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Introduction

During the last thirty years categorical Galois theory has provided several new insights 
into the study of (higher) central extensions of groups, Lie algebras, precrossed modules 
and general algebraic varieties of universal algebras [21,23,24,14,16,12]. An important 
idea in this approach, that is also related to the work of Fröhlich [18] in the special case 
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of varieties of Ω-groups (i.e. groups with multiple operators in the sense of Higgins), is 
to define a notion of centrality in a variety of algebras C that is relative to the choice of a 
subvariety X of C, with reflector I : C → X , left adjoint to the inclusion functor X → C. 
One calls a homomorphism f : X → Y in the variety C an extension when it is surjective; 
if η : 1C → I denotes the unit of the adjunction, then such an extension f : X → Y is 
X -trivial when the naturality square

X IX

Y IY

f

ηX

I(f)

ηY

(1)

is a pullback. It is called an X -central extension when there exists a surjective homo-
morphism p : E → Y such that the homomorphism π1 : E ×Y X → E in the pullback

E ×Y X X

E Y

π1

π2

f

p

(2)

is a trivial extension. It turns out that, in the special case of the reflection ab : Grp → Ab
from the variety Grp of groups to its subvariety Ab of abelian groups, a surjective 
group homomorphism f : X → Y is Ab-central exactly when its kernel is contained in 
the center of X or, equivalently, when the commutator condition [Ker(f), X] = {1}
holds. Similar results hold in other varieties of algebras, such as the variety B-PXMod
of B-precrossed modules, i.e. precrossed modules with the same codomain B, where 
morphisms f : (X, α) → (Y, α′) are action preserving group homomorphisms making the 
triangle

X Y

B

f

α α′

commute [11]. As shown in [14] an extension f : (X, α) → (Y, α′) of B-precrossed modules 
in the variety B-PXmod is X -central relatively to the subvariety X = B-Xmod of 
B-crossed modules if and only if the Peiffer commutator condition 〈Ker(f), X〉 = {1}
holds. A much more general result involving the Smith commutator of congruences was 
established in [14] in the context of Mal’tsev varieties [37], namely those varieties of 
universal algebras whose algebraic theory contains a ternary term p(x, y, z) such that 
p(x, y, y) = x and p(x, x, y) = y. For instance, the term p(x, y, z) = x · y−1 · z in the 
algebraic theory of groups shows that the variety Grp of groups is a Mal’tsev variety. 
The central extensions of reflexive graphs in a Mal’tsev variety C

X1 Y1

B

f

d

c d′

c′ (3)
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in the category RG(C)/B of reflexive graphs in a Mal’tsev variety C (over a fixed B in C) 
were shown to be central with respect to the reflection to the subcategory Grpd(C)/B
of groupoids in C (over B) exactly when the commutator condition

[Eq[f ], Eq[c] ∨ Eq[d]] = ΔX1

holds. Here c and d are the “codomain” and the “domain” homomorphisms, Eq[c] ∨Eq[d]
is the supremum of the congruences Eq[c] and Eq[d] (occurring as the kernel pairs of 
c and d, respectively) and ΔX1 is the smallest congruence on the algebra X1. By using 
the known equivalence between the categories of internal reflexive graphs and of internal 
groupoids in the variety of groups with the categories of precrossed modules and crossed 
modules, respectively [6,31] one easily gets the result concerning B-precrossed modules 
recalled above as a very special case of this one.

In this article we always work in a general exact Mal’tsev category [8] (with coequal-
izers), so that all our results hold not only in any Mal’tsev variety of algebras, but also in 
many other categories, such as the categories of compact Hausdorff Mal’tsev algebras, of 
C

∗-algebras [19], and the dual category of any elementary topos [7], for instance. In this 
context there is a good theory of commutators of equivalence relations [34] that we briefly 
recall in Section 1. We then provide a conceptual proof of a general result that yields, in 
particular, the characterization of central extensions of reflexive graphs recalled above in 
the more general context of exact Mal’tsev categories (see Theorem 1). The case when 
C is the category of compact Hausdorff groups is explained in detail in Example 3. We 
then study the so-called double central extensions in the general context of exact Mal’t-
sev categories, and particularize our results to deduce a precise characterization of the 
double central extensions relative to the reflection RG(C)/B → Grpd(C)/B in terms of 
a commutator condition involving the categorical commutator of equivalence relations 
(see Corollary 3). Our general result also includes the characterization of double central 
extensions relative to the abelianization functor previously considered by T. Everaert 
and T. Van der Linden in [17] (see Corollary 2). Some applications in the special case of 
central extensions of precrossed Lie algebras are also given (Example 5).

In a recent article A. Cigoli, S. Mantovani and G. Metere have investigated a cate-
gorical notion of Peiffer commutator that is certainly related to the results presented in 
the present work, in the special case of semi-abelian categories. In the future it would 
be interesting to compare the categorical commutator conditions arising from the reflec-
tion RG(C)/B → Grpd(C)/B considered in our work with this new notion of Peiffer 
commutator [10].

1. Preliminaries

A Mal’tsev category [8] is a finitely complete category C having the property that any 
reflexive relation in C is an equivalence relation. In this paper we shall always assume 
that C is a regular Mal’tsev category, so that it will be possible to consider the direct 
image f(R) of any equivalence relation R on X along an arrow f : X → X ′.
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If Eq(C) denotes the category of (internal) equivalence relations in C, we write 2-Eq(C)
for the category whose objects are triples (X, R, S) where R and S are two equivalence re-
lations on an object X, and arrows (X, R, S) → (X ′, R′, S′) are those arrows f : X → X ′

in C such that f(R) ≤ R′ and f(S) ≤ S′. This means that there exist arrows fR : R → R′

and fS : S → S′ in C such that the following diagram commutes:

R X S

R′ X ′ S′

fR f fS (4)

One can check that limits in 2-Eq(C) are just pointwise limits in C, and the same 
holds for regular epimorphisms; in other words, regular epimorphisms in 2-Eq(C) are 
regular epimorphisms f : X → X ′ such that f(R) = R′ and f(S) = S′. The categories 
Eq(C) and 2-Eq(C) are easily seen to be regular Mal’tsev categories whenever C is a 
regular Mal’tsev category [4].

As in [23], we denote C ↓ X the full subcategory of the usual comma category C/X
whose objects are the regular epimorphisms with codomain X. Then, since regular epi-
morphisms are pullback stable in the regular category C, any f : X → Y induces a 
change-of-base functor f∗ : C ↓ Y → C ↓ X defined by pulling back along f . When f is 
a regular epi, this functor f∗ has a left adjoint f! defined by composition with f . When 
C is (Barr) exact, any regular epimorphism f is an effective descent morphism, in the 
sense that f∗ is monadic; the same holds for the category Eq(C) of equivalence relations 
in C ([27]). Because the two equivalence relations in our definition of 2-Eq(C) do not 
interact when forming limits or coequalizers, the same is true in 2-Eq(C).

Given two equivalence relations (R, r1, r2) and (S, s1, s2) on the same object X in C, 
a double equivalence relation on R and S is an equivalence relation in Eq(C), depicted as

C S

R X,

q1

q2
p2p1 s2s1

r1

r2

(5)

where (C, p1, p2) is an equivalence relation on R, (C, q1, q2) is an equivalence relation on 
S, and ripj = sjqi for all i, j ∈ {1, 2}. A double equivalence relation on R and S is said 
to be centralizing if any of the commutative squares in diagram (5) is a pullback (and in 
this case all of them will be). Two equivalence relations R and S are said to centralize 
each other (or to be connected) if they have a centralizing relation. We shall write R�S

for the largest double equivalence relation on R and S (this latter can be constructed as 
a limit of a suitable diagram [26]).

In a finitely complete category it is often useful to denote “generalized elements” of 
a double relation as 

(
a b

)
, where a, b, c, d in X are such that aRb, dRc, aSd, bSc. With 
d c
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this notation, a double relation C is centralizing if for all a, b, c such that aRb and bSc, 
there exists a unique d such that 

(
a b
d c

)
∈ C.

We shall consider the pullback

R×X S S

R X.

π2

π1 s1

r2

When C is a regular Mal’tsev category, then the following conditions are equivalent (see 
[4,9,34,35]):

• R and S have a unique centralizing relation;
• there exists a unique arrow β : R×X S → R�S such that the diagram

R�S

R×X S S

R X

q2

p1

α

π2

π1

β

σ2
s1

δQ

r2

δP σ1

δR

δS

commutes, where

αβ = idR×XS , π1σ1 = idR, π2σ2 = idS ,

and the arrow δR (resp. δS , δP , δQ) is the diagonal of the relation R (resp. S, 
P = (R�S, p1, p2), Q = (R�S, q1, q2)), that exists since R�S is a double equivalence 
relation;

• there exists a unique partial Mal’tsev operation p : R×X S → X, called a connector
in [3,4], satisfying

p(x, y, y) = x and p(y, y, z) = z

In addition, the connector p has the property that xSp(x, y, z) and zRp(x, y, z), and 
also satisfies the “associativity axiom” p(p(x, y, z), u, v) = p(x, y, p(z, u, v)) if either side 
is defined. Thus if 

(
a b
d c

)
is an element of R�S, then (p(a, b, c), d) ∈ R ∧ S, and the 

following square is a pullback

R�S R×X S

R ∧ S X,

q

α

p

p1
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where α : R�S → R ×X S associates (a, b, c) with any 
(
a b
d c

)
in R�S. Let us denote 

Conn(C) the full subcategory of 2-Eq(C) consisting of triples (X, R, S) where R and 
S are equivalence relations centralizing each other. It is proved in [4] that when C is a 
regular Mal’tsev category, the subcategory Conn(C) is closed in 2-Eq(C) under regular 
quotients and subobjects in C.

In an exact Mal’tsev category C with coequalizers, M.C. Pedicchio introduced in [34]
a definition of commutator of two equivalence relations R and S on the same object X, 
which we denote [R, S], extending the Smith commutator of congruences (which is defined 
for varieties of universal algebras [37]). This categorical commutator can be characterized 
as the smallest equivalence relation on X whose coequalizer q is such that q(R) and q(S)
centralize each other. In particular, it has the following properties for all equivalence 
relations R, S, T on the same object X (see [34,35]):

(1) [R, S] = [S, R];
(2) [R, S] ≤ R ∧ S;
(3) if S ≤ T , then [R, S] ≤ [R, T ];
(4) [R, S ∨ T ] = [R, S] ∨ [R, T ];
(5) for any regular epimorphism f , [f(R), f(S)] = f([R, S]).

This characterization of the commutator implies that Conn(C) is a reflective subcate-
gory of the regular Mal’tsev category 2-Eq(C), and the (X, R, S)-component of the unit of 
the corresponding reflection is induced by the canonical quotient X → X

[R,S] of X by the 
equivalence relation [R, S]. Conn(C) is thus a Birkhoff subcategory (in the sense of [23]) 
of 2-Eq(C). In general, for a full reflective subcategory X of a regular category C, with 
reflector I : C → X , the property of being stable under subobjects and quotients is equiv-
alent to the fact that for any regular epimorphism f : X → Y of C the naturality square

X IX

Y IY

f

ηX

I(f)

ηY

(6)

induced by the units of the adjunction is a pushout of regular epimorphisms in C (see 
Proposition 3.1 in [23]). When C is an exact Mal’tsev category, this is equivalent to the 
fact that (6) is a regular pushout (by Theorem 5.7 in [7]): this means that all the arrows 
in the diagram

X

Y ×IY IX IX

Y IY,

ηX

f

α

p2

p1 I(f)
ηY
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where (Y ×IY IX, p1, p2) is the pullback of ηY and I(f), are regular epimorphisms. In 
general, however, the square (6) being a regular pushout is a stronger property than the 
one of being a pushout of regular epimorphisms. If E is the class of regular epimorphisms 
such a full reflective subcategory is called a strongly E-Birkhoff subcategory [16].

Convention. From now on C will always denote an exact Mal’tsev category with coequal-
izers.

Proposition 1. If f : (X, R, S) → (X ′, R′, S′) is a regular epimorphism in 2-Eq(C), then 
the square

X X
[R,S]

X ′ X′

[R′,S′]

q[R,S]

f f̄

q[R,S]

induces a regular pushout in 2-Eq(C). The category Conn(C) is then a strongly 
E-Birkhoff subcategory of 2-Eq(C).

Proof. Since pullbacks and regular epimorphisms in 2-Eq(C) are degreewise pullbacks 
and regular epimorphisms in C, so are regular pushouts. Let us consider the following 
commutative diagram:

R q[R,S](R)

R′ q[R′,S′](R′)

[R,S] X X
[R,S]

[R′, S′] X ′ X′

[R′,S′]

X
R

X
R

X′

R′
X′

R′

fR

f̃

q[R,S]

f

qR

f̄

q[R′,S′]

qR′

By the properties of the commutator one has the equalities

[R′, S′] = [f(R), f(S)] = f([R,S]),
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thus the arrow f̃ : [R, S] → [R′, S′] is a regular epimorphism. It follows that the square

X X
[R,S]

X ′ X′

[R′,S′]

f

q[R,S]

f̄

q[R′,S′]

is a regular pushout in C. All the sides of the top face are regular epimorphisms; it suffices 
then to show that the comparison arrow to the pullback is a regular epi.

To this end, notice that the bottom face is a pullback, since two opposite sides are 
isomorphisms. Now by commutativity of limits with limits, the kernel pair of the induced 
arrow X ′ ×X′/[R′,S′] X/[R, S] → X/R is the pullback R′ ×q[R′,S′](R′) q[R,S](R). It follows 
that the comparison arrow is a regular epimorphism, because the induced square of 
coequalizers

X X ′ ×X′/[R′,S′] X/[R,S]

X
R

X
R

qR

is a regular pushout. �
Let us consider a class E of arrows in 2-Eq(C) satisfying the following axioms:

(E1) any isomorphism is in E ;
(E2) E is stable under pullbacks;
(E3) E is closed under composition.

In the following we will call extensions the arrows in E .

Remark 1. Of course, a natural example of a class of extensions in the regular category 
2-Eq(C) – i.e. satisfying the axioms (E1), (E2), and (E3) above – is provided by the 
class E of regular epimorphisms. From now on we shall adopt an axiomatic approach to 
the class E that will have several advantages, including the possibility of comparing the 
results in our paper to the ones obtained by Everaert in [12].

Assume then that H : Conn(C) → 2-Eq(C) denotes the forgetful functor, and the 
class E of extensions in 2-Eq(C) also satisfies the condition

(G1) HI(E) ⊂ E

(where I : 2-Eq(C) → Conn(C) denotes the reflector). One then gets a Galois structure 
ΓE = (2-Eq(C), Conn(C), I, E) in the sense of [24,12].
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We recall that an extension f : (X, R, S) → (X ′, R′, S′) is said to be monadic when 
the pullback functor

f∗ : 2-Eq(C) ↓E (X ′, R′, S′) → 2-Eq(C) ↓E (X,R, S)

is monadic, where 2-Eq(C) ↓E (X, R, S) denotes the full subcategory of the slice category 
2-Eq(C)/(X, R, S) whose objects are the extensions.

The assumptions on the class E imply that I induces for all (X, R, S) in 2-Eq(C) a 
functor

I(X,R,S) : 2-Eq(C) ↓E (X,R, S) → Conn(C) ↓E I(X,R, S);

moreover, one can show that this functor has a right adjoint H(X,R,S) defined by taking 
the pullback of any extension along the (X, R, S)-component of the unit. An object 
(X, R, S) is said to be admissible when this right-adjoint is fully faithful.

We say that an extension is ΓE-trivial when the naturality square

X X
[R,S]

X ′ X′

[R′,S′]

f

q[R,S]

f̄

q[R′,S′]

(7)

induced by the units of the adjunction is a pullback in 2-Eq(C). By definition a ΓE -central 
extension f : (X, R, S) → (X ′, R′, S′) is one for which there exists a monadic extension 
g : (X ′′, R′′, S′′) → (X ′, R′, S′) such that the pullback of f along g is ΓE -trivial; one also 
says that f is split by g. Finally, an extension is said to be ΓE-normal if it is monadic 
and it is split by itself; equivalently, one requires that the projections of the kernel pair 
of f are trivial extensions.

The class E of extensions can also be seen as the class of objects of a category 
ExtE(2-Eq(C)), where an arrow between extensions f → h is defined as a commuta-
tive square in 2-Eq(C)

(X,R1, S1) (Z,R3, S3)

(Y,R2, S2) (W,R4, S4).

f

g

h

j

(8)

Central extensions form a full subcategory of ExtE(2-Eq(C)), that we shall denote by 
CExtE(2-Eq(C)).

We will also study extensions in ExtE(2-Eq(C)), the double extensions in the sense 
[21,20]. These are defined as commutative squares (8) such that all arrows in the diagram
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X

Y ×W Z Z

Y W,

f

〈f,g〉

g

p2

p1 h

j

are in E (in the diagram above the equivalence relations have been omitted). We 
will denote by E1 the class of double extensions (considered as a class of arrows in 
ExtE(2-Eq(C))); it can be proven (see [13]) that for any class E satisfying axioms (E1) 
to (E3), the class E1 as defined above satisfies the same properties in ExtE(2-Eq(C)). 
Note that when E is the class of regular epimorphisms in C, then a double extension in 
C is the same thing as a regular pushout.

We now consider two additional axioms for the class E of extensions:

(E4) if f ◦ g is in E , then f is in E ;
(E5) any square

X Z

Y W,

f

g

s

h
j

t

where f and h are in E and gs = idZ , jt = idW , hg = jf and fs = th, the induced 
arrow 〈f, g〉 : X → Y ×W Z is in E .

Then one can prove (see [13]) that a square (8) of extensions in 2-Eq(C) is a double 
extension if and only if in the diagram

Eq[g] X Z

Eq[j] Y W,

π1

π2

f̄

g

f h

π′
1

π′
2

j

(9)

where Eq[g] (resp. Eq[j]) denotes the kernel pair of g (resp. j), the induced arrow f̄ is 
an extension in 2-Eq(C). When E is the class of regular epimorphisms, this is equivalent 
to f(Eq[g]) = Eq[j].

In [12] T. Everaert proved that for any category A with pullbacks, if E is a class of ex-
tensions satisfying the properties (E1) to (E5) and such that every extension is monadic, 
and X is a strongly E-Birkhoff subcategory, then the Galois structure (A, X , I, E) is 
admissible in the sense of categorical Galois theory (i.e. every object is admissible), ev-
ery central extension is also normal, CExtE(A) is a strongly E1-Birkhoff subcategory in 
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ExtE(A), and every extension in E1 is monadic. In particular, if we write I1 for the reflec-
tor ExtE(A) → CExtE(A), then (ExtE(A), CExtE(A), I1, E1) is also an admissible Ga-
lois structure, and we can define double central extensions as double extensions that are 
central for this induced Galois structure; we denote CExt2

E(A) = CExtE1(CExtE(A))
the category of double central extensions. By applying the result of Everaert once again, 
we obtain that CExt2

E(A) is itself a strongly E2-Birkhoff subcategory of Ext2
E(A). This 

means in particular that given a cube

X Z

X ′ Z ′

Y W

Y ′ W ′,

α

f

g

γ

h

g′

h′j

β

δ

f ′

j′

that is an extension in Ext2
E(A) and if the back face is a double central extension, then 

the front face is a double central extension as well. Note that being an extension in 
Ext2

E(A) – a triple extension in A – means that every face of the cube above is a double 
extension in A and, moreover, the induced square

X Z

Y ×Y ′ X ′ W ×W ′ Z ′

g

〈f,α〉 〈h,γ〉

is a double extension.
All these results apply when E is the class of regular epimorphisms in 2-Eq(C); indeed, 

in that case monadic extensions are exactly the same as effective descent morphisms and, 
moreover, Conn(C) is a strongly E-Birkhoff subcategory of 2-Eq(C) by Proposition 1. 
We will need, however, to restrict our attention to a smaller class of extensions, which 
we will call fibrations; this term was already used in [22] to denote the classes of arrows 
occurring in a Galois structure.

Definition 1. A fibration f : (X, R, S) → (X ′, R′, S′) is a regular epimorphism in the 
category 2-Eq(C) satisfying one of the following equivalent properties:

• f−1(R′) = R and f−1(S′) = S;
• Eq[f ] ≤ R ∧ S;
• the induced arrows XR → X′

R′ and XS → X′

S′ are isomorphisms.
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From now on F will denote the class of fibrations in 2-Eq(C). One can check that 
the class F satisfies (E1), (E2) and (E3); however, F does not satisfy (E4), because not 
every split epimorphism is in F . But the following variant of (E4) holds:

Lemma 1. Consider the following commutative diagram in 2-Eq(C):

(X,R, S) (X ′, R′, S′)

(X ′′, R′′, S′′).

f

h g

If h is in F and f : X → X ′ is a regular epimorphism in C, then both f and g are in F .

Proof. Taking coequalizers of R, R′ and R′′ yields a commutative triangle

X
R

X′

R′

X′′

R′′ ,

f

h g

in C. Now by assumption h is an isomorphism, and thus f is a monomorphism. Since 
by construction it is a regular epimorphism, it is an isomorphism, and as a consequence 
so is g. The same argument applies to the quotients by S, S′, S′′, hence f and g are 
in F . �

As a consequence, we have:

Lemma 2. Every fibration f induces a monadic pullback functor

f∗ : 2-Eq(C) ↓F (X ′, R′, S′) → 2-Eq(C) ↓F (X,R, S).

Proof. We know already that the pullback functor

f∗ : 2-Eq(C) ↓E (X ′, R′, S′) → 2-Eq(C) ↓E (X,R, S)

has a left adjoint f! defined by composition with f , and that it is monadic. The class F
is stable under pullbacks and composition: accordingly, the functor f∗ and its adjoint f!
restrict to an adjunction between 2-Eq(C) ↓F (X ′, R′, S′) and 2-Eq(C) ↓F (X, R, S). We 
need to prove that this restriction is still monadic: using Beck’s monadicity theorem [32], 
we only need to prove that 2-Eq(C) ↓F (X, R, S) is closed in 2-Eq(C) ↓E (X, R, S)
under coequalizers. Since the forgetful functor 2-Eq(C) ↓ (X, R, S) → 2-Eq(C) creates 
coequalizers, this follows from the previous lemma. �
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Observe that each (X, R, S)-component of the unit of the reflection 2-Eq(C) →
Conn(C) actually belongs to F , and we have shown in the proof of Proposition 1 that 
so is the induced map

X → X ′ ×X′/[R′,S′] X/[R,S]

whenever f : (X, R, S) → (X ′, R′, S′) is a regular epimorphism. Thus Conn(C) is also a 
strongly F-Birkhoff subcategory of 2-Eq(C), and the reflector I preserves arrows in F . 
Proposition 2 in [12] then implies that the Galois structure ΓF is admissible.

Moreover, an extension is ΓF -trivial if and only if it is ΓE -trivial and lies in F ; indeed, 
both conditions are equivalent to the square (7) being a pullback. Since in both classes 
any extension is monadic, the same holds for central and normal extensions. Moreover, 
the centralization of an extension in F is again in F , thus the same reasoning works 
for double central extensions. It follows that double central extensions for F are exactly 
the double central extensions for the class of regular epimorphisms which also belong 
to F1.

2. The characterization theorem for central extensions

As recalled in the Introduction, when the category C is a Mal’tsev variety of universal 
algebras, T. Everaert and the second author proved in [14] that a surjective homomor-
phism (3) in the category RG(C)/B of reflexive graphs in a Mal’tsev variety C (with 
fixed “algebra of objects” B) is central with respect to the reflection to the subcategory 
Grpd(C)/B of groupoids in C if and only if the commutator condition

[Eq[f ], Eq[c] ∨ Eq[d]] = ΔX1 (10)

holds in C. We now prove a more general result in any exact Mal’tsev category 
(with coequalizers) by characterizing the central extensions corresponding to the re-
flection 2-Eq(C) → Conn(C). For this, we first prove the result for the Galois struc-
ture ΓE = (2-Eq(C), Conn(C), I, E), where E is the class of regular epimorphisms 
in 2-Eq(C).

Lemma 3. Let C be an exact Mal’tsev category with coequalizers, and f : (X, R, S) →
(X ′, R′, S′) a regular epimorphism in 2-Eq(C)

R X S

R′ X ′ S′.

fR f fS

If [Eq[f ], R ∨ S] = ΔX , then f is a ΓE -normal extension.
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Proof. From the definitions above, and because kernel pairs in 2-Eq(C) are computed 
levelwise and are maximal double equivalence relations, we need to show that in the 
diagram

R�Eq[f ] R R′

Eq[f ] X X ′

S�Eq[f ] S S′

φ1

φ2

fR

π1

π2

f

φ′
1

φ′
2

fS

the extension

π1 : (Eq[f ], R�Eq[f ], S�Eq[f ]) → (X,R, S)

(or, equivalently, π2) is a ΓE -trivial extension in 2-Eq(C) (with respect to the reflection 
to Conn(C)).

To this end, we first consider the pushout

X X
S

X
R

X
R∨S ,

qR

qS

q′

q

(11)

so that q′qS = qR∨S = qqR (this pushout exists since C is an exact Mal’tsev category). 
Then we have

Eq[q′qS ] = R ∨ S = Eq[qqR]

and thus

qS(R) = Eq[q′] qR(S) = Eq[q].

As a consequence, if the condition [Eq[f ], S] = ΔX holds, then taking the direct image 
of both sides of this equality by qR yields

[qR(Eq[f ]), Eq[q]] = ΔX
R
.

A similar argument shows that

[qS(Eq[f ]), Eq[q′]] = ΔX .

S
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This observation allows us to consider the diagram

C R ∨ S

Eq[f ] X X ′

C ′ qR(S) X
R∨S

qR(Eq[f ]) X
R

X′

R′

X
R∨S

π1

π2

qR

qR∨S

f

qR′

ψ′
1

ψ′
2 q

f ′
0

(12)

where C and C ′ are centralizing relations (so that the upper and lower commutative 
horizontal squares are pullbacks), and the arrow between them is the canonical arrow 
making the diagram commute. By taking the coequalizers p, p′ of the equivalence rela-
tions C Eq[f ] and C ′ qR(Eq[f ]) respectively, we obtain the diagram

R�Eq[f ] R R′

Eq[ρ] X
R∨S

Eq[f ] X X ′

Eq[f ]
C

X
R∨S

qR(Eq[f ]) X
R

X′

R′

qR(Eq[f ])
C′

X
R∨S

φ1

φ2 fR

φ̃1

φ̃2

p

π1

π2
qR∨S

qR

f

qR′
π̃1

π̃2

ψ1

ψ2

p′

q

ρ

ψ̃1

ψ̃2

where all the arrows in the front face of the lower cube are induced by the universal 
property of the coequalizers, so that the whole diagram commutes.

Now, by the so-called Barr–Kock theorem (see [5], for instance), the upper and the 
lower faces of the lower cube are pullbacks. If we then take the kernel pairs of all the 
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vertical maps, we obtain a pullback of equivalence relations. Proceeding similarly with 
the roles of R and S reversed, we obtain a pullback

(Eq[f ], R�Eq[f ], S�Eq[f ]) (X,R, S)

(
Eq[f ]
C , Eq[ρ], Eq[σ]

) (
X

R∨S ,Δ,Δ
)

π1

p qR∨S

π̃1

in 2-Eq(C); since trivial extensions are pullback stable when the subcategory is admissi-
ble ([24]), to complete the proof all we need to show is that π̃1 is a ΓE -trivial extension.

This will follow immediately if we show that this extension actually lies in Conn(C). 
Since the smallest equivalence relation Δ always centralizes itself, it suffices to prove that 

Eq[ρ] and Eq[σ] centralize each other. For this, observe that Eq[f ]
C

X
R∨S

π̃1

π̃2
is an 

internal groupoid in C, as a regular quotient of the equivalence relation Eq[f ] X
π1

π2
, 

so that [Eq[π̃1], Eq[π̃2]] = ΔEq[f]
C

. Since π̃1 = ψ̃1 ◦ ρ, we have Eq[ρ] ≤ Eq[π̃1]. A similar 

argument shows that Eq[σ] ≤ Eq[π̃2], where σ : Eq[f ]
C → qS(Eq[f ])

C′′ and C ′′ is the object 
part of the centralizing equivalence relation on qS(Eq[f ]) and qS(R). It follows that

[Eq[ρ], Eq[σ]] ≤ [Eq[π̃1], Eq[π̃2]] = ΔEq[f]
C

,

which completes the proof. �
Now, for the Galois structure ΓF , we find:

Theorem 1. Let C be an exact Mal’tsev category with coequalizers, and f : (X, R, S) →
(X ′, R′, S′) a fibration in 2-Eq(C). Then the following conditions are equivalent:

(1) f is a ΓF -central extension;
(2) f is a ΓF -normal extension;
(3) the commutator condition (10) holds:

[Eq[f ], R ∨ S] = ΔX .

Proof. Any extension which is ΓF -central is also ΓE -central. It is then also ΓE -normal 
(by Lemma 6 in [12]), and thus ΓF -normal. This proves (1) ⇒ (2); the converse holds 
by definition.

For (2) ⇒ (3), we recall that if f is normal, then the first projection π1 of its kernel pair 
is trivial. The equivalence relation induced on Eq[f ] by R and R′ is equal to Eq[f ]�R. 
Equivalently, one has that π−1

1 (R) ∧ π−1
2 (R) and, since R = f−1(R′) because f ∈ F , it 

follows that
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π−1
1 (R) = π−1

1 (f−1(R′)) = (fπ1)−1(R′) = (fπ2)−1(R′) = π−1
2 (R).

In a similar way, one can show that the equivalence relation on Eq[f ] induced by S and 
S′ is π−1

1 (S) = π−1
2 (S), and thus π1 being trivial means that the square

Eq[f ] Eq[f ]
[π−1

2 (R),π−1
2 (S)]

X X
[R,S]

π1

q
[π−1

2 (R),π−1
2 (S)]

π1

q[R,S]

is a pullback; in particular, this implies that

Eq[π1] ∧ [π−1
2 (R), π−1

2 (S)] = ΔEq[f ].

By the properties of the Pedicchio commutator, we then have

[Eq[π1], π−1
2 (R)] ≤ [π−1

1 (S), π−1
2 (R)]

= [π−1
2 (S), π−1

2 (R)]

= [π−1
2 (R), π−1

2 (S)]

and

[Eq[π1], π−1
2 (R)] ≤ Eq[π1],

hence [Eq[π1], π−1
2 (R)] = ΔEq[f ]; taking the direct images by π2 yields

[Eq[f ], R] = ΔX .

A similar argument shows that [Eq[f ], S] = ΔX , and then

[Eq[f ], R ∨ S] = [Eq[f ], R] ∨ [Eq[f ], S] = ΔX .

The result then follows from Lemma 3, and the fact that a fibration is ΓE-normal if and 
only if it is ΓF -normal. �
Remark 2. For a regular epimorphism which does not lie in F , it is not necessarily true 
that any ΓE -central extension must satisfy the commutator condition (10) in Theorem 1. 
For example, for any object X in C, we have that (X, ΔX , ∇X) is in Conn(C), since

[ΔX ,∇X ] ≤ ΔX ∧∇X = ΔX .

Thus any regular epimorphism f : X → X ′ gives a ΓE -trivial (hence ΓE -central) exten-
sion in 2-Eq(C), but in general the condition [Eq[f ], ∇X ] = ΔX is not satisfied.
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Example 1 (Abelian objects). The characterization of central extensions with respect to 
the category of abelian objects, which was proved by G. Janelidze and G.M. Kelly for 
the case of Mal’tsev varieties [25] can be seen as a special case of Theorem 1.

Indeed, for every object X of C, (X, ∇X , ∇X) is an object of 2-Eq(C); via this identi-
fication we can see C as a subcategory of 2-Eq(C), which is full since f(∇X) ≤ ∇X′ for 
any arrow f : X → X ′ in C. It is also easily seen that it is closed under limits and regular 
quotients. Moreover (X, ∇X , ∇X) is in Conn(C) if and only if [∇X , ∇X ] = ΔX if and 
only if X is an abelian object of C; and the quotient X → X

[X,X] serves as X-reflection 
for both cases. Since the condition Eq[f ] ≤ ∇X is trivially satisfied for any regular epi-
morphism f of C, an extension f : X → X ′ is central in C with respect to Ab(C) if and 
only if f : (X, ∇X , ∇X) → (X ′, ∇X′ , ∇X′) is a ΓF -central extension of 2-Eq(C) with 
respect to Conn(C). Thus in this case, Theorem 1 shows that an extension is central if 
and only if [Eq[f ], ∇X ] = ΔX .

Example 2 (Spans and pregroupoids). Since the category C is assumed to be exact, the 
data of two equivalence relations R, S on X is equivalent to the data of two regular 
epimorphisms with domain X. In other words our category 2-Eq(C) is equivalent to the 
category E-Span(C) of spans

X0 X X ′
0

α β (13)

whose morphisms α and β are regular epimorphisms in C. Through this equivalence the 
subcategory Conn(C) corresponds to the subcategory whose objects are spans (13) where 
[Eq[α], Eq[β]] = ΔX or, equivalently, where there exists a partial Mal’tsev operation 
p : X ×X0 X ×X′

0
X → X.

Such a structure on a span can be defined in any category with finite limits. When it 
also satisfies the associativity axiom p(p(x, y, z), u, v) = p(x, y, p(z, u, v)) (which, as we 
mentioned before, automatically holds in a Mal’tsev category), it forms what has been 
called a pregroupoid by Kock [29,30] and later a herdoid by Johnstone [28]. As noted 
in Definition 1, the condition that an arrow f : (X, Eq[α], Eq[β]) → (Y, Eq[α′], Eq[β′])
belongs to F is equivalent to the fact that the induced arrows between the quotients are 
isomorphisms, so morphisms in F , seen as morphisms in E-Span(C), must be of the form

X

X0 X ′
0

Y

α β

f

α′ β′

(up to isomorphism) with f a regular epi in C. Then our Theorem 1 says that an exten-
sion of this form in E-Span(C) is central with respect to the subcategory of pregroupoids 
if and only if [Eq[f ], Eq[α] ∨ Eq[β]] = ΔX .
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As a special case, one can then consider spans where the two structural morphisms 
are split epimorphisms, with a given common section; thus we have (X1, X0, c, d, i)
where di = idX0 = ci in C. These are the reflexive graphs in C, and a pregroupoid 
structure on a reflexive graph is in fact equivalent to an internal groupoid struc-
ture.

We can then consider the category RG(C)/X0 of reflexive graphs over a fixed “object 
of objects” X0, where all arrows are of the form

X1 Y1

X0

f

d

c d′

c′

and also satisfy fi = i′. This category can be seen as a (non full) subcategory of 
E-Span(C), and it can be shown that it is closed under pullbacks. Moreover, the condi-
tion that X0 is fixed implies that Eq[f ] ≤ Eq(c) ∧Eq(d), so that regular epimorphisms in 
RG(C)/X0 all lie in the class F of fibrations in 2-Eq(C). We conclude that an extension 
is central in RG(C)/X0 if and only if it is ΓF -central when seen in 2-Eq(C). Thus, by 
Theorem 1, an extension is central in RG(C)/X0 if and only if

[Eq[f ], Eq[c] ∨ Eq[d]] = ΔX1 .

As mentioned above, this characterization was proved by T. Everaert and the sec-
ond author in [14] in the special case of Mal’tsev varieties, although the proof in-
volved long calculations with elements, which could not be carried in abstract cate-
gories.

Remark 3. When the category C is pointed, so that there is an object 0 in C that is 
both initial and terminal, then every object X has a unique structure of reflexive graph 
above 0, so that RG(C)/0 � C. Since the kernel pair of the unique arrow X → 0 is the 
largest equivalence relation ∇X on X, such a reflexive graph is an internal groupoid if 
and only if X is an abelian object, so that Grpd(C) � Ab(C); and in this context this 
is equivalent to the fact that X is an abelian group object. In such a category, we can 
then obtain the characterization of central extensions in C with respect to Ab(C) as the 
special case of the characterization of central extensions in RG(C)/X0 with respect to 
Grpd(C)/X0, where X0 = 0.

This isn’t true, however, when the category is not pointed, since in this case defining 
an internal groupoid above the terminal object 1 requires the choice of an “identity” 
1 → X, which may not always be possible (for example, in the category of unital rings, 
the only ring X for which there is an arrow 1 → X is the terminal ring itself). In such 
a case it is thus necessary to consider spans and pregroupoids or, equivalently, pairs 
of equivalence relations and connectors, to obtain a context that encompasses both the 
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cases of internal groupoids and of abelian objects. This was our main motivation to 
consider the Galois structure on 2-Eq(C) rather than RG(C).

Example 3. The category Grp(Comp) of compact (Hausdorff) groups is an exact 
Mal’tsev category which is monadic over the category of sets [33]. As it follows from 
Lemma 6.13 in [15], the Huq commutator of two normal subobjects (= closed normal 
subgroups) H and K of a compact group G is simply given by the closure [H,K] of the 
classical group-theoretic commutator [H, K] of H and K. In the category Grp(Comp)
this Huq commutator of normal subobjects is the normal subobject associated with 
the categorical commutator [34] of the corresponding equivalence relations: this essen-
tially follows from [3], by taking into account the fact that Grp(Comp) is a strongly 
protomodular category [2]. From the previous example, it then follows that an exten-
sion

X1 Y1

X0

f

d

c d′

c′

in RG(Grp(Comp))/X0 is central relatively to Grpd(Grp(Comp))/X0 if and only 
if [Ker[f ],Ker[d] ·Ker[c]] = {1}, where Ker[f ], Ker[d] and Ker[c] denote the kernels 
of f , d and c in the category Grp(Comp), respectively, while Ker[d] · Ker[c] is the 
group-theoretic product of these normal closed subgroups, which is a compact (and thus 
closed) subgroup, since it is the image of the multiplication map

· : Ker[d] ×Ker[c] → X1.

3. Double central extensions

As we explained in Section 1, the category CExtF (2-Eq(C)) of ΓF -central extensions 
is reflective in ExtF (2-Eq(C)), and double central extensions are double extensions that 
are central with respect to this induced reflection. We shall show that the double ex-
tensions that are central with respect to this induced reflection can be characterized by 
some natural conditions involving Smith–Pedicchio commutators.

These conditions are a generalization of the ones given by G. Janelidze in [21] char-
acterizing double central extensions in Grp, and later extended to Mal’tsev varieties by 
the second author and V. Rossi in [20], and to exact Mal’tsev categories by T. Everaert 
and T. Van der Linden [17]. In fact, the proofs given below are suitably adapted from 
the ones appearing in these two papers.

Lemma 4. Consider the following pullback of a double extension (g, j) along a double 
extension (γ, δ) in 2-Eq(C) depicted as
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X×Z U U

X Z

Y×W V V

Y W

α

f ′

g′

γ

h′

g

h
j′

β

δ

f

j

(14)

Then we have

α([Eq[f ′], Eq[g′]]) = [Eq[f ], Eq[g]]

and

α([Eq[f ′] ∧ Eq[g′], R′ ∨ S′]) = [Eq[f ] ∧Eq[g], R ∨ S],

where X = (X, R, S) and X ×Z U = (X ×Z U, R′, S′).

Proof. Since morphisms in F are regular epimorphisms, and the pullbacks and regular 
epimorphisms in 2-Eq(C) are computed “levelwise”, the cube (14) induces a cube in C
that is also a pullback of regular pushouts.

Since the Pedicchio commutator is preserved by regular images in C, all we have to 
show is that

α(Eq[f ′]) = Eq[f ], α(Eq[g′]) = Eq[g], α(R′) = R,

α(S′) = S and α(Eq[f ′] ∧ Eq[g′]) = Eq[f ] ∧ Eq[g].

This holds by assumption for R and S; by the property (9) recalled in Section 1, it 
suffices to prove in each case that the corresponding coequalizers are part of a regular 
pushout in C. This is true for f because the square

X ×Z U X

Y ×W U Y

α

f ′ f

β

is the pullback of a regular pushout in C, and is thus a regular pushout itself, since 
regular pushouts are pullback stable in C. It is also true for g because the corresponding 
square (the top face of (14)) is a pullback.

Thus we only have to treat the case of the intersection Eq[f ] ∧Eq[g]; its coequalizer 
is the arrow X → Y ×W Z induced by f and g. Accordingly, the corresponding square 
of coequalizers is the left square in the commutative diagram
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X ×Z U (Y ×W V ) ×V U U

X Y ×W Z Z.

〈f ′,g′〉

α ᾱ γ

〈f,g〉

Now the whole rectangle above is the top face of (14), while the right square is the 
top face of the cube

(Y ×W V ) ×V U U

Y ×W Z Z

Y ×W V V

Y W,

ᾱ

γ

h′

h
j′

β

δ

j

and is then also a pullback, since the front and back faces are pullbacks by construc-
tion. �
Proposition 2. In the diagram (14), the front face satisfies the commutator conditions

[Eq[f ], Eq[g]] = ΔX = [Eq[f ] ∧ Eq[g], R ∨ S], (15)

if and only if the back face does, i.e.

[Eq[f ′], Eq[g′]] = ΔX′ = [Eq[f ′] ∧ Eq[g′], R′ ∨ S′]. (16)

Proof. Suppose first that the back face satisfies the commutator conditions; then by 
Lemma 4

[Eq[f ], Eq[g]] = α([Eq[f ′], Eq[g′]]) = ΔX ,

and similarly

[Eq[f ] ∧Eq[g], R ∨ S] = α([Eq[f ′] ∧ Eq[g′], R′ ∨ S′]) = ΔX .

Assume then that the front face satisfies the commutator conditions; then since 
α([Eq[f ′], Eq[g′]]) = ΔX , we have

[Eq[f ′], Eq[g′]] ≤ Eq[α];

and, moreover,
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[Eq[f ′], Eq[g′]] ≤ Eq[g′]

by property (2) of the categorical commutator. Since the top face in the cube (14) is a 
pullback, Eq[g′] ∧Eq[α] = ΔX×ZU , and thus

[Eq[f ′], Eq[g′]] = ΔX×ZU .

The proof for the other condition is similar. �
Corollary 1. Any double ΓF -central extension satisfies the commutator conditions (15)
in Proposition 2.

Proof. By definition:

• (g, j) is a double ΓF -central extension if and only if it is split by a double extension 
(γ, δ) ∈ F2;

• (g′, j′) is a double ΓF -trivial extension if and only if it is the pullback of some 
extension between ΓF -central extensions.

Thus (g, j) is a double ΓF -central extension if and only if there are two pullback 
squares in ExtF (2-Eq(C))

f ′ h′

f h.

(g′,j′)

(α,β) (γ,δ)

(g,j)

f ′ h′

f ′′ h′′,

(g′,j′)

(α′,β′) (γ′,δ′)

(g′′,j′′)

where f ′′ and h′′ are ΓF -central extensions in 2-Eq(C). By Proposition 2, (g, j) satisfies 
the commutator conditions if and only if (g′, j′) does if and only if (g′′, j′′) does.

But since f ′′ is a central extension, we have by Lemma 3

[Eq[f ′′] ∧ Eq[g′′], R′′ ∨ S′′] ≤ [Eq[f ′′], R′′ ∨ S′′] ≤ ΔX′′

and

[Eq[f ′′], Eq[g′′]] ≤ [Eq[f ′′], R′′ ∧ S′′] ≤ ΔX′′ ,

where Eq[g′′] ≤ R′′ ∧ S′′ because g′′ is in F . �
We now turn to the proof of the converse implication.

Proposition 3. Any double extension in Ext2
F (C) satisfying the commutator conditions 

(15) is a double ΓF -central extension.
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Proof. As a consequence of the “denormalized 3 ×3 lemma” from [1], if we take a double 
extension (8) and take all the kernel pairs horizontally and vertically in 2-Eq(C), and 
then the kernel pairs of the induced arrow, we obtain a diagram

Eq[f ]�Eq[g] Eq[g] Eq[j]

Eq[f ] X Y

Eq[h] Z W.

q1

q2

p2p1

f̄

ḡ

f

g j

h

(17)

As explained in Section 1, the condition that [Eq[f ], Eq[g]] = ΔX is equivalent to 
the existence of a section for the comparison arrow Eq[f ]�Eq[g] → Eq[f ] ×X Eq[g] in 
C satisfying certain conditions. Since F is stable under pullback, all the arrows involved 
induce isomorphisms on the quotients by R and S; thus this section in C induces a 
similar section at the level of R and S. Thus we have a section in 2-Eq(C), and thus a 
connector p : Eq[f ] ×X Eq[g] → X. In particular, we have the following pullback of split 
epimorphisms in 2-Eq(C):

Eq[f ]�Eq[g] Eq[f ] ×X Eq[g]

Eq[f ] ∧ Eq[g] X.

x

π

p

p1

Now the condition [Eq[f ] ∧Eq[g], R∨S] = ΔX exactly means that the arrow X → Y ×WZ

is a ΓF -central – and then ΓF -normal – extension (Theorem 1). It follows in particular 
that the first projection p1 : Eq[f ] ∧Eq[g] → X of its kernel pair is a ΓF -trivial extension. 
As a consequence, the arrow π : Eq[f ]�Eq[g] → Eq[f ] ×X Eq[g] is also a ΓF -trivial 
extension.

Now consider the following cube:

Eq[f ]�Eq[g] Eq[f ]

I(Eq[f ]�Eq[g]) I(Eq[f ])

Eq[g] X

I(Eq[g]) I(X)

ηEq[f]�Eq[g]

q1

p1

ηEq[f]

π1

I(p1)

I(π1)π1

ηEq[g]

ηX

I(q1)

I(π )
1
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Since Conn(C) is a strongly Birkhoff subcategory of 2-Eq(C) and every regular epi-
morphism is an effective descent morphism, the reflector I : 2-Eq(C) → Conn(C)
preserves pullbacks of split epimorphisms along split epimorphisms (see [12]), so 
that

I(Eq[f ] ×X Eq[g]) = I(Eq[f ]) ×I(X) I(Eq[g]).

Moreover, since π is a ΓF -trivial extension, the induced square to the pull-
backs

Eq[f ]�Eq[g] Eq[f ] ×X Eq[g]

I(Eq[f ]�Eq[g]) I(Eq[f ] ×X Eq[g])

π

ηEq[f]�Eq[g] ηEq[f]×
X
Eq[g]

I(π)

is itself a pullback, and thus the whole cube above is the limit of the diagram formed by 
its front, right and bottom faces. In particular, the induced square

Eq[f ]�Eq[g] Eq[f ]

Eq[g] ×I(Eq[g]) I(Eq[f ]�Eq[g]) X×I(X) I(Eq[f ])

p1

is also a pullback, and thus the square

Eq[f ]�Eq[g] Eq[f ]

Eq[g] X

p1

q1 π1

π1

is a pullback of a double extension between two ΓF -trivial (hence ΓF -central) extension; 
it is thus a double ΓF -trivial extension. Since it is the kernel pair of the (horizontal) 
double extension

Eq[f ] Eq[h]

X Z

ḡ

π1 π1

g

this latter extension is ΓF -normal, and then ΓF -central. We can then consider the 
cube
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Eq[f ] Eq[h]

X Z

X Z

Y W.

π2

π1

ḡ

π2

π1

g

h
g

f

h

f

j

Since it is a triple extension (as a pullback of double extensions) and the back face is 
a double ΓF -central extension, the front face is a double ΓF -central extension, which 
concludes the proof. �

We mentioned above that the commutator conditions were a generalization of those 
given for the double central extensions relative to the subcategory of abelian objects [17]. 
In fact, that characterization is a special case of ours:

Corollary 2. Let C be an exact Mal’tsev category with coequalizers. Then a double exten-
sion is central with respect to the subcategory of abelian objects in C if and only if

[Eq[f ], Eq[g]] = ΔX = [Eq[f ] ∧ Eq[g],∇X ].

Proof. As we have explained for one-dimensional extensions in Example 1, the reflection 
of C into its subcategory of abelian objects is the special case where R = ∇X = S. In 
particular, the results above give us that a double extension is central if and only if

[Eq[f ] ∧ Eq[g],∇X ] = [Eq[f ] ∧ Eq[g],∇X ∨∇X ] = ΔX = [Eq[f ], Eq[g]]. �
Corollary 3. A double extension

X Z

Y W

f

g

h

j

(18)

in RG(C)/X0 is central if and only if

[Eq[f ] ∧ Eq[g], Eq[c] ∨ Eq[d]] = ΔX1 = [Eq[f ], Eq[g]],

where X = (X1, X0, c, d, i).

Proof. As in Example 2, any double extension in RG(C)/X0 induces a double extension 
in 2-Eq(C), and it is ΓF -central if and only if the double extension (18) is central with 
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respect to the reflection RG(C)/X0 → Grpd(C)/X0. Thus it suffices to take R = Eq[c]
and S = Eq[d]. �
Example 4. Let us consider once again the category Comp(Grp) of compact (Hausdorff) 
groups. The meet Ker(f) ∧Ker(g) of two kernels is their set-theoretic intersection, since 
the intersection of two closed subgroups is a closed (hence compact) subgroup. We then 
find that a double extension (18) is central if and only if

[Ker(f) ∧Ker(g),Ker(c) ·Ker(d)] = {1} = [Ker(f),Ker(g)].

Example 5. Let B be a Lie algebra; we recall that a precrossed B-module of Lie al-
gebras is a triple (L, ξ, ∂) where L is a Lie algebra, ξ : B × L → L : (b, l) �→ bl is 
an action of Lie algebras, and ∂ : L → B is a morphism of Lie algebras such that 
∂(bl) = [b, ∂(l)] for all b ∈ B and l ∈ L. A precrossed B-module is said to be a crossed 
module if, moreover, it satisfies Peiffer’s identity [l, l′] = ∂(l)l′ for all l, l′ ∈ L. It is 
known that the category of precrossed B-modules of Lie algebras is equivalent to the 
category RG(Lie)/B of reflexive graphs in Lie algebras over B, and that this equiva-
lence restricts to an equivalence between crossed modules and groupoids over B [31,36]. 
Thus our results can be used to characterize central extensions relative to the reflection 
PXMod(Lie)/B → XMod(Lie)/B.

Let f : (L, ξ, ∂) → (L′, ξ′, ∂′) be a surjective morphism of precrossed B-modules. Then 
under the equivalence, f becomes the regular epimorphism

B � L B � L′

B

1B�f

πB

(1,∂) πB

(1,∂′) (19)

(where 1B � f is the map (b, l) �→ (b, f(l)) and (1B, ∂) is the map (b, l) �→ b + ∂(l), for 
any b ∈ B and any l ∈ L).

Now, by the results of Example 2, 1B � f is a central extension if and only if

[Eq[1B � f ], Eq[πB ] ∨ Eq[(1, ∂)]] = ΔB�L.

In the category of Lie algebras the commutator of equivalence relations is the equivalence 
relation corresponding to the commutator of the corresponding ideals ([37]), and this 
condition is then equivalent to

[Ker(1B � f),Ker(πB) + Ker((1B, ∂))] = 0. (20)

One verifies that the object part of the kernel of 1B � f is Ker(f), with inclusion given 
by the composite Ker(f) → L → B�L, and that the kernel of πB is simply L. Moreover, 
one easily sees that

Ker((1B, ∂)) = {(−∂(l), l) | l ∈ L}.
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As a consequence, we find that [Ker(1B�f), Ker(πB)] is the ideal of B�L generated 
by terms of the form

[(0, k), (0, l)] = (0, [k, l])

for k ∈ Ker(f) and l ∈ L, and [Ker(1B � f), Ker((1B, ∂))] by terms of the form

[(0, k), (−∂(l), l)] = (0,∂(l) k + [k, l]).

It follows that the commutator described in (20) can be seen as an ideal of L, more 
precisely the subspace generated by terms of the form [k, l] or ∂(l)k, for k ∈ Ker(f)
and l ∈ L. By analogy with the case of precrossed modules of groups [11], we call this 
subobject the Peiffer commutator 〈Ker(f), L〉 of Ker(f) and L.

Let us now consider a double extension

(L1, ∂1, ξ1) (L2, ∂2, ξ2)

(L3, ∂3, ξ3) (L4, ∂4, ξ4)

g

f h

j

(21)

of precrossed B-modules of Lie algebras. Using again the equivalence between B-pre-
crossed modules and internal reflexive graphs over B in Lie, we find that (21) is central 
if and only if

B � L1 B � L2

B � L3 B � L4

1B�g

1B�f 1B�h

1B�j

is a double central extension in RG(Lie)/B (with the graph structures on each object 
given as in (19)), which by Corollary 3 is equivalent to

[Ker(1B � f) ∩Ker(1B � g),Ker(πB) + Ker((1B , ∂1))] = 0 (22)

and

[Ker(1B � f),Ker(1B � g)] = 0. (23)

Again, the object parts of the kernels of 1B�f and 1B�g are simply Ker(f) and Ker(g)
respectively, and so the commutator in equation (23) is generated by terms of the form

[(0, k), (0, k′)] = (0, [k, k′]),
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where k ∈ Ker(f) and k′ ∈ Ker(g). Since the commutator in equation (22) can be 
treated exactly as the commutator in (20), we find that the double extension (21) is 
central if and only if

〈Ker(f) ∧Ker(g), X〉 = 0 = [Ker(f),Ker(g)],

where both sides are ideals of L1.
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