3)

which is a two-sided Lie ideal of L(Pn). The purpose of this article is to study the Lie 
algebra LP(Brunn).

We remark that the group Brunn is a free group of infinite rank for n ≥ 4 and so 
the associated Lie algebra L(Brunn) is an infinitely generated free Lie algebra for n ≥ 4. 
The relative Lie algebra LP(Brunn) has better features, in particular it is of finite type 
(in graded sense).

The main aim of the paper is to look at Brunnian braids at the level of Lie algebras. 
Propositions 2.2, 2.3 and 2.5 as well as some subsequent statements are the Lie algebra 
analogues of the corresponding facts for Brunnian braid groups.
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2. Lie algebra LP(Brunn)

A presentation of the Lie algebra L(Pn) for the pure braid group can be described as 
follows [14]. It is the quotient of the free Lie algebra L[Ai,j| 1 ≤ i < j ≤ n] generated 
by elements Ai,j with 1 ≤ i < j ≤ n modulo the “infinitesimal braid relations” or 
“horizontal 4T relations” given by the following relations of three types:

⎧⎪⎨
⎪⎩

[Ai,j , As,t] = 0, if {i, j} ∩ {s, t} = ∅,
[Ai,j , Ai,k + Aj,k] = 0, if i < j < k,

[Ai,k, Ai,j + Aj,k] = 0, if i < j < k.

(2.1)

Here, Ai,j is the image of ai,j in L1(Pn).

Proposition 2.1. Let G be a group with filtration w (in the sense of Serre [19, p. 7]). For 
any subgroup H of G the restriction on H of the filtration w defines a filtration on H.

Define a filtration wB on Brunn as the restriction of the filtration on Pn defined as the 
descending central series. The fact that LP(Brunn) as defined in (1.3) is a Lie algebra is 
a corollary of the above evident statement.

Proposition 2.2. LP(Brunn) is a Lie algebra defined by the filtration wB, it is a two-sided 
Lie ideal in L(Pn).

Proof. The statement follows from the fact that Brunn is a normal subgroup of Pn. �
We call LP(Brunn) relative Lie algebra associated with the Brunnian subgroup of the 

pure braid group.
The removing-strand operation on braids induces an operation

dk:L(Pn) −→ L(Pn−1)

formulated by

dk(Ai,j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ai,j if i < j < k

0 if k = j

Ai,j−1 if i < k < j

0 if k = i

Ai−1,j−1 if k < i < j.

(2.2)

A sequence of sets S = {Sn}n≥0 is called a bi-Δ-set if there are faces ∂j : Sn → Sn−1
and co-faces ∂j : Sn−1 → Sn for 0 ≤ j ≤ n such that the following identities hold:

(1) ∂j∂i = ∂i∂j+1 for j ≥ i;
(2) ∂j∂i = ∂i+1∂j for j ≤ i;
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(3) ∂j∂
i =

⎧⎪⎨
⎪⎩

∂i−1∂j if j < i,

id if j = i,

∂i∂j−1 if j > i.

In other words, S is a Δ-set as well as a co-Δ-set with the mixed relation (3). Moreover 
a sequence of groups G is called a bi-Δ-group if G is a bi-Δ-set such that all faces and 
co-faces are group homomorphisms.

Let Pn = Pn+1. According to [24, Example 1.2.8], the sequence of groups P = {Pn}n≥0
with faces relabeled as {∂0, ∂1, . . .} and co-faces relabeled as {∂0, ∂1, . . .} forms a 
bi-Δ-group structure. Here the face operation ∂i : Pn → Pn−1 = di+1 : Pn+1 → Pn

is obtained by deleting the i + 1st string, the co-face operation ∂i : Pn−1 → Pn is 
obtained by adding a trivial i +1st string in front of the other strings (i = 0, 1, 2, · · · , n).

Proposition 2.3. The relative Lie algebra LP(Brunn) is the Lie subalgebra 
⋂n

i=1 ker(di :
L(Pn) → L(Pn−1)).

Proof. The assertion follows from [24, Proposition 1.2.10]. �
Our next step is to determine a set of generators for the Lie algebra LP(Brunn). We 

start to recall the following fact that was proved by Falk and Randell [9, Theorem 3.1]
and Ihara [12, Lemma 3.1.1]. We give it in the form of Ihara.

Lemma 2.4. Let

1 → N → G → H → 1 (2.3)

be an exact sequence of groups such that

(i) [G, N ] = [N, N ],
(ii) L(N) has trivial center.

Then the natural homomorphism

L(N) → L(G)

is injective; hence (2.3) induces an exact sequence

0 → L(N) → L(G) → L(H) → 0. (2.4)

The following fact is a Lie algebra analogue of the theorem proved by A.A. Markov 
[17] for the pure braid group.

Proposition 2.5. The kernel of the homomorphism dn : L(Pn) → L(Pn−1) is a free Lie 
algebra, generated by the free generators Ai,n, for 1 ≤ i ≤ n − 1.

Ker(dn : L(Pn) → L(Pn−1)) = L[A1,n, . . . , An−1,n].
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Let Z be an arbitrary set, and let X and Y be nonempty (possibly infinite) subsets 
of Z such that X ∩ Y = ∅, X ∪ Y = Z. We are interested in studying the kernel of the 
Lie homomorphism of the free Lie algebras

π:L[Z] −→ L[Y ]

π such that π(x) = 0 for x ∈ X and π(y) = y for y ∈ Y .
The following lemma is not new: for the case of Lie algebras over a field and when X

consists of one element this is Lemma 2.6.2 in [5]. For completeness of our exposition we 
are giving our proof here.

Lemma 2.6. The kernel of π is a free Lie algebra, generated by the following family of 
free generators:

x, [· · · [x, y1], . . . , yt] (2.5)

for x ∈ X, yi ∈ Y for 1 ≤ i ≤ t.

Proof. Observe that the kernel Ker(π) is the two-sided ideal generated by the elements 
x ∈ X. Let us prove that it is generated as a Lie algebra by the elements (2.5). We 
prove this by induction on the length of monomials M , sums of which give the ideal. 
For the lengths 1 and 2 one can see this directly. Let the length of M be at least 3: 
M = [A, B] such that A contains some x ∈ X. We may assume that the length of A is 
at least 2. If not, then A = x for some x ∈ X and B = [B1, B2] and M = [x, [B1, B2]] =
[[B2, x], B1] + [[x, B1], B2] and it is reduced to the case when A contains some x ∈ X

with its length at least 2. Since A ∈ Ker(π) with its length strictly less than that of M , 
it is a linear combination of the products of the form [A1, A2] of the generators (2.5)
with both A1 and A2 containing some (possibly different) element(s) in X by induction. 
Consider the equality

[[A1, A2], B] = −[[A2, B], A1] − [[B,A1], A2].

The elements [A2, B] and [B, A1] have length strictly less than that of M and by induction 
they are given by linear combinations of products of the generators (2.5). Thus M =
[A, B] is a linear combination of products of the generators (2.5).

Let us prove now that the elements (2.5) freely generate our ideal Ker(π). Let us define 
a free Lie algebra (over Z) that is freely generated by formal elements {C(x), C(x, y1, y2,

. . . , yt)}, x ∈ X, y1, . . . , yt ∈ Y with t ≥ 1, which are in one-to-one correspondence with 
the elements (2.5)

F = L[C(x), C(x, y1, y2, . . . , yt) |x ∈ X, y1, . . . , yt ∈ Y, t ≥ 1].

Let us define an action of the free Lie algebra L[X 
 Y ] on F by the formulae which 
mimic the action of L[X 
 Y ] on the elements (2.5):
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{ [C(x, y1, y2, . . . , yt), y] = C(x, y1, y2, . . . , yt, y), y ∈ Y

[C(x, y1, y2, . . . , yt), x′] = [C(x, y1, y2, . . . , yt), C(x′)], x′ ∈ X,
(2.6)

where, for t = 0, C(x, y1, y2, . . . , yt) = C(x). Let us denote the generators (2.5) of our 
ideal by B(x), B(x, y1, y2, . . . , yt), x ∈ X, y1, . . . , yt ∈ Y with t ≥ 1. We claim that the 
element B(x, y1, y2, . . . , yt) acts on F the same way as the inner derivation by C(x, y1, y2,

. . . , yt):

[C(x′, y′1, . . . , y
′
t′), B(x, y1, . . . , yt)] = [C(x′, y′1, . . . , y

′
t′), C(x, y1, . . . , yt)].

The proof is by induction on the length t of B(x, y1, . . . , yt). For the length t = 0
it follows from the definition of the action. Let it be proved for the lengths less than t
with t > 0. Let D = C(x′, y′1, . . . , y

′
t′), C = C(x, y1, . . . , yt), B′ = B(x, y1, . . . , yt−1) and 

C ′ = C(x, y1, . . . , yt−1).

[D,B(x, y1, . . . , yt)] = [D, [B′, yt]]

= [[D,B′], yt] − [[D, yt], B′]

= [[D,C ′], yt] − [[D, yt], C ′]

(by induction)

= [D, [C ′, yt]]

= [D,C].

The induction is finished.
Let D(F ) be the Lie algebra of all derivations of the algebra F and let χ : F → D(F )

be the homomorphism defined by taking inner derivations. We define a homomorphism 
φ : F → L[X 
 Y ] by the formulae

φ(C(x)) = B(x) = x and

φ(C(x, y1, . . . , yt)) = B(x, y1, . . . , yt) = [· · · [x, y1], . . . , yt]

and let δ : L[X 
 Y ] → D(F ) be the homomorphism defined by the action (2.6). There 
is a commutative diagram:

F
φ

χ

L[X 
 Y ]

δ

D(F ).

The homomorphism χ is a monomorphism as free Lie algebras with more than 2 gen-
erators have trivial center [6, Exercice 3, Ch. II, §3, p. 79]. So φ is also a monomorphism 
and hence it is an isomorphism on the ideal generated by B(x, y1, . . . , yt). �
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Proposition 2.7. The intersection of the kernels of the homomorphisms dn and dk, k �= n, 
is a free Lie algebra, generated by the following infinite family of free generators:

Ak,n, [· · · [Ak,n, Aj1,n], . . . , Ajm,n] (2.7)

for ji �= k, n; ji ≤ n − 1; i ≤ m; m ≥ 1:

Ker(dn) ∩ Ker(dk) =

L[Ak,n, [· · · [Ak,n, Aj1,n], . . . , Ajm,n] | ji �= k, n; ji ≤ n− 1, i ≤ m; m ≥ 1]. (2.8)

Proof. Let us suppose for simplicity that k = n − 1 and denote Ai,n by Bi. Then the 
algebra from Proposition 2.5 is the following free Lie algebra L[B1, . . . , Bk], and the 
homomorphism dk can be expressed by the formulae

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B1 �→ B1,

· · · ,
Bk−1 �→ Bk−1,

Bk �→ 0.

The assertion follows from Lemma 2.6. �
Another set of free generators of Ker(dn) ∩Ker(dk) can be obtained using Hall bases 

[6,11]. We recall the definition. We suppose that all Lie monomials on B1, . . . , Bk are 
ordered lexicographically.

The Lie monomials B1, . . . , Bk are the standard monomials of degree 1. If we have 
defined standard monomials of degrees 1, . . . , n − 1, then [u, v] is a standard monomial 
if both of the following conditions hold:

(1) u and v are standard monomials and u > v.
(2) If u = [x, y] is the form of the standard monomial u, then v ≥ y.

Standard monomials form the Hall basis of a free Lie algebra (also over Z). Examples of 
standard monomials are the products of the type:

[· · · [Bj1 , Bj2 ], Bj3 ], . . . , Bjt ], j1 > j2 ≤ j3 ≤ · · · ≤ jt. (2.9)

Proposition 2.8. The intersection Ker(dn) ∩Ker(dk), k �= n, is a free Lie algebra, gener-
ated by the standard monomials on Ai,n that contain the letter Ak,n only once. In other 
words the free generators are standard monomials which are products of monomials of 
type (2.9) where only one such monomial contains one copy of Ak,n.
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Proof. We apply the procedure of constructing of a set of free generators for a Lie 
subalgebra which was used by Shirshov [20] and Witt [23] in their proofs that a Lie 
subalgebra of a free Lie algebra is free. �

Lemma 2.6 is useful for having an algorithm to recursively determine a set of free 
generators for LP(Brunn). A Lie monomial W on the letters A1,n, A2,n, . . . , An−1,n means 
W = Ai,n for some 1 ≤ i ≤ n − 1 or a Lie bracket W = [Aj1,n, Aj2,n, . . . , Ajt,n] under 
any possible bracket arrangements with entries taken from the letters Ai,n.

Definition 2.9. We recursively define the sets K(n)k, 1 ≤ k ≤ n, in the reverse order as 
follows:

1) Let K(n)n = {A1,n, A2,n, . . . , An−1,n}.
2) Suppose that K(n)k+1 is defined as a subset of Lie monomials on the letters

A1,n, A2,n, . . . , An−1,n

with k < n. Let

Ak = {W ∈ K(n)k+1 | W does not contain Ak,n in its entries}.

3) Define

K(n)k = {W ′ and [· · · [[W ′,W1],W2], . . . ,Wt]}

for W ′ ∈ K(n)k+1 � Ak and W1, W2, . . . , Wt ∈ Ak with t ≥ 1. Note that K(n)k is 
again a subset of Lie monomials on letters A1,n, A2,n, . . . , An−1,n.

Example 2.10. Let n = 3. The set K(3)1 is constructed by the following steps:

1) K(3)3 = {A1,3, A2,3}.
2) A2 = {A1,3}, K(3)2 = {A2,3, [[A2,3, A1,3], . . . , A1,3]}.
3) A1 = {A2,3}, K(3)1 = {[· · · [A2,3, A1,3], . . . , A1,3], A2,3], . . . , A2,3]}, where the length 

of the entries A2,3 in the brackets is ≥ 0.

Remark 2.11. All elements of K(3)1 under the canonical inclusion LP(Brunn) ↪→ L(P3)
are mapped to the elements (not all) of a Hall basis for the free Lie subalgebra of L(P3)
generated by A1,3 and A2,3.

Theorem 2.12. The Lie algebra LP(Brunn) is a free Lie algebra generated by K(n)1 as a 
set of free generators.

Proof. The assertion follows from the statement that K(n)k is a set of free generators 
for
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Ker(dn) ∩ Ker(dn−1) ∩ · · · ∩ Ker(dk)

for 1 ≤ k ≤ n. We prove this statement by induction in reverse order. For k = n it 
follows from Proposition 2.5. Suppose that the statement holds for k+1 with k < n. Let

Ak = {W ∈ K(n)k+1 | W does not contain Ak,n in its entries}

and let Bk = K(n)k+1 �Ak. By induction,

Ker(dn) ∩ Ker(dn−1) ∩ · · · ∩ Ker(dk+1) = L[K(n)k+1]

is a free Lie algebra freely generated by K(n)k+1. The Lie algebra generated by Ak is 
a Lie subalgebra of the Lie algebra freely generated by A1,n, . . . , An−1,n. Thus the Lie 
homomorphism

φ:L[Ak] −→ L[A1,n, . . . , An−1,n]

with φ(W ) = W for W ∈ Ak is a monomorphism with its image given by the Lie 
subalgebra generated by Ak.

Consider the homomorphism

dk:L[A1,n, . . . , An−1,n] −→ L[A1,n−1, . . . , An−2,n−1]

given in formula (2.2). We show that the composite

dk ◦ φ:L[Ak] −→ L[A1,n−1, . . . , An−2,n−1]

is a monomorphism. By the definition of Ak, the image φ(L[Ak]) is contained in the Lie 
subalgebra

L[A1,n, . . . , Ak−1,n, Ak+1,n, . . . , An−1,n]

of L[A1,n, . . . , An−1,n]. Thus there is a commutative diagram of Lie algebras

L[Ak]
φ

φ′

L[A1,n, . . . , An−1,n]

dk

L[A1,n, . . . , Ak−1,n, Ak+1,n, . . . , An−1,n]
dk|

L[A1,n−1, . . . , An−2,n−1],

where φ′ is defined by the same formula as φ. Since φ is a monomorphism, so is φ′. From 
the definition, the restriction

dk|:L[A1,n, . . . , Ak−1,n, Ak+1,n, . . . , An−1,n] −→ L[A1,n−1, . . . , An−2,n−1]
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is an isomorphism. It follows that dk◦φ: L[Ak] → L[A1,n−1, . . . , An−2,n−1] is a monomor-
phism.

Observe that dk(W ) = 0 for W ∈ K(n)k+1 �Ak. There is a commutative diagram of 
Lie algebras

L[K(n)k+1]

π

Ker(dn) ∩ · · · ∩ Ker(dk+1)
dk|

L[A1,n, . . . , An−1,n]

dk

L[Ak]
dk◦φ

L[A1,n−1, . . . , An−2,n−1],

where π(W ) = 0 for W ∈ K(n)k+1 �Ak and π(W ) = W for W ∈ Ak. It follows that

Ker(dn) ∩ · · · ∩ Ker(dk) =

= Ker(dk|: Ker(dn) ∩ · · · ∩ Ker(dk+1) → L[A1,n−1, . . . , An−2,n−1])

is given by the kernel of

π:L[K(n)k+1] = L[(K(n)k+1 �Ak) 
 Ak] −→ L[Ak],

which is freely generated by K(n)k by Lemma 2.6. This finishes the proof. �
Example 2.13. Let n = 4. The set K(4)1 is constructed by the following steps:

1) K(4)4 = {A1,4, A2,4, A3,4}.
2) A3 = {A1,4, A2,4},

K(4)3 = {[[A3,4, Aj1,4], . . . , Ajt,4] | 1 ≤ j1, . . . , jt ≤ 2, t ≥ 0},

where, for t = 0, [[A3,4, Aj1,4], . . . , Ajt,4] = A3,4.
3) For constructing K(4)2, let W = [[A3,4, Aj1,4], . . . , Ajt,4] ∈ K(4)3. If W does not 

contain A2,4, then W = A3,4 or W = [A3,4, Aj1,4], . . . , Ajt,4] with j1 = j2 = · · · =
jt = 1. Let

adt(b)(a) = [[a, b], b, . . . , b]

with t entries of b, where ad0(b)(a) = a. Then W does not contain A2,4 if and only 
if

W = adt(A1,4)(A3,4)

for t ≥ 0. So A2 = {adt(A1,4)(A3,4), t ≥ 0}. From the definition, K(4)2 is given by
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[[A3,4, Aj1,4], . . . , Ajt,4] and

[[[[A3,4, Aj1,4], . . . , Ajt,4], ads1(A1,4)(A3,4)], . . . , adsq (A1,4)(A3,4)],

where 1 ≤ j1, . . . , jt ≤ 2 with at least one ji = 2, s1, . . . , sq ≥ 0 and q ≥ 1.
4) For constructing K(4)1, let W be an element of K(4)2,

W = [[[[A3,4, Aj1,4], . . . , Ajt,4], ads1(A1,4)(A3,4)], . . . , adsq (A1,4)(A3,4)],

where, for q = 0, W = [[A3,4, Aj1,4], . . . , Ajt,4]. Then W does not contain A1,4 if and 
only if q = 0 and W = [[A3,4, Aj1,4], . . . , Ajt,4] with j1 = j2 = · · · = jt = 2, namely

W = adt(A2,4)(A3,4)

for t ≥ 1. So, A1 = {adt(A2,4)(A3,4), t ≥ 1}. Thus K(4)1, which is a set of free 
generators for LP (Brun4), is given by

W and [[W, adl1(A2,4)(A3,4)], . . . , adlp(A2,4)(A3,4)],

where li ≥ 1 for 1 ≤ i ≤ p with p ≥ 1 and

W = [[[[A3,4, Aj1,4], . . . , Ajt,4], ads1(A1,4)(A3,4)], . . . , adsq (A1,4)(A3,4)]

is an element of K(4)2, so that each of A2,4 and A1,4 appears in W at least once.

From the above example, one can see that the set K(n)1 is still complicated in the 
sense that its elements involve the iterated operations of normal Lie brackets from left 
to right [· · · [ , ], . . . , ].

Question 2.14. Determine a set of free generators for LP(Brunn) of the form [· · · [[a1, a2],
a3], . . . , at], where the ai are monomials of degree 1.

3. The symmetric Lie products of Lie ideals

Let L be a Lie algebra and I1, . . . , In ideals of L. We define the notions of the fat 
bracket sum and the symmetric bracket sum of ideals which are similar to the corre-
sponding fat commutator product and symmetric commutator product in groups [3,16]. 
Given a Lie algebra L, and a set of ideals I1, . . . , In, (n ≥ 2), the fat bracket sum 
[[I1, I2, . . . , In]] of these ideals is defined to be the Lie ideal of L generated by all of the 
commutators

βt(ai1 , . . . , ait), (3.1)

where
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1) 1 ≤ is ≤ n, 1 ≤ s ≤ t;
2) {i1, . . . , it} = {1, . . . , n}, so, each integer in {1, 2, · · · , n} appears at least once among 

the integers is;
3) aj ∈ Ij ;
4) βt runs over all of the bracket arrangements of weight t (with t ≥ n).

Here, the elements aj ∈ Ij appear once or more for each 1 ≤ j ≤ n. The symmetric 
bracket sum of these ideals is defined as

[[I1, I2], . . . , Il]S :=
∑
σ∈Σn

[[Iσ(1), Iσ(2)], . . . , Iσ(n)],

where Σn is the symmetric group on n letters.
As in [3,16] we can prove that the symmetric bracket sum of I1, . . . , In (n ≥ 2) is the 

same as the fat bracket sum.

Theorem 3.1. Let I1, . . . , In be Lie ideals of a Lie algebra L. Then

[[I1, I2, . . . , In]] = [[I1, I2], . . . , In]S .

To prove this theorem, we need some lemmas. The following statement follows from 
the Jacobi identity.

Lemma 3.2. Let L be a Lie algebra and let A, B, C be Lie ideals of L. Then any one of 
the Lie ideals [A, [B, C]], [[A, B], C] and [[A, C], B] is a Lie ideal of the sum of the other 
two.

Lemma 3.3. Let I1, . . . , In be Lie ideals of L. Let aj ∈ Ij for 1 ≤ j ≤ n. Then

βn(aσ(1), . . . , aσ(n)) ∈ [[I1, I2], . . . , In]S

for any σ ∈ Σn and any bracket arrangement βn of weight n.

Proof. The proof is given by double induction. The first induction is on n. Clearly the 
assertion holds for n = 1. Suppose that the assertion holds for m with m < n. Given an 
element βn(aσ(1), . . . aσ(n)) as in the statement of the lemma we have

βn(aσ(1), . . . , aσ(n)) = [βp(aσ(1), . . . , aσ(p)), βn−p(aσ(p+1), . . . , aσ(n))]

for some bracket arrangements βp and βn−p with 1 ≤ p ≤ n − 1. The second induction 
is on q = n − p. If q = 1, we have

βn−1(aσ(1), . . . , aσ(n−1)) ∈ [[Iσ(1), Iσ(2)], . . . , Iσ(n−1)]S
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by the first induction and so

βn(aσ(1), . . . , aσ(n)) = [βn−1(aσ(1), . . . , aσ(n−1)), aσ(n)]

∈ [[[Iσ(1), Iσ(2)], . . . , Iσ(n−1)]S , Iσ(n)]

with

[[[Iσ(1), Iσ(2)], . . . , Iσ(n−1)]S , Iσ(n)]

=
[∑

τ∈Σn−1
[[Iτ(σ(1)), Iτ(σ(2))], . . . , Iτ(σ(n−1))], Iσ(n)

]

=
∑

τ∈Σn−1
[[[Iτ(σ(1)), Iτ(σ(2))], . . . , Iτ(σ(n−1))], Iσ(n)]

≤ [[I1, I2], . . . , In]S .

Now suppose that the assertion holds for q′ = n −p′ < q. By the first induction, we have

βp(aσ(1), . . . , aσ(p)) ∈ [[Iσ(1), Iσ(2)], . . . , Iσ(p)]S

and

βn−p(aσ(p+1), . . . , aσ(n)) ∈ [[Iσ(p+1), Iσ(p+2)], . . . , Iσ(n)]S .

Thus

βn(aσ(1), . . . , aσ(n)) ∈
[
[[Iσ(1), Iσ(2)], . . . , Iσ(p)]S , [[Iσ(p+1), Iσ(p+2)], . . . , Iσ(n)]S

]
.

For shortening the notations, let [a1, · · · , at]ln denote the left-to-right normal Lie bracket 
[· · · [[a1, a2], a3], . . . , an]. Then

βn(aσ(1), . . . , aσ(n)) ∈
∑
τ∈Σp

ρ∈Σn−p

[
[Iτ(σ(1)), . . . , Iτ(σ(p))]ln, [Iρ(σ(p+1)), . . . , Iρ(σ(n))]ln

]
,

where Σn−p acts on {σ(p + 1), . . . , σ(n)}. By applying the Jacobi identity, we have

[
[Iτ(σ(1)), . . . , Iτ(σ(p))]ln, [Iρ(σ(p+1)), . . . , Iρ(σ(n))]ln

]
=

[
[Iτ(σ(1)), . . . , Iτ(σ(p))]ln,

[
[Iρ(σ(p+1)), . . . , Iρ(σ(n−1))]ln, Iρ(σ(n))

]]
≤

[[
[Iτ(σ(1)), . . . , Iτ(σ(p))]ln, [Iρ(σ(p+1)), . . . , Iρ(σ(n−1))]ln

]
, Iρ(σ(n))

]
+

[[
[Iτ(σ(1)), . . . , Iτ(σ(p))]ln, Iρ(σ(n))

]
, [Iρ(σ(p+1)), . . . , Iρ(σ(n−1))]ln

]
.

Note that

A =
[[

[Iτ(σ(1)), . . . , Iτ(σ(p))]ln, [Iρ(σ(p+1)), . . . , Iρ(σ(n−1))]
]ln

, Iρ(σ(n))

]



284 J.Y. Li et al. / Journal of Algebra 439 (2015) 270–293
is generated by the elements of the form

[[
[a′τ(σ(1)), . . . , a

′
τ(σ(p))]ln, [a′ρ(σ(p+1)), . . . , a

′
ρ(σ(n−1))]ln

]
, a′ρ(σ(n))

]

with a′j ∈ Ij . By the second induction hypothesis for the case q = 1, the above elements 
lie in [[I1, I2], . . . , In]S and so

A ≤ [[I1, I2], . . . , In]S .

Similarly, by the second induction hypothesis,

[[
[Iτ(σ(1)), . . . , Iτ(σ(p))]ln, Iρ(σ(n))

]
, [Iρ(σ(p+1)), . . . , Iρ(σ(n−1))]ln

]

is a Lie ideal of [[I1, I2], . . . , In]S . It follows that

[
[Iτ(σ(1)), . . . , Iτ(σ(p))]ln, [Iρ(σ(p+1)), . . . , Iρ(σ(n))]ln

]
≤ [[I1, I2], . . . , In]S

and so

βn(aσ(1), . . . , aσ(n)) ∈ [[I1, I2], . . . , In]S .

Both the first and second inductions are finished, hence the result holds. �
Lemma 3.4. Let L be a Lie algebra and let I1, . . . , In be Lie ideals of L. Let (i1, i2, . . . , ip)
be a sequence of integers with 1 ≤ is ≤ n. Suppose that

{i1, i2, . . . , ip} = {1, 2, . . . , n}.

Then

[[Ii1 , Ii2 ], . . . , Iip ] ≤ [[I1, I2], . . . , In]S .

Proof. We also apply double induction. The first induction is on n. The assertion clearly 
holds for n = 1. Suppose that the assertion holds for n −1 with n > 1. From the condition 
{i1, i2, . . . , ip} = {1, 2, . . . , n}, we have p ≥ n. When p = n, (i1, . . . , in) is a permutation 
of (1, . . . , n) and so

[[Ii1 , Ii2 ], . . . , Iin ] ≤ [[I1, I2], . . . , In]S .

Suppose that

[[Ij1 , Ij2 ], . . . , Ijq ] ≤ [[I1, I2], . . . , In]S
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for any sequence (j1, . . . , jq) with q < p and {j1, . . . , jq} = {1, . . . , n}. Let (i1, . . . , ip)
be a sequence with {i1, . . . , ip} = {1, . . . , n}. If ip ∈ {i1, . . . , ip−1}, then {i1, . . . , ip−1} =
{1, . . . , n} and so

[[Ii1 , Ii2 ], . . . , Iip−1 ] ≤ [[I1, I2], . . . , In]S

by the second induction hypothesis. As [[I1, I2], . . . , In]S is a Lie ideal, it follows that

[[Ii1 , Ii2 ], . . . , Iip ] ≤ [[I1, I2], . . . , In]S .

If ip /∈ {i1, . . . , ip−1}, we may assume that ip = n. Then

{i1, . . . , ip−1} = {1, . . . , n− 1}

and so

[[Ii1 , Ii2 ], . . . , Iip−1 ] ≤ [[I1, I2], . . . , In−1]S

by the first induction hypothesis. From Lemma 3.3, we have

[[Ii1 , Ii2 ], . . . , Iip ] ≤ [[I1, I2], . . . , In]S .

The double induction is finished, hence the result holds. �
Lemma 3.5. Let L be a Lie algebra and let I1, . . . , In be Lie ideals of L with n ≥ 2. Let 
(i1, . . . , ip) and (j1, . . . , jq) be sequences of integers such that {i1, . . . , ip} ∪{j1, . . . , jq} =
{1, 2, . . . , n}. Then

[[[Ii1 , Ii2 ], . . . , Iip ], [[Ij1 , Ij2 ], . . . , Ijq ]] ≤ [[I1, I2], . . . , In]S .

Proof. Again we use the double induction on n and q with n ≥ 2 and q ≥ 1. First we 
prove that the assertion holds for n = 2. If {i1, . . . , ip} = {1, 2} or {j1, . . . , jq} = {1, 2}, 
we have

[[Ii1 , Ii2 ], . . . , Iip ] ≤ [I1, I2]S or [[Ij1 , Ij2 ], . . . , Ijq ] ≤ [I1, I2]S

by Lemma 3.4 and so, as [I1, I2] is a Lie ideal,

[[[Ii1 , Ii2 ], . . . , Iip ], [[Ij1 , Ij2 ], . . . , Ijq ]] ≤ [I1, I2]S .

Otherwise, i1 = · · · = ip and j1 = · · · = jq, since {i1, . . . , ip} ∪ {j1, . . . , jq} = {1, 2}, we 
may assume that i1 = · · · = ip = 1, j1 = · · · = jq = 2, then

[[Ii1 , Ii2 ], . . . , Iip ] ≤ I1 and [[Ij1 , Ij2 ], . . . , Ijq ] ≤ I2
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and so

[[[Ii1 , Ii2 ], . . . , Iip ], [[Ij1 , Ij2 ], . . . , Ijq ]] ≤ [I1, I2]S .

Suppose the assertion holds for n − 1, that is

[[[Ii1 , Ii2 ], . . . , Iip ], [[Ij1 , Ij2 ], . . . , Ijq ]] ≤ [[I1, I2], . . . , In−1]S ,

when {i1, . . . , ip} ∪ {j1, . . . , jq} = {1, 2, . . . , n − 1}. We shall use the second induc-
tion on q to prove that the assertion holds for n. If q = 1, the assertion follows by 
Lemma 3.4. Suppose that the assertion holds for q−1. By Lemma 3.2, [[[Ii1 , Ii2 ], . . . , Iip ],
[[Ij1 , Ij2 ], . . . , Ijq ]] is a Lie ideal of the sum

[[[Ii1 , . . . , Iip ]ln, [Ij1 , . . . , Ijq−1 ]ln], Ijq ] + [[[Ii1 , . . . , Iip ]ln, Ijq ], [Ij1 , . . . , Ijq−1 ]ln].

By the second induction we have

[[[Ii1 , . . . , Iip ]ln, Ijq ], [Ij1 , . . . , Ijq−1 ]ln] ≤ [[I1, I2], . . . , In]S .

If {i1, . . . , ip} ∪ {j1, . . . , jq−1} = {1, 2, . . . , n}, by the second induction

[[Ii1 , . . . , Iip ]ln, [Ij1 , . . . , Ijq−1 ]ln] ≤ [[I1, I2], . . . , In]S

and hence

[[[Ii1 , . . . , Iip ]ln, [Ij1 , . . . , Ijq−1 ]ln], Ijq ] ≤ [[I1, I2], . . . , In]S .

If {i1, . . . , ip} ∪ {j1, . . . , jq−1} �= {1, 2, . . . , n}, we may assume that

{i1, . . . , ip} ∪ {j1, . . . , jq−1} = {1, 2, . . . , n− 1}

and jq = n. By the first induction,

[[Ii1 , . . . , Iip ]ln, [Ij1 , . . . , Ijq−1 ]ln] ≤ [[I1, I2], . . . , In−1]S .

Then, by Lemma 3.3,

[[[Ii1 , . . . , Iip ]ln, [Ij1 , . . . , Ijq−1 ]ln], Ijq ] ≤ [[I1, I2], . . . , In]S .

It follows that [[[Ii1 , Ii2 ], . . . , Iip ], [[Ij1 , Ij2 ], . . . , Ijq ]] ≤ [[I1, I2], . . . , In]S . The double in-
duction is finished, hence the result holds. �
Proof of Theorem 3.1. Clearly [[I1, I2], . . . , In]S ≤ [[I1, I2, . . . , In]]. We prove by induc-
tion on n that
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[[I1, I2, . . . , In]] ≤ [[I1, I2], . . . , In]S .

The assertion holds for n = 1. We now make the first induction hypothesis that for all 
1 ≤ s < n and for any Lie ideals I1, . . . , Is of L

[[I1, I2, . . . , Is]] ≤ [[I1, I2], . . . , Is]S . (3.2)

Let I1, . . . , In be arbitrary Lie ideals of L. By definition, [[I1, I2, . . . , In]] is generated by 
all commutators

βt(ai1 , . . . , ait)

of weight t such that {i1, i2, . . . , it} = {1, 2, . . . , n} with aj ∈ Ij . To prove that each 
generator βt(ai1 , . . . , ait) is in [[I1, I2], . . . , In]S , we start the second induction on the 
weight t of βt with t ≥ n. If t = n, then (i1, . . . , in) is a permutation of (1, . . . , n) and so 
the assertion holds by Lemma 3.3. Now assume

βk(a′i1 , . . . , a
′
ik

) ∈ [[I1, I2], . . . , In]S (3.3)

for all k such that n ≤ k < t, where βk(a′i1 , . . . , a
′
ik

) is any bracket arrangement of 
weight k such that

1) 1 ≤ is ≤ n;
2) {i1, . . . , ik} = {1, . . . , n};
3) a′j ∈ Ij .

Let βt(ai1 , . . . , ait) be any bracket arrangement of weight t with {i1, . . . , it} =
{1, . . . , n} and aj ∈ Ij for 1 ≤ j ≤ n. From the definition of a bracket arrangement, 
we have

βt(ai1 , . . . , ait) = [βp(ai1 , . . . , aip), βt−p(aip+1 , . . . , ait)]

for some bracket arrangements βp and βt−p of weight p and t − p, respectively, with 
1 ≤ p ≤ n − 1. Let

A = {i1, . . . , ip} and B = {ip+1, . . . , it}.

Then both A and B are subsets of {1, . . . , n} with A ∪B = {1, . . . , n}.
Suppose that the cardinality |A| = n or |B| = n. We may assume that |A| = n. By 

hypothesis (3.3),

βp(ai1 , . . . , aip) ∈ [[I1, I2], . . . , In]S .

Since [[I1, I2], . . . , In]S is a Lie ideal of L, we have
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βt(ai1 , . . . , ait) = [βp(ai1 , . . . , aip), βt−p(aip+1 , . . . , ait)] ∈ [[I1, I2], . . . , In]S .

This proves the result in this case.
Suppose that |A| < n and |B| < n. Let A = {l1, . . . , la} with 1 ≤ l1 < l2 < · · · <

la ≤ n and 1 ≤ a < n, and let B = {k1, . . . , kb} with 1 ≤ k1 < k2 < · · · < kb and 
1 ≤ b < n. Observe that

βp(ai1 , . . . , aip) ∈ [[Il1 , Il2 , . . . , Ila ]].

By hypothesis (3.2),

[[Il1 , Il2 , . . . , Ila ]] = [[Il1 , Il2 ], . . . , Ila ]S .

Thus

βp(ai1 , . . . , aip) ∈ [[Il1 , Il2 ], . . . , Ila ]S .

Similarly

βt−p(aip+1 , . . . , ait) ∈ [[Ik1 , Ik2 ], . . . , Ikb
]S .

It follows that

βt(ai1 , . . . , ait) ∈ [[[Il1 , Il2 ], . . . , Ila ]S , [[Ik1 , Ik2 ], . . . , Ikb
]S ] .

From Lemma 3.5, we have
[
[[Ilσ(1) , Ilσ(2) ], . . . , Ilσ(a) ], [[Ikτ(1) , Ikτ(2) ], . . . , Ikτ(b) ]

]
≤ [[I1, I2], . . . , In]S

for all σ ∈ Σa and τ ∈ Σb because {l1, . . . , la} ∪ {k1, . . . , kb} = A ∪B = {1, 2, . . . , n}. It 
follows that

[[[Il1 , Il2 ], . . . , Ila ]S , [[Ik1 , Ik2 ], . . . , Ikb
]S ] ≤ [[I1, I2], . . . , In]S .

Thus

βt(ai1 , . . . , ait) ∈ [[I1, I2], . . . , In]S .

The induction is finished, hence Theorem 3.1 follows. �
Let us denote the ideal

L[Ak,n, [· · · [Ak,n, Aj1,n], . . . , Ajm,n] | ji �= k, n; ji ≤ n− 1, i ≤ m; m ≥ 1]

by Ik. Then we have the following theorem.
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Theorem 3.6. The Lie subalgebra LP(Brunn) and the symmetric bracket sum [[I1, I2], . . . ,
In−1]S are equal as subalgebras in L(Pn):

LP(Brunn) = [[I1, I2], . . . , In−1]S .

Proof. It is evident that the symmetric bracket sum [[I1, I2], . . . , In−1]S lies in the kernels 
of all di. On the other hand, from Theorem 2.12, LP(Brunn) is given as “fat Lie product” 
of I1, . . . , In−1 because each element in K(n)1 is a Lie monomial containing each of 
A1,n, . . . , An−1,n. We know that K(n)1 ⊆ [[I1, . . . , In−1]] = [[I1, I2], . . . , In−1]S . Thus 
LP(Brunn) is contained in the symmetric bracket sum [[I1, I2], . . . , In−1]S . �
4. The rank of LP

q (Brunn)

Observe that the Lie algebra L(P ) is of finite type in the sense that each homogeneous 
component Lk(Pn) is a free abelian group of finite rank. Thus the subgroup

LP(Brunn) ∩ Lk(Pn)

is a free abelian group of finite rank. The purpose of this section is to give a formula of 
the rank of LP

q (Brunn).

4.1. A decomposition formula on bi-Δ-groups

By the definition of bi-Δ-groups and the face and co-face operation on P = {Pn}n≥0, 
we have the following lemma.

Lemma 4.1. For every q ≥ 0, Lq(P) = {Lq(Pn)}n≥0 is a bi-Δ-group.

Let G = {Gn}n≥0 be a bi-Δ-group. Define

Zn(G) =
n⋂

i=0
Ker(∂i:Gn → Gn−1).

The following statement on bi-Δ-groups is proved in [24, Proposition 1.2.9].

Theorem 4.2 (Decomposition theorem of bi-Δ-groups). Let G = {Gn}n≥0 be a bi-Δ-group. 
Then Gn is the (iterated) semi-direct product of the subgroups

∂ik∂ik−1 · · · ∂i1(Zn−k(G)),

0 ≤ i1 < · · · < ik ≤ n, 0 ≤ k ≤ n, where the order of the product is lexicographic from 
right.
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Corollary 4.3. Let G = {Gn}n≥0 be a bi-Δ-group such that each Gn is an abelian group. 
Then there is direct sum decomposition

Gn =
⊕

0≤i1<···<ik≤n
0≤k≤n

∂ik∂ik−1 · · · ∂i1(Zn−k(G))

for each n.

4.2. The rank of LP
q (Brunn)

Let G = Lq(P). Then Zn(Lq(P)) = LP
q (Brunn+1) by Proposition 2.3. Let di = ∂i−1 :

Pn−1 = Pn → Pn = Pn+1 be the map obtained by adding a trivial ith string in front of the 
other strings (i = 1, 2, · · · , n +1). By Corollary 4.3, we have the following decomposition.

Proposition 4.4. There is a decomposition

Lq(Pn) =
⊕

1≤i1<···<ik≤n
0≤k≤n−1

dikdik−1 · · · di1(LP
q (Brunn−k))

for each n and q.

Corollary 4.5. There is a formula

rank(Lq(Pn)) =
n−1∑
k=0

(
n

k

)
rank(LP

q (Brunn−k))

for each n and q.

Theorem 4.6.

rank(LP
q (Brunn)) =

n−1∑
k=0

(−1)k
(
n

k

)
rank(Lq(Pn−k))

for each n and q, where P1 = 0 and, for m ≥ 2,

rank(Lq(Pm)) = 1
q

m−1∑
k=1

∑
d|q

μ(d)kq/d

with μ the Möbis function.

Proof. From the semi-direct product decomposition of Lie algebras in Proposition 2.5,

L(Pm) ∼= L(Pm−1) ⊕ L(Fm−1),
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we have

rank(Lq(Pm)) =
m−1∑
k=1

rank(Lq(Fk))

for m ≥ 2. Since L(Fk) is the free Lie algebra on a set of k-elements [6, Théorème 2, 
Ch. II, §3, p. 36],

rank(Lq(Fk)) = 1
q

∑
d|q

μ(d)kq/d

and so

rank(Lq(Pm)) = 1
q

m−1∑
k=1

∑
d|q

μ(d)kq/d.

Now let bq(Pn) = rank(Lq(Pn)) and bPq (Brunn−k) = rank(LP
q (Brunn−k)). By Corol-

lary 4.5, we have

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

bq(Pn)
bq(Pn−1)
bq(Pn−2)

...
bq(P1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
(
n
1
) (

n
2
)

· · ·
(

n
n−1

)
0 1

(
n−1

1
)

· · ·
(
n−1
n−2

)
0 0 1 · · ·

(
n−2
n−3

)
...

...
... · · ·

...
0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

bPq (Brunn)
bPq (Brunn−1)
bPq (Brunn−2)

...
bPq (Brun1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let An = (ai,j) be the coefficient matrix of the above linear equations, ai,j =
(
n−i−1
j−i

)
, 

j ≥ i. Then

A−1
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −
(
n
1
) (

n
2
)

−
(
n
3
)

· · · (−1)n−1( n
n−1

)
0 1 −

(
n−1

1
) (

n−1
2
)

· · · (−1)n−2(n−1
n−2

)
0 0 1 −

(
n−2

1
)

· · · (−1)n−3(n−2
n−3

)
0 0 0 1 · · · (−1)n−4(n−3

n−4
)

...
...

...
... · · ·

...
0 0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

so, that if we denote A−1
n = (ci,j), then ci,j = (−1)j−i

(
n−i−1
j−i

)
, j ≥ i. Hence the result 

follows. �
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