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1. Introduction

The classical rigidity theorems for algebraic K-theory are due to Suslin [33] for exten-
sions of algebraically closed fields, Gabber [8] for Hensel local rings, and Gillet–Thomason 
[12] for strictly Hensel local rings. All known proofs rely on A1-homotopy invariance and 
existence of transfer maps with certain nice properties. In his work on motives, Voevodsky 
introduced homotopy invariant pretheories as contravariant functors on smooth schemes 
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over a field enjoying certain transfer maps [38, Definition 3.1]. While algebraic K-theory 
admits transfer maps for relative smooth curves, it is not an example of a pretheory 
[38, §3.4]. However, it is the motivating example of a pseudo pretheory in the sense of 
Friedlander–Suslin [6, Section 10]. The work of Suslin–Voevodsky [35] established rigidity 
theorems in the context of homotopy invariant pseudo pretheories.

In this paper, we generalize the notion of pseudo pretheories to the equivariant setting 
of finite group actions (Definition 3.3). Equivariant algebraic K-theory is an example, 
as well as equivariant Suslin homology, and Bredon motivic cohomology in the sense of 
[14, Section 5].

Our main results establish equivariant analogs of the Suslin–Voevodsky rigidity the-
orems in [35, Section 4] (see Theorem 5.1, Theorem 5.4).

Theorem 1.1. Let k be a field, G be a finite group whose order is invertible in k, and 
let SmG

k denote the category of smooth schemes over k equipped with an action of G. 
Let F be a homotopy invariant equivariant pseudo pretheory on SmG

k . Suppose that F is 
torsion of exponent coprime to char(k).

(1) Let S = Spec(Oh
W,Gw) be the Henselization of a smooth affine G-scheme W at the 

orbit Gw of a closed point. Let X → S be a smooth affine G-scheme of relative 
dimension one, admitting an equivariant good compactification. Then for all equiv-
ariant sections i1, i2 : S → X which coincide on the closed orbit of S, we have

i∗1 = i∗2 : F (X) → F (S).

(2) Let X be a smooth affine G-scheme and let x ∈ X be a closed point such that k ⊆ k(x)
is separable. If every representation of G over k is a direct sum of one dimensional 
representations, then there is a naturally induced isomorphism

F (Gx)
∼=−→ F (Spec(Oh

X,Gx)).

The condition in the second part of the theorem is satisfied whenever G is abelian 
and k contains a primitive dth root of unity, where d is the exponent of the group, by a 
theorem of Brauer, see e.g., [4, Theorem 41.1, Corollary 70.24].

Rigidity theorems have been established for equivariant algebraic K-theory in [44]
and [19, Theorem 1.4] at points with trivial stabilizers. The novelty in Theorem 1.1 is 
that we allow points with nontrivial stabilizers. Note, however, that in [44] the groups 
are more general, and [19] deals with connected split reductive groups. For works on 
rigidity results in related contexts, see e.g., [1], [2], [3], [16], [17], [23], [26], [29], [30], [36], 
and [43].

A brief overview of the paper follows. Section 2 recalls notions in G-equivariant 
algebraic geometry and shows an equivariant proper base change theorem for étale 
cohomology of Henselian pairs. After recalling equivariant divisors and equivariant corre-
spondences, we define and give examples of equivariant pseudo pretheories in Section 3. 
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Next in Section 4 we discuss the equivariant Nisnevich topology and equivariant good 
compactification for smooth affine relative curves. Our main results are shown in Sec-
tion 5. Finally, in Section 6 we show that exactness of the Gersten complex for equivariant 
algebraic K-theory fails for the group G = Z/2Z of order two acting on the affine line 
A1

k = Spec(k[t]) by t �→ −t. This follows by applying rigidity to the G-equivariant 
Grothendieck group KG

0 of the Henselization Oh
A1

k,Gx
at the orbit of the closed point 

x = (t) ∈ A1
k.
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2. Preliminaries

Throughout k is a field and G is a finite group whose order is coprime to char(k) (abus-
ing the terminology we say that n is coprime to char(k) if n is coprime to the exponential 
characteristic of k, i.e., n is invertible in k). We view G as a group scheme 

∐
G Spec(k)

over Spec(k). Let SchG
k be the category of separated, finite type schemes over Spec(k)

equipped with a left G-action, and equivariant morphisms. The smooth G-schemes over 
Spec(k) form a full subcategory SmG

k ⊆ SchG
k . A G-scheme X is equivariantly irreducible 

if there exists an irreducible component X0 of X such that G ·X0 = X. The fiber product 
X × Y of X, Y ∈ SchG

k is a G-scheme with the diagonal G-action. For a finite dimen-
sional k-vector space V , let A(V ) := Spec(Sym(V ∨)) and P(V ) := Proj(Sym(V ∨)). If 
V is a G-representation over k, we view A(V ) and P(V ) as G-schemes via the G-action 
on V .

For X ∈ SchG
k we denote the categorical quotient of X by G (in the sense of [22, Defi-

nition 0.5]) by X/G, provided it exists. Since G is a finite group, the categorical quotient 
map π : X → X/G is in fact a uniform geometric quotient ([22, Definitions 0.6, 0.7]). If 
X is quasi-projective, then a quotient by a finite group π : X → X/G always exists.

Let H ⊆ G be a subgroup and X ∈ SchH
k . Then G × X is an H-scheme with the 

action h(g, x) = (gh−1, hx), and we define G ×H X := (G ×X)/H. The scheme G ×H X

has a left G-action through the action of G on itself. Since the H-action on G ×X is free, 
π : G ×X → G ×H X is a principle H-bundle. In particular, π is étale and surjective. 
It follows that if X is smooth, then so is G ×H X. This defines a left adjoint to the 
restriction functor SmG

k → SmH
k , given by G ×H − : SmH

k → SmG
k .
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For X ∈ SchG
k and x ∈ X a point, the set-theoretic stabilizer of x is the subgroup 

Gx ⊆ G defined by Gx = {g ∈ G|g · x = x}. The orbit of x is G · x := G ×Gx {x}, with 
underlying set {g · x|g ∈ G}.

2.1. G-sheaves

A G-sheaf on X is basically a sheaf with a G-action which is compatible with the 
G-action on X. The precise definition goes as follows.

Definition 2.1. Let τ be a Grothendieck topology on X and F a τ -sheaf of abelian groups. 
Write pr2 : G ×X → X for the projection and μ : G ×X → X for the action map.

(1) A G-linearization of F is an isomorphism φ : μ∗F
∼=−→ pr∗2F of sheaves on G × X

which satisfies the cocycle condition pr∗23(φ) ◦ (IdG × μ)∗(φ) = (m × IdX)∗(φ) on 
G ×G ×X. Here m : G ×G → G is the multiplication and pr23 : G ×G ×X → G ×X

is the projection to second and third factors.
(2) A G-sheaf (in the τ -topology) on X is a pair consisting of a τ -sheaf F together with a 

G-linearization φ of F . We simply write F for a G-sheaf, leaving the G-linearization 
understood.

(3) A G-module M on X is a G-sheaf where M is a quasi-coherent OX-module and the 
G-linearization φ : μ∗M ∼= pr∗2M is an OG×X -module isomorphism. A G-vector bun-
dle on X is a G-module V whose underlying quasi-coherent OX-module is locally free.

Remark 2.2. Since G is finite, the data of a G-linearization of F is equivalent to giving 
a sheaf isomorphism φg : F

∼=−→ g∗F for each g ∈ G subject to the conditions φe = id

and φgh = h∗(φg) ◦ φh for all g, h ∈ G.

Remark 2.3. Recall that if G acts on a commutative ring R, the skew group ring R �G
is the free left R-module with basis {[g] | g ∈ G} and multiplication is defined by setting 
(r[g])(s[h]) = r(g·s)[gh] and extending linearly. If G acts trivially on R, then R � G is 
simply the usual group ring RG.

If X = Spec(R), then the category of G-modules on X is equivalent to the category 
of left R � G-modules. Further, if the order of G is invertible in R, then the category 
of G-vector bundles on X is equivalent to the category of left R � G-modules which are 
projective as R-modules. See e.g., [21, Section 1.1] for details.

A G-equivariant morphism f : (E , φE) → (F , φF ) of G-sheaves is a morphism f :
E → F of sheaves compatible with the G-linearizations in the sense that φF ◦ μ∗f =
pr∗2f◦φE , or equivalently φg◦f = g∗(f) ◦φg for all g ∈ G. Write Abτ (G, X) for the category 
of G-sheaves on X in the τ -topology. We note that Abτ (G, X) has enough injectives.

Given a G-sheaf (F , φg), the morphisms φg induce an action of the group G on the 
group of global sections Γ(X, F). We write ΓG

X(F) = Γ(X, F)G for the set of G-invariants 
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of Γ(X, F). This defines a functor ΓG
X : Abτ (G, X) → Ab from the category of G-sheaves 

to the category of abelian groups. The τ -G-cohomology groups Hp
τ (G; X, M) are defined 

as right derived functors

Hp
τ (G;X,F) := RpΓG

X(F).

Here ΓG
X = (−)G ◦Γ(X, −) is a composite of left exact functors. Since the global sections 

functor Γ(X, −) sends injective G-sheaves to injective Z[G]-modules, the Grothendieck 
spectral sequence for this composition yields the bounded, convergent spectral sequence

Ep,q
2 = Hp(G,Hq

τ (X,F)) ⇒ Hp+q
τ (G;X,F), (2.4)

where H∗(G, −) denotes the group cohomology of G. Moreover, the spectral sequence 
induces a finite filtration on each Hn

τ (G; X, F).

Definition 2.5. The G-equivariant Picard group PicG(X) of X is the group of G-line 
bundles on X modulo equivariant isomorphisms, with group operation given by tensor 
product. For an invariant closed subscheme Y ⊆ X, let PicG(X, Y ) denote the group 

consisting of pairs (L, φ), where L is a G-line bundle on X and φ : OY

∼=−→ L|Y is an 
isomorphism of G-line bundles on Y , modulo equivariant isomorphisms respecting the 
trivializations on Y . The group PicG(X, Y ) is called the relative equivariant Picard group
of X relative to Y .

The following cohomological interpretations of the equivariant and the relative equiv-
ariant Picard groups are standard, see [14, Theorem 2.7, Lemma 6.7].

Theorem 2.6. Let X be a G-scheme.

(1) There is a natural isomorphism PicG(X) 
∼=−→ H1

ét(G; X, O∗
X).

(2) Let i : Y ↪→ X be an invariant closed subscheme. Then there is a natural isomor-
phism PicG(X, Y ) 

∼=−→ H1
ét(G; X, GX,Y ), where GX,Y is the étale G-sheaf defined to 

be the kernel of the equivariant homomorphism O∗
X → i∗O∗

Y .

We end this section by recording an equivariant version of Gabber’s proper base 
change theorem for the cohomology of torsion étale G-sheaves, which will be needed to 
establish the equivariant version of Suslin’s rigidity theorem in Section 5.

Definition 2.7. ([28, Chapter XI, Definition 3]) Let A be a commutative ring and I ⊆ A

an ideal which is contained in the Jacobson radical of A. The pair (A, I) is said to be 
a Henselian pair provided HomA(B, A) → HomA(B, A/I) is surjective for any étale 
A-algebra B. A G-action on a Henselian pair (A, I) is simply a G-action on A such that 
the ideal I is invariant.
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Theorem 2.8 (Equivariant proper base change). Let (A, I) be a Henselian pair with 
G-action. Let f : Y → Spec(A) be a proper equivariant map and define Y0 by the 
pull-back

Y0
i

f ′

Y

f

Spec(A/I)
j

Spec(A).

Let F be a torsion étale G-sheaf on Y and write F0 = i∗F . Then the restriction map 
induces an isomorphism Hn

ét(G; Y, F) ∼= Hn
ét(G; Y0, F0) for each n.

Proof. Restriction induces a G-equivariant map Hp
ét(Y, F) → Hp

ét(Y0, F0). Gabber’s base 
change theorem [9, Corollary 1] shows this is an isomorphism, and therefore it induces 
an isomorphism in group cohomology. Thus the induced comparison maps of spectral 
sequences (2.4) for (Y, F) and (Y0, F0) is an isomorphism on the E2-page. This implies 
the desired isomorphism. �
3. Equivariant divisors and pseudo pretheories

We begin by recalling the notion of equivariant Cartier divisors and their properties.

3.1. Equivariant divisors

Let X be a G-scheme and Y ⊆ X an invariant closed subscheme.

Definition 3.1.

(1) An equivariant Cartier divisor on X is an element of ΓG
X(K∗

X/O∗
X). The group of 

equivariant Cartier divisors on X is denoted by DivG(X). An effective Cartier divisor 
D on X such that D ∈ ΓG

X(K∗
X/O∗

X) is called an equivariant effective Cartier divisor.
(2) A relative equivariant Cartier divisor on X relative to Y is an equivariant Cartier 

divisor D on X such that Supp(D) ∩ Y = ∅. Write DivG(X, Y ) for the subgroup of 
DivG(X) consisting of relative equivariant Cartier divisors.

(3) A principal equivariant Cartier divisor is an invariant rational function on X, i.e., an 
element in the image of ΓG

X(K∗
X) in ΓG

X(K∗
X/O∗

X). In the relative setting, a principal 
equivariant Cartier divisor f on X is said to be a principal relative equivariant 
Cartier divisor if f is defined and equal to 1 at points of Y .

(4) Let DivG
rat(X) denote the group of equivariant Cartier divisors on X modulo the 

principal equivariant Cartier divisors, and likewise write DivG
rat(X, Y ) in the relative 

setting.
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Given a Cartier divisor D = {(Ui, fi)} on X, we have an associated line bundle LD

defined by LD|Ui
= OUi

f−1
i . When D is an equivariant Cartier divisor it is easy to 

verify that the line bundle LD has a canonical G-linearization; write LD for the G-line 
bundle defined by this choice of linearization. If D is a relative equivariant Cartier divisor 
relative to Y it is straightforward that LD|Y is trivial.

Let Zd(X) (respectively Zd(X)) denote the free group on dimension d (respectively 
codimension d) cycles on X. The homomorphism cyc : Div(X) → Z1(X) is defined by 
cyc(D) =

∑
Z∈X1 ordZ(D)Z, where X1 is the set of closed integral codimension one 

subschemes. For a G-scheme X, the groups Zd(X) and Zd(X) have natural G-actions 
and cyc is an equivariant homomorphism. Therefore we conclude the following.

Lemma 3.2. ([14, Lemma 2.11]) For a smooth G-scheme X, cyc : Div(X) → Z1(X) is 
an equivariant isomorphism.

3.2. Equivariant pseudo pretheories

An equivariant pseudo pretheory is defined as a presheaf on SmG
k with transfer maps 

associated to certain equivariant correspondences subject to some natural axioms.

Definition 3.3. An equivariant pseudo pretheory on SmG
k is an additive presheaf F :

(SmG
k )op → Ab (i.e., F (X

∐
Y ) = F (X) ⊕F (Y )) with transfer maps TrD : F (X) → F (S)

for any equivariant relative smooth affine curve X/S and effective equivariant Cartier 
divisor D on X which is finite and surjective over a component of S, such that the 
following holds.

(1) The transfer maps are compatible with pullbacks.
(2) If D(i) is the divisor associated to an equivariant section i : S → X, then

TrD(i) = F (i).

(3) Let LD be the G-line bundle associated to D. If the restriction of LD to D′ is trivial, 
then

TrD + TrD′ = TrD+D′ .

As usual we extend all functors defined on the category SmG
k to limits of smooth 

G-schemes with G-action (including semilocalizations of all smooth affine G-schemes at 
closed G-orbits) by taking direct limits. The above properties obviously remain true after 
such an extension as well.

Definition 3.4. A presheaf F on SmG
k (or SchG

k ) is said to be homotopy invariant if for 
any X ∈ SmG

k (respectively in SchG
k ) the projection map p1 : X ×A1 → X induces an 
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isomorphism p∗1 : F (X) 
∼=−→ F (X × A1), where the G-action on X × A1 is induced by 

the given G-action on X and the trivial G-action on A1.

3.3. Examples of equivariant pseudo pretheories

In the following we discuss examples of equivariant pseudo pretheories such as equiv-
ariant algebraic K-theory, equivariant Suslin homology, KG

0 -presheaves with transfers, 
presheaves with equivariant transfers, and equivariant motivic representable theories.

Example 3.5. Presheaves with equivariant transfers. For smooth schemes X, Y , the group 
of correspondences Cork(X, Y ) ⊆ Zdim(X)(X×Y ) is the subgroup of Zdim(X)(X×Y ) of 
cycles on X × Y which are finite over X and surjective over some component of X. The 
category Cork has the same objects as Sm/k and Cork(X, Y ) are the morphisms between 
X and Y in this category. The equivariant correspondences CorGk (X, Y ) between smooth 
G-schemes are correspondences Z : X → Y such that the square

G×X
Z×id

μ

G× Y

μ

X
Z

Y

commutes in Cork [14, Section 4]. Unraveling definitions we have

CorGk (X,Y ) = Cork(X,Y ) ∩ Zdim X(X × Y )G.

Let CorGk denote the category whose objects are smooth G-schemes and morphisms are 
equivariant correspondences. There is a canonical inclusion SmG

k ⊆ CorGk which sends 
f : X → Y to its graph Γf ⊆ X × Y .

Definition 3.6. [14, Definition 4.1] A presheaf with equivariant transfers is a presheaf of 
abelian groups on the category CorGk .

Given an equivariant relative smooth affine curve X/S and an effective equivariant 
Cartier divisor D on X which is finite and surjective over S, note that D ∈ CorGk (S, X). 
Moreover, if D(i) is the divisor associated to an equivariant section i : S → X, then 
D(i) = Γi in CorGk (S, X). Therefore if F is a presheaf with equivariant transfers, then 
F defines an additive presheaf on SmG

k ⊆ CorGk such that for a divisor D as above, 
TrD := F (D) : F (X) → F (S) satisfies conditions (1), (2) and (3) of Definition 3.3.

Example 3.7. Equivariant K-theory. The G-equivariant algebraic K-theory group 
KG

i (X) of a scheme X with G-action is the ith homotopy group of the algebraic K-theory 
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spectrum KG(X) of the exact category of G-vector bundles on X. For n ≥ 2, the equiv-
ariant K-groups with mod-n coefficients are defined as KG

i (X; n) := πi(KG(X) ∧ S/n), 
for the mod-n Moore spectrum S/n.

The equivariant algebraic K-theory groups KG
i define functors on SchG

k (and SmG
K) 

by considering the category of “big G-vector bundles” ([6, Appendix C.4, C.5]). Let 
p : X → S be an equivariant relative smooth affine curve in SmG

k and let iD : D ↪→ X

be an effective equivariant Cartier divisor on X such that pD := p|D : D → S is finite 
and surjective. Then pD : D → S is also flat. Let TrD : KG

i (X) → KG
i (S) denote 

the map induced by the functor FD : VectG(X) → VectG(S) between the categories 
of G-vector bundles on X and S defined by P �→ pD∗ ◦ i∗D(P ). By [37, Theorem 4.1, 
Corollary 5.8(2)], KG

i is a homotopy invariant functor on SmG
k . We show that KG

i is 
an equivariant pseudo pretheory on SmG

k , so that KG
i (−; n) is a homotopy invariant 

equivariant pseudo-pretheory on SmG
k with n-torsion values.

Lemma 3.8. If D and D′ are effective equivariant Cartier divisors on X such that the 
restriction of the G-line bundle LD to the G-scheme D′ is a trivial G-line bundle, then 
TrD+D′ = TrD + TrD′ .

Proof. We write i : D ↪→ D + D′ and i′ : D′ ↪→ D + D′ for the corresponding 
G-equivariant closed immersions. Let f ∈ ΓG

D′(LD|D′) define the trivialization of LD

on D′. Since LD defines the ideal sheaf of D, we have an exact sequence of G-equivariant 
coherent sheaves on D + D′:

0 → i′∗(OD′) f−→ OD+D′ → i∗(OD) → 0, (3.9)

where the maps are G-equivariant. Given P ∈ VectG(X), the above exact sequence gives 
the following exact sequence:

0 → i′∗ ◦ i∗D′(P ) → i∗D+D′(P ) → i∗ ◦ i∗D(P ) → 0.

Pushforward by the equivariant, finite, and flat map pD+D′ gives an exact sequence of 
G-vector bundles on S:

0 → pD′
∗ ◦ i∗D′(P ) → pD+D′

∗ ◦ i∗D+D′(P ) → pD∗ ◦ i∗D(P ) → 0,

which by definition of the transfer maps is the exact sequence of functors:

0 → TrD′(P ) → TrD+D′(P ) → TrD(P ) → 0.

Therefore by Waldhausen’s additivity theorem, [41, Proposition 1.3.2(4)], we conclude 
that TrD+D′ = TrD + TrD′ . �
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Example 3.10. Equivariant Suslin homology. For n ∈ N, the algebraic n-simplex Δn is

Δn := Spec
(
k[t0, · · · , tn]
(
∑

i ti − 1)

)

and Δ• = {Δn}n≥0 is a cosimplicial scheme with face and degeneracy maps given by:

∂r(tj) =

⎧⎪⎨
⎪⎩

tj if j < r

0 if j = r

tj−1 if j > r

δr(tj) =

⎧⎪⎨
⎪⎩

tj if j < r

tj + tj+1 if j = r

tj+1 if j > r.

We view Δ• as a cosimplicial G-scheme with trivial G-action.
For a smooth morphism f : X → S, let C0(X/S) ⊆ Cork(S, X) denote the group of 

cycles on X which are finite and surjective over a component of S. If X, S ∈ SchG
k and f

is G-equivariant, then C0(X/S) is a G-invariant subset of Cork(S, X). We let C•(X/S)G
denote the chain complex associated to the simplicial abelian group n �→ Cn(X/S)G, 
where Cn(X/S) := C0(X × Δn/S × Δn).

Definition 3.11. The nth equivariant Suslin homology of X/S is defined as the nth ho-
mology group of the complex of abelian groups C•(X/S)G:

HSus
n (G;X/S) := HnC•(X/S)G.

For a smooth G-scheme X over k, let Ztr,G(X) denote the presheaf with equivari-
ant transfers given by the representable functors Ztr,G(X)(U) := C0(X × U/U)G =
CorGk (U, X) for each U ∈ SmG

k . When G is trivial, this is the same as the presheaf 
cequi(X/ Spec(k), 0) studied in [38, Section 5.3]. Similarly for each n, the presheaf 
U �→ HSus

n (G; X × U/U) is a homotopy invariant presheaf with equivariant transfers. 
Therefore this defines a family of homotopy invariant equivariant pseudo pretheories.

Lemma 3.12. Let F be a homotopy invariant equivariant pseudo pretheory on SmG
k . Let S

be an equivariantly irreducible smooth semilocal G-scheme and X/S be a relative smooth 
affine curve. Let D and D′ be effective equivariant Cartier divisors on X which are 
finite and surjective over S. If the image of (D − D′) in HSus

0 (G; X/S) vanishes, then 
TrD = TrD′ . Here TrD and TrD′ denote the transfer maps associated to D and D′, 
respectively.

Proof. The proof follows as in [14, Lemma 6.3]. �
Example 3.13. KG

0 -presheaves. The notion of K0-presheaves was introduced and studied 
by Walker in [42] (see also [34, Section 1]). Homotopy invariant K0-presheaves satisfy 
many properties enjoyed by presheaves with transfers. An equivariant generalization of 
this notion was developed in [13, Section 6.2]. We briefly recall the definition here.
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For X, Y ∈ SchG
k , let PG(X, Y ) denote the category of coherent G-modules on 

X × Y which are flat over X and whose support is finite over X. This is an ex-
act subcategory of the abelian category of coherent G-modules on X × Y . Define 
KG

0 (X, Y ) := K0(PG(X, Y )). Given X, Y, Z ∈ SmG
k , we have a natural biexact bifunctor 

PG(X, Y ) ×PG(Y, Z) → PG(X, Z) given by (P, Q) �→ (pXZ)∗(p∗XY (P ) ⊗p∗Y Z(Q)), where 
the tensor product is taken over OX×Y×Z . Thus we get a natural composition pairing 
of exact categories ◦ : KG

0 (X, Y ) × KG
0 (Y, Z) → KG

0 (X, Z) and all these composition 
laws are associative. This allows us to define an additive category K0(SmG

k ) by taking 
the objects of SmG

k to be the objects and defining HomK0(SmG
k )(X, Y ) = KG

0 (X, Y ). 
A KG

0 -presheaf is an additive presheaf of abelian groups on the category K0(SmG
k ). 

Equivariant algebraic K-theory KG
i (−) is a KG

0 -presheaf for all i; therefore, Example 3.7
is a special case of this one.

There is a functor SmG
k → K0(SmG

k ) which is the identity on objects and sends a 
morphism q : X → Y to the structure sheaf OΓq

of the graph Γq ⊆ X×Y . In particular, 
a KG

0 -presheaf is also a presheaf on SmG
k and we discuss below that it is in fact an 

equivariant pseudo pretheory.
Given an equivariant relative smooth affine curve p : X → S and an effective equiv-

ariant Cartier divisor iD : D ↪→ X which is finite and surjective over S, the map 
pD := p|D : D → S is a finite and flat equivariant map. Let Γt

pD
⊆ S × D de-

note the transpose of the graph of pD and let OΓt
pD

denote its structure sheaf. Then 

F t
D := (IdS × iD)∗(OΓt

pD
) ∈ PG(S, X). Define TrD : F (X) → F (S) to be F (F t

D). Then 
the transfer maps TrD are clearly compatible with pullbacks and sections. If D and D′

are as in Lemma 3.8, then the exact sequence (3.9) gives an exact sequence of coherent 
sheaves in PG(S, X):

0 → F t
D′ → F t

D+D′ → F t
D → 0.

Using the additivity in KG
0 (S, X), it follows that TrD+D′ = TrD + TrD′ .

Example 3.14. Bredon motivic cohomology. Bredon motivic cohomology introduced 
in [14, Section 5] and further studied in [15] (for smooth varieties equipped with 
Z/2Z-action) is an equivariant generalization of motivic cohomology for finite group 
actions.

For a smooth G-scheme X over k, recall that Ztr,G(X) denotes the presheaf with 
equivariant transfers given by Ztr,G(X)(−) := CorGk (−, X). If F is a presheaf of abelian 
groups on SmG

k , write C∗F (X) for the cochain complex associated to the simplicial 
abelian group F (X × Δ•). For a finite dimensional representation V of G, let ZG(V )
denote the complex of presheaves with equivariant transfers given by:

ZG(V ) := C∗(Ztr,G(P(V ⊕ 1))/Ztr,G(P(V )))[−2 dim(V )].

The Bredon motivic cohomology of a smooth G-variety X is defined to be the equivariant 
Nisnevich hypercohomology with coefficients in ZG(V ):
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Hn
G(X,Z(V )) := Hn

GNis(X,ZG(V )).

(See Section 4.1 for the definition of the equivariant Nisnevich site.)
The fact that Bredon motivic cohomology define presheaves with equivariant transfers 

follows from [39, Proposition 3.1.9] in the case of a trivial group and is proved in 
[15, Corollary 3.8] for Z/2Z. The case of finite groups follows verbatim from the fact 
that smooth G-schemes have finite equivariant Nisnevich cohomological dimension [14, 
Corollary 3.9] and [14, Theorem 4.15(3)]. Therefore Bredon motivic cohomology define 
equivariant pseudo pretheories.

4. Equivariant Nisnevich topology and compactifications

In this section we discuss the notions of equivariant Nisnevich topology and equivariant 
good compactification of equivariant smooth relative curves. We establish some of their 
properties which are needed in the proofs of our rigidity theorems.

4.1. Equivariant Nisnevich topology

We recall briefly the equivariant Nisnevich topology on SmG
k for finite groups, first 

introduced by Voevodsky in [5, Section 3.1].

Definition 4.1. A distinguished square in SchG
k is a cartesian square

B Y

p

A
j

X,

(4.2)

where j is an equivariant open immersion, p an equivariant étale morphism, and the 
induced map (Y � B)red → (X � A)red is an isomorphism. The collection of distin-
guished squares forms a cd-structure in the sense of [40, Definition 2.1]. The associated 
Grothendieck topology is called the equivariant Nisnevich topology. We write (SmG

k )GNis

(resp. (SchG
k )GNis) for the respective sites of smooth G-schemes and G-schemes equipped 

with the equivariant Nisnevich topology.

Equivariant Nisnevich covers admit the following equivalent characterizations (see [13, 
Propositions 2.15, 2.17]).

Proposition 4.3. Let f : Y → X be an equivariant étale map between G-schemes. The 
following are equivalent.

(1) The map f is an equivariant Nisnevich cover.
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(2) There exists a sequence of invariant closed subschemes

∅ = Zm+1 ⊆ Zm ⊆ · · · ⊆ Z1 ⊆ Z0 = X

such that f |f−1(Zi−Zi+1) : f−1(Zi − Zi+1) → Zi − Zi+1 has an equivariant section.
(3) For every x ∈ X, there exists a point y ∈ Y such that f induces isomorphisms of 

residue fields k(x) ∼= k(y) and set-theoretic stabilizers Gy
∼= Gx.

Let X ∈ SchG
k and suppose x ∈ X has an invariant open affine neighborhood. Then the 

semilocal ring OX,Gx has a natural G-action which induces a G-action on the Henselian 
semilocal ring Oh

X,Gx with a single closed orbit. Any semilocal Henselian affine G-scheme 
over k with a single orbit is equivariantly isomorphic to Spec(Oh

Y,Gy) for some affine 
G-scheme Y and y ∈ Y .

For X ∈ SchG
k and any x ∈ X, let NG(Gx) denote the filtering category of equiv-

ariant étale neighborhoods of Gx. Its objects are pairs (p : U → X, s), where U is an 
equivariantly irreducible G-scheme, p is an equivariant étale map, and s : Gx → U is 
an equivariant section of p over Gx. A morphism from (U → X, s) to (V → X, s′) in 
NG(Gx) is a map f : U → V making the evident triangles commute. Although x ∈ X

might not be contained in any G-invariant affine neighborhood, it makes sense to consider 
G ×Gx Spec(Oh

X,x) and according to [14, Proposition 3.13] we have:

lim
U∈NG(Gx)

U ∼= Spec(Oh
G×GxX,Gx) ∼= G×Gx Spec(Oh

X,x). (4.4)

Further if x ∈ X has an invariant affine neighborhood then there is a canonical 
G-isomorphism

G×Gx Spec(Oh
X,x)

∼=−→ Spec(Oh
X,Gx). (4.5)

For a Nisnevich sheaf F on SmG
k , X ∈ SmG

k , and x ∈ X, we set

p∗xF := F (Spec(Oh
G×GxX,Gx)) = colim

U∈NG(Gx)
F (U).

Then p∗x defines a fiber functor from the category of sheaves to sets, i.e., it commutes with 
colimits and finite products and so determines a point of the G-equivariant Nisnevich 
topos. It is known that the set of points {p∗x|x ∈ X, X ∈ SmG

k } forms a conservative set 
of points for (SmG

k )GNis (see [14, Theorem 3.14]).

4.2. Suslin homology of equivariant curves

An equivariant map p : X → S is an equivariant curve if all of its fibers have dimension 
one.
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Definition 4.6. Say that a smooth equivariant curve p : X → S admits a good compacti-
fication if p factors as

X
j

p

X

p

S,

where X is normal, p is a proper equivariant curve, j is an equivariant open embedding, 
and X∞ = (X �X)red has an invariant open affine neighborhood in X.

The following lemma about base change is straightforward to verify.

Lemma 4.7. Let X → S be an equivariant smooth curve and S′ → S be an equivariant 
map, where S, S′ are affine G-schemes (smooth or a local or semilocal G-scheme which 
is a limit of smooth G-schemes). If X → S admits an equivariant good compactification, 
then the smooth equivariant curve X ′ = X ×S S′ → S′ also admits an equivariant good 
compactification.

If S is affine and X → S is an equivariant smooth quasi-affine curve with equivariant 
good compactification X and X∞ = (X �X)red, then the equivariant Suslin homology 
of X/S can be interpreted in terms of relative equivariant Cartier divisors (see [35, The-
orem 3.1] when G is trivial, and [14, Theorem 6.12] for an extension to the equivariant 
case):

HSus
n (G;X/S) ∼=

{
DivG

rat(X,X∞) n = 0
0 n > 0.

(4.8)

Lemma 4.9. Let S = limα∈A Sα be a cofiltered limit where the Sα are quasi-projective 
G-schemes over k and the transition maps are equivariant and affine. If f : X → S is a 
finite type equivariant map, then there is λ, a finite type G-scheme Xλ over k, and an 
equivariant map fλ : Xλ → Sλ fitting into a Cartesian square

X

f

Xλ

fλ

S Sλ.

Moreover if f is satisfies any of the properties: (i) affine, (ii) open, (iii) smooth, 
(iv) proper, then fλ can be chosen to have the same properties.
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Proof. Let Tα = Sα/G and T = limα Tα. By [10, Théorème 8.8.2] there is β and a 
map of finite type Tβ-schemes fβ : Xβ → Sβ such that X ∼= Xβ ×Sβ

S and under 
this isomorphism f is the pullback of fβ. Moreover if f satisfies some of the proper-
ties (i)–(iv), then fβ can be chosen to satisfy the same properties [10, Théorème 8.10.5], 
[11, Proposition 17.7.8]. For α ≥ β, set Xα = Xβ ×Sβ

Sα. We have that AutT (X) ∼=
colimα AutTα

(Xα). Since G is finite, the homomorphism G → AutT (X) factors through 
some AutTλ

(Xλ), i.e., we may choose Xλ to have a G-action. Increasing λ we can further 
assume that fλ is equivariant. �
Lemma 4.10. Let S = limα∈A Sα be a cofiltered limit where Sα ∈ SmG

k are affine and the 
transition maps are equivariant étale. Let X → S be a smooth equivariant affine curve 
admitting good compactification.

(1) HSus
n (G; X/S) ∼= colimβ HSus

n (G; Xβ/Sβ) where Xβ → Sβ are smooth equivariant 
curves with good compactification.

(2) HSus
0 (G; X/S) ∼= DivG

rat(X, X∞) and HSus
i (G; X/S) = 0 for i > 0.

Proof. Let X ⊆ X be an equivariant good compactification. By the previous lemma, 
there is a smooth, affine, equivariant map Xα → Sα, with equivariant compactification 
Xα → Sα with Xα � Xα has an affine neighborhood, such that X ∼= Xα ×Sα

S and 
X ∼= Xα ×Sα

S. For any generic point η′ ∈ Xα lying over a generic point η ∈ Sα, 
we have dim(OXα,η′) = dim(OSα,η) + 1. Thus there is an open subset of U ⊆ Sα over 
which the fibers of Xα, Xα are one dimensional. Since U contains the image of S in Sα, 
there is λ ≥ α such that Xλ and Xλ are equivariant curves over Sλ, where Xβ =
Xα ×Sα

Sβ for β ≥ α and similarly for Xβ . Replacing Xλ by its normalization, we see 
that Xλ → Sλ admits good compactification. We thus have that X → S is isomorphic 
to the cofiltered limit limβ≥λ(Xβ → Sβ) of smooth affine equivariant curves admitting 
good compactification. Moreover, we have colimβ Cn(Xβ/Sβ) ∼= Cn(X/S) and taking 
fixed points and homology commutes with filtered colimits, yielding (1).

Write X → S as a filtered limit limβ∈B(Xβ → Sβ) of equivariant curves with 
good compactification. Moreover we can assume B has a minimal element 0 and 
Xβ = X0 ×S0 Sβ is a good compactification of Xβ . Write Yβ = Xβ � Xβ . Under 
the isomorphism (4.8), the map HSus

0 (G; Xβ/Sβ) → HSus
0 (G; Xα/Sα) agrees with the 

map DivG
rat(Xβ , Yβ) → DivG

rat(Xα, Yα) and so HSus
n (G; X/S) ∼= colimβ DivG

rat(Xβ , Yβ). 
Finally, note that colimβ DivG

rat(Xβ , Yβ) ∼= DivG
rat(X, X∞). �

Corollary 4.11. Let F be a homotopy invariant equivariant pseudo pretheory on SmG
k and 

X → S as in the statement of the previous lemma. Then there is a pairing of abelian 
groups

HSus
0 (G;X/S) ⊗ F (X) → F (S).



388 J. Heller et al. / Journal of Algebra 516 (2018) 373–395
Proposition 4.12. Let S = Spec(Oh
W,Gw) be the Henselization of a smooth affine 

G-scheme W at an orbit Gw. Let p : X → S be a smooth equivariant affine curve 
with an equivariant good compactification. Let X0 → S0 be the fiber over the closed orbit 
S0 in S. Then for any n coprime to char(k), restriction induces an injection

HSus
0 (G;X/S)/n ↪→ HSus

0 (G;X0/S0)/n.

Proof. Let X be the equivariant good compactification of X over S such that Y =
(X � X)red has an invariant open neighborhood in X. By Lemma 4.10(2) and [14, 
Proposition 6.8] it suffices to show that the restriction PicG(X, Y )/n → PicG(X0, Y0)/n
is injective. This follows as in the proof of [35, Theorem 4.3], by replacing étale coho-
mology with H∗

et(G; −) and classical proper base change with Theorem 2.8. �

5. Rigidity for equivariant pseudo pretheories

In this section we establish versions of the rigidity theorems of Suslin [33], Gabber [8], 
and Gillet and Thomason [12] in the setting of equivariant pseudo pretheories.

Theorem 5.1 (Equivariant Suslin rigidity). Let F be a homotopy invariant equivariant 
pseudo pretheory on SmG

k which takes values in torsion abelian groups of exponent co-
prime to char(k). Let S = Spec(Oh

W,Gw) be the Henselization of a smooth affine G-scheme 
W at a closed orbit, and X → S a smooth affine equivariant curve admitting good com-
pactification. If i1, i2 : S → X are two equivariant sections which coincide on the closed 
orbit of S, then i∗1 = i∗2 : F (X) → F (S).

Proof. For any n, Fn = ker(n : F → F ) is again a homotopy invariant equivariant 
pseudo pretheory and F = ∪nFn. Thus it suffices to consider the case when nF = 0. We 
may assume that X is equivariantly irreducible. The images of the sections ij are closed 
subschemes Wj ⊆ X which are elements of C0(X/S)G. By definition we have i∗j = TrWj

. 
By Lemma 3.12 it suffices to show that W1 − W2 becomes zero in HSus

0 (G; X/S)/n. 
Proposition 4.12 shows that there is an injection HSus

0 (G; X/S)/n ↪→ HSus
0 (G; X0/S0)/n, 

where X0 is the fiber over the closed orbit S0 of S. Since i1 and i2 coincide on the closed 
orbit, we conclude that W1 −W2 is zero in HSus

0 (G; X/S)/n. �
Recall that we write R �G for the skew group ring.

Lemma 5.2. Let X → Z be a map in SmG
k , with X affine, Z = Spec(L) where L is a field, 

and x ∈ X an invariant closed point such that k(x) ∼= L. Then there is a commutative 
diagram in SmG

k
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X
φ

V

Z,

where V is an equivariant vector bundle over Z, φ is étale at x, and φ(x) = 0.

Proof. Write X = Spec(A) and m ⊆ A for the maximal ideal corresponding to x. Since 
|G| is invertible in L, the surjection of L � G-modules m → m/m2 has a splitting. The 
resulting map of L � G-modules m/m2 → m ⊆ A induces the equivariant ring map 
Sym(m/m2) → A. Applying Spec yields the desired map. �
Lemma 5.3. Let x ∈ X be an invariant closed point, X → Spec(L), and V be as in 
the previous lemma. Assume that there is an equivariant vector bundle isomorphism 
V ∼= W ⊕ V ′, where W has rank dim(X) − 1, and let p : X → W be the resulting 
map. Then there are invariant open affine neighborhoods U ⊆ X and S ⊆ W of x and 
0 respectively, such that p induces a smooth equivariant curve U → S admitting good 
compactification.

Proof. First consider the case where X ⊆ V is an invariant open subscheme with closure 
X = W × P(V ′ ⊕ OL). For any a ∈ X, the fiber of Xp(a) has dimension one and so 
(X \X)p(a) must be finite over p(a) (where X \X is considered as a closed subscheme 
with reduced structure). Since X is projective over an affine scheme, there is an invariant 
affine neighborhood A ⊆ X of the finite set of closed points (X \ X)0. Then Z =
(X �X) � ((X �X) ∩A) is closed in X and so has closed image in W. Now let S ⊆ W
be an invariant affine neighborhood of 0 which misses the image of Z and is contained 
in p(X) (we can find an affine neighborhood with these properties and the intersection 
over all the translates by g ∈ G is an invariant neighborhood). Now let U = XS and 
U ′ = XS . Then U ′�U has an invariant affine neighborhood. Let U be the normalization 
of U ′. Then U inherits a G-action from that on U ′ and contains U as an invariant open 
subscheme. Since U → U ′ is finite, U�U is contained in an invariant affine neighborhood. 
Now U → S is a smooth equivariant curve with good compactification U .

In the general case, since φ : X → V is étale at x, there is an open invariant affine 
neighborhood on which φ is étale, so shrinking X, we may assume φ is étale. By the 
previous paragraph, there are invariant affine neighborhoods M ⊆ φ(X) of 0 and S ⊆ W
such that M → S is an equivariant smooth affine curve with good compactification M . 
Then U := φ−1(M) → M is equivariant and quasi-finite and so the equivariant version 
of Zariski’s main theorem (see [20, Theorem 16.5]) yields an equivariant factorization of 
U → M as the composition of an invariant open immersion U ↪→ U and an equivariant 
finite map q : U → M . Replacing U by its normalization, we may assume U is normal. 
Since M is an equivariant good compactification of M over S and q is affine, it follows 
that U is an equivariant good compactification of U over S. �
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Theorem 5.4 (Equivariant Gabber rigidity). Assume that every G-representation over 
k is a direct sum of one dimensional representations. Let F be a homotopy invariant 
equivariant pseudo pretheory on SmG

k with torsion values of exponent coprime to char(k). 
If X is a smooth affine G-scheme over k of pure dimension d and x ∈ X is a closed 
point such that k ⊆ k(x) is separable, then there is an isomorphism:

F (Gx)
∼=−→ F (Spec(Oh

X,Gx)).

Proof. We proceed by induction on d = dim(X), the case d = 0 being clear. By (4.5), 
there is an equivariant isomorphism

G×Gx Spec(Oh
X,x)

∼=→ Spec(Oh
X,Gx).

Thus we are reduced to showing there is an isomorphism

ε∗F (Spec(k(x)))
∼=→ε∗F (Spec(Oh

X,x)),

where ε(−) = G ×Gx (−) and ε∗F := F ◦ ε. Note that ε∗F is a homotopy invariant 
equivariant pseudo pretheory on SmGx

k which is torsion of exponent coprime to char(k). 
Replacing G by Gx and F by ε∗F it suffices to consider the case where Gx consists of a 
single point.

The projection Xx → X sends equivariant étale neighborhoods of x ∈ Xx to equiv-
ariant étale neighborhoods of x ∈ X. If U → X is an equivariant étale neighborhood of 
x ∈ X, then Ux → X is an equivariant étale neighborhood of x ∈ X mapping to U . This 
implies that Spec(Oh

Xx,x
) ∼= Spec(Oh

X,x) and so we may replace X with Xx and assume 
there is an equivariant map X → Spec(L), where L = k(x) (equipped with the corre-
sponding G-action). Furthermore, by Lemma 5.2 there is an equivariant vector bundle V
over Spec(L) such that Oh

X,x
∼= Oh

V,0 and so it suffices to assume X = V and x = 0L ∈ V.
The assumption on G implies that there is a representation V ′ over k and an equiv-

ariant isomorphism V ∼= A(V ′)L, see e.g., the beginning of the proof of [14, Theo-
rem 8.11]. In particular, V is a direct sum of equivariant line bundles. Let i : W ⊆ V
be a rank d − 1 summand. It now suffices to see that i∗ induces an isomorphism 
F (Spec(Oh

V,0)) ∼= F (Spec(Oh
W,0)), since 0L ∈ W and the induction hypothesis implies 

that F (W) ∼= F (0L). The inclusion i is split by the projection p : V → W, so it suffices 
to see that i∗ is injective.

Suppose that [α] ∈ F (Spec(Oh
V,0)) is such that i∗([α]) = 0. By definition 

F (Spec(Oh
V,0)) = colimU→V F (U), where the colimit is over equivariant étale neigh-

borhoods of 0L ∈ V. Thus, there is a representative α ∈ F (U) of [α] where U → V is 
an affine equivariant étale neighborhood of 0L. There is a canonical equivariant map 
π : Spec(Oh

V,0) → U .
After shrinking U , there is a smooth affine equivariant curve U → Y , admitting a 

good compactification, by Lemma 5.3, where Y ⊆ W is an invariant neighborhood of 0. 
Consider the following commutative diagram of equivariant maps:
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Spec(Oh
V,0)

si
ji

id
Ũ

q2

q1

U

Spec(Oh
V,0)

p
Spec(Oh

W,0) Y,

where the rectangle is a pullback. By Lemma 4.7, Ũ → Spec(Oh
V,0) is a smooth affine 

equivariant curve admitting good compactification. The maps s1 := π and s2 := π ◦ i ◦ p
induce equivariant sections j1, j2 : Spec(Oh

V,0) → Ũ of q1. The sections j1, j2 agree on the 
closed orbit by construction and therefore j∗1 = j∗2 by Theorem 5.1. Thus [α] = π∗α =
p∗i∗π∗α = 0. �
6. On the equivariant Gersten resolution

For an affine G-scheme X ∈ SchG
k , let MG(X) denote the abelian category of 

G-equivariant coherent OX-modules. For p ≥ 0, let MG,p(X) ⊂ MG(X) denote the 
Serre subcategory of coherent sheaves F whose support is a subscheme of codimension 
≥ p in X. Since F is equivariant, the support is an invariant closed subscheme of X. Let 
SG,p(X) denote the set of all distinct set-theoretic G-orbits [x] in X of codimension p
points x of X. Consider the filtration of MG(X) by Serre subcategories

MG(X) = MG,0(X) ⊃ MG,1(X) ⊃ MG,2(X) ⊃ · · · ⊃ MG,p(X) · · · .

Since the natural exact functor MG,p(X) →
∐

[x]∈SG,p(X)

⋃
n
MG(Spec(OX,Gx/J

n
Gx)) has 

kernel MG,p+1(X) and admits a section functor, by [7, Proposition III.2.5] we have an 
equivalence of categories:

MG,p(X)
MG,p+1(X)


−→
∐

[x]∈SG,p(X)

⋃
n

MG(Spec(OX,Gx/J
n
Gx)),

where JGx denotes the Jacobson radical of the semilocal ring OX,Gx. The Devissage the-
orem [27, Theorem 4], the Chinese remainder theorem and the equivalence of equivariant 
K-theory and G-theory for regular G-schemes [37, Theorem 5.7] imply that

KG
q (

∐
y∈[x]

Spec(k(y))) � GG
q (

∐
y∈[x]

Spec(k(y))) � Kq(MG(Spec(OX,Gx/J
n
Gx))),

for every n. This yields an isomorphism for the union along all n. Further for any x ∈ X, 
we have the Morita isomorphism [37, Proposition 6.3]
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KG
q (

∐
y∈[x]

Spec(k(y))) � KGx
q (Spec(k(x))).

Combining the above and by [27, Theorem 5], for each p ≥ 0 there is a localization 
sequence

· · · → Ki(MG,p+1(X)) → Ki(MG,p(X)) →
∐

[x]∈SG,p(X)
KGx

i (Spec(k(x))) →

Ki−1(MG,p+1(X)) → · · · .

The above gives rise to a strongly convergent spectral sequence

Ep,q
1 =

∐
[x]∈SG,p(X)

KGx
−p−q(Spec(k(x))) ⇒ GG

−p−q(X).

For X ∈ SmG
k , the spectral sequence yields a sequence of abelian groups

0 −→ KG
n (X) −→

∐
[x]∈SG,0(X)

KGx
n (Spec(k(x))) d1−−→

∐
[x]∈SG,1(X)

KGx
n−1(Spec(k(x))) d1−−→

∐
[x]∈SG,2(X)

KGx
n−2(Spec(k(x))) d1−−→ · · · ,

(6.1)

where d1 is the differential on the E1-terms of the spectral sequence.
The Gersten conjecture states that (6.1) is exact if G is trivial and X = Spec(R), 

where R is a regular local ring. This is known for regular local rings containing a field, 
the geometric case was proved by Quillen [27, Theorem 5.11] and the general equichar-
acteristic case was proved by Sherman [32] in the 1-dimensional case and Panin [25] for 
higher dimensions. If X is a regular local ring containing a field with a trivial G-action, 
where G is a finite diagonalizable group, then the Gersten sequence (6.1) is simply the 
tensor product of the non-equivariant Gersten sequence with the group ring Z[G] (by [31, 
Section 3.4]), and is therefore exact. If the action of G is non-trivial, we discuss in Ex-
ample 6.2 below that the sequence (6.1) need not be exact even for n = 0.

Example 6.2. Let G = Z/2Z act on X = A1
k = Spec(k[t]) via the map t �→ −t. For 

the closed point x = (t) ∈ A1
k the Henselization Oh

X,x is the ring of algebraic formal 
power series in t over k. We compute the G-equivariant K0 with mod-l coefficients of 
A1

(x) := Spec(OX,Gx), Spec(Oh
X,Gx), the orbit Gx, and the generic point η ∈ X.

By [37, Proposition 6.2] there is an isomorphism

KG
0 (Gx)

∼=−→ KGx
0 (Spec(k)),

where the set-theoretic stabilizer Gx of x is equal to G = Z/2Z. We have

KG
0 (Spec(k); l) ∼= KG

0 (Spec(k)) ⊗Z/lZ ∼= Z/lZ⊕Z/lZ.
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Thus for a field k of characteristic coprime to 2, l, Theorem 5.4 implies

KG
0 (Spec(Oh

X,Gx); l) ∼= KG
0 (Gx; l) ∼= Z/lZ⊕Z/lZ.

The natural map π : A1
(x) → Spec(k) affords a G-equivariant factorization:

A1
(x)

π

j

Spec(k)

A1
k.

π1

Here j∗ : KG
0 (A1

k) → KG
0 (A1

(x)) is surjective by the localization exact sequence, and 
π∗

1 : KG
0 (Spec(k)) → KG

0 (A1
k) is an isomorphism [37, Theorems 2.7, 5.7, 4.1]. It follows 

that π∗ : KG
0 (Spec(k)) → KG

0 (A1
(x)) is surjective. Since π : A1

x → Spec(k) has an 
equivariant section given by t �→ 0, π∗ : KG

0 (Spec(k)) → KG
0 (A1

(x)) is also injective. 
Therefore KG

0 (A1
(x); l) ∼= KG

0 (Spec(k); l) ∼= Z/lZ ⊕Z/lZ.
For the generic point η = Spec(k(t)), note that the G-action on k(t) is free and k(t)G =

k(t2). Therefore, KG
0 (η; l) ∼= K0(k(t2)) ⊗Z/lZ ∼= Z/lZ so that KG

0 (A1
(x); l) � KG

0 (η; l).

Remark 6.3. As pointed out by the referee, the Gersten complex for A1
(x) with action of 

the group G = Z/2Z given by t �→ −t as in the above example can be analyzed using the 
localization sequence as follows. Under the notations of Example 6.2, we get an exact 
sequence:

· · · → KG
1 (Spec(k(t)) ∂−→ KG

0 (Spec(k)) x∗−−→ KG
0 (A1

(x))
η∗

−−→ KG
0 (Spec(k(t))).

Now the closed point x ∈ A1
(x) can be seen as the zero set of the diagonal section of the 

line bundle L = A1
(x) × A1

k → A1
(x), where A1

k has the above non-trivial G-action. By 
a variant of the excess intersection formula for equivariant K-theory [18, Theorem 3.8], 
x∗(1) = 1 − [L], and this class is non-zero in KG

0 (A1
(x)). Thus η∗ is not injective. The 

above considerations give the geometric reason for this: as soon as the top Chern class 
(in equivariant K-theory of the point) of the normal bundle is non-trivial, then x∗ is 
non-zero and η∗ is not injective. In the cases considered in other articles, the normal 
bundle has trivial action, so the top Chern class is zero and the map η∗ is injective.

The rigidity property and the exactness of the Gersten sequence (6.1) are two impor-
tant properties of algebraic K-theory of semilocal rings. In Example 3.7 and Theorem 5.4, 
we prove the rigidity theorem for equivariant K-theory of schemes with finite group ac-
tions. Example 6.2 (see also [24, Section 5.3]) shows that the Gersten sequence is not 
exact for equivariant K-theory of semilocal rings with non-trivial Z/2Z-actions. In this 
respect the cases of trivial and non-trivial actions are very different.
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