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In [30], S. Koenig, S. Ovsienko and the second author showed 
that every quasi-hereditary algebra is Morita equivalent to the 
right algebra, i.e. the opposite algebra of the left dual, of a 
coring. Let A be an associative algebra and V an A-coring 
whose right algebra R is quasi-hereditary. In this paper, we 
give a combinatorial description of an associative algebra B
and a B-coring W whose right algebra is the Ringel dual of R. 
We apply our results in small examples to obtain restrictions 
on the A∞-structure of the Ext-algebra of standard modules 
over a class of quasi-hereditary algebras related to birational 
morphisms of smooth surfaces.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Exceptional collections appear frequently in algebraic and symplectic geometry as well 
as in representation theory. For example, they appear in the process of identifying certain 
Fukaya–Seidel categories, see e.g. [48]. In algebraic geometry, starting with the example 
of the projective space by A. Beilinson [4,5], (strong) exceptional collections are used to 
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realise derived categories of coherent sheaves as derived categories of finite dimensional 
algebras [9]. In representation theory, the main source of examples for exceptional collec-
tions are quasi-hereditary algebras. In this situation, the exceptional collections consist 
of so-called standard modules. Examples of quasi-hereditary algebras are Schur algebras 
and algebras of global dimension smaller than or equal to two. Also, blocks of BGG cat-
egory O are equivalent to categories of modules over quasi-hereditary algebras. In work 
with S. Koenig and S. Ovsienko [30], the second author showed that quasi-hereditary 
algebras can equivalently be described as the right (or left) algebras of directed corings 
(also called bocses for ‘bimodule over category with coalgebra structure’). In this descrip-
tion, the category of modules filtered by standard modules is equivalent to the category 
of modules over the directed bocs, i.e. the Kleisli category of the corresponding comonad, 
see Definition 4.1 for the definition of a directed bocs, Theorem 4.5 for the main theorem 
of [30] and Proposition 5.1 for a quiver theoretic perspective on the category of modules 
over a bocs. Let Λ be a quasi-hereditary algebra and D the (graded) dual of the bar 
resolution of the Ext-algebra of the standard modules over Λ, equipped with its canon-
ical A∞-structure. The directed bocs A of Λ is obtained from the quotient of D by the 
differential ideal generated by the negative degree part. The inclusion modA → mod Λ
yields an equivalence Db(modA) � Db(mod Λ).

An important concept in the theory of exceptional collections is the (left and right) 
mutation introduced by A. Bondal in [9]. For an exceptional collection (Δ1, . . . , Δn) in 
a triangulated category, its left mutation at i is the exceptional collection (Δ′

1, . . . , Δ′
n)

with Δ′
l = Δl for all l �= i, i + 1 and Δ′

i+1 = Δi. Mutations of exceptional collections 
induce an action of the braid group on the set of exceptional collections in a triangulated 
category. Given an exceptional collection, there are two distinguished other collections, 
the left and the right (Koszul) dual. They are obtained by mutating the exceptional 
collection along the ‘global half-twist’ βn−1(βn−2βn−1) · · · (β2 · · ·βn−1)(β1 · · ·βn−1) ∈ Brn
or its inverse. For the collection of standard modules over a quasi-hereditary algebra 
Λ elements of the right Koszul dual exceptional collection are again modules – the 
costandard modules over Λ denoted by ∇. There is in fact another quasi-hereditary 
algebra, derived equivalent to Λ, having the exceptional collection of costandard mod-
ules as standard modules. It was introduced by C. Ringel in [42] and is therefore called 
the Ringel dual of the original quasi-hereditary algebra. In the language of directed 
bocses, the Ringel dual of the right algebra of a directed bocs is given by its left alge-
bra.

Let (A, V ) be a directed bocs. In [39], S. Ovsienko proposed a construction of a bocs 
B = (B, W ), whose right algebra is Morita equivalent to the left algebra of (A, V ) and 
vice versa. But his paper is lacking a lot of details in the proof of the construction. This 
paper provides full details of the proof of the following theorem.

Theorem. Let Λ be a quasi-hereditary algebra. Let A = (A, V ) be the corresponding 
directed bocs. Denote by V the kernel of the counit. Let D be the dual of the bar resolution 
of the differential graded algebra TA(V ). The quotient of D by the DG ideal generated by 
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the negative degree part provides a combinatorial construction for a bocs (B, W ) having 
the Ringel dual of Λ as the right algebra.

Note that since the directed coring (A, V ) provides the same information as 
the A∞-structure on Ext∗Λ(Δ, Δ), this gives a combinatorial method to obtain the 
A∞-structure on Ext∗Λ(∇, ∇) from the A∞-structure on Ext∗(Δ, Δ). This result should 
be compared with S. Oppermann’s combinatorial construction in [38] of the silting muta-
tion of a differential graded algebra. As noted in [30, Appendix A.2], there is not a unique 
directed bocs associated to a quasi-hereditary algebra. Thus, there cannot be a unique 
lift of Ringel duality to the level of bocses. Uniqueness of directed bocses associated to 
quasi-hereditary algebras will be discussed in [31].

The proof of the above theorem is divided into several steps which we find of inde-
pendent interest. First, we consider explicit complexes �·

i of A-modules and prove that 
they are homotopically projective. Since in the bocs description, standard modules cor-
respond to simple modules over the bocs, we conclude that the complexes �·

i form an 
exceptional collection left dual to the exceptional collection of standard modules. (Recall 
that since Λ is of finite global dimension, Db(mod Λ) admits a Serre functor.) Therefore, 
�·

i is the Serre dual of the costandard module ∇i. If we denote by �i the k-duals of the 
analogously defined Aop-modules then F(�) � F(∇). As Ringel duality yields an equiv-
alence F(∇Λ) � F(ΔR(Λ)), in order to find the dual bocs we present the category F(�)
as the category of right modules over a bocs. To this end we prove (see Theorem 6.1 for 
the precise statement):

Theorem. The category F(�) is equivalent to the category of complexes N · of A-modules 
such that N j ∼= V

⊗Aj ⊗L Y , for an L-module Y . The differential N j → N j+1 is encoded 
in a map cY : Y → V ⊗L Y .

In the next step we further simplify the description of F(�) and with Theorem 6.3
show

Theorem. The category F(�) is equivalent to a category N (A) whose objects are pairs 
(Y, cY ) of an L-module and a map cY : Y → V ⊗LY satisfying some additional condition.

Finally, we show that N (A) is equivalent to the category R(A) whose objects are 
L-modules Y together with a map sY ∈ HomL⊗L(DV , Homk(Y, Y )) while morphisms 
(Y, sY ) → (Z, sZ) are represented by elements of HomL⊗L(DA, Homk(Y, Z)). This, to-
gether with the quiver theoretic description of modΛ in Proposition 5.1, suggests that 
R(A) is equivalent to the category of a bocs (B, W ) where B is an algebra generated 
by DV and W is a bimodule generated by DA. In other words, the bocs (B, W ) is the 
quotient of the dual of the bar resolution of the bocs (A, V ) by the differential ideal 
generated by negative degrees. Hence, from the point of view of bocses, Ringel duality 
is a special case of Koszul duality for DG algebras.
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For a quasi-hereditary algebra Λ the t-structure on Db(mod Λ) glued along the 
filtration 〈Δ(1)〉 ⊂ 〈Δ(1), Δ(2)〉 ⊂ . . . ⊂ 〈Δ(1), . . . , Δ(n− 1)〉 ⊂ D

b(mod Λ) from 
the standard t-structures on 〈Δ(i)〉 � Db(modk) is the standard t-structure, while 
the t-structure glued along a similar filtration for the right dual collection 〈∇(n)〉 ⊂
〈∇(n), ∇(n− 1)〉 ⊂ . . . ⊂ 〈∇(n), . . . , ∇(2)〉 ⊂ Db(modΛ) is the t-structure where the 
characteristic tilting Λ-module is the projective generator for the heart, cf. [3]. In other 
words, Ringel duality can be viewed as passing to the right dual exceptional collection. 
With our main theorem we show that it yields Koszul duality on the level of bocses.

The idea that passing to the dual exceptional collection corresponds to Koszul duality 
goes back to A. Bondal who proved in [9] that the full exceptional collection of simple 
modules over a path algebra of a directed quiver is right dual to the full exceptional col-
lection of projective modules. The relation between Koszul duality and dual exceptional 
collections was further studied by A. Beilinson, D. Ginzburg and V. Schechtman in [7]
for so-called mixed DG algebras. Also in the case of quasi-hereditary algebras, a relation 
between Koszul duality and Ringel duality (and also Serre duality) has been observed in 
a particular instance, namely that of strict polynomial functors (or equivalently Schur 
algebras of symmetric groups S(n, d) for n ≥ d). In this special case, it is more closely 
related to classical Koszul duality between the exterior algebra and the polynomial ring: 
(derived) tensoring with the exterior power Λd induces an autoequivalence of the derived 
category of strict polynomial functors whose square, (derived) tensoring with symmetric 
power gives a Serre functor on this derived category. This is work by M. Chałupnik [16]
and A. Touzé [49], see also the summary by H. Krause, [32].

The strategy of our proof for the part on Ringel duality follows [39]. As already re-
marked, in his paper, the proofs of all statements except for the well-definedness in 
Theorem 6.3 are sketches. Here we provide explicit calculations. Furthermore, in the 
proofs of Theorem 6.1 and the equivalence of 6.3 we chose to incline to explicit calcula-
tions and the known theory of quasi-hereditary algebras instead of referring to a yet to 
be developed derived homological algebra for bocses.

As mentioned earlier, in algebraic geometry, exceptional collections are used to realise 
derived categories of coherent sheaves on projective varieties as derived categories of finite 
dimensional algebras. In [9], A. Bondal proved that full strong exceptional collections 
yield such derived equivalences. Here an exceptional collection is called full if it classically 
generates the derived category and strong if Hom(Δi, Δl[s]) = 0 for all i and l and 
every s �= 0. The next step is considering full almost strong exceptional collections, i.e. 
collections where Hom(Δi, Δl[s]) = 0 for all i and l and every s �= 0, 1. In representation 
theory, quasi-hereditary algebras with such a set of standard modules are called left 
strongly quasi-hereditary. They appear in O. Iyama’s proof of finiteness of representation 
dimension, see [27,43].

In algebraic geometry, examples of almost strong exceptional collections are given by 
exceptional collections of line bundles on smooth rational surfaces. Recall that every 
smooth rational surface X (except for P2 which has a strong exceptional collection by 
the work of A. Bĕılinson [4,5]) is obtained from a Hirzebruch surface Fa by a sequence 
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of blow-ups, i.e. there exists a birational morphism f : X → Fa. It is well-known that 
the derived category of a Hirzebruch surface admits a full strong exceptional collection 
(F1, . . . , F4), see e.g. [25]. In [25,26], L. Hille and M. Perling showed how to obtain a full 
almost strong exceptional in Db(CohX) from such a full strong exceptional collection 
on Fa. In [8], the first author proved that this exceptional collection on X can be mu-
tated to a collection (Δ1, . . . , Δn−4, f∗(F1), . . . , f∗(F4)). The collection (Δ1, . . . , Δn−4)
is almost strong and the full subcategory of Db(CohX) generated by (Δ1, . . . , Δn−4) is 
equivalent to the derived category of modules over a quasi-hereditary algebra Λf . The 
objects Δ1, . . . , Δn−4 correspond to the standard modules over Λf and the dimension of 
both HomX(Δi, Δl) and Ext1X(Δi, Δl) is at most one for any pair (i, l). Finally, the cat-
egory of Λf -modules admits a duality which preserves simple modules. As the morphism 
f is a contraction of a curve, we call algebras satisfying the above properties curve-like.

As an application of the main result of our paper, we illustrate how to obtain re-
strictions on the possible A∞-structures on the Ext-algebras of standard modules over 
curve-like algebras. We use them to classify all possible curve-like algebras with up to 4 
simple modules.

Theorem. There is one curve-like algebra with two simple modules, there are three curve-
like algebras with three simple modules and thirteen curve-like algebras with four simple 
modules. All algebras with two and three simple modules are Morita equivalent to an 
algebra Λf or its Ringel dual for a birational morphism f of smooth surfaces. There are 
four curve-like algebras with four simple modules which are not Morita equivalent to Λf

or its Ringel dual for any f . In the classification of Section 9.2 these are algebras A1, 
B1, B2 and G1.

The paper is structured as follows. In Section 2 we fix our notation. In Section 3 we 
recall the necessary background on quasi-hereditary algebras. In particular, we identify 
the costandard modules in the derived category. Section 4 is devoted to recalling the 
main results of [30] describing quasi-hereditary algebras in terms of directed bocses. In 
Section 5 we describe the Serre duals of ∇i as objects of the derived category of the 
module category of the bocs. In Section 6 we describe the category of modules filtered 
by costandard modules in terms of a “category of comodules” N (A). In Section 7 we 
use a standard isomorphism to translate N (A) into the category R(A) closer to quiver 
representations. Section 8 defines the bocs corresponding to the Ringel dual of a quasi-
hereditary algebra given the datum of the bocs of a quasi-hereditary algebra. Finally, 
in Section 9 we apply our results to obtain restrictions on the A∞-algebra structures on 
Ext-algebras of standard modules over curve-like algebras.

2. Notation

We work over an algebraically closed field k. We consider k-algebras which are always 
assumed to be unital, associative, and finite dimensional. For an algebra Λ, we denote by 
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mod Λ the category of finite dimensional left Λ-modules. We consider the duality functor 
D = Homk(−, k) : (mod Λ)op → mod(Λop) which maps left Λ-modules to right ones. If Λ
is a basic algebra with Λ/radΛ ∼= k⊕n, the set {1, . . . , n} parametrizes distinct maximal 
left ideals in Λ, i.e. pairwise non-isomorphic simple Λ-modules. For i ∈ {1, . . . , n} we 
denote by L(i) the corresponding simple module and by P (i) its irreducible projective 
cover. We shall write i, l and m for elements of the set {1, . . . , n}. We fix pairwise 
orthogonal idempotents {e1, . . . , en} in Λ. This choice yields an isomorphism P (i) ∼= Aei
and a homomorphism of algebras ι : L → Λ, for the semi-simple algebra L :=

∏n
m=1 k. 

The map ι allows us to consider any Λ-module as an L-module.
A quiver Q = (Q0, Q1, s, t) consists of a set of vertices Q0, a set of arrows Q1 and 

two functions s, t : Q1 → Q0 giving the source and the target of an arrow, respectively. 
The bocses corresponding to left strongly quasi-hereditary algebras can be described 
using differential biquivers. In this case, the arrows of Q are graded. We write Qj

1 for the 
component of degree j in Q1.

For a category A which is either abelian or triangulated and a set of objects Θ ⊂ A we 
denote by F(Θ) the category of Θ-filtered objects, e.g. A = mod Λ for a quasi-hereditary 
algebra Λ and Θ = Δ or Θ = ∇. If A is triangulated, F(Θ) is the smallest extension 
closed subcategory of A containing Θ, i.e. the smallest subcategory A′ such that Θ ⊂ A′

and, for any distinguished triangle X → Y → Z → X[1] with X and Z in A′ the object 
Y also belongs to A′. In the case when A is abelian, the subcategory F(Θ) ⊂ Db(A) is 
an exact category and can be described as the full subcategory of A whose objects admit 
a finite filtration with graded factors isomorphic to objects of Θ. If the objects in Θ are 
indecomposable, F(Θ) is idempotent complete.

In general, for an idempotent complete exact category E we denote by Cb(E) the 
category of bounded complexes in E , by Kb(E) its bounded homotopy category, and by 
Db(E) its bounded derived category, which exists by work of Thomason and Trobaugh 
[50], see also [37]. The shift functor in Cb(E), Kb(E) as well as in Db(E) is denoted by [1].

For a bocs A = (A, V ) as defined in Definition 4.1 we consider the following A-bilinear 
maps:

• mA : A ⊗L A → A, the multiplication map,
• ml : A ⊗L V → V , the defining map for the left module structure,
• mr : V ⊗L A → V , the defining map for the right module structure,
• mL : A ⊗L (V ⊗A V ) → V ⊗A V , the left module structure map,
• mR : (V ⊗A V ) ⊗L A → V ⊗A V , the right module structure map
• mV : V ⊗L V → V ⊗A V , the natural projection.

3. Quasi-hereditary algebras

Quasi-hereditary algebras were introduced by L. Scott in [47], see also [17] for the 
more general notion of a highest weight category which allows infinitely many simple 
objects. Their distinguished feature is the existence of certain modules Δi which are 
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quotients of indecomposable projectives and project onto the simple modules. Dually, 
there also exist modules ∇i which have simple socle and embed into the indecompos-
able injectives. In [42], C. Ringel proved that the category of modules filtered by such 
modules has Auslander–Reiten sequences. He also introduced an algebra, now called the 
Ringel dual, such that the category of modules filtered by standard modules for the 
Ringel dual is equivalent to the category of modules filtered by costandard modules. 
Important examples of quasi-hereditary algebras include blocks of BGG category O as-
sociated to a complex semisimple Lie algebra ([6]), Schur algebras of symmetric groups 
([18,40]), and algebras of global dimension at most two ([19]). For further information 
on quasi-hereditary algebras, see the excellent survey articles by Dlab–Ringel [20] and 
Klucznik–Koenig [29].

Definition 3.1 ([20, Theorem 1]). Let Λ be an algebra with isomorphism classes of simple 
modules indexed by {1, . . . , n}. For i ∈ {1, . . . , n} the module

Δ(i) := P (i)/

⎛⎜⎜⎝ ∑
f : P (l)→P (i)

l>i

Im f

⎞⎟⎟⎠
is called the standard module associated to i. The algebra Λ is called quasi-hereditary
if EndΛ(Δ(i)) ∼= k for all i ∈ {1, . . . , n} and Λ ∈ F(Δ).

Remark 3.2. Dually, using the injective modules I(i) with socle L(i), one can define the 
costandard modules ∇(i). For an algebra Λ to be quasi-hereditary is then equivalent to 
EndΛ(∇(i)) ∼= k for all i ∈ {1, . . . , n} and D(Λ) ∈ F(∇).

Dlab–Ringel’s standardisation theorem states that every set of objects in an abelian 
category which behaves like the set of standard modules for a quasi-hereditary algebra 
(i.e. forms an exceptional collection in the abelian category), actually comes from a 
quasi-hereditary algebra:

Theorem 3.3 (Dlab–Ringel standardisation theorem, [20, Theorem 2]). Let C be an abelian 
category. Let {Θ(i) | i = 1, . . . , n} be a standardisable set of objects, i.e. a set of objects 
in C satisfying

(F) dimk HomC(Θ(i), Θ(l)) < ∞, dimk Ext1C(Θ(i), Θ(l)) < ∞,
(D) EndC(Θ(i)) ∼= k, HomC(Θ(i), Θ(l)) �= 0 ⇒ i ≤ l and Ext1C(Θ(i), Θ(l)) �= 0 ⇒

i < l.

Then, there exists a quasi-hereditary algebra Γ, unique up to Morita equivalence, such 
that the categories F(Θ) and F(ΔΓ) are equivalent.
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The costandard modules form a standardisable set in mod Λ with respect to the 
opposite ordering of {1, . . . , n}.

As already mentioned in Section 2 the categories F(Δ) and F(∇) are idempotent split 
exact categories. Recall that an object T in an exact category E is an Ext-projective 
generator for E if, for any X ∈ E , there exists an admissible epimorphism T⊕j → X

in E , for some j, while the group Ext1E(T, X) vanishes.

Definition 3.4. Let Λ be a quasi-hereditary algebra. The (unique up to multiplicities of 
direct summands) Ext-projective generator T of F(∇) is called the characteristic tilting 
module of Λ. The opposite of the endomorphism algebra of the characteristic tilting 
module is called the Ringel dual of Λ. It is Morita equivalent to the algebra Γ obtained 
by applying Dlab–Ringel standardisation theorem to the standardisable set of costandard 
modules.

Remark 3.5. As proven by Ringel in [42, Theorem 5], the module T is indeed a tilting
module in the sense of Miyashita [35], i.e.

(T1) projdimT < ∞,
(T2) ExtjΛ(T, T ) = 0 for all j �= 0,
(T3) T has n indecomposable direct summands up to isomorphism.

This implies in particular that a quasi-hereditary algebra Λ and its Ringel dual Γ are 
derived equivalent.

Lemma 3.6 ([36, Lemma 7.1]). Let Λ be a quasi-hereditary algebra. Then

Db(F(Δ)) � Db(mod Λ) � Db(F(∇)).

The costandard modules can be identified in Db(mod Λ) by a certain orthogonality 
property with respect to the standard modules. In Section 6, we use this to identify 
the objects corresponding to the costandard modules in yet another description of the 
derived category of Λ.

Lemma 3.7. Let Λ be a quasi-hereditary algebra, i ∈ {1, . . . , n}, and M an object of 

Db(mod Λ) such that for all i ∈ {1, . . . , n}, HomΛ(Δ(l), M [s]) ∼=
{
k if s = 0, l = i,

0 else.
Then M ∼= ∇(i).

Proof. First of all note that ExtsΛ(Δ(l), M) = 0 for s �= 0 implies that ExtsΛ(Λ, M) = 0
since Λ is filtered by Δ’s. This implies that M is indeed a module.

The condition Ext1Λ(Δ(l), M) = 0 for all l is equivalent to M ∈ F(∇) by [29, Propo-
sition 2.1]. In this case dim HomΛ(Δ(l), M) = [M : ∇(l)] counts the multiplicity of ∇(s)
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in M in any given ∇-filtration of M , see e.g. [20, Lemma 2.4] for the dual statement. It 
follows that M ∼= ∇(i). �

Note that the above lemma shows that the full exceptional collection 〈∇(i)〉 of costan-
dard modules is right dual to the full exceptional collection 〈Δ(i)〉 of standard modules, 
cf. [11, Lemma 2.5].

4. Directed bocses

In this section we recall from [30] the alternative definition of quasi-hereditary algebras 
via bocses. Bocses were introduced by Roiter in [45,46]. This concept is closely related 
to the concept of a differential biquiver, which was studied already in [44] by M. Kleiner 
and A. Roiter, see Theorem 5.2 which was generalised by T. Brzeziński in [10]. The 
most striking application of the theory of bocses is certainly Yu. Drozd’s tame and wild 
dichotomy theorem [21] (see also [15]). Bocses are sometimes also called corings. For 
further reading, we refer to the survey article [33], for general theory of bocses or corings 
to [14], [12], and [13].

Definition 4.1.

(i) A prebocs is a tuple A = (A, V, μ) where A is an algebra, V is an A-bimodule 
and μ : V → V ⊗A V is a coassociative morphism of A-A-bimodules called the 
comultiplication.

(ii) A bocs A = (A, V, μ, ε) is a prebocs (A, V, μ) together with an A-A-bilinear map 
ε : V → A satisfying the usual counit axiom. In this case V is also called an A-coring.

(iii) A bocs is normal if there is a grouplike element ω ∈ V i.e. an element such that 
μ(ω) = ω ⊗ ω and ε(ω) = 1.

(iv) A bocs is directed if the counit is surjective, the Gabriel quiver of A is directed, 
and V := ker ε ∼=

⊕
Ael ⊗k eiA where the sum runs over certain i, l all satisfying 

i < l.
(v) For a bocs A = (A, V ) the algebra R := RA := HomA(V, A) with the multiplication 

g ◦ f of f, g ∈ HomA(V, A) given by the composition of the maps

V V ⊗A V V ⊗A A V A
μ 1⊗g ∼ f

is the right algebra of (A, V ).
(vi) Dually, the left algebra of (A, V ) is the algebra L := LA := HomAop(V, A) with the 

multiplication g◦f of two morphisms f, g ∈ HomAop(V, A) given by the composition 
of the maps

V V ⊗A V A⊗A V V A.
μ f⊗1 ∼ g
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Remark 4.2.

(i) Over an algebraically closed field, any projective indecomposable A-bimodule is of 
the form Ael⊗keiA, for some pair (i, l). Hence, condition (iv) states that the kernel 
of ε is projective and, for any direct summand Ael ⊗k eiA of ker ε, we have i < l.

(ii) In [14] and other literature on corings, the opposite algebra of the right algebra is 
called the left dual of the coring, the opposite algebra of the left algebra is called 
the right dual of the coring. Our notation and terminology is adopted from [1].

By Morita equivalence, one can always assume that the underlying algebra A is basic. 
Hence, up to a choice of orthogonal idempotents ei, it can be regarded as a category 
with objects 1, . . . , n. In this context, multiplying a grouplike ω from the left and from 
the right with ei we obtain elements ωi := eiωei with ε(ωi) = ei.

For a bocs A, one can construct its category of representations. It is a concrete de-
scription of the more abstractly defined Kleisli category of the comonad V ⊗A −.

Definition 4.3. Let A = (A, V, μ, ε) be a bocs. The category modA of representations of 
A is defined via:

objects: are A-modules,
morphisms: for M, N ∈ modA, HomA(M, N) = HomA⊗Aop(V, Homk(M, N)),
composition: for f ∈ HomA(L, M) and g ∈ HomA(M, N) their composition g◦f is given 

by the following composition of A-bilinear maps:

V V ⊗A V Homk(M,N) ⊗A Homk(L,M) Homk(L,N),μ g⊗f comp

unit: the morphism 1M ∈ HomA(M, M) is given by the composition of

V A Homk(M,M)ε λ

where λ is the morphism sending an element a ∈ A to left multiplication with a.

Note that each bocs A = (A, V, μ, ε) has an opposite bocs Aop = (Aop, V op, μ, ε)
where Aop is the opposite algebra of A, V op = V , but regarded as an Aop-Aop-bimodule 
instead of an A-A-bimodule and the comultiplication and counit remain unchanged.

As in the case of algebras, the categories of A-modules and Aop-modules are dual to 
each other:

Lemma 4.4. Let A be a bocs, Aop its opposite bocs. Then, the k-duality D = Homk(−, k)
induces a duality modA → modAop.

Proof. Define DM := Homk(M, k) for an A-module M . This defines D on objects. To 
define it on morphisms recall the bimodule action of A on Homk(AM, AN) as well as 
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Homk(AopDN, AopDM). For f ∈ Homk(M, N), x ∈ M , a, b ∈ A, the bimodule action is 
defined by (afb)(x) := a ·f(bx). Dually, for ϕ ∈ Homk(DN, DM), χ ∈ DN , the bimodule 
action is defined by (aϕb)(χ) = ϕ(χa) ·b. We claim that Homk(M, N) ∼= Homk(DN, DM)
as A-A-bimodules. Noting that (Df)(χ) = χ ◦ f , this follows from

(a(Df)b)(χ)(x) = ((Df)(χa) · b)(x) = (Df)(χa)(bx) = (χa)(f(bx))

= χ(af(bx)) = (χ ◦ (afb))(x) = D(afb)(χ)(x).

It follows that HomA⊗Aop(V, Homk(M, N)) ∼= HomAop⊗A(V, Homk(DN, DM)) proving 
that D defines a duality on modA. �

We recall the main result of [30] stating that the category of Δ-filtered modules for 
a quasi-hereditary algebra Λ can be obtained as the category of modules for a bocs A
which can be constructed explicitly from the A∞-algebra structure on Ext∗Λ(Δ, Δ).

Theorem 4.5. For every quasi-hereditary algebra Λ, there exists an algebra R Morita 
equivalent to Λ such that R is the right algebra of a directed normal bocs A = (A, V ). 
The algebra A can be chosen to be basic.

Conversely, let A = (A, V ) be a directed normal bocs.

(i) The right algebra R and the left algebra L of A are quasi-hereditary. Up to Morita 
equivalence, they are Ringel dual.

(ii) There are equivalences of categories modA � F(ΔR) � indR
A where the latter is 

the category of all induced modules from A to R, i.e. all R-modules of the form 
R⊗A M for some A-module M . In particular, the simple A-module L(i) in modA

is mapped to the standard module Δ(i) = R ⊗A L(i) for R. Similarly, modA �
F(∇L) � coindL

A where the latter is the category of all coinduced modules from A
to L, i.e. L-modules of the form HomA(L, M) for some A-module M .

(iii)

ExtjA(M,N) ∼= ExtjR(R⊗A M,R⊗A N)

for all j ≥ 2.

Moreover, for the opposite bocs Aop, LAop is isomorphic to Rop
A

.

Remark 4.6. The equivalence modA � indR
A induces the structure of an exact category on 

modA through restriction of the natural exact structure on modR. This exact structure 
can alternatively be defined by setting the exact sequences to be those which are equiv-
alent (in modA) to images of exact sequences under the embedding modA → modA, 
for details see [30,31].
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Remark 4.7. The duality D : modA → modAop of Lemma 4.4 is compatible with the du-
ality D(−) = Homk(−, k) : modRA → modLAop in the sense that the following diagram 
commutes up to natural isomorphism:

modA modAop

modRA modLAop

D

R⊗A− HomAop (LAop ,−)

D

Indeed, for a left A-module M , the dual of the induced RA-module is Homk(RA⊗AM, k)
with right RA-module structure induced by the left RA-module structure on RA ⊗A M . 
On the other hand by the tensor–hom adjunction, the left LAop-module coinduced from 
D(M), HomAop(LAop , Homk(M, k)), is isomorphic to Homk(M ⊗Aop LAop , k) with left 
LAop -module structure induced by the right LAop-module structure of M ⊗Aop LAop . 
Since Rop

A
∼= LAop , we have an isomorphism (M ⊗Aop LAop)LAop

∼= RA
(RA ⊗A M) which 

induces a natural isomorphism D(indRA

A (M)) ∼= coindLAop
A (D(M)) of left LAop modules.

Our goal in this article is to construct, directly from (A, V ), a bocs (B, W ) whose 
right algebra is Morita equivalent to the Ringel dual of the right algebra of (A, V ), i.e. 
the left algebra of (A, V ). To describe explicitly how the bocs (B, W ) is obtained we 
need the following lemma from [30, Lemmas 7.5–7.7].

Lemma 4.8. Let B be a category with set of objects {1, . . . , n} and let U1 be a B-bimodule. 
Assume that the tensor category U :=

⊕∞
j=0 U

⊗j
1 is endowed with the tensor grading, i.e. 

degB = 0 and degU1 = 1. Suppose that U is equipped with a differential d. Denote by 
(d(B)) the B-bimodule generated by d(B) and let W := U1/(d(B)) with π : U1 → W the 
canonical projection.

(i) There is a prebocs (B, W, μ) such that μπ = (π ⊗B π)d1.
(ii) Assume, in addition, that U1 = UΩ ⊕U is decomposed as B-bimodule, where UΩ is 

a projective bimodule UΩ =
⊕

i∈L
BωiB with ωi a generator of UΩ, i.e. the image 

of an element ei ⊗ ei under a fixed direct summand embedding Bei ⊗k eiB ↪→ UΩ. 
Suppose that
(d1) d(ωi) = ωi ⊗ ωi,
(d2) for all b ∈ B(i, l) we have d(b) = ωlb − bωi + ∂b for some ∂b ∈ U ,
(d3) for all u ∈ U(i, l) we have d(u) = ωlu + uωi + ∂u for some ∂u ∈ U ⊗ U .
Then, the prebocs is a bocs with counit ε : W → B such that ε̃ = επ where ε̃ : U1 → B

is given by ε̃(ωi) = 1i and ε̃(U) = 0.
(iii) If U is a projective bimodule then W := ker ε is a projective bimodule.

Above, we denote by B(i, l), respectively U(i, l), morphisms from i to l in B, 
respectively in U , i.e. B(i, l) ∼= elBei and U(i, l) ∼= elUei.



A. Bodzenta, J. Külshammer / Journal of Algebra 506 (2018) 129–187 141
Let Λ be a quasi-hereditary algebra. Let E := Ext∗Λ(Δ, Δ) be the Ext-algebra of the 
direct sum of the standard modules. As the cohomology of the dg algebra HomΛ(P, P ), 
where P is a projective resolution of Δ, by Kadeishvili’s theorem [28, Theorem 1], E has 
the structure of an A∞-algebra. Let C = T (E[1]) be the differential graded coalge-
bra equal to the bar construction of E. The k-dual of C, D = DC is a differential 
graded algebra. Then U = D/(D≤−1, d(D−1)) is differential graded algebra satisfying 
the conditions of the above lemma. The resulting bocs, denoted by (A, V ), has a right 
algebra R Morita equivalent to Λ. Note that since E as well as its bar construction are 
finite dimensional, we could equally well have first taken the dual of DE and then ap-
ply the cobar construction, i.e. considered the differential graded algebra T ((DE)[−1]), 
which is also isomorphic to T (D(E[1])). This is what was considered in [30]. For the 
equivalence, see e.g. [22, Lemma 9], and also [23, Section 19] for the case of DG alge-
bras.

5. The homotopically projective objects �i

Let A be a directed normal bocs, R its right algebra, and T : modA → modR the 
functor given on objects by R⊗A (−). To define T on morphisms, note that we have an 
isomorphism γ : HomA(M, N) ∼= HomA(M, R⊗A N). Then for f ∈ HomA(M, N), T (f)
is the composition T (f) : R⊗AM

idR ⊗γ(f)−−−−−−−→ R⊗AR⊗AN
HomA(μ,A)⊗AN−−−−−−−−−−−→ R⊗AN . The 

functor T is fully faithful and yields an equivalence of modA with the full subcategory 
F(Δ) of modR. The derived functor T : Db(modA) → Db(modR) is an equivalence 
and it maps simple A-modules L(i) to standard R-modules. With Lemma 5.7 below we 
show that, for every i ∈ {1, . . . , n}, the category Db(modA) contains a homotopically 
projective object �i representing a certain cohomology functor, see Lemma 5.7. In par-
ticular, dim HomA(�i, L(l)) = δil and Extj(�i, L(l)) vanishes for j �= 0. Under the 
equivalence T , we get an analogous property of objects T (�i) and Δ(l) ∼= T (L(l)). It 
follows that 〈T (�i)〉 is a full exceptional collection left dual to 〈Δ(l)〉. Since the collec-
tion 〈∇(i)〉 is right dual to 〈Δ(l)〉, see Lemma 3.7, we conclude that T (�i) is the image 
under the inverse of the Serre functor of ∇(i):

T (�i) = RHomRop(D(∇(i)), R),

where D(∇(i)) = Homk(∇(i), k).
Since the duality D = Homk(−, k) : modAop → modA preserves simple modules, 

we have dim HomA(L(l), D(�A
op

i )) = δil, i.e. the images of D(�A
op

i ) in Db(modR) are 
the costandard modules. In Theorem 6.3 and Proposition 7.2 we shall give equivalent 
descriptions of the extension closed subcategory F(�i) of Db(modA) generated by �i, 
while in the main Theorem 8.2 we shall use these descriptions of F(�A

op) to describe 
F(∇) as a category of modules over a bocs.

Let A = (A, V, μ, ε) be a directed normal bocs. Then V = A ⊕ V as left and as right 
modules (but in general not as bimodules) and the restriction of the comultiplication 
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μ : V → V ⊗A V to V is given by

μ : V → (A⊗A V ) ⊕ (V ⊗A A) ⊕ (V ⊗A V ), μ = (ω ⊗A Id, Id ⊗A ω, ∂1)T .

It is well known that to a normal bocs (A, V ) one can associate a tensor algebra 
equipped with a differential, see e.g. [12, Lemma 3.2]. (The first proof of this fact in the 
case where A is the path algebra of a quiver is due to Roiter, see [45,46], cf. Theorem 5.2.) 
Let U := A[V ] :=

⊕∞
j=0 V

⊗j be the tensor algebra considered as a graded algebra via the 
tensor grading, i.e. degA = 0 and deg V = 1. Defining ∂0 : A → V and ∂1 : V → V ⊗A V

via

∂0a := aω − ωa, ∂1v = μ(v) − ω ⊗ v − v ⊗ ω,

and extending by the graded Leibniz rule we obtain a differential ∂ : U → U . Note that if 
A = (A, V ) is directed, then V

⊗An = 0 and hence U is finite dimensional. The following 
proposition is well known, cf. [12, Proposition 3.5], [30, Lemma 9.1].

Proposition 5.1. Let A = (A, V ) be a directed normal bocs. Let Q1
1 be a set of generators 

for the projective A-A-bimodule V (i.e. elements corresponding to el ⊗k ei in a direct 
summand of V of the form Ael ⊗k eiA; in this case we write v : i → l ∈ Q1

1). Write ωi

for a generator of Aei ⊗k eiA. Let ∂0 and ∂1 be as defined above. The category modA

can be described equivalently as the category of A-modules with morphisms

f ∈ HomA⊗Aop

⎛⎝ ⊕
i∈{1,...,n}

AωiA⊕
⊕
v∈Q1

1

AvA,Homk(M,N)

⎞⎠
satisfying for all a ∈ A(i, l) the relation

f(ωla− aωi + ∂0a) = 0.

In this language, the composition of two morphisms f, g is given as

(gf)(ωi) := g(ωi)f(ωi)

(gf)(v) := g(ωl)f(v) + g(v)f(ωi) +
∑
(v)

g(v(1))f(v(2))

for all i ∈ {1, . . . , n} and v : i → l runs through the elements of Q1
1. Here we use 

Sweedler notation and write ∂1(v) =
∑

(v) v(1) ⊗ v(2) with v(1), v(2) ∈ V .

In the remainder we describe the morphisms of bocs representations in this language 
which should be compared to the familiar presentation of morphisms of quivers with 
relations. Traditionally for a basic algebra A = kQ/I, a morphism of representations γ
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is given by n linear maps γi : Mi → Ni such that aγi(x) = γl(ax) for all a ∈ A(i, l) and 
all x ∈ Mi. Setting g(ωi) = γi and g(v) = 0 defines a morphism of bocs representations 
g : M → N . It is easy to check that this defines an essentially surjective and faithful 
functor Φ: modA → modA, which is in general not full. In the description of the 
previous proposition, a morphism f is in the image of Φ if and only if f(v) = 0 for 
all v ∈ Q1

1. We call such a morphism A-linear. From now on, we will not distinguish 
between a morphism in modA and its image in modA. Additionally to those A-linear 
morphisms there are in general some extra maps. In the case of a regular bocs (see 
Section 9 for a definition) the map with f(ωi) = 0 for all i ∈ {1, . . . , n} and f(v) = 1k

for some v : i → l defines a homomorphism of bocs representations between the simple 
A-modules L(i) and L(l), i.e. a homomorphism between the corresponding standard 
modules over the associated right algebra, see Lemma 9.4 for the precise statement.

The language of differential biquivers, introduced by M. Kleiner and A. Roiter in [44]
is useful when working with normal bocses A = (A, V ) with projective kernel where 
the algebra A is hereditary. Such bocses are also called free and they correspond to 
almost strong exceptional collections and left strongly quasi-hereditary algebras (Propo-
sition 9.1). A biquiver is a quiver (Q0, Q1) where the arrows are either of degree 0 or 1. 
The arrows of degree 0 are called solid. The arrows of degree 1 are called dashed. A dif-
ferential biquiver is a biquiver Q together with a linear map ∂ : k[Q] → k[Q] of degree 1
which squares to 0, satisfies ∂(e) = 0 for the trivial paths and satisfies the graded Leibniz 
rule. The following theorem is due to A. Roiter, [45,46].

Theorem 5.2. There is a one-to-one correspondence between free normal bocses with 
projective kernel and differential biquivers given by:

• Given a differential biquiver (Q, ∂), the corresponding bocs (A, V ) is given by 
A := kQ0, the path algebra of the degree 0 part, and V = Aω ⊕ A⊗L kQ1 ⊗L A︸ ︷︷ ︸

=:V
as left modules (where Aω ∼= A) with right module structure given by the embedding (

1
∂

)
: A → Aω ⊕ V . The comultiplication is then given by

μ(aω + v) = aω ⊗ ω + v ⊗ ω + ω ⊗ v + ∂1(v)

and the counit by ε(aω + v) = a.
• In the other direction, let (A, V ) be a free normal bocs with projective kernel. Let ω be 

a group-like element and let Q be the biquiver with degree 0 part such that kQ0 ∼= A. 
Let Q1 be a free generating system of V := ker ε, i.e. V ∼= A ⊗L kQ1 ⊗L A. Define 
∂(a) = aω − ωa for a solid arrow a and ∂(v) = μ(v) − ω ⊗ v − v ⊗ ω for a dashed 
arrow (cf. Proposition 5.1).

Remark 5.3. Specialising the general construction from [30] to the case of left strongly 
quasi-hereditary algebras, A = kQ0 is given by L[s−1

D Ext1(Δ, Δ)] and similarly kQ1
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is given by L[s−1
D Hom(Δ, Δ)]. The differential is obtained as the dual of the higher 

multiplications on the dual bar construction of the A∞-algebra Ext∗Λ(Δ, Δ), see [30,33]
for more details.

Using the description of Proposition 5.1, we define the object �i ∈ Db(modA) by

(�i)j :=

⎧⎪⎪⎨⎪⎪⎩
A⊗L L(i) for j = 0,
V

⊗Aj ⊗L L(i) for j ≥ 1,
0 else,

with differential given by

d�(ωl)(x⊗ λ) = −∂(x) ⊗ λ, for all l ∈ {1, . . . , n}, x ∈ V ,

d�(v)(x⊗ λ) = v ⊗ x⊗ λ, for all v ∈ Q1
1.

We write 1i for the element 1 ⊗ ei ∈ �0
i = A ⊗L L(i) = P (i).

Lemma 5.4. �i ∈ Db(modA).

Proof. That �i is a bounded complex follows from the fact that the bocs is directed. 
We have to check that d� defines a morphism in modA which squares to 0. For the first 
claim note that for a ∈ A(l, m), x ∈ V

⊗Aj(i, l) and λ ∈ L(i),

d�(ωma− aωl + ∂(a))(x⊗ λ) = −∂(ax) ⊗ λ + a∂(x) ⊗ λ + ∂(a)x⊗ λ

= (−∂(ax) + a∂(x) + ∂(a)x) ⊗ λ = 0

because ∂ satisfies the graded Leibniz rule. It also squares to zero:

(dj+1� dj�)(ωl)(x⊗ λ) = dj+1� (ωl)
(
dj�(ωl)(x⊗ λ)

)
= dj+1� (ωl)(−∂(x) ⊗ λ)

= ∂2(x) ⊗ λ = 0

as ∂ also squares to zero. In the next set of equations we use Sweedler notation and write 
∂(v) =

∑
(v) v(1) ⊗ v(2) for v ∈ Q1

1(l, m). Furthermore, as the part with “⊗λ” does not 
change throughout, we suppress it from the notation. Then,

(dj+1� dj�)(v)(x) = dj+1� (ωm)(dj�(v)(x)) + dj+1� (v)(dj�(ωl)(x)) +
∑
(v)

dj+1� (v(1))(dj�(v(2))(x))

= dj+1� (ωm)(v ⊗ x) + dj+1� (v)(−∂(x)) +
∑
(v)

d�(v(1))(v(2) ⊗ x)

= −∂(v ⊗ x) − v ⊗ ∂(x) + ∂(v) ⊗ x = 0

as ∂ satisfies the graded Leibniz rule. �
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Example 5.5. We illustrate the notions discussed in Sections 6 and 7 in the following 
running example which belongs to the class of curve-like algebras studied in Section 9. 
It corresponds to the Auslander algebra of the algebra k[x]/(x3), see 2C on page 174.

Consider the differential biquiver

1 2 3
a

c

ϕ

χ

b

ψ
(5.5.1)

with

∂1(χ) = ψϕ, ∂0(c) = ψa + bϕ.

Using the construction in Theorem 5.2, it yields a bocs A = (A, V ) where the algebra 
A is the path algebra of the quiver on the solid arrows of (5.5.1), which is of extended 
Dynkin type Ã2. The bimodule V is the direct sum of the projective bimodules Ae2⊗e1A, 
Ae3 ⊗ e2A and Ae3 ⊗ e1A. The respective generators are indicated by dashed arrows in 
the quiver. Using this description,

V = Spank(ϕ, ψ, χ, ψa, bϕ).

The bimodule V is then given by V = Aω⊕ V as left modules, where the right action is 
deformed by ∂0, i.e. ω · c = cω − ψa − bϕ.

The comultiplication μ is given on generators by

μ(ϕ) = ω ⊗ ϕ + ϕ⊗ ω,

μ(ψ) = ω ⊗ ψ + ψ ⊗ ω,

μ(χ) = ω ⊗ χ + χ⊗ ω + ψ ⊗ ϕ.

The complexes �1, �2, �3 are determined by the simple L-modules L(1), L(2) and 
L(3). As complexes of A-modules, �1, �2 and �3 are given by left A-modules (�i)j
together with k-linear maps (�i)j → (�i)j+1, for ω1, ω2, ω3 and any dashed arrow in 
(5.5.1), see Proposition 5.1.

The complex �1 consists of three modules. (�1)0 ∼= P1 is the projective A-module 
with basis e1, a, ba, c. The module (�1)1 has k-basis ϕ, χ, bϕ, ψa and (�1)2 is one-
dimensional with basis ψ ⊗ ϕ.

For i = 1, 2, 3, the differential d�1(ωi) is non-zero on the following elements:

d�1(ωi)(c) = −ψa− bφ, d�1(ωi)(χ) = −ψ ⊗ ϕ.

For the dashed arrows in (5.5.1), the maps d�1 are non-zero on the following elements of 
the basis:
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d�1(ϕ)(e1) = ϕ, d�1(ψ)(a) = ψa, d�1(ψ)(ϕ) = ψ ⊗ ϕ, d�1(χ)(e1) = χ.

Writing the complex as a complex of representations of the corresponding differential 
biquiver, i.e. using Proposition 5.1, we obtain the following

ke1 0 0

ka kϕ 0

kc⊕ kba kχ⊕ kbϕ⊕ kψa k(ψ ⊗ φ)

1

(1,0)T

1
(1,0,0)T

(0,0,1)T(0,1)T

0

(0,1,0)T 1

( 0 0
−1 0
−1 0

) (−1,0,0)

The complex �2 consists of two modules. (�2)0 is the projective A-module with basis 
e2, b while (�2)1 is one dimensional with basis ψ. The differentials d�2(ωi), d�2(ϕ) and 
d�2(χ) vanish while

d�2(ψ)(e2) = ψ.

Again using the language of biquivers we obtain:

0 0

ke2 0

kb kψ

1 1

0

Finally, the complex �3 consists of the one-dimensional projective A-module with 
basis e3 in degree zero.

The next lemma is a slightly strengthened form of the universal property of projective 
modules in modA.

Lemma 5.6. Let M ∈ modA. Let x ∈ Mi. Then, there exists a unique morphism 
s : P (i) → M satisfying s(ωi)(1i) = x and s(v) = 0 for all v ∈ Q1

1.

Proof. The statement is true regarding P (i) and M as objects in modA. Applying the 
natural functor modA → modA gives a morphism in modA with the claimed proper-
ties. �

Let M ∈ Db(modA). Then, as one can easily see from the description of the morphisms 
in modA, there is an exact functor Db(modA) → Db(modL) given by sending (M, dM )
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to (M, dM (ω)). As μ(ω) = ω⊗ω, it follows that (dM ◦dM )(ω) = dM (ω) ◦dM (ω), hence the 
functor sends complexes to complexes. Composing with the standard cohomology functor 
Hj yields a cohomological functor Hj : Db(modA) → modL. Composing further with 
the projection to the i-th component yields cohomological functors Hj

i : Db(modA) →
modk. The next lemma shows that these functors are represented by �i[−j].

For an idempotent split exact category E a complex N is called homotopically pro-
jective if HomKb(E)(N, M) = 0 for each acyclic complex M ∈ Kb(E). In this case, 
HomKb(E)(N, −) ∼= HomDb(E)(N, −). Dually, a complex N is called homotopically injec-
tive if HomKb(E)(M, N) = 0 for each acyclic complex M . In this case, HomKb(E)(−, N) ∼=
HomDb(E)(−, N).

Lemma 5.7. Let M ∈ Cb(modA).

(i) HomCb(mod A)(�i, M) ∼= Z0(dM (ωi)) ⊕
⊕

j∈Z

⊕
v∈Q1

1
Homk(�j

i(s(v)), M j(t(v))).
(ii) Two maps are homotopic if and only if they coincide when projected to H0(dM (ωi)). 

In particular, Hj
i is represented by �i[−j].

(iii) The homotopy in (ii) can be chosen to be a morphism of A-modules.
(iv) The object �i is homotopically projective.

Proof. (i) We show that the map

HomCb(mod A)(�i,M) → Z0(dM (ωi)) ⊕
⊕
j∈Z

⊕
v∈Q1

1

Homk(�j
i(s(v)),M j(t(v)))

(f j)j∈Z �→ (f0(ωi)(1i), f j(v))j∈Z,v∈Q1
1

is an isomorphism.
Let f = (f j)j∈Z ∈ HomCb(mod A)(�i, M). First we show f0(ωi)(1i) ∈ Z0(dM (ωi)):

d0
M (ωi)(f0(ωi)(1i)) = (d0

Mf0)(ωi)(1i) = (f1d0�)(ωi)(1i) = f1(ωi)(d0�(ωi)(1i))

= f1(ωi)(−∂(1) ⊗ ei) = f1(ωi)(0) = 0,

as 1i = 1 ⊗ ei. Next we show that (f0(ωi)(1i), f j(v)) uniquely defines f . For achieving 
this, for all m ∈ {1, . . . , n}, f j(ωm) has to be specified from the given data. For j < 0, it 
is clear that f j(ωm) = 0 since �j

i = 0. For j ≥ 1, f j(ωm) can be defined recursively from 

f j−1(ωl): for this we compute (f jdj−1� )(v)(x ⊗ λ) for v ∈ Q1
1(l, m), x ∈ V

⊗j−1
L (i, l), and 

λ ∈ L(i) in two ways. We again use Sweedler notation and write ∂(v) =
∑

(v) v(1) ⊗ v(2). 
On the one hand,

(f jdj−1� )(v)(x⊗ λ) = f j(ωm)(dj−1� (v)(x⊗ λ)) + f j(v)(dj−1� (ωl)(x⊗ λ))

+
∑
(v)

f j(v(1))dj−1� (v(2))(x⊗ λ), (�)
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on the other hand, since f jdj−1� = dj−1
M f j−1, this is equal to

(dj−1
M f j−1)(v)(x⊗ λ) = dj−1

M (ωm)(f j−1(v)(x⊗ λ)) + dj−1
M (v)(f j−1(ωl)(x⊗ λ))

+
∑
(v)

dj−1
M (v(1))(f j−1(v(2))(x⊗ λ)). (��)

Comparing the two expressions, one sees that f j(ωm)(dj−1� (v)(x ⊗λ)) = f j(ωm)(v⊗x ⊗λ)
is determined by f j−1(ωl)(x ⊗λ) and summands containing f(v) where v ∈ Q1

1. For j = 0
note that for a ∈ A(i, m),

f0(ωm)(a) = (f0(ωm)a)(1i) = f0(ωma)(1i) = f0(aωl)(1i) − f0(∂(a))(1i)

= af0(ωi)(1i) − f0(∂(a))(1i).

Hence, f is completely determined by the given data. To check that each such data defines 
a morphism of complexes, we have to prove that each of the f j is indeed a morphism of 
bocs representations and that (dj−1

M f j−1)(ωm) = (f jdj−1� )(ωm) for all m ∈ {1, . . . , n} (for 
the v ∈ Q1

1 this statement is already true by the construction of f j(ωm)).
For checking that each f j is a morphism of bocs representations, taking into account 

(�) and ∂(av) = ∂(a) ⊗v+a∂(v), f j(ωma)(v⊗x) = f j(ωm)(av⊗x) = f j(ωm)(dj−1� (av)(x))
is equal to (again suppressing “⊗λ” from the notation)

(f jdj−1� )(av)(x) − f j(av)dj−1� (ωl)(x) − f j(∂a)dj−1� (v)(x) −
∑
(v)

f j(av(1))dj−1� (v(2))(x).

By subtracting the term f j(aωm)(v ⊗ x) = af j(ωm)(v ⊗ x) = af j(ωm)(dj−1� (v))(x) we 
get −f j(∂a)dj−1� (v)(x) because all the maps involved have been defined to be A-linear. 
Thus, f j is a morphism of bocs representations, see Proposition 5.1.

To check that (dj−1
M f j−1)(ωm) = (f jdj−1� )(ωm) we apply it to some v ⊗ x with v ∈

Q1
1(l, m) and x ∈ V

⊗Aj−2(i, l) and use induction (the case of j ≤ 0 being vacuously true). 
We write ∂(v) =

∑
(v) v(1)⊗v(2). Using the description of composition of Proposition 5.1, 

we get:

(f jdj−1� )(ωm)(v ⊗ x) = f j(ωm)dj−1� (ωm)(v ⊗ x)

=

⎛⎝−
∑
(v)

f j(ωm)(v(1) ⊗ v(2) ⊗ x)

⎞⎠+ f j(ωm)(v ⊗ ∂(x)). (���)

We compute the two summands separately. Writing (∂ ⊗ 1V )∂(v) = (1V ⊗ ∂)∂(v) =∑
(v) v(1) ⊗ v(2) ⊗ v(3), and using (�), (��) we get that the first summand
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−
∑
(v)

f j(ωm)(v(1) ⊗ v(2) ⊗ x) = −
∑
(v)

f j(ωm)(dj−1� (v(1))(v(2) ⊗ x))

is equal to

(∑
(v)

−dj−1
M (ωm)f j−1(v(1))(v(2) ⊗ x)

︸ ︷︷ ︸
(�)

− dj−1
M (v(1))f j−1(ω)(v(2) ⊗ x) − dj−1

M (v(1))f j−1(v(2))(v(3) ⊗ x)︸ ︷︷ ︸
(∗)

+ f j(v(1))dj−1� (ω)(v(2) ⊗ x) + f j(v(1))d�(v(2))(v(3) ⊗ x)︸ ︷︷ ︸
(†)

)
.

Again using (�) and (��) the second summand f j(ωm)(v ⊗ ∂ x) = f j(ωm)(dj−1� (v)(∂ x))
of (���) is equal to

dj−1
M (ωm)f j−1(v)(∂x)︸ ︷︷ ︸

(�)

+ dj−1
M (v)f j−1(ωl)(∂x)︸ ︷︷ ︸

(•)

− f j(v)dj−1� (ωl)(∂x)︸ ︷︷ ︸
(◦)

+
(∑

(v)

dj−1
M (v(1))f j−1(v(2))(∂x)

︸ ︷︷ ︸
(∗)

− f j(v(1))dj−1� (v(2))(∂x)︸ ︷︷ ︸
(†)

)
.

The term marked (◦) vanishes as ∂ is a differential. The three terms marked with (†)
cancel out as ∂ is a derivation:

dj−1� (ω)(v(2) ⊗ x) +
∑
(v(2))

dj−1� (v(2))(v(3) ⊗ x) − dj−1� (v(2))(∂x)

=
∑
(v(2))

−v(2) ⊗ v(3) ⊗ x + v(2) ⊗ ∂x +
∑
(v(2))

v(2) ⊗ v(3) ⊗ x− v(2) ⊗ ∂x = 0.

Note that all three terms marked (∗) start with dj−1
M (v(1)). Using (�) and (��) to define 

f j−1(ωm)(v(2) ⊗ x), we get that

f j−1(v(2))(∂x) − f j−1(ω)(v(2) ⊗ x) −
∑
(v(2))

f j−1(v(2))(v(3) ⊗ x)

= −dj−2
M (ω)f j−2(v(2))(x) − dj−2

M (v(2))f j−2(ω)(x) −
∑
(v(2))

dj−2
M (v(2))f j−2(v(3))(x).
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Thus, the three terms marked (∗) combine to give

∑
(v)

−dj−1
M (v(1))dj−2

M (ω)f j−2(v(2))(x)︸ ︷︷ ︸
(�)

− dj−1
M (v(1))dj−2

M (v(2))f j−2(ωl)(x)︸ ︷︷ ︸
(•)

−dj−1
M (v(1))dj−2

M (v(2))f j−2(v(3))(x)︸ ︷︷ ︸
(�)

.

By inductive hypothesis, dj−2
M ◦ f j−2 = f j−1 ◦ dj−2� . Moreover, since dM squares to zero, 

the composition defined in Proposition 5.1 implies that

∑
(v)

dj−1
M (v(1))dj−2

M (v(2)) + dj−1
M (ωm)dj−2

M (v) + dj−1
M (v)dj−2

M (ωl) = 0.

Then, using (��), the term marked (•) adds up with the one marked (•) in the second 
summand to give:

dj−1
M (v)f j−1(ωl)(∂x) −

∑
(v)

dj−1
M (v(1))dj−2

M (v(2))f j−2(ωl)(x)

= dj−1
M (v)f j−1(ωl)(∂x) + dj−1

M (ωm)dj−2
M (v)f j−2(ωl)(x) + dj−1

M (v)dj−2
M (ωl)f j−2(ωl)(x)

= (dj−1
M f j−1)(v)(∂x) − dj−1

M (ωm)f j−1(v)(∂x) −
∑
(v)

dj−1
M (v(1))f j−1(v(2))(∂x)

+ dj−1
M (ωm)dj−2

M (v)f j−2(ωl)(x) + dj−1
M (v)dj−2

M (ωl)f j−2(ωl)(x)

= dj−1
M (ωm)f j−1(v)(∂x) + dj−1

M (v)f j−1(ωl)(∂x) +
∑
(v)

dj−1
M (v(1))(f j−1(v(2))(∂x))

− dj−1
M (ωm)f j−1(v)(∂x) −

∑
(v)

dj−1
M (v(1))f j−1(v(2))(∂x)

+ dj−1
M (ωm)dj−2

M (v)f j−2(ωl)(x) + dj−1
M (v)dj−2

M (ωl)f j−2(ωl)(x)

= dj−1
M (ωm)dj−2

M (v)f j−2(ωl)(x) + dj−1
M (v)(dj−2

M f j−2)(ωl)(x) + dj−1
M (v)f j−1(ωl)(∂x)

= dj−1
M (ωm)dj−2

M (v)f j−2(ωl)(x) + dj−1
M (v)(dj−2

M f j−2)(ωl)(x) + dj−1
M (v)f j−1(ωl)(∂x)

= dj−1
M (ωm)dj−2

M (v)f j−2(ωl)(x),

since

(dj−2
M f j−2)(ωl)(x) = (f j−1dj−1� )(ωl)(x) = −f j−1(∂x).

Summing up dj−1
M (ωm)dj−2

M (v)f j−2(ωl)(x) with the terms marked by (�), gives:
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dj−1
M (ωm)dj−2

M (v)f j−2(ωl)(x) + dj−1
M (ωm)f j−1(v)(∂x) −

∑
(v)

(dj−1
M (ωm)f j−1(v(1))(v(2) ⊗ x)

+ dj−1
M (v(1))dj−2

M (ωl)f j−2(v(2))(x) + dj−1
M (v(1))dj−2

M (v(2))f j−2(v(3))(x))

= dj−1
M (ωm)dj−2

M (v)f j−2(ωl)(x) + dj−1
M (ωm)f j−1(v)(∂x)

−
∑
(v)

(dj−1
M (ωm)f j−1(v(1))(v(2) ⊗ x)

− dj−1
M (ωm)dj−2

M (v(1))f j−2(v(2))(x))

where again we use the fact that (dj−1
M dj−2

M )(v(1)) = 0 and the composition defined by 
Proposition 5.1. To simplify the notation, we subtract the initial dj−1

M (ωm) from the above 
before transforming it further:

dj−2
M (v)f j−2(ωl)(x) + f j−1(v)(∂x)

−
∑
(v)

f j−1(v(1))(v(2) ⊗ x) +
∑
(v)

dj−2
M (v(1))f j−2(v(2))(x)

= dj−2
M (v)f j−2(ωl)(x) − f j−1(v)dj−1� (ωl)(x) + f j−1(ωm)dj−2� (v)(x)

+ f j−1(v)dj−1� (ωl)(x) − dj−2
M (ωm)f j−2(v)(x) − dj−2

M (v)(f j−2(ω)(x))

= f j−1(ωm)(dj−2� (v)(x)) − dj−2
M (ωm)f j−2(v)(x),

where the first equality follows from d�(ω)(x) = −∂x and (�), (��).
It shows that

(���) = dj−1
M (ωm)f j−1(ωm)(v ⊗ x)− dj−1

M (ωm)dj−2
M (ωm)f j−2(v)(x) = dj−1

M f j−1(ωm)(v ⊗ x),

where the last equation follows from the fact that dM squares to zero.

(ii)/(iii) In view of (i), it suffices to prove that f is homotopic to zero if and only if 
f0(ωi)(1i) = 0 in H0(dM (ωi)). First suppose that f is homotopic to zero, that is, there 
exist maps sj : �j

i → M j−1 such that f j = dj−1
M sj + sj+1dj� for all j ∈ Z. In particular,

f0(ωi)(1i) = (d−1
M s0)(ωi)(1i) + (s1d0�)(ωi)(1i)

= d−1
M (ωi)s0(ωi)(1i) + s1(ωi)d0�(ωi)(1i)

= d−1
M (ωi)s0(ωi)(1i) + s1(ωi)(0)

= d−1
M (ωi)s0(ωi)(1i).

Thus, f0(ωi)(1i) = 0 in H0(dM (ωi)). Conversely, we first consider f such that 
f0(ωi)(1i) = 0 in Z0(dM (ωi)) and show that in this case there exists a homotopy 
s between f and 0. Define the homotopy s as follows: s(v) = 0 for all v ∈ Q1

1 and 
0 = s0 : A ⊗L L(i) → M−1 and inductively
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sj+1(ωm)(x⊗ y ⊗ λ) := f j(x)(y ⊗ λ) − dj−1
M (x)sj(ωl)(y ⊗ λ),

where x ∈ V (l, m) and y ∈ V
⊗n(i, l). First we need to check that sj+1 defines a morphism 

of bocs representations. Again, we use Proposition 5.1. We omit the “⊗λ” since it does 
not effect the calculation:

sj+1(ωa− aω + ∂(a))(x⊗ y) = sj+1(ω)(ax⊗ y) − asj+1(ω)(x⊗ y)

= f j(ax)(y) − dj−1
M (ax)sj(ω)(y)

− a
(
f j(x)(y) − dj−1

M (x)sj(ω)(y)
)

= 0,

since f and dM are morphisms of A-bimodules.
To check the identity f j = sj+1dj� + dj−1

M sj we need to apply it to ωm as well as to v

for v ∈ V . For ωm we apply it to x ⊗ y ⊗ λ where x ∈ V (l, m) and y ∈ V
⊗n(i, l). Using 

Sweedler notation, we write ∂x =
∑

(x) x(1) ⊗ x(2). We compute each of the summands 
of

(sj+1dj� +dj−1
M sj)(ωm)(x⊗y⊗λ) = sj+1(ωm)dj�(ωm)(x⊗y⊗λ)+dj−1

M (ωm)sj(ωm)(x⊗y⊗λ)

separately. To save some space and make the equations more readable we omit the “⊗λ” 
since it does not change throughout the whole calculation. The first summand is equal 
to

sj+1(ωm)dj�(ωm)(x⊗ y)

=

⎛⎝−
∑
(x)

sj+1(ωm)(x(1) ⊗ x(2) ⊗ y)

⎞⎠ + sj+1(ωm)(x⊗ ∂(y))

=

⎛⎝−
∑
(x)

f j(x(1))(x(2) ⊗ y) + dj−1
M (x(1))sj(ω)(x(2) ⊗ y)

⎞⎠
+ sj+1(ωm)(x⊗ ∂(y))

=

⎛⎝−
∑
(x)

f j(x(1))(x(2) ⊗ y) + dj−1
M (x(1))

(
f j−1(x(2))(y) − dj−2

M (x(2))sj−1(ωl)(y)
)⎞⎠

+ sj+1(ωm)(x⊗ ∂(y))

=
(
−
∑
(x)

f j(x(1))(x(2) ⊗ y)

︸ ︷︷ ︸
(∗∗)

+ dj−1
M (x(1))f j−1(x(2))(y)︸ ︷︷ ︸

(∗)

− dj−1
M (x(1))dj−2

M (x(2))sj−1(ωl)(y)︸ ︷︷ ︸
(†)

)
+ sj+1(ωm)(x⊗ ∂y)︸ ︷︷ ︸

(�)

.
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The second summand equals

dj−1
M (ωm)sj(ωm)(x⊗ y) = dj−1

M (ωm)
(
f j−1(x)(y) − dj−2

M (x)sj−1(ωl)(y)
)

= dj−1
M (ωm)f j−1(x)(y)︸ ︷︷ ︸

(∗)

− dj−1
M (ωm)dj−2

M (x)sj−1(ωl)(y)︸ ︷︷ ︸
(†)

.

As dM squares to zero, the two terms marked with (†) sum up to

(†) = −(dj−1
M dj−2

M )(x)sj−1(ωl)(y) + dj−1
M (x)dj−2

M (ωl)sj−1(ωl)(y)

= dj−1
M (x)dj−2

M (ωl)sj−1(ωl)(y).

Since f is a morphism of complexes, the two terms marked with (∗) combine to give

(∗) = (dj−1
M f j−1)(x)(y) − dj−1

M (x)f j−1(ωl)(y)

= (f jdj−1� )(x)(y)︸ ︷︷ ︸
(∗∗)

− dj−1
M (x)f j−1(ωl)(y)︸ ︷︷ ︸

(‡)

.

By induction, the result of (†) combines with (‡) to give

(•) = −dj−1
M (x)sj(ωl)dj−1� (ωl)(y) = dj−1

M (x)sj(ωl)(∂y).

The two terms marked with (∗∗) combine to give

(∗∗) = f j(ωm)dj−1� (x)(y) + f j(x)dj−1� (ωl)(y)

= f j(ωm)(x⊗ y) + f j(x)(−∂(y))︸ ︷︷ ︸
(�)

.

The terms marked with (�) and (•) cancel off by definition of sj+1 yielding f j(ωm)(x ⊗y)
as the final result.

Since sj(v) = 0, applying sj+1dj� + dj−1
M sj to v ∈ Q1

1(l, m) gives:

(sj+1dj� + dj−1
M sj)(v)(y ⊗ λ)

= sj+1(ωm)dj�(v)(y ⊗ λ) + dj−1
M (v)sj(ωl)(y ⊗ λ)

= f j(v)(y ⊗ λ) − dj−1
M (v)sj(ωl)(y ⊗ λ) + dj−1

M (v)sj(ωl)(y ⊗ λ)

= f j(v)(y ⊗ λ).

In the general case, let f0(ωi)(1i) = d−1
M (ωi)(x). Then, by Lemma 5.6, there exists 

a morphism s0 with s0(ωi)(1i) = x. Then, the morphism of complexes g with g0 =
f0−d−1

M s0 and gj = f j , otherwise, is a morphism of complexes satisfying g0(ωi)(1i) = 0. 
Thus, it is null-homotopic by what we have shown so far. Thus, also f is null-homotopic 
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where the previous null-homotopy is adjusted by s0. Observing that s0 as well as the 
sj constructed before can be chosen to satisfy sj(v) = 0 for all v ∈ Q1

1, statement (iii) 
follows.

(iv) Let M be acyclic, i.e. let there exist exact sequences 0 → Dj fj

→ M j+1 gj

→ Dj+1 → 0
in modA for each j ∈ Z such that the differential on M is given by the composition 
djM : M j → Dj → M j+1. By Remark 4.6 without loss of generality one can assume 
that f j and gj are A-linear, i.e. (f j(ω), gj(ω)) form an exact sequence of A-modules. An 
exact sequence of A-modules yields an exact sequence of vector spaces for every i. In 
particular, (M, dM (ωi)) is acyclic. Since HomKb(mod A)(�i, M) ∼= H0(dM (ωi)), it follows 
that �i is homotopically projective. �

Applying the k-duality D on modA, which obviously extends to Db(modA), we obtain 
a dual statement.

Corollary 5.8. Let �i := D(�A
op

i ). Then HomKb(mod A)(M, �i) = DH0(dM (ωi)). In 
particular, �i is a homotopically injective object in Db(modA).

We are now ready to identify the costandard modules in the bocs language.

Proposition 5.9. Let A be a directed normal bocs. Let R be its right algebra. Let F(�) be 
the extension closure of the �i in Db(modA). Then F(�) � F(∇R).

Proof. Recall that in the description of Db(modR) as Db(modA) the standard mod-
ules for R correspond to the simple modules L(i) in modA for i ∈ {1, . . . , n}. By the 
characterisation of the costandard modules given in Lemma 3.7, we thus have to check 
that

HomDb(mod A)(L(l),�i[s]) ∼=
{
k if s = 0, l = i,

0 else.

But this statement is true since the latter is just DH0(dL(l)[−s](ωi)). �
Example 5.10. We continue our running example. The dual bocs is the bocs associated 
to the quiver opposite to (5.5.1). Hence one gets analogous complexes �A

op

i . In fact, 
in this example Aop is isomorphic to A, hence �i is isomorphic to the k-dual of �3−i

of the running Example 5.5. In particular, �1 is concentrated in degree 0, �2 has two 
components, in degree −1 and 0, and �3 lies in degrees −2, −1, 0 with dim(�3)−2 = 1, 
dim(�3)−1 = 4, and dim(�3)0 = 4.

From now on we work in the category F(�), which seems easier to handle. The duality 
D ensures that the results transfer to F(�).
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6. The category F(�)

Recall that for a morphism of complexes f : M → N its mapping cone, cone(f), is de-

fined by (cone(f))j = N j ⊕M j−1 with differential given by djcone(f) =
(
djN (−1)jf j

0 dj−1
M

)
.

Theorem 6.1. Let A = (A, V ) be a directed normal bocs.

(i) The category F(�) ⊂ Db(modA) can equivalently be described as the full subcategory 
whose objects M ∈ Db(modA), regarded as complexes, have a “filtration”

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr−1 ⊂ Mr = M

such that Mq
∼= cone(gq) for fixed gq : �iq [−1] → Mq−1 for q = 1, . . . , r and 

iq ∈ {1, . . . , n}. In this case, the number r is an invariant of M . Furthermore, 
the morphism gq can be chosen to be a morphism of complexes of A-modules.

(ii) The category F(�) ⊂ Db(modA) can equivalently be described as the full subcategory 
with objects isomorphic to objects N with

N j =

⎧⎪⎪⎨⎪⎪⎩
A⊗L Y if j = 0,

V
⊗Aj ⊗L Y if j > 0,

0 else,

for an L-module Y with differential given by dN (ωm)(x ⊗ y) = −∂(x) ⊗ y+(−1)jx ⊗
cY (y) for x ∈ V

⊗Aj, y ∈ Y for some L-linear map cY : Y → V ⊗L Y and dN (v)(x ⊗
y) = v ⊗ x ⊗ y. Furthermore, the pair (Y, cY ) can be chosen in such a way that Y
has a filtration 0 = Y0 ⊂ Y1 ⊂ · · · ⊂ Yr−1 ⊂ Yr = Y with cY (Yq) ⊆ V ⊗L Yq−1 for 
q = 1, . . . , r.

Proof. (i) Defining the category of objects having such filtration, it is shown in [36, 
Lemma 4.2] that this category is closed under extensions and hence it coincides with 
F(�). That the gq can be chosen to belong to the class of A-module homomorphisms 
follows from the fact that by Lemma 5.7 each homotopy class of morphisms �iq →
Mq−1[1] contains an A-module homomorphism and that the cones of homotopic maps 
are isomorphic. That the number r does not depend on the choice of filtration follows from 
the fact that the category F(�)op is equivalent to F(∇) by Proposition 5.9 and hence 
the filtration multiplicities are invariant, see e.g. [36, Corollary 6.4, Proposition 5.11].

(ii) We define N inductively from Mq by induction on q. Suppose that Nq−1 correspond-
ing to Mq−1 was already defined as
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N j
q−1 =

⎧⎪⎪⎨⎪⎪⎩
A⊗L Yq−1 for j = 0,
V

⊗Aj ⊗L Yq−1 if j > 0,
0 else.

By assumption, there exists gq : �iq [−1] → Mq−1. By Lemma 5.7 (iii), we can assume 
that gq is A-linear. Put Nq := cone(gq). Then, by definition of the cone,

(Nq)j =

⎧⎪⎪⎨⎪⎪⎩
(A⊗ Yq−1) ⊕ (A⊗ L(iq)) for j = 0,
(V ⊗Aj ⊗L Yq−1) ⊕ (V ⊗j ⊗ L(iq)) for j > 0,
0 else.

Set Yq := Yq−1 ⊕ L(iq). The differential on Nq is given by djNq
=

(
djNq−1

(−1)jgjq
0 dj�iq

)
. 

Observe that since gjq is chosen to be an A-linear map, i.e. gjq(v) = 0, one has

djNq
(v) =

(
djNq−1

(v) 0
0 dj�iq

(v)

)
.

Thus, by induction djNq
(v)(x ⊗ y) = v ⊗ x ⊗ y as this holds for �i and djNq

(v) has block 
diagonal shape. Furthermore, by the recursive definition of the A-linear representative 
of gjq in the proof of Lemma 5.7 (i) (taking into account that the gq are A-module 
homomorphisms), gjq(ωm)(x ⊗λ) = x ⊗ cN,q(λ) for some cN,q : L(iq) → V ⊗Yq−1. Indeed, 
let cN,q(λeiq ) = λg0

q (ωiq )(1iq ). Then, for j = 0, g0
q (ωm)(x ⊗ eiq ) = xg0

q (ωiq)(1iq ) =
xcN,q(eiq ) and for j ≥ 1, gjq(ωm)(v ⊗ x ⊗ λ) = dj−1

Nq−1
(v)gj−1

q (ωl)(x ⊗ λ) = dj−1
Nq−1

(v)(x ⊗
cN,q(λ)) = v ⊗ x ⊗ cN,q(λ) by induction and the form of djNq

(we use (�), (��) and 

the fact that gjq−1(v) = 0). Defining cNq
: Yq → V ⊗L Yq−1 by cNq

|Yq−1 := cNq−1 and 
cNq

|L(iq) := cN,q yields the desired map. Indeed, it remains to check the first formula

djNq
(ωm)(x⊗ (y + λ))

= djNq−1
(ωm)(x⊗ y) + (−1)jgjq(ωm)(x⊗ λ) + dj�iq

(ωm)(x⊗ λ)

= −∂(x) ⊗ y + (−1)jx⊗ cNq−1(y) + (−1)jgjq(ωm)(x⊗ λ) − ∂(x) ⊗ λ

= −∂(x) ⊗ y + (−1)jx⊗ cNq−1(y) + (−1)jx⊗ cN,q(λ) − ∂(x) ⊗ λ

= −∂(x) ⊗ (y + λ) + (−1)jx⊗ cNq
(y + λ). �

We need the following easy exercise in homological algebra.

Lemma 6.2. Let A be an additive category. Let Kb(A) be the homotopy category of A. 
Let f : X → Y be a morphism in Kb(A). Let N ∈ Kb(A).
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(i) Every morphism α : cone(f) → N can be written in the form (g, h) where g : Y → N

is a morphism of complexes and h is a homotopy between gf and 0. Conversely, 
every such pair defines a morphism cone(f) → N .

(ii) Suppose that g, ̃g : Y → N are homotopic with homotopy h̃. Then, (g, h) and (g̃, h −
h̃f) are homotopic via the homotopy (h̃, 0).

(iii) Suppose that (g, h), (g, ̂h) : cone(f) → N are two morphisms of complexes. Then 
h − ĥ : X[1] → N is a morphism of complexes.

(iv) Let g, h and ĥ be as in (ii). Suppose that h − ĥ is homotopic to η via a homotopy s. 
Then, (g, h) is homotopic to (g, ̂h + η) via the homotopy (0, s).

Proof. (i) Here we use the description of C := cone(f) as

Cj = Y j ⊕Xj+1

with differential given by djC =
(
djY f j+1

0 −dj+1
X

)
. Let α : C → N be an arbitrary mor-

phism of complexes. Since Cj = Y j ⊕ Xj+1, αj = (gj , hj+1) for some gj : Xj → N j

and hj+1 : Y j+1 → N j . Since α is a morphism of complexes djNαj = αj+1djC which is 
equivalent to

(djNgj , djNhj+1) = (gj+1, hj+2)
(
djY f j+1

0 −dj+1
X

)
= (gj+1djY , g

j+1f j+1 − hj+2dj+1
X ).

Equality in the first component means that g = (gj)j∈Z : Y → N is a morphism of 
complexes. Equality in the second component means that h = (hj)j∈Z is a homotopy 
between gf and 0.

(ii) We compute

dj−1
N (h̃j , 0) + (h̃j+1, 0)djC = (dj−1

N h̃j , 0) + (h̃j+1, 0)
(
djY f j+1

0 −dj+1
X

)
= (dj−1

N h̃j + h̃j+1djY , h̃
j+1f j+1)

= (gj − g̃j , hj+1 − (hj+1 − h̃j+1f j+1)).

The claim follows.

(iii) Recall that the differential on X[1] is given by −dX . Thus,

djN (hj+1 − ĥj+1) − (hj+2 − ĥj+2)djX[1] = djN (hj+1 − ĥj+1) + (hj+2 − ĥj+2)dj+1
X

= gj+1f j+1 − gj+1f j+1 = 0.

(iv) That h − ĥ is homotopic to η via a homotopy s is equivalent to dj−1
N sj +sj+1djX[1] =

hj+1 − ĥj+1 − ηj . This follows from
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dj−1
N (0, sj) + (0, sj+1)

(
djY f j+1

0 −dj+1
X

)
= (0, dj−1

N sj − sj+1dj+1
X )

= (0, dj−1
N sj + sj+1djX[1])

= (0, h− ĥ− η). �
In view of Theorem 6.1 every object of the category F(�) gives an L-module Y

together with a L-linear map cY : Y → V ⊗L Y . With Theorem 6.3 and Proposition 7.2
below we provide an alternative description of the category F(�). Namely, we give an 
equivalent condition for a map cY to define an object of F(�) and we translate it into 
a condition on the ‘dual’ map sY : DV → Homk(Y, Y ). This allows us to assign to 
any object of F(�) a module over an appropriate quotient of the tensor algebra L[DV ]. 
Together with an accurate description of morphisms in F(�) this will allow us to present 
F(�) � F(�)op as a module over a bocs B = (B, W ), Theorem 8.2 (the algebra B will 
be the mentioned quotient of L[DV ]).

Theorem 6.3. Let A = (A, V, μ, ε) be a directed normal bocs.

(i) We define category N (A) via:

objects: pairs (Y, cY ) where Y is an L-module and cY : Y → V ⊗L Y is an L-linear 
map satisfying

(∂1 ⊗ 1Y )cY + (mV ⊗ 1Y )(1V ⊗ cY )cY = 0 (†)

such that there is a filtration (Yq)q=1,...,r with Yq/Yq−1 ∼= L(iq) and 
cY |Yq

: Yq → V ⊗L Yq−1.
morphisms: A morphism (Y, cY ) → (Z, cZ) is given by a map cf : Y → A ⊗L Z

satisfying

−(ml ⊗ 1Z)(1V ⊗ cZ)cf + (∂0 ⊗ 1Z)cf + (mr ⊗ 1Z)(1V ⊗ cf )cY = 0.
(††)

composition: Given cg : (Y, cY ) → (Z, cZ) and cf : (X, cX) → (Y, cY ), the map cor-
responding to their composition is obtained by cgf := (mA⊗1Z)(1A⊗cg)cf .

unit: c1 : Y → A ⊗L Y is given by y �→ 1 ⊗ y.

(ii) The categories F(�) and N (A) are equivalent.

Proof. We only prove (ii), (i) follows by transport of structure. We define a functor 
Ξ: N (A) → F(�). The pair (Y, cY ) is sent to the complex Ξ(Y ) with
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(Ξ(Y ))j :=

⎧⎪⎪⎨⎪⎪⎩
A⊗L Y for j = 0
V

⊗Aj ⊗L Y for j > 0
0 else

and differential given by djΞ(Y )(ωm)(x ⊗y) = −∂(x) ⊗y+(−1)jx ⊗cY (y) and djΞ(Y )(v)(x ⊗
y) = v ⊗ x ⊗ y for v ∈ Q1

1(m, l), x ∈ V
⊗Aj(i, m), and y ∈ Y . Furthermore, for a 

morphism cf : Y → A ⊗L Z define Ξ(cf ) to be the A-linear map of complexes with 
Ξ(cf )j(x ⊗ y) := (1

V
⊗A(j−1) ⊗mr ⊗ 1Z)(x ⊗A cf (y)).

We first prove that this functor is well-defined. For this, we first show that djΞ(Y ) is a 
morphism in modA. Indeed, for a ∈ A(l, m),

djΞ(Y )(ωma− aωl + ∂a)(x⊗ y)

= −∂(ax) ⊗ y + (−1)jax⊗ cY (y) + a∂(x) ⊗ y − (−1)jax⊗ cY (y) + ∂(a) ⊗ x⊗ y = 0

by the Leibniz rule for ∂. To prove that dΞ(Y ) defines a differential, write cY (y) =∑
(y) v(1) ⊗ y(2) with v(1) ∈ V and y(2) ∈ Y . Then,

(dj+1
Ξ(Y )d

j
Ξ(Y ))(ωm)(x⊗ y) = dj+1

Ξ(Y )(ωm)(−∂(x) ⊗ y + (−1)jx⊗ cY (y)).

The first summand is equal to

dj+1
Ξ(Y )(ωm)(−∂(x) ⊗ y) = ∂2(x) ⊗ y − (−1)j+1∂(x) ⊗ cY (y)

= (−1)j+2∂(x) ⊗ cY (y).

The second summand equals

dj+1
Ξ(Y )(ωm)((−1)jx⊗ cY (y))

=
∑
(y)

(−1)j(−∂(x⊗ v(1)) ⊗ y(2) + (−1)2j+1x⊗ v(1) ⊗ cY (y(2)))

=
∑
(y)

(−1)j+1∂(x) ⊗ v(1) ⊗ y(2) + (−1)2j+1x⊗ ∂(v(1)) ⊗ y(2)

+ (−1)2j+1x⊗ v(1) ⊗ cY (y(2))

=
∑
(y)

(−1)j+1∂(x) ⊗ v(1) ⊗ y(2) = (−1)j+1∂(x) ⊗ cY (y).

The third equality follows from (†). Thus, the two summands cancel each other.
Now we check that

• dN is a differential if and only if condition (†) is satisfied,
• f is a morphism of complexes if and only if cf satisfies (††).



160 A. Bodzenta, J. Külshammer / Journal of Algebra 506 (2018) 129–187
Writing ∂(v) =
∑

(v) v(1) ⊗ v(2) with v(1), v(2) ∈ V , we get

(dj+1
Ξ(Y )d

j
Ξ(Y ))(v)(x⊗ y)

= dj+1
Ξ(Y )(ωm)(v ⊗ x⊗ y) + dj+1

Ξ(Y )(v)(−∂(x) ⊗ y + (−1)jx⊗ cY (y))

+
∑
(v)

dj+1
Ξ(Y )(v(1))djΞ(Y )(v(2))(x⊗ y).

The first summand equals

dj+1
Ξ(Y )(ωm)(v ⊗ x⊗ y) = −∂(v ⊗ x) ⊗ y + (−1)j+1(v ⊗ x⊗ cY (y)),

the second

dj+1
Ξ(Y )(v)(−∂(x) ⊗ y + (−1)jx⊗ cY (y)) = −v ⊗ ∂(x) ⊗ y + (−1)jv ⊗ x⊗ cY (y),

the third

dj+1
Ξ(Y )(v(1))djΞ(M)(v(2))(x⊗ y) = ∂(v) ⊗ x⊗ y.

The respective first parts of each of these three summands cancel each other as ∂ satisfies 
the graded Leibniz rule. The remaining parts of the first and the second summand also 
cancel each other.

As − ⊗L− is an exact functor, the filtration (Yq)q=1,...,r induces a filtration of Ξ(Y ) in 

Cb(modA). The subquotient Ξ(Yq)/Ξ(Yq−1) has V ⊗Aj ⊗L Yq/Yq−1 in degree j ≥ 0. Since 
cY (Yq) ⊂ V ⊗Yq−1, the differential on the subquotient is given by d(ω)(x ⊗y) = −∂(x) ⊗y, 
d(v)(x ⊗ y) = x ⊗ x ⊗ y, i.e. Yq/Yq−1 ∼= �iq . This shows that the functor is well-defined 
on objects.

For checking well-definedness on morphisms write cY (y) =
∑

(y) v(1) ⊗ y(2) as well as 
cf (y) =

∑
(y) a(1) ⊗ z(2) with v(1) ∈ V , a(1) ∈ A, y(2) ∈ Y , and z(2) ∈ Z. Then, for a 

morphism cf : Y → A ⊗ Z,

(Ξ(cf )j+1djΞ(Y ))(ωm)(x⊗ y)

= Ξ(cf )j+1(ωm)(−∂(x) ⊗ y + (−1)jx⊗ cY (y))

= −∂(x)a(1) ⊗ z(2)︸ ︷︷ ︸
(�)

+
∑
(y)

(−1)j(1
V

⊗A(j−1) ⊗mr ⊗ 1Z)x⊗ v(1) ⊗ cf (y(2)).︸ ︷︷ ︸
(∗)

On the other hand,
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(djΞ(Z)Ξ(cf )j)(ωm)(x⊗ y)

=
∑
(y)

dΞ(Z)(ωm)(xa(1) ⊗ z(2))

=
∑
(y)

−∂(xa(1)) ⊗ z(2) + (−1)jxa(1) ⊗ cY (z(2))

= −∂(x) ◦ cf (y)︸ ︷︷ ︸
(�)

+
∑
(y)

(−1)j+1x⊗ ∂(a(1)) ⊗ z(2) + (−1)jxa(1) ⊗ cY (z(2)).︸ ︷︷ ︸
(∗)

The two parts labelled (�) are equal, the parts labelled (∗) are equal by the defining 
property of cf to be a morphism in N (A). Furthermore note that,

(Ξ(cf )j+1djΞ(Y ))(v)(x⊗ y) = Ξ(cf )(ωm)(v ⊗ x⊗ y)

= v ⊗ x⊗ cf (y)

and

(djΞ(Z)Ξ(cf ))(v)(x⊗ y) = dΞ(Z)(v)(x⊗ cf (y))

= v ⊗ x⊗ cf (y).

To check that Ξ is a functor let cf : (X, cX) → (Y, cY ) and cg : (Y, cY ) → (Z, cZ). Then,

Ξ(cg)j ◦ Ξ(cf )j

= (1
V

⊗A(j−1) ⊗mr ⊗ 1Z)(1
V

⊗Aj ⊗ cg)(1V
⊗A(j−1) ⊗mr ⊗ 1Y )(1

V
⊗Aj ⊗ cf )

= (1
V

⊗A(j−1) ⊗mr ⊗ 1Z)(1
V

⊗A(j−1) ⊗mr ⊗ 1Z)(1
V

⊗Aj⊗LA
⊗ cg)(1V ⊗Aj ⊗ cf )

= (1
V

⊗A(j−1) ⊗mr ⊗ 1Z)(1
V

⊗Aj ⊗mA ⊗ 1Z)(1
V

⊗Aj⊗LA
⊗ cg)(1V ⊗Aj ⊗ cf )

= Ξ(cgf )j

and for x ∈ V
⊗Aj , y ∈ Y ,

Ξ(c1)(x⊗ y) = (1
V

⊗A(j−1) ⊗mr ⊗ 1Z)(x⊗ c1(y))

= (1
V

⊗A(j−1) ⊗mr ⊗ 1Z)(x⊗ 1 ⊗ y)

= x⊗ y.

To check that Ξ is an equivalence, note that by Theorem 6.1, for each M ∈ Db(modA)
there is an isomorphic N = Ξ(Y ) with a map cY : Y → V ⊗L Y . Then, the previous 
calculations show that cY satisfies the defining property of (Y, cY ) to be an object of 
N (A) as dN is a differential.
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That Ξ is faithful follows from the fact that cf (y) = Ξ(cf )0(1 ⊗ y). Thus, Ξ(cf ) = 0
implies that cf = 0. We are left with proving that Ξ is full. For this let f = (f j)j∈Z

be an arbitrary morphism Ξ(Y ) → Ξ(Z). We prove by induction on the length r of 
the filtration that f is represented by an A-linear map. For r = 1 this is the content 
of Lemma 5.7. For the induction step, note that Ξ(Yq) is constructed as the cone of a 
morphism gq : �iq [−1] → Ξ(Yq−1). Thus, by the Lemma 6.2, each morphism α : Ξ(Yq) →
Ξ(Z) can be represented by a pair (g, h) where g : Ξ(Yq−1) → Ξ(Z) is a morphism of 
complexes and h : �iq [−1] → Ξ(Z) is a homotopy between ggq and 0. By induction, g is 
homotopic to an A-linear g̃ via a homotopy h̃. Thus, (g, h) is homotopic to (g̃, h −h̃gq). Let 
ĥ be an A-linear homotopy between g̃gq and 0 which can be chosen by Lemma 5.7. Then, 
by the foregoing lemma, (g̃, ̂h) is a morphism Ξ(Yq) → Ξ(Z) as well. Again invoking the 
foregoing lemma, h − h̃gq− ĥ is a morphism of complexes. By Lemma 5.7, there exists an 
A-linear map η homotopic to h − h̃gq − ĥ. Furthermore the previous lemma also implies 
that (g̃, h − h̃gq) is homotopic to (g̃, ̂h + η), which is A-linear.

We have to show that the f j can be chosen (within their homotopy class) to satisfy 
f j(x ⊗ y) = x ⊗A cf (y). We proceed by induction. Let cf (y) := f0(1 ⊗ y). Then, by 
A-linearity of f , f0(a ⊗ y) = acf (y). Recalling the recursive definition of f j in the proof 
of Lemma 5.7, it follows that f j(v ⊗ x ⊗ y) = v ⊗ x ⊗ cf (y) as f j is A-linear and 
dΞ(Z)(v)(x ⊗ z) = v⊗x ⊗ z. Defining cf in this way, the foregoing calculations show that 
in order for f to be a morphism of complexes, the defining property for cf has to be 
satisfied. �
Example 6.4. In the running example, consider an L-module Y with Y1 ∼= L(2), Y2/Y1 ∼=
L(3), Y3/Y2 ∼= L(1) and Y/Y3 ∼= L(3). We choose a basis v1, v2, v3, w3 of Y , with vi
supported at the vertex i and Y3 spanned by v1, v2, v3. Then V ⊗L Y is a left L-module 
supported at the vertices 2 and 3. The space e2V ⊗L Y is spanned by ϕ ⊗ v1, while 
e3V ⊗L Y = Span {ψ ⊗ v3, ψ ⊗ w3, χ ⊗ v1, bϕ ⊗ v1, ψa ⊗ v1}.

The map cY : Y → V ⊗L Y defined by cY (v1) = 0, cY (v2) = 0, cY (v3) = ψ ⊗ v2, 
cY (w3) = ψ⊗ v2 maps Yq to V ⊗ Yq−1 and satisfies condition (†). Therefore, it defines a 
complex N · in F(�). In fact, one can check that it is the complex S(∇(1) ⊕∇(2) ⊕ I(2))
where S denotes the Serre functor of Db(modR) and I(2) is the injective envelope of 
∇(2).

On the other hand, the map c̃Y equal to cY on v1, v2 and v3 and such that c̃Y (w3) =
χ ⊗ v1 does not satisfy (†):

(∂1 ⊗ 1Y )c̃Y (w3) + (mV ⊗ 1Y )(1V ⊗ c̃Y )c̃Y (w3) = ψϕ⊗ v1 + 0 �= 0.

Thus the composition of maps N0 d0

−−→ N1 d1

−−→ N2 defined by c̃Y is non-zero. Indeed:

d2(ωi)(e3 ⊗ w3) = d(ωi)(−∂(e3) ⊗ w3 − e3 ⊗ c̃Y (w3)) = −d(ωi)(e3 ⊗A χ⊗ v1)

= ∂(χ) ⊗ v1 − χ⊗ c̃Y (v1) = ψ ⊗ ϕ⊗ v1 �= 0.
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A morphism between two objects of F(�) defined by L-modules Y and Z is given by a 
map cf : Y → A ⊗L Z satisfying (††).

7. Dualising N (A)

In this section, we dualise the definition of N (A) by replacing the map cV : Y → V⊗LY

with a map sY : DV → Homk(Y, Y ). For two finite dimensional L-modules X, Y let 
pX,Y : D(X ⊗L Y ) → DY ⊗L DX be the canonical isomorphism. Furthermore note that 
L ∼=

∏n
i=1 k as algebras, and hence every L-module U is projective. In particular, we can 

fix dual bases xs of U and ξs of DU , i.e. bases such that ξs(xt) = δst.

Lemma 7.1. Let Y, Z ∈ modL. Let U be an L-module with basis xs and its dual ξs ∈ DU .

(i) There is an isomorphism

HomL⊗L(DU,Homk(Y,Z)) ∼= HomL(Y,U ⊗L Z).

This isomorphism is given from left to right by ΦU(f)(y) :=
∑

s x
s⊗f(ξs)(y) for f ∈

HomL⊗L(DU, Homk(Y, Z)) and y ∈ Y and in the other direction by ΨU (g)(ϕ)(y) :=
m(ϕ ⊗ 1Z)(g(y)), where g ∈ HomL(Y, U ⊗L Z), ϕ ∈ DU, y ∈ Y , and m is the 
canonical identification k ⊗k Z → Z.

(ii) The above isomorphism is functorial in the sense that for each morphism h : U → U ′

of L-modules ΨU ′((h ⊗ 1Y )f) = ΨU (f) ◦ Dh.
(iii) Furthermore, the isomorphism is compatible with the standard adjunction in the 

following sense: Let α : HomL⊗L(DU ′, HomL⊗L(DU, Homk(Y, Z))) → HomL(DU⊗L

DU ′, Homk(Y, Z)) be the standard bimodule tensor–hom adjunction. Then,

Hom(pU ′,U ,Homk(Y,Z))αHomL⊗L(DU ′,ΨU )ΨU ′
= ΨU ′⊗U .

(iv) Finally, the isomorphism is compatible with composition in the following sense:

αHomL⊗L(DU ′,ΨU )ΨU ′
((1 ⊗ g)f) = mL(ΨU ⊗ ΨU ′

)(g ⊗ f).

Proof. (i) To check that these define inverse equivalences note that

ΨUΦU (f)(ϕ)(y) = m(ϕ⊗ 1Z)(ΦU (f)(y)) =
∑
s

m(ϕ⊗ 1Z)(xs ⊗ f(ξs)(y))

=
∑
s

m(ϕ(xs) ⊗ f(ξs)(y)) =
∑
s

m(1 ⊗ f(ϕ(xs)ξs)(y)

= f(ϕ)(y)

and
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ΦUΨU (g)(y) =
∑
s

xs ⊗ ΨU (g)(ξs)(y) =
∑
s

xs ⊗m(ξs ⊗ 1)g(y)

=
∑
s

∑
(y)

xsξs(u(1)) ⊗ z(2) =
∑
(y)

u(1) ⊗ z(2)

= g(y)

where, using Sweedler notation, g(y) =:
∑

(y) u(1) ⊗ z(2).

(ii) Using that Dh(ϕ) = ϕ ◦ h for ϕ ∈ DU ′, we obtain for y ∈ Y and f : Y → U ⊗ Z:

(ΨU (f) ◦ Dh)(ϕ)(y) = ΨU (f)(ϕ ◦ h)(y)

= m((ϕ ◦ h⊗ 1Z)f(y)

= m(ϕ⊗ 1Z)(h⊗ 1Z)f(y)

= ΨU ′
((h⊗ 1Z)f)(ϕ)(y).

(iii) To check equality we apply ΨU ′⊗U to some g ∈ HomL(Y, U ′ ⊗L U ⊗L Z) the result 
to p−1

U ′,U (ϕ ⊗ ϕ′) where ϕ ∈ DU and ϕ′ ∈ DU ′, and finally the result to y ∈ Y :

ΨU ′⊗U (g)(p−1
U ′,U (ϕ⊗ ϕ′))(y)

= m(p−1
U ′,U (ϕ⊗ ϕ′) ⊗ 1Z)g(y)

= m(ϕ⊗ 1Z)(m(ϕ′ ⊗ 1Z)g(y))

= m(ϕ⊗ 1Z)(ΨU ′
(g)(ϕ′)(y))

= ΨU (ΨU ′
(g)(ϕ′))(ϕ)(y)

= Hom(DU ′,ΨU )ΨU ′
(g)(ϕ′)(ϕ)(y)

= αHom(DU ′,ΨU )ΨU ′
(g)(ϕ⊗ ϕ′)(y)

= Hom(pU ′,U ,Hom(Y,Z))αHom(DU ′,ΨU )ΨU ′
(g)(p−1

U ′,U (ϕ⊗ ϕ′))(y).

(iv) Let ϕ ∈ DU, ϕ′ ∈ DU ′, x ∈ X. Then,

αHom(DU ′,ΨU )ΨU ′
(1 ⊗ g)f(ϕ⊗ ϕ′)(x) = Hom(DU ′,ΨU )ΨU ′

((1 ⊗ g)f)(ϕ′)(ϕ)(x)

= ΨU (ΨU ′
((1 ⊗ g)f)(ϕ′)(ϕ)(x)

= ΨU (m(ϕ′ ⊗ 1)((1 ⊗ g)f))(ϕ)(x)

= m(ϕ⊗ 1)m(ϕ′ ⊗ 1)(1 ⊗ g)f(x)

= m(ϕ⊗ 1)(g)m(ϕ′ ⊗ 1)(f)(x)

= mL(ΨU (g) ⊗ ΨU ′
(f)(ϕ⊗ ϕ′)(x). �
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Proposition 7.2. Let A = (A, V, μ, ε) be a directed bocs.

(i) The following defines a category R(A):

objects: pairs (Y, sY ) such that Y is an L-module and

sY ∈ HomL⊗L(DV ,Homk(Y, Y ))

satisfies

sY D∂ + m(sY ⊗ sY )pV ,V DmV = 0, (†∗)

where m denotes the composition of morphisms m : Homk(Y, Y ) ⊗k

Homk(Y, Y ) → Homk(Y, Y ).
morphisms: for two objects (Y, sY ), (Z, sZ) a morphism is given by an element sf ∈

HomL⊗L(DA, Homk(Y, Z)) satisfying

m((sf ⊗ sY )pV ,ADmr − (sZ ⊗ sf )pA,V Dml) + sfD∂ = 0. (††∗)

composition: for two morphisms sf : (X, sX) → (Y, sY ) and sg : (Y, sY ) → (Z, sZ)
their composition is given by sgf := m(sg ⊗ sf )pA,ADmA.

unit: Let s1 : (Y, sY ) → (Y, sY ) be the map defined by s1(v)(y) = v(1)y.

(ii) The categories N (A) and R(A) are equivalent.

Proof. We only prove (ii), (i) follows by transport of structure. According to the previous 
lemma, there is an isomorphism

ΨV : HomL(Y, V ⊗L Y ) → HomL⊗L(DV ,Homk(Y, Y )).

Define the functor Ψ: N (A) → R(A) on objects by F ((Y, cY )) = (Y, ΨV (cY )). Again 
invoking the foregoing lemma, for each two L-modules Y, Z there is an isomorphism

ΨA : HomL(Y,A⊗L Z) → HomL⊗L(DA,Homk(Y,Z)).

Define Ψ on morphisms by F (cf ) = ΨA(cf ) for a morphism cf : (Y, cY ) → (Z, cZ). We 
have to prove that this defines a functor. Recall that the condition for (Y, cY ) to be an 
element of N (A) is

(∂1 ⊗ 1Y )cY + (mV ⊗ 1Y )(1V ⊗ cY )cY = 0.

We examine the two summands separately. Applying ΨV⊗AV to the first summand yields

ΨV⊗AV ((∂ ⊗ 1Y )cY = sY ◦ D∂1
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according to Lemma 7.1 (ii). For the second summand, we obtain:

ΨV⊗AV ((mV ⊗ 1Y )(1V ⊗ cY )cY )

= ΨV⊗LV ((1V ⊗ cY )cY ) ◦ DmV

= (Hom(pV ,V ,Hom(Y, Y ))αHom(DV ,ΨV )ΨV (1V ⊗ cY )cY )DmV

= (αHom(DV , ψV )ΨV ((1V ⊗ cY )cY )pV ,V DmV

= mL(ΨV (cY ) ⊗ ΨV (cY ))pV ,V DmV

= mL(sY ⊗ sY )pV ,V DmV .

Here we apply Lemma 7.1 (i), (ii), and (iv) to obtain the first, second, and third equality, 
respectively. Altogether, the condition translates to the stated equality in R(A).

For the morphisms, the condition for cf : (Y, cY ) → (Z, cZ) to be a morphism is

−(ml ⊗ 1Z)(1A ⊗ cZ)cf + (∂0 ⊗ 1Z)cf + (mr ⊗ 1Z)(1V ⊗ cf )cY = 0.

We apply ΨV and consider the three summands separately. For the second summand, 
applying Lemma 7.1 (ii), we obtain sfD∂0. For the first summand, we obtain

ΨV (−(ml ⊗ 1Z)(1A ⊗ cZ)cf ) = −ΨA⊗V ((1A ⊗ cZ)cf )Dml

= −mL(sZ ⊗ sf )pA,V Dml,

where Lemma 7.1 (ii), (iii), and (iv) were applied similarly to the argument for objects. 
Similarly the third summand translates to mL(sf⊗sY )pV ,ADmr. Altogether, the claimed 
formula for morphisms results.

For the composition, recall that cgf is given by

cgf = (mA ⊗ 1Z)(1A ⊗ cg)cf .

Applying Lemma 7.1 similarly to before, one obtains the claimed formula for sgf .
For the units, note that

Ψ(c1)(v)(y) = m(v ⊗ 1Y )(c1(y)) = m(v ⊗ 1Y )(1 ⊗ y) = v(1)y = s1(v)(y).

From ΨU being an isomorphism for all U , we obtain that Ψ is an equivalence. �
Example 7.3. Recall that in the running Example 6.4 we have considered an L-module 
Y and the map cY : Y → V ⊗k Y . Under the equivalence N (A) � R(A), the object 
(Y, cY ) ∈ N (A) corresponds to (Y, sY ) ∈ R(A), where sY : DV → Homk(Y, Y ) is the map 
with sY (ϕ) ≡ 0, sY (χ) ≡ 0, sY (ψa) ≡ 0, sY (bϕ) ≡ 0 and sY (ψ)(v1) = 0, sY (ψ)(v2) = 0, 
sY (ψ)(v3) = v2 and sY (ψ)(w3) = v2.
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8. Construction of the Ringel dual bocs

The goal of this section is to construct a bocs B from the data of a bocs A such that 
the category R(Aop), which we have shown to be equivalent to F(∇R) in the previous 
sections, becomes equivalent to the category of modules for B.

Let A = (A, V ) be a directed normal bocs. The corresponding DG algebra U =⊕∞
j=0 V

⊗Aj is augmented, non-negatively graded and finite dimensional. Let D! =
DT (U [1]) be the k-dual of the bar construction of U and I ⊂ D! the ideal gener-
ated by D!

≤−1 and d(D!
−1). Since I is a differential ideal, the quotient U ! = D!/I is 

a DG algebra. By [30, Lemma 8.1] U ! is a DG algebra assigned to a directed normal 
bocs B! = (B!, W !) with B! = L[DV ]/(L[DV ] ∩ I) and W ! = U !

1/(d(B!)). The alge-
bra B! is the quotient of L[DV ] by the ideal J generated by the image of the map 
D∂1 + pV ,V DmV : D(V ⊗ V ) → DV ⊕ (DV ⊗L DV ). The bimodule W ! is generated over 
B! by DA and its group-like elements are Dei. The projective bimodule W

! is generated 
as a B!-bimodule by D(radA).

The algebra structure on B! is the algebra structure of the tensor algebra over L. W ! is 
the quotient of a projective bimodule generated by L-bimodule DA. The comultiplication 
μ : W ! → W !⊗B!W ! is induced by the multiplication on A. Finally, the counit εB! : W ! →
B! is the B!-bimodule morphism generated by DεA : DA → DV .

Definition 8.1. Let A be a directed bocs. We call B! as constructed above the Koszul 
dual bocs. The bocs B = ((Aop)!)op is the Ringel dual bocs.

We combine our results so far to obtain the main theorem of this paper.

Theorem 8.2. Let A = (A, V ) be a directed bocs and B = (B, W ) its Ringel dual. Then 
the right algebra of B is Morita equivalent to the Ringel dual of the right algebra of A.

Proof. By Theorem 4.5 the right algebra RA of A is quasi-hereditary with modA �
F(ΔRA

). Let F(∇) be the subcategory of ∇-filtered objects of RA. According to Proposi-
tion 5.9, the category F(∇) is equivalent to F(�) in Db(modA). Applying the duality D, 
the category F(�) is in turn equivalent to F(�)op in Db(modAop). As observed in 
Theorem 6.3, the category F(�)op is equivalent to the category N(Aop)op which is in 
turn equivalent to R(Aop)op by Proposition 7.2. Using the description of bocs repre-
sentations in 5.1, it is easy to see that modBop is equivalent to R(Aop)op. Indeed, 
an object of modB is a B = L[N0]/J module, i.e. an L-module M together with 
a map sM : DV → Homk(M, M) vanishing on J . The later condition can be writ-
ten as sM ◦ D∂1 + m(sM ⊗ sM )pV ,V DmV = 0. A morphism f : M → N in modB

is a map sf : DA = DL ⊕ Drad(A) → Homk(M, N) which vanishes on the image of 
N0 in N1. Taking into account the definition of U , the second condition translates 
into m((sf ⊗ sM )pV ,ADmr − (sN ⊗ sf )pA,V Dml) + sfD0 = 0. Thus, applying duality, 
modB � R(Aop) � F(∇). By Theorem 3.3, the quasi-hereditary algebra with prescribed 
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category of standard modules is unique up to Morita equivalence. Thus, RB is Morita 
equivalent to the Ringel dual of RA. �
Example 8.3. In the running Example 5.5 we have considered a DG algebra U associated 
to the bocs A. U is concentrated in degrees 0, 1, 2. Its bar construction is a DG coalgebra 
with A ⊕ (A ⊗L V ) ⊕ (V ⊗L A) in degree −1, V in degree 0 and V ⊗A V in degree 1. Its 
dual is the DG algebra D! with

D!
−1 = span{ψ̂ϕ},

D!
0 = L⊕ span{ϕ̂, ψ̂, χ̂, ψ̂a, b̂ϕ, ψ̂ ⊗L ϕ̂},

D!
1 = (D!

0 ⊗L L) ⊕ span{â, b̂, ĉ, b̂a, ψ̂ ⊗L â, b̂⊗L ϕ̂}.

The non-zero differentials are

∂−1(ψ̂ϕ) = χ̂+ ψ̂⊗L ϕ̂, ∂0(ψ̂a) = ĉ+ ψ̂⊗L â, ∂0(b̂ϕ) = ĉ+ b̂⊗L ϕ̂, ∂1(b̂a) = b̂⊗L â.

Let B! = (B!, W !) be the Koszul dual bocs. B! = D!
0/∂

−1(D!−1) is the path algebra of 
the quiver

1 2 3
ϕ̂

ψ̂a

b̂ϕ

ψ̂

If we put e = e1 + e2 + e3 then W ! is isomorphic to

W ! = U !
1/∂

0(B!) ∼= B! ⊗L e⊕ span{â, b̂, ĉ, b̂a, ψ̂ ⊗L â, b̂⊗L ϕ̂}.

The right B!-module structure is twisted by ∂0, i.e. e · x = x ⊗L e − ∂0(x), for any 

x ∈ B. The bimodule W
! = span{â, ̂b, ̂c, b̂a, ψ̂ ⊗L â, ̂b ⊗L ϕ̂} is a projective B!-bimodule 

generated by â, ̂b, ̂c, b̂a. The comultiplication on B! ⊗L e is determined by μ(e) = e ⊗ e, 
while the comultiplication on W

! is determined by the multiplication in A, i.e. we have 
μ(b̂a) = e ⊗L b̂a + b̂a⊗L e + b̂⊗L â.

This bocs is in some way not minimal possible, namely as we will see in Example 9.3 it 
is not regular. Similarly to [30, Appendix A.2], it provides an instance of non-uniqueness 
of directed bocses for quasi-hereditary algebras.

9. Smooth rational surfaces and curve-like algebras

In this section we demonstrate how knowledge of additional properties of a quasi-
hereditary algebra can be used to exclude certain possibilities for the A∞-structure on 
the Ext-algebra of the standard modules.
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Recall, that an algebra Λ is left strongly quasi-hereditary if it is quasi-hereditary and 
the projective dimension of every standard Λ-module is at most one. The corresponding 
biquiver has then a simple form (Remark 5.3). Using the language of bocses, there are 
different equivalent description of this:

Proposition 9.1 ([33, Proposition 4.42]). The following are equivalent for a quasi-
hereditary algebra Λ:

(1) Λ is left strongly quasi-hereditary.
(2) The exceptional collection of standard modules is almost strong.
(3) Λ is Morita equivalent to the right algebra of a free normal bocs.

Proof. The implication (1) ⇒ (2) is clear. For (2) ⇒ (3), let Λ be a quasi-hereditary 
algebra with almost strong exceptional collection of standard modules. The algebra Λ is 
Morita equivalent to the right algebra of a directed normal bocs (A, V ), see Theorem 4.5. 
For any pair L(i), L(l) of simple A-modules, Theorem 4.5 (iii) implies vanishing of 
Ext2A(L(i), L(l)) ∼= Ext2Λ(Δ(i), Δ(l). Hence, the algebra A is hereditary, i.e. the bocs 
(A, V ) is free.

Let now A = (A, V ) be a free directed normal bocs and Λ its right algebra. Since the 
equivalence T : modA 
−→ F(Δ) is an additive functor which maps A to Λ, T maps pro-
jective A-modules to projective Λ-modules. As the exact structure on modA comes from 
the exact structure on modA, a short projective resolution in modA yields a short pro-
jective resolution in modΛ. Hence, if projdimA(L(i)) ≤ 1 then so is projdimΛ(Δ(i)). In 
particular, if A is hereditary, projdimΛ(Δ(i)) ≤ 1, i.e. Λ is left strongly quasi-hereditary 
which finishes the proof of (3) ⇒ (1). �

Assume now that Λ is a left strongly quasi-hereditary algebra with a duality D on 
mod Λ preserving simple modules. Then the functor D maps standard modules to co-
standard and projective to injective, hence Λ is also right strongly quasi-hereditary, i.e. 
all costandard Λ-modules have injective dimension less than two. By [41], Λ has global 
dimension two.

Let R(Λ) be the Ringel dual of Λ. Then, by [43], R(Λ) is right strongly quasi-hereditary 
and it has a duality preserving simple modules, hence it is also left strongly quasi-
hereditary.

It follows that the class of left strongly quasi-hereditary algebras with duality pre-
serving simple modules is closed under Ringel duality. Since the duality maps standard 
Λ-modules to costandard, we have

dim HomΛ(Δ(i),Δ(l)) = dim HomΛ(∇(l),∇(i)),

dim Ext1Λ(Δ(i),Δ(l)) = dim Ext1Λ(∇(l),∇(i)).
(9.1.1)
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We say that an algebra Λ is curve-like if it is a left strongly quasi-hereditary algebra 
with a duality preserving simple modules and

dim HomΛ(Δ(i),Δ(l)) = 1 = dim Ext1Λ(Δ(i),Δ(l))

for all 1 ≤ i < l ≤ n (see the introduction for a motivation where the name comes 
from). We believe that curve-like quasi-hereditary algebras provide an interesting class 
of finite-dimensional algebras. Some examples of these have already provided useful coun-
terexamples in the work of V. Mazorchuk [34] and the second author [33].

We use the explicit construction of a Ringel dual bocs to give non-obvious conditions 
on the Ext-algebra of standard modules over a curve-like algebra, Lemmas 9.5, 9.6. We 
prove that for algebras with a small number of simple objects any bocs satisfying these 
conditions is the bocs of a curve-like algebra.

Definition 9.2. Let (A, V ) be a directed bocs with A basic. An arrow a in the quiver of A
(which is identified with an element of A) is called superfluous or non-regular if ∂(a) is 
a generator of an indecomposable direct summand of the projective bimodule V . A bocs 
is called regular if it does not contain any superfluous arrows.

In the case that the bocs corresponds to a directed biquiver, a solid arrow a ∈ Q(i, l)
is called superfluous if ∂(a) = λv +

∑
j μjpj where 0 �= λ ∈ k, μj ∈ k, and the pj are 

paths from i to l with v not contained in any of them. In this case, the corresponding 
element a ∈ A is superfluous. There is an equivalence of module categories of bocses 
removing a and v and replacing any occurrence of v in the differentials of the arrows by 
− 1

λ

∑
j μjpj . This process is called regularisation and was introduced by M. Kleiner and 

A. Roiter in the case where A is the path algebra of a quiver in [44].

Example 9.3. In the Example 8.3 the Koszul dual bocs is not regular as the arrows ψ̂a
and b̂ϕ are superfluous. The regularisation of B! is a bocs B!

r = (B!
r, W

!
r) with algebra 

B!
r equal to the subalgebra B! \ {ψ̂a} of B! (one could also choose B!

r = B! \ {b̂ϕ}). The 
bimodule W !

r is W ! \ {c}. We also have ∂0
B!

r
(b̂ϕ) = b̂⊗L ϕ̂− ψ̂ ⊗L â. In other words B!

r

is the path algebra of the quiver

1 2 3
ϕ̂

b̂ϕ

ψ̂

If we put e = e1 + e2 + e3 then W !
r
∼= B!

r ⊗L e ⊕ span{â, ̂b, b̂a, ψ̂ ⊗L â, ̂b⊗L ϕ̂} as let B!
r

module and the right B!
r-module structure is twisted by ∂0. It follows that the bocs A

of Example 5.5 is self-Koszul dual up to regularisation. It is well-known that in this case 
Λ, Λop and their Ringel duals are all Morita equivalent.
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We need the following characterisation of regular directed bocses, which can be found 
in unpublished notes of S. Ovsienko and might be well known in the Kiev school. A proof 
will appear in a forthcoming article of the second author with V. Miemietz [31].

Lemma 9.4. Let A be a directed normal bocs. Then, the following are equivalent:

(1) A is regular.
(2) Ext1A(L(i), L(l)) ∼= Ext1A(Δ(i), Δ(l)).
(3) As a projective bimodule, V has 

∑
i �=l dim HomA(L(i), L(l)) generators.

We use the construction of the bocs of R(Λ) given in Theorem 8.2 to exclude possible 
A∞-structures on the Ext-algebra of standard modules over a curve-like algebra.

Lemma 9.5. Let Λ be a curve-like algebra. Then the composition of homomorphisms 
between standard Λ-modules is non-zero.

Proof. Assume that ψ ∈ Hom(Δ(l), Δ(m)), ϕ ∈ Hom(Δ(i), Δ(l)) such that ψϕ = 0. 
By the construction in [30], in the bocs (A, V ) corresponding to Λ, this will give corre-
sponding generators of the directs summands Ael⊗k emA and Aei⊗k elA of ker ε, which 
by abuse of notation we denote by the same letters. We depict the situation with the 
following picture:

i l m
ϕ ψ

The bocs of the Ringel dual quasi-hereditary algebra has ϕ̂, ψ̂ in degree zero and ψ̂ϕ in 
degree minus one (where we denote the corresponding elements of a dual basis with a 
hat above their names). We depict the situation with the following picture:

i l m
ϕ̂

ψ̂ϕ

ψ̂

As ϕ, ψ are generators of ker ε and the bocs (A, V ) was assumed to be regular, only the 
term pV ,V DmV contributes to d|N−1(ψ̂ϕ). Thus, ∂(ψ̂ϕ) = ψ̂⊗ϕ̂ (note that, if ψ◦ϕ = τ , we 

would have ∂(ψ̂ϕ) = ψ̂⊗ ϕ̂+ τ̂). To prove that this gives a relation in B, i.e. a non-trivial 
Ext2 between costandard modules, we have to prove that ϕ̂, ψ̂ are not superfluous in 
(A, V ), cf. the foregoing lemma. To prove that they are not superfluous, note that since 
ϕ, ψ were generators of ker ε and (A, V ) is assumed to be regular, ∂(ϕ̂) = ∂(ψ̂) = 0. 
Furthermore, note that ϕ̂ and ψ̂ are also non-zero in A as the only relations arise from 
D(V ⊗A V ) and always involve the term pV ,V DV . From Theorem 4.5 (iii) we conclude 
that Ext2(∇(i), ∇(m)) �= 0, a contradiction to the fact that the algebra is strongly 
quasi-hereditary. �



172 A. Bodzenta, J. Külshammer / Journal of Algebra 506 (2018) 129–187
Lemma 9.6. Let Λ be a curve-like algebra. Let

ϕ ∈ HomΛ(Δ(i),Δ(l)), ψ ∈ HomΛ(Δ(l),Δ(m)),

a ∈ Ext1Λ(Δ(i),Δ(l)), b ∈ Ext1Λ(Δ(l),Δ(m)).

Then at least one of the compositions bϕ and ψa is non-zero.

Proof. Note that ψa and bϕ are distinct elements of L1[DsE]. Thus, if the arrows ψ̂a
and b̂ϕ in the Ringel dual bocs were not superfluous they would give two distinct arrows 
between vertices i and m in the algebra B of the Ringel dual bocs, which by Lemma 9.4
would give a contradiction to the fact that Λ, whence its Ringel dual, is assumed to be 
curve-like since this would give a more than 2-dimensional Ext1-space between costan-
dard modules for Λ.

It is sufficient to prove that the arrows ψ̂a and b̂ϕ are not superfluous. By construc-
tion and the previous lemma, the Ringel dual bocs is again free (i.e. the algebra B is 
hereditary). Moreover, note that ∂(ψ̂a) has no term which is a generator of W . Indeed, 
such a generator would come from the term D∂0. Since ∂0 is constructed as the dual 
of the mi on Ext∗(Δ, Δ), ∂0(c) = ψa would mean that ψa = c in Ext∗(Δ, Δ). Thus, if 
ψa = 0 = bϕ, both ψ̂a and b̂ϕ are not superfluous which contradicts the assumption that 
the algebra, hence also its Ringel dual, is curve-like by Lemma 9.4. �

We continue by illustrating how this yields a classification of the curve-like quasi-
hereditary algebras in small examples.

Clearly there is only one biquiver of a curve-like algebra with two simple modules. 
The unique curve-like algebra with two simple modules is the algebra 1 2

α

β
with 

αβ = 0.

9.1. Curve-like algebras with three simples

In the case of three simples, the situation is restricted enough that we can classify not 
only the curve-like quasi-hereditary algebras, but all quasi-hereditary algebras with the 
same dimensions of Hom- and Ext-spaces between standard modules. The corresponding 
biquiver is the biquiver (5.5.1) considered in the running example, see Example 5.5.

Using possibly scaling of the arrows, there are the following 8 possibilities for the 
differential of the bocs (A, V ):

∂(χ) =
{

0 case 1
ψϕ case 2

and ∂(c) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψa case A
bϕ case B
ψa + bϕ case C
0 case D
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By Lemma 9.5, the four algebras in case 1 are not right strongly quasi-hereditary. 
The algebras in case D will have different dimension of Ext1Λ(∇(1), ∇(3)). Hence, only 
three of the algebras in question are curve-like, namely cases 2A, 2B, and 2C. The cases 
2A and 2C actually arise from the geometry of surfaces, as explained in [3]. The case 
2B is Ringel dual to the case 2A. The algebra 2B appears in a paper by V. Mazorchuk, 
see [34, Example 23], and also [33, Example 4.59] for its category of filtered modules. 
A Morita representative of the corresponding quasi-hereditary algebras can be obtained 
by taking the right algebra of the corresponding bocs. This will usually not be basic. For 
convenience of the reader we instead list the corresponding basic algebras. To illustrate 
what the Ringel dual algebra might be if the assumption on being curve-like is omitted 
we provide also the Ringel dual algebras.

1A: 1 2 3
δ

ε

β

γ α with relations γδ = βδ = αε = αβ = 0, which has Ringel 

dual given by 1 2 3

ε

ζ

γ

α δ

β

with relations δζ = βε = βζ = δγ = αδε = 0, 

after removing the superfluous arrow ψ̂a (together with its counterpart ĉ), the 
bocs corresponding to the Ringel dual looks as follows:

1 2 3
ϕ̂

χ̂̂
bϕ

â

b̂a

ψ̂

b̂

with relation ψ̂ϕ̂ and differential ∂(b̂ϕ) = b̂⊗ ϕ̂ and ∂(b̂a) = b̂⊗ â.

1B: 2 1 3
β γ

α δ
ε

with relations αδ, γδ, γε, βαε, αβ, its Ringel dual is isomor-

phic to the opposite algebra of 1A. Its bocs looks like in case 1A with b̂ϕ replaced 
by ψ̂a and ∂(ψ̂a) = ψ̂ ⊗ â.

1C: 1 2 3
α δ

β γ

ε

with relations αε = δγ = βγ = 0, αβ = γδ. Its Ringel dual 

is 1 2 3
β γ

α δ

ε

with relations αβ = αδ = εγ = 0, βα = δγ. The bocs 

corresponding to the Ringel dual has biquiver
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1 2 3
ϕ̂

χ̂̂
bϕ

â

b̂a

ψ̂

b̂

with differential ∂(b̂ϕ) = b̂⊗ ϕ̂− ψ̂ ⊗ â and ∂(b̂a) = b̂⊗ â and relations ψ̂ϕ̂ = 0.

1D: 1 2 3
α

ζ

γ

β

ε

δ

with relations αδ = βαε = γαε = αβ = ζβ = ζδ = ζε = 0. 

Its Ringel dual is isomorphic to its own opposite algebra. The Ext-spaces between 

costandard modules are ExtiΛ(∇(1), ∇(3)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 for i = 0
3 for i = 1,
1 for i = 2,
0 otherwise.

2A: 1 2 3
δ β

γ α with relations βα = δγ = 0, which is Ringel dual to 2B.

2B: 2 1 3
δ β

γ α with relations γδ = βα = βδγα = 0.

2C: 1 2 3
δ β

γ α with relations βα = 0 and δγ = αβ. This is in fact the 

Auslander algebra of k[x]/(x3) and is well-known to be Ringel self-dual.

2D: 1 2 3
α

ε

γ

β

δ

with relations εδ = γαδ = αβ = εβ = 0. Its Ringel dual is 

isomorphic to its opposite algebra and has a bocs given by the biquiver

1 2 3
ϕ̂

ψ̂a

b̂ϕ

â

b̂a

ĉ

ψ̂

b̂

without relations and differential ∂(b̂ϕ) = b̂⊗ϕ̂, ∂(ψ̂a) = ψ̂⊗â, and ∂(b̂a) = b̂⊗â.

9.2. Curve-like algebras with four simples

Finally, we classify all possible A∞-structures on curve-like algebras with four simple 
modules.
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At first we do not give names to the composed maps and extensions, but only write 
down the irreducible maps which we denote as

1 2 3 4a
ϕ

b
ψ

c
ρ (9.6.1)

with a, b, c representing non-trivial elements in Ext1-groups and ϕ, ψ, ρ non-trivial 
homomorphisms between standard modules. (By Lemmas 9.5 and 9.6, all other homo-
morphisms and elements of Ext1 are composition.)

It follows from Lemma 9.5 that for any curve-like algebra ρ ◦ ψ ◦ ϕ �= 0. Moreover, 
Lemma 9.6 implies that there are the following possibilities on the composition mor-
phisms with elements of the first Ext-groups:

ψa bϕ ρb cψ ρψa ρbϕ cψϕ

A 0 �= 0 0 �= 0 0 0 �= 0
B 0 �= 0 �= 0 0 0 �= 0 0
C 0 �= 0 �= 0 �= 0 0 �= 0 �= 0
D �= 0 0 0 �= 0 0 0 �= 0
E �= 0 0 0 �= 0 �= 0 0 0
F �= 0 0 0 �= 0 �= 0 0 �= 0
G �= 0 0 �= 0 0 �= 0 0 0
H �= 0 0 �= 0 �= 0 �= 0 0 0
I �= 0 �= 0 0 �= 0 0 0 �= 0
J �= 0 �= 0 �= 0 0 �= 0 �= 0 0
K �= 0 �= 0 �= 0 �= 0 �= 0 �= 0 �= 0

Rescaling a, b, c, if necessary, we can always assume that two elements of Hom or Ext1

that differ by a non-zero scalar are in fact equal (and then choose this composition as 
the basis element of the corresponding Ext1-space).

Some of the above algebras might have different A∞-structures. First, we show that, 
up to A∞-quasi-isomorphism, m3(c, ψ, ϕ), m3(ρ, b, ϕ) and m3(ρ, ψ, a) vanish.

Recall, that an A∞-morphism F : A → B of A∞-algebras is a family of morphism 
Fn : A⊗n → B of degree 1 − n such that∑
r+s+t=n

(−1)r+stFr+1+t(id⊗r ⊗ms⊗id⊗t) =
∑

i1+...+ir=n

(−1)wmr(Fi1⊗· · ·⊗Fir ), (9.6.2)

where w = (r − 1)(i1 − 1) + (r − 2)(i2 − 1) + . . . + (ir−1 − 1). We say that F is a 
quasi-isomorphism if F1 : A → B is.

Remark 9.7. Consider an A∞-quasi-isomorphism from the A∞-algebra on the quiver 
(9.6.1) to itself with F1 = Id,

F2(c, ψϕ) = m3(c, ψ, ϕ), F2(ρψ, a) = −m3(ρ, ψ, a), F2(ρ, b) = λρψ,
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for λ such that m3(ρ, b, ϕ) = λ ρψϕ. We assume that F2 vanishes on the remaining 
pairs of elements and that Fn = 0 for n > 2. It follows from (9.6.2) that we get an 
A∞-structure on (9.6.1) with

m3(c, ψ, ϕ) = m3(ρ, ψ, a) = m3(ρ, b, ϕ) = 0.

For the reader’s convenience let us check that m3(ρ, b, ϕ) indeed vanishes. Equality (9.6.2)
implies that

λρψϕ = F1m3(ρ, b, ϕ) = m3(ρ, b, ϕ) + m2(F2(ρ, b) ⊗ ϕ) = m3(ρ, b, ϕ) + λρψϕ.

Consider the quiver

1 2 3 4a
ϕ

d

f

χ

τ

σ

b

e

ψ

c
ρ

where the arrows correspond to basis elements of the Ext1-spaces (for the solid arrows) 
or Hom-spaces (for the dashed arrows) as before.

By Lemma 9.5 and Remark 9.7 the differential on the dashed arrows of the biquiver 
is given by

∂(χ) = ψϕ, ∂(σ) = ρψ, ∂(τ) = σψ + ρχ.

The differentials on the solid arrows of the biquiver depend on the case A–K.

A B C D E F
∂(d) bϕ bϕ bϕ ψa ψa ψa

∂(e) cψ ρb cψ + ρb cψ cψ cψ

∂(f) cχ + eϕ ρd + eϕ ρd + eϕ + cχ cχ + eϕ ρd + σa ρd + σa + cχ + eϕ

G H I J K
∂(d) ψa ψa bϕ + ψa bϕ + ψa bϕ + ψa

∂(e) ρb ρb + cψ cψ ρb ρb + cψ

∂(f) ρd + σa ρd + σa cχ + eϕ ρd + σa + eϕ ρd + σa + cχ + eϕ

with possible further terms in ∂(f) depending on a non-vanishing A∞-structure.
The spaces included in the construction of the Ringel dual bocs are

D(V ⊗A V ) = span{ψ̂ϕ, ρ̂ψ, σ̂ϕ, ρ̂χ, ĉψϕ, ρ̂bϕ, ρ̂ψa},

DV = span{ϕ̂, ψ̂, ρ̂, χ̂, b̂ϕ, ψ̂a, σ̂, ρ̂b, ĉψ, τ̂ , ρ̂d, ĉχ, σ̂a, êϕ, ρ̂ba, ĉψa, ĉbϕ},

DA = span{â, b̂, ĉ, d̂, b̂a, ê, ĉb, f̂ , ĉba, ĉd, êa}.
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Let us consider in details cases D and H.
In case D:

∂(ψ̂ϕ) = ψ̂ ⊗ ϕ̂ + χ̂, ∂(ρ̂ψ) = ρ̂⊗ ψ̂ + σ̂,

∂(σ̂ϕ) = σ̂ ⊗ ρ̂ + τ̂ , ∂(ρ̂χ) = σ̂ ⊗ χ̂ + τ̂ ,

∂(ĉψϕ) = ĉ⊗ ψ̂ϕ + ĉψ ⊗ ϕ̂ + ĉχ + êϕ, ∂(ρ̂ψa) = ρ̂ψ ⊗ â + ρ̂⊗ ψ̂a + σ̂a + ρ̂d,

∂(ρ̂bϕ) = ρ̂⊗ b̂ϕ + ρ̂b⊗ ϕ̂.

We use the above differentials to regularise ψ̂ϕ with χ̂, ρ̂ψ with σ̂, σ̂ϕ with τ̂ , ĉψϕ with 
ĉχ and ρ̂ψa with σ̂a in the dual quiver. The following arrows remain:

deg 0 = {ϕ̂, ψ̂, ρ̂, b̂ϕ, ψ̂a, ρ̂b, ĉψ, ρ̂d, êϕ, ρ̂ba, ĉψa, ĉbϕ},

deg 1 = {â, b̂, ĉ, d̂, b̂a, ê, ĉb, f̂ , ĉba, ĉd, êa}.

Then

∂(b̂ϕ) = b̂⊗ ϕ̂, ∂(ψ̂a) = ψ̂ ⊗ â + d̂,

∂(ρ̂b) = ρ̂⊗ b̂, ∂(ĉψ) = ĉ⊗ ψ̂ + ê,

∂(ρ̂d) = ρ̂⊗ d̂, ∂(êϕ) = ê⊗ ϕ̂ + f̂ ,

∂(ρ̂ba) = ρ̂⊗ b̂a + ρ̂b⊗ â, ∂(ĉbϕ) = ĉ⊗ b̂ϕ + ĉb⊗ ϕ̂,

∂(ĉψa) = ĉψ ⊗ â + ĉ⊗ ψ̂a + ĉd + êa.

The differentials of ρ̂ba, ĉbϕ and ĉψa can also depend on the A∞-structure. If m3(ρ, b, a), 
m3(c, b, ϕ) or m3(c, ψ, a) is non-zero, then it is equal to λf and in ∂(ρ̂ba), ∂(ĉbϕ) and 
∂(ĉψa) a term λf̂ needs to be added. However, it does not affect the dimension of the 
regular quiver as ∂(f̂) can be regularised with êϕ.

We can regularise ψ̂a with d̂, ĉψ with ê, êϕ with f̂ , and ĉψa with ĉd. We are left with

deg 0 = {ϕ̂, ψ̂, ρ̂, b̂ϕ, ρ̂b, ρ̂d, ρ̂ba, ĉbϕ}, deg 1 = {â, b̂, ĉ, b̂a, ĉb, ĉba, êa}.

This shows that the dimensions of A and V do not agree with the dimensions for a 
curve-like algebra given by Lemma 9.4, hence case D cannot be a bocs of a curve-like 
algebra.

In the similar manner we can exclude cases E and F.
To illustrate what happens in the “good” case we consider in detail the case H. The 

differentials are
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∂(ψ̂ϕ) = ψ̂ ⊗ ϕ̂ + χ̂, ∂(ρ̂ψ) = ρ̂⊗ ψ̂ + σ̂,

∂(σ̂ϕ) = σ̂ ⊗ ρ̂ + τ̂ , ∂(ρ̂χ) = σ̂ ⊗ χ̂ + τ̂ ,

∂(ĉψϕ) = ĉ⊗ ψ̂ϕ + ĉψ ⊗ ϕ̂ + ĉχ + êϕ, ∂(ρ̂ψa) = ρ̂ψ ⊗ â + ρ̂⊗ ψ̂a + σ̂a + ρ̂d,

∂(ρ̂bϕ) = ρ̂⊗ b̂ϕ + ρ̂b⊗ ϕ̂ + êϕ.

As before we regularise the dual quiver to get

deg 0 = {ϕ̂, ψ̂, ρ̂, b̂ϕ, ψ̂a, ρ̂b, ĉψ, ρ̂d, ρ̂ba, ĉψa, ĉbϕ},

deg 1 = {â, b̂, ĉ, d̂, b̂a, ê, ĉb, f̂ , ĉba, ĉd, êa}.

Then

∂(b̂ϕ) = b̂⊗ ϕ̂, ∂(ψ̂a) = ψ̂ ⊗ â + d̂,

∂(ρ̂b) = ρ̂⊗ b̂ + ê,

∂(ĉψ) = ĉ⊗ ψ̂ + ê, ∂(ρ̂d) = ρ̂⊗ d̂ + f̂ ,

∂(ρ̂ba) = ρ̂⊗ b̂a + ρ̂b⊗ â + êa, ∂(ĉbϕ) = ĉ⊗ b̂ϕ + ĉb⊗ ϕ̂,

∂(ĉψa) = ĉψ ⊗ â + ĉ⊗ ψ̂a + ĉd + êa.

Again, the differentials of ρ̂ba, ĉbϕ and ĉψa can also depend on the A∞-structure which 
does not affect the dimension of the regularised differential biquiver as ∂(f̂) can be 
regularised with ρ̂d.

We can regularise ψ̂a with d̂, ρ̂b with ê, ĉψ with ê, ρ̂d with f̂ , ρ̂ba with êa, and ĉψa
with ĉd. We are left with

deg 0 = {ϕ̂, ψ̂, ρ̂, b̂ϕ, ρ̂b, ĉbϕ}, deg 1 = {â, b̂, ĉ, b̂a, ĉb, ĉba},

hence dimensions agree with the dimensions of degree zero and degree one part of the 
dual quiver of a curve-like algebra.

Similar calculations show that the dimensions agree in cases A–C, G and I–K.
We have excluded cases D, E, F. It remains to check how many non-isomorphic 

A∞-structures algebras A–C and G–K can be endowed with. Below we write down a 
table which lists possible A∞-quasi-isomorphism that can be used to make given m3

zero.
To exclude possible A∞-structures, we proceed as in Remark 9.7. The non-trivial 

value of F2 used to take the given m3 to zero is listed in the table.
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m3(ρ, b, a) m3(c, ψ, a) m3(c, b, ϕ)
A F2(cψ, a) F2(c, bϕ)
B F2(ρb, a) F2(c, bϕ)
C F2(ρb, a) F2(ψ, a)∗ F2(c, bϕ)
G F2(ρb, a) F2(cψ, a)
H F2(ρb, a) F2(cψ, a)
I F2(cψ, a) F2(c, bϕ)
J F2(ρb, a) F2(cψ, a) F2(c, b)∗

K F2(ρb, a) F2(cψ, a) F2(c, b)∗

In the cases marked with ∗ we use the fact that the possible non-zero value of m3 can 
be decomposed, i.e. we proceed as in Remark 9.7 and m3(ρ, ψ, a).

It follows that there are 13 possible A∞-algebra structures:

A1:

ψa = 0, bϕ �= 0, ρb = 0, cψ �= 0, ρψa = 0, ρbϕ = 0, cψϕ �= 0,

m3(ρ, b, a) = 0

A2:

ψa = 0, bϕ �= 0, ρb = 0, cψ �= 0, ρψa = 0, ρbϕ = 0, cψϕ �= 0,

m3(ρ, b, a) = cψϕ.

B1:

ψa = 0, bϕ �= 0, ρb �= 0, cψ = 0, ρψa = 0, ρbϕ �= 0, cψϕ = 0,

m3(c, ψ, a) = 0.

B2:

ψa = 0, bϕ �= 0, ρb �= 0, cψ = 0, ρψa = 0, ρbϕ �= 0, cψϕ = 0,

m3(c, ψ, a) = ρbϕ.

C:

ψa = 0, bϕ �= 0, ρb �= 0, cψ �= 0, ρψa = 0, ρbϕ �= 0, cψϕ �= 0.

G1:

ψa �= 0, bϕ = 0, ρb �= 0, cψ = 0, ρψa �= 0, ρbϕ = 0, cψϕ = 0,

m3(c, b, ϕ) = 0.
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G2:

ψa �= 0, bϕ = 0, ρb �= 0, cψ = 0, ρψa �= 0, ρbϕ = 0, cψϕ = 0,

m3(c, b, ϕ) = ρψa.

H1:

ψa �= 0, bϕ = 0, ρb �= 0, cψ �= 0, ρψa �= 0, ρbϕ = 0, cψϕ = 0,

m3(c, b, ϕ) = 0.

H2:

ψa �= 0, bϕ = 0, ρb �= 0, cψ �= 0, ρψa �= 0, ρbϕ = 0, cψϕ = 0,

m3(c, b, ϕ) = ρψa.

I1:

ψa �= 0, bϕ �= 0, ρb = 0, cψ �= 0, ρψa = 0, ρbϕ = 0, cψϕ �= 0,

m3(ρ, b, a) = 0.

I2:

ψa �= 0, bϕ �= 0, ρb = 0, cψ �= 0, ρψa = 0, ρbϕ = 0, cψϕ �= 0,

m3(ρ, b, a) = cψϕ.

J:

ψa �= 0, bϕ �= 0, ρb �= 0, cψ = 0, ρψa �= 0, ρbϕ �= 0, cψϕ = 0.

K:

ψa �= 0, bϕ �= 0, ρb �= 0, cψ �= 0, ρψa �= 0, ρbϕ �= 0, cψϕ �= 0.

We list the corresponding algebras to show that they can be equipped with a duality 
preserving simple modules:

A1:

4 1 3

2

α

β
ε

γ

δ
η
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with relations

βα = 0, γα = 0, εη = 0, γδ = 0, βδ = 0, βηεα = 0, γηεδ = 0,

βηεδγηεα = 0.

A2:

4 2 1 3
α

β

γ

δ

ε

η

with relations

βα = 0, εη = 0, δγ = αβ, εγδη = 0, βδηεγα = 0.

B1:

4 3 1 2
η

ε

δ

γ

α

β

with relations

αβ = 0, εη = 0, γδ = 0, γβαδ = 0.

B2:

4 1 3

2

η

ε

α

γ

δ
β

with relations

εβ = 0, γδ = 0, αβ = 0, εη = 0, αη = 0, γβαδ = 0, εδγη = 0.

C:

4 3 1 2
α

β

γ

δ

ε

η

with relations

βα = 0, δγ = 0, εη = 0, αβ = δηεγ.

G1:

1 2 3 4
α γ ε

η
β δ
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with relations

αβ = 0, γδ = 0, εη = 0.

G2:

1 2 3 4
α

β

γ

δ

ε

η

with relations

αβ = δηεγ, γδ = 0, εη = 0.

H1:

1 2 3 4
α

β

γ

δ

ε

η

with relations

αβ = 0, γδ = ηε, εη = 0.

H2:

1 2 3 4
α

β

γ

δ

ε

η

with relations

αβ = δηεγ, γδ = ηε, εη = 0.

I1:

4 1 2 3
α

β

γ

δ

ε

η

with relations

εη = 0, βα = 0, γδ = ηε, βδγα = 0, βδηεγα = 0.

I2:

4 2 3

1

α

β
ε

γ

δ
η
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with relations

βα = 0, γδ = 0, βδγα = 0, ηε = δγ + αβ.

J:

1 2 3 4
α

β

γ

δ

ε

η

with relations

αβ = δγ, γδ = 0, εη = 0.

K:

1 2 3 4
α

β

γ

δ

ε

η

with relations

αβ = δγ, γδ = ηε, εη = 0.

The algebras marked B1, B2 and K are Ringel self-dual. The algebra A1 is Ringel dual 
to G1, A2 is Ringel dual to G2, the algebra C is Ringel dual to J, the algebra H1 is 
Ringel dual to I1, and, finally, the algebra H2 is Ringel dual to I2.

In the remainder, we comment on the connection to the geometry of surfaces. For 
an introduction to the topic, see e.g. [24, Chapter V]. Let f : X → Y be a birational 
morphism of smooth surfaces. It can be (non-uniquely) decomposed into a sequence of 
blow-ups of smooth points, see e.g. [24, Corollary V.5.4]. If for simplicity we assume 
that f is an isomorphism on a complement to a closed point y ∈ Y then the exceptional 
divisor C of f , i.e. the curve C ⊂ X contracted by f to this point y, is a tree of rational 
curves. In other words, the irreducible components Ci of C are smooth and isomorphic 
to P1. At every point at most two components meet and their intersection number is one, 
i.e. C is a divisor with normal crossings. Finally, the intersection graph, i.e. the graph 
whose vertices correspond to components of C and whose edges to the intersection points 
of those, is a tree. The decomposition of f into a sequence of blow-ups, f = gn ◦ . . . ◦ g1, 
determines the self-intersection numbers of components. More precisely, C2

i = −1 if 
Ci is the exceptional divisor of g1. If, on the other hand, a component Ci is a strict 
transform of a component C ′

i of the exceptional divisor of gn ◦ . . . ◦ g2 (i.e. Ci is the 
closure of Ci ∩U ∼= C ′

i ∩U in X for the open set U ⊂ X on which g1 is an isomorphism) 
then C2

i = C ′
i
2 if Ci ⊂ U and C2

i = C ′
i
2 − 1 otherwise. In the opposite direction, 

the intersection form on components of C yields a decomposition of f into a sequence 
of blow-ups of smooth points. Namely, any component of self-intersection −1 can be 
contracted by the first smooth contraction g1.
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Let now f : X → Y be a birational morphism which can be decomposed into 4 blow-
ups of smooth points. Then the category

Af := {E ∈ Coh(X) |Rf∗E = 0}

is equivalent to the category of modules over a quasi-hereditary algebra Λf , see [2,3]. 
If the decomposition of f into blow-ups is unique, i.e. if the associated partial order on 
simple Λf -modules is a total order, then the algebra Λf is Morita equivalent to one of 
the algebras A2, C, I1, I2 or K, see [3].

Further properties are required to homologically characterise the curve-like quasi-
hereditary algebras coming from geometry. One such property is that Ext2(L(i), L(l)) =
0 for i �= l:

Simple objects in the category Af , i.e. simple modules over Λf , are OCi(−1), [2]. If 
Ci∩Cl = ∅, the support Ci of OCi(−1) is disjoint from the support Cl of OCl(−1), hence 
Ext2(OCi(−1), OCl(−1)) = 0. If, on the other hand, Ci ∩ Cl �= ∅ then Ci.Cl = 1. In 
particular OCl(−1) ∼= OCl(−Ci) and OCi(−1) ∼= OCi(−Cl). In the long exact sequence 
obtained by applying Hom(−, OCl(−Ci)) to the sequence

0 → OX(−Cl − Ci) → OX(−Cl) → OCi(−Cl) → 0

we have isomorphisms

ExtjX(OX(−Cl − Ci),OCl(−Ci)) ∼= Hj(P1,OP1(C2
l )),

ExtjX(OX(−Cl),OCl(−Ci)) ∼= Hj(P1,OP1(C2
l − Cl.Ci)).

Since H2(P1, OP1(C2
l − Cl.Ci)) = 0 and the map H1(P1, OP1(C2

l − Cl.Ci)) →
H1(P1, OP1(C2

l )) is surjective, the space Ext2X(OCi(−1), OCl(−1)) is zero. Explicit cal-
culations of the Ringel dual of an arbitrary Λf in [3] show that the vanishing of Ext2

between distinct simple modules also holds for the Ringel duals of “geometric” curve-like 
algebras.

We note that the algebras A1 and B2 do not satisfy the above additional condition, 
hence there is no curve attached to them. There are no non-zero elements of Ext2 between 
distinct simple modules over the algebra B1, while it is not of geometric origin.

In the five geometric cases one can read off from the quiver of the algebra Λf the 
intersection graph of the curve contracted by f . Namely, the quiver of Λf is the double 
quiver of the intersection graph of the curve C =

⋃4
i=1 Ci, i.e. Ci ∩ Cl = 1 if and only 

if there is an arrow i → l in the quiver of Λf . One can read the self-intersection C2
i

from the relations in the algebra. More precisely, the long exact sequence obtained by 
applying HomX(−, OCi) to the short exact sequence

0 → OX(−Ci) → OX → OCi → 0



A. Bodzenta, J. Külshammer / Journal of Algebra 506 (2018) 129–187 185
gives an isomorphism Ext1X(OCi(−Ci), OCi) 
∼=−→ Ext2(OCi , OCi). Since the lat-

ter space is isomorphic to Ext2X(OCi(−1), OCi(−1)) and Ext1X(OCi(−Ci), OCi) ∼=
H1(X, OCi(Ci)) ∼= H1(P1, OP1(C2

i )), the number dim Ext2X(OCi(−1), OCi(−1)) of re-
lations at the given vertex i equals h1(P1, OP1(C2

i )) = −C2
i − 1.

In an analogous manner one can assign to the algebra B1 an isomorphism class of a 
tree of rational curves together with an intersection matrix of the components. It is a 
curve C with components C1, . . . , C4 with intersection matrix⎛⎜⎝−1 1 1 0

1 −2 0 0
1 0 −3 1
0 0 1 −2

⎞⎟⎠
The curve C is isomorphic to the curve in the geometric example labelled by C.
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[4] Alexander A. Bĕılinson, Coherent sheaves on Pn and problems in linear algebra, Funktsional. Anal. 

i Prilozhen. 12 (3) (1978) 68–69.
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[45] Andrei V. Rŏıter, Matrix problems and representations of BOCSes, in: Representations and 
Quadratic Forms, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1979, pp. 3–38, 154 (in Russian).
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