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We relativize the notion of a compact object in an abelian 
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that the standard closure properties persist to hold in this 
case. Furthermore, we describe categorical and set-theoretical 
conditions under which all products of compact objects remain 
compact.
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1. Introduction

An object C of an abelian category A closed under coproducts is said to be compact
if the covariant functor A(C, −) commutes with all coproducts, i.e. there is a canonical 
isomorphism between A(C, 

⊕
D) and 

⊕
A(C, D) in the category of abelian groups for 

every system of objects D. The foundations for a systematic study of compact objects 
in the context of module categories were laid in 60’s by Hyman Bass [1, p. 54]. The 
introductory work on the theory of dually slender modules goes back to Rudolf Rentschler 
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[13] and further research of compact objects has been motivated by progress in various 
branches of algebra such as the theory of representable equivalences of module categories 
[2,3], the structure theory of graded rings [9], and almost free modules [14].

From the categorically dual point of view discussed in [7], commutativity of the con-
travariant functor on full module categories behaves a little bit differently. The equivalent 
characterizations of compactness split in this dual case into a hierarchy of strict impli-
cations dependent on the cardinality of commuting families. The strongest hypothesis 
assumes arbitrary cardinalities and it leads to the class of so called slim modules (also 
known as strongly slender), which is a subclass of the most general class of ℵ1-slim mod-
ules (also called as slender), which involves only commutativity with countable families. 
It is proved in [7] that the cardinality of a non-zero slim module is greater than or equal 
to any measurable cardinal (and the presence of such cardinality is also a sufficient con-
dition for existence of a non-zero slim module) and that the class of slim modules is 
closed under coproducts. Thus, the absence of a measurable cardinal ensures that there 
is at least one non-zero slim module and in fact, abundance of them. On the other hand, 
if there is a proper class of measurable cardinals then there is no such object like a non-
zero slim module. This motivated the question in the dual setting, namely if the class 
of compact objects in full module categories (termed also as dually slender modules) is 
closed under products. Offering no surprise, set-theoretical assumptions have helped to 
establish the conclusion also in this case.

The main objective of this paper is to refine several results on compactness. The 
obtained improvement comes from transferring behavior of modules to the context of 
general abelian categories. In particular we provide a generalized description of classes 
of compact objects closed under products that was initially exposed for dually slender 
modules in [10]. Our main result shows that the class of all C-compact objects of a 
reasonably generated category is closed under suitable set-theoretical assumption:

Theorem 4.4. Let A be a 
∏

C-compactly generated category, M a family of C-compact 
objects of A. If we assume that there is no strongly inaccessible cardinal, then every 
product of C-compact objects is C-compact.

Note that this outcome is essentially based on the characterization of non-C-compact-
ness formulated in Theorem 2.5. Dually slender and self-small modules (which may be 
identically translated as self-dually slender) form naturally available instances of com-
pact and self-compact objects (see e.g. [5] and [4]). For unexplained terminology we refer 
to [8,12].

2. Compact objects in abelian categories

Let us recall basic categorical notions. A category with a zero object is called additive
if for every finite system of objects there exist the product and coproduct which are 
canonically isomorphic, every Hom-set has a structure of abelian groups and the compo-
sition of morphisms is bilinear. An additive category is abelian if there exist a kernel and 



P. Kálnai, J. Žemlička / Journal of Algebra 534 (2019) 273–288 275
a cokernel for each morphism, monomorphisms are exactly kernels of some morphisms 
and epimorphisms are cokernels. A category is said to be complete (cocomplete) when-
ever it has all limits (colimits) of small diagrams. Finally, a cocomplete abelian category 
where all filtered colimits of exact sequences preserve exactness is Ab5. For further details 
on abelian category see e.g. [12].

From now on, we suppose that A is an abelian category closed under arbitrary co-
products and products. We shall use the terms family or system for any discrete diagram, 
which can be formally described as a mapping from a set of indices to a set of objects. As-
sume M is a family of objects in A. Throughout the paper, the corresponding coproduct 
is designated (

⊕
M, (νM | M ∈ M)) and the product (

∏
M, (πM | M ∈ M)). We call 

νM and πM as the structural morphisms of the coproduct and the product, respectively.
Suppose that N is a subfamily of M. We call the coproduct (

⊕
N , (νN | N ∈ N )) in 

A as the subcoproduct and dually the product (
∏

N , (πN | N ∈ N )) as the subproduct. 
Note that there exist the unique canonical morphisms νN ∈ A (

⊕
N ,

⊕
M) and πN ∈

A (
∏

M,
∏

N ) given by the universal property of the colimit 
⊕

N and the limit 
∏

N
satisfying νN = νN ◦ νN and πN = πN ◦ πN for each N ∈ N , to which we refer as the 
structural morphisms of the subcoproduct and the subproduct over a subfamily N of 
M, respectively. The symbol 1M is used for the identity morphism of an object M .

We start with formulation of two introductory lemmas which collects several basic 
but important properties of the category A. The lemmas express relations between the 
coproduct and product over a family using their structural morphisms.

Lemma 2.1. Let A be a complete abelian category, M a family of objects of A with all 
coproducts and N ⊆ M. Then

(i) There exist unique morphisms ρN ∈ A(
⊕

M, 
⊕

N ) and μN ∈ A(
∏

N , 
∏

M) such 
that ρN ◦ νM = νM , πM ◦ μN = νM if M ∈ N and ρN ◦ νM = 0, πM ◦ μN = 0 if 
M /∈ N .

(ii) For each M ∈ M there exist unique morphisms ρM ∈ A(
⊕

M, M) and μM ∈
A(M, 

∏
M) such that ρM ◦νM = 1M , πM ◦μM = 1M and ρM ◦νN = 0, πN ◦μM = 0

whenever N �= M . If ρM and μM denote the corresponding morphisms for M ∈ N , 
then μN ◦ μN = μN and ρN ◦ ρN = ρN for all N ∈ N .

(iii) There exists a unique morphism t ∈ A(
⊕

M, 
∏

M) such that πM ◦ t = ρM and 
t ◦ νM = μM for each M ∈ M.

Proof. (i) It suffices to prove the existence and uniqueness of ρN , the second claim has 
a dual proof.

Consider the diagram (M | M ∈ M) with morphisms (ν̃M | M ∈ M) ∈ A(M, 
⊕

N )
where ν̃M = νM for M ∈ N and ν̃M = 0 otherwise. Then the claim follows from the 
universal property of the coproduct (

⊕
M, (νM | M ∈ M)).

(ii) Note that for the choice N :=
⊕

(M) � M we have νM = 1M and the claim 
follows from (i).
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(iii) We obtain the requested morphism by the universal property of the product 
(
∏

M, (πM | M ∈ M)) applying on the cone (
⊕

M, (ρM | M ∈ M)) that is provided 
by (ii). Dually, there exists a unique t′ ∈ A(

⊕
M, 

∏
M) with t′ ◦ νM = μM . Then

πM ◦ (t ◦ νM ) = ρM ◦ νM = 1M = πM ◦ μM = πM ◦ (t′ ◦ νM ),

hence t ◦νM = μM by the uniqueness of the associated morphism μM and t = t′ because 
t′ is the only one satisfying the condition for all M ∈ M. �

We call the morphism ρN (μN ) from (i) as the associated morphism to the struc-
tural morphism νM (πM) over the subcoproduct (the subproduct) over N . For the 
special case in (ii), the morphisms ρM (μM ) from (ii) as the associated morphism to 
the structural morphism νM (πM ). Let the unique morphism t be called the compatible 
coproduct-to-product morphism over a family M. Note that this morphism need not be 
a monomorphism, but it is in case A is an Ab5-category [12, Chapter 2, Corollary 8.10]. 
Moreover, t is an isomorphism if the family M is finite.

Lemma 2.2. Let us use the notation from the previous lemma.

(i) For the subcoproduct over N , the composition of the structural morphism of the 
subcoproduct and its associated morphism is the identity. Dually for the subprod-
uct over N , the composition of the associated morphism of the subproduct and its 
structural morphism is the identity, i.e. ρN ◦ νN = 1⊕N and πN ◦ μN = 1∏N , 
respectively.

(ii) If t ∈ A (
⊕

N ,
∏

N ) and t ∈ A (
⊕

M,
∏

M) denote the compatible coproduct-
to-product morphisms over N and M respectively, then the following diagram 
commutes:

⊕
N

νN

t

⊕
M

ρN

t

⊕
N

t

∏
N

μN ∏
M

πN ∏
N

(iii) Let κ be an ordinal, (Nα | α < κ) be a disjoint partition of M and for α < κ

let Sα :=
⊕

Nα, Pα :=
∏

Nα. Denote the families of the limits and colimits like 
S := (Sα | α < κ), P := (Pα | α < κ). Then 

⊕
M �

⊕
S and 

∏
M �

∏
P

where both isomorphisms are canonical, i.e. for every object M ∈ M the diagrams 
commute:

M
νM

νM

Sα

νSα

⊕
M � ⊕

S

∏
P �

πPα

∏
M

πM

Pα

πM

M
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Proof. (i) The equality ρN ◦ νN = 1⊕N is implied by the uniqueness of the universal 
morphism and the equalities (ρN ◦ νN ) ◦ νN = ρN ◦ νN = νN and 1⊕N ◦ νN = νN for 
all N ∈ N . The equality πN ◦ μN = 1∏N is dual.

(ii) We need to show that t ◦νN = μN ◦ t. For all N ∈ N , (πN ◦t) ◦νN = ρN ◦νN = 1N
by Lemma 2.1(iii), (ii). But πN ◦ μN = 1N , hence μN = t ◦ νN by the uniqueness of μN . 
If μN ∈ A(N, 

∏
N ) denotes the unique homomorphism ensured by Lemma 2.1(ii), then 

the last argument proves that μN = t ◦ νN . Thus

(t ◦ νN ) ◦ νN = t ◦ (νN ◦ νN ) = t ◦ νN = μN = μN ◦ μN = μN ◦ (t ◦ νN ) =

= (μN ◦ t) ◦ νN

and the claim follows from the universal property of the coproduct (
⊕

N , (νN | N ∈ N )). 
The dual argument proves that πN ◦ t = t ◦ ρN .

(iii) A straightforward consequence of the universal properties of the coproducts and 
products. �

Let us suppose that M is an object in A and N is a system of objects of A. As 
the functor A(M, −) on any additive category maps into Hom-sets with a structure of 
abelian groups we can define a mapping

ΨN :
⊕

(A(M,N) | N ∈ N ) → A(M,
⊕

N )

in the following way:
For a family of mappings ϕ = (ϕN | N ∈ N ) from 

⊕
(A(M,N) | N ∈ N ) let us denote 

by F a finite subfamily such that ϕN = 0 whenever N /∈ F and let τ ∈ A(M, 
∏

N ) be the 
unique morphism given by the universal property of the product (

∏
N , (πN | N ∈ F))

applied on the cone (M, (ϕN | N ∈ N )), i.e. πN ◦ τ = ϕN for every N ∈ N . Then

ΨN (ϕ) = νF ◦ ν−1 ◦ πF ◦ τ

where ν ∈ A(
⊕

F , 
∏

F) denotes the canonical isomorphism.
Note that the definition ΨN (ϕ) does not depend on the choice of F . Recall an ele-

mentary observation which plays a key role in the definition of a compact object.

Lemma 2.3. The mapping ΨN is a monomorphism in the category of abelian groups for 
every family of objects N .

Proof. If ΨN (σ) = 0, then σ = (ρN ◦ σ)N = (0)N , hence kerΨN = 0. �
Applying the currently introduced categorical tools we are ready to present the central 

notion of the paper. Let C be a subclass of objects of A. An object M is said to be 
C-compact if ΨN is an isomorphism for every family N ⊆ C, M is compact in the 
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category A if it is Ao-compact for the class of all objects Ao, and M is self-compact if it 
is {M}-compact. Note that every object is {0}-compact.

First we formulate an elementary criterion of identifying C-compact object.

Lemma 2.4. If M is an object and C a class of objects in A, then the following are 
equivalent:

(1) M is C-compact,
(2) for every N ⊆ C and f ∈ A(M, 

⊕
N ) there exists a finite subsystem F ⊆ N and a 

morphism f ′ ∈ A(M, 
⊕

F) such that f = νF ◦ f ′,
(3) for every N ⊆ C and every f ∈ A(M, 

⊕
N ) there exists a finite subsystem F

contained in N such that f =
∑

F∈F
νF ◦ ρF ◦ f .

Proof. (1) → (2): Let N ⊆ C and f ∈ A(M, 
⊕

N ). Then there exists a ΨN -preimage ϕ
of f , hence there can be chosen a finite subsystem F ⊆ N such that

f = ΨN (ϕ) = νF ◦ ν−1 ◦ πF ◦ τ,

where we use the notation from the definition of the mapping ΨN . Now it remains to 
put f ′ = ρF ◦ f and utilize Lemma 2.1(ii) to verify that

νF ◦ f ′ = νF ◦ ρF ◦ f = νF ◦ ρF ◦ νF ◦ 1⊕F ◦ ν−1 ◦ πF ◦ τ = f.

(2) → (3): Since ρF ◦ νF = 1⊕F by Lemma 2.1(ii), we obtain that

νF ◦ ρF ◦ f = νF ◦ ρF ◦ νF ◦ f ′ = νF ◦ f ′ = f.

Moreover, νF ◦ ρF =
∑

F∈F
νF ◦ ρF , hence

f = νF ◦ ρF ◦ f =
∑
F∈F

νF ◦ ρF ◦ f.

(3) → (1): If we put ϕF := ρF ◦ f for F ∈ F and ϕN := 0 for N /∈ F and take 
ϕ := (ϕN | N ∈ N ), then it is easy to see that f = ΨN (ϕ) hence ΨN is surjective. �

Now, we can prove a characterization, which generalizes equivalent conditions well 
known for the categories of modules. Note that it will play similarly important role for 
categorical approach to compactness as in the special case of module categories.

Theorem 2.5. The following conditions are equivalent for an object M and a class of 
objects C:

(1) M is not C-compact,
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(2) there exists a countably infinite system Nω of objects from C and ϕ ∈ A(M, 
⊕

Nω)
such that ρN ◦ ϕ �= 0 for every N ∈ Nω,

(3) for every system G of C-compact objects and every epimorphism e ∈ A(
⊕

G, M)
there exists a countable subsystem Gω ⊆ G such that f c ◦ e ◦ νGω

�= 0 for the cokernel 
f c of every morphism f ∈ A(F, M) where F is a C-compact object.

Proof. (1) → (2): Let N be a system of objects from C for which there exists a morphism 
ϕ ∈ A(M, 

⊕
N ) \ ImΨN . Then it is enough to take Nω as any countable subsystem of 

the infinite system (N ∈ N | ρN ◦ ϕ �= 0).
(2) → (3) Let G be a family of C-compact objects and e ∈ A(

⊕
G, M) an epimorphism. 

If N ∈ Nω, then (ρN ◦ϕ) ◦ e �= 0, hence by the universal property of the coproduct 
⊕

G
applied on the cone (N, (ρN ◦ ϕ ◦ e ◦ νG | G ∈ G)) there exists GN ∈ G such that 
A(GN , N) 	 ρN ◦ ϕ ◦ e ◦ νGN

�= 0. Put Gω = (GN | N ∈ Nω), where every object from 
the system G is taken at most once, i.e. we have a canonical monomorphism νGω

∈
A (

⊕
Gω,

⊕
G).

Assume to the contrary that there exist a C-compact object F and a morphism f ∈
A(F, M) such that f c ◦ e ◦ νGω

= 0 where f c ∈ A(M, cok(f)) is the cokernel of f . Let 
N ∈ Nω and, furthermore, assume that ρN ◦ϕ ◦f = 0. Then the universal property of the 
cokernel ensures the existence of a morphism α ∈ A(cok(f), N) such that α◦fc = ρN ◦ϕ, 
i.e. that commutes the diagram:

F

f

⊕
Gω

νGω ⊕
G e

M
ϕ

fc

⊕
Nω

ρN

cok(f) α
N

Thus (ρN ◦ϕ) ◦e ◦νGω
= (α◦f c) ◦e ◦νGω

= 0, which contradicts the construction of Gω. 
We have proved that ρN ◦(ϕ ◦f) �= 0 for each N ∈ Nω, hence ϕ ◦f ∈ A(F, 

⊕
N ) \ImΨNω

. 
We get the contradiction with the assumption that F is C-compact, thus fc ◦ e ◦ νGω

�= 0
(3) → (1): If M is C-compact itself, then the system G = (M) and the identity map e

on M are counterexamples for the condition (3). �
Corollary 2.6. If A contains injective envelopes E(U) for all objects U ∈ C, then an object 
M is not compact if and only if there exists a (countable) system of injective envelopes 
E in A of objects of C for which ΨN is not surjective for some subsystem N of C.

Proof. By the previous proposition, it suffices to consider the composition of ϕ ∈
A(M, 

⊕
Nω) \ ImΨNω

where Nω implies that M is not C-compact together with the 
canonical morphism ι ∈ A (

⊕
Nω,

⊕
E), where we put E := (E(N) | N ∈ Nω). �
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3. Classes of compact objects

Let us denote by A a complete abelian category and C a class of some objects of A. 
First, notice that several closure properties of the class of C-compact objects are identical 
to the closure properties of classes of dually slender modules since these follow from the 
fact that the contravariant functor A(−, 

⊕
N ) commutes with finite coproducts and it is 

left exact. We present a detailed proof of the fact that the class of all C-compact objects 
is closed under finite coproducts and cokernels using Theorem 2.5.

Lemma 3.1. The class of all C-compact objects is closed under finite coproducts and all 
cokernels of morphisms α ∈ A(M, C) where C is C-compact and M is arbitrary.

Proof. Suppose that 
⊕n

i=1 Mi is not C-compact. Then by Theorem 2.5 there exist a 
sequence (Ni | i < ω) of objects and a morphism ϕ ∈ A(

⊕n
i=1 Mi, 

⊕
j<ω Nj) such that 

ρj ◦ ϕ �= 0 for each j < ω. Since ω =
⋃n

i=1{j < ω | ρj ◦ ϕ ◦ νi �= 0} there exists i for 
which the set {j < ω | ρj ◦ϕ ◦ νi �= 0} is infinite, hence Mi is not C-compact by applying 
Theorem 2.5.

Similarly, suppose that αc is the cokernel of α ∈ A(M, C), where cok(α) is not 
C-compact, and ϕ ∈ A(cok(α), 

⊕
j<ω Nj) for (Ni | i < ω) satisfies ρj ◦ ϕ �= 0 for 

every j < ω. Then, obviously, ρj ◦ ϕ ◦ π �= 0 for each j < ω and so C is not C-compact 
again by Theorem 2.5. �
Lemma 3.2. If M is an infinite system of objects in A satisfying that for each M ∈ M
there exists C ∈ C such that A(M, C) �= 0, then 

⊕
M is not C-compact.

Proof. It is enough to take N = (CM | M ∈ M) where A(M, CM ) �= 0 and apply 
Theorem 2.5(2)→(1). �

We obtain the following consequence:

Corollary 3.3. Let M be a system of objects of A. Then 
⊕

M is C-compact if and only 
if the system {M ∈ M| ∃C ∈ C : A(M, C) �= 0} is finite.

Proof. Put K = {M ∈ M | ∃C ∈ C : A(M, C) �= 0}. Then we have the canonical 
isomorphism A(

⊕
K, 

⊕
N ) ∼= A(

⊕
M, 

⊕
N ) for every system N of objects of C, hence ⊕

K is C-compact if and only if 
⊕

M is so. Furthermore, 
⊕

K is not C-compact by 
Lemma 3.2 whenever K is infinite.

If 
⊕

M is C-compact, then 
⊕

K and every M ∈ M is C-compact by Lemma 3.1, 
hence K is finite. On the other hand, if K is finite and all objects M ∈ M are C-compact, 
then 

⊕
K is C-compact by Lemma 3.1, hence 

⊕
M is C-compact as well. �
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Let us confirm that relativized compactness behaves well under taking finite unions 
of classes and verify with an example that this closure property can not be extended to 
an infinite case.

Lemma 3.4. Let C1, . . . , Cn be a finite number of classes of objects and let C ∈ A. Then 
C is 

⋃n
i=1 Ci-compact if and only it C is Ci-compact for every i ≤ n.

Proof. The direct implication is trivial. If C is not 
⋃n

i=1 Ci-compact, there exists a se-
quence (Ci | i < ω) of objects of 

⋃n
i=1 Ci with a morphism ϕ ∈ A(C, 

⊕
j<ω Cj) such 

that ρj ◦ ϕ �= 0 for every j < ω by Theorem 2.5(1)→(2). Since there exists k ≤ n

for which infinitely many Ci’s belong to Cj we can see that C is not Ck-compact by 
Theorem 2.5(2)→(1). �
Example 3.5. Let R be a ring over which there is an infinite set of pairwise non-isomorphic 
simple right modules. Any non-artinian Von Neumann regular ring serves as an example 
where the property holds. Suppose that A is the full subcategory of category consisting 
of all semisimple right modules, which is generated by all simple modules. Fix a count-
able sequence Si, i < ω, of pairwise non-isomorphic simple modules. Then the module ⊕

i<ω Si is {Si}-compact for each i but it is not 
⋃

i<ω{Si}-compact.

Recall that an object A is cogenerated by C it there exist a system N of objects of C
and a monomorphism in A(A, 

∏
N ). Relative compactness of an object is preserved if 

we close the class under all cogenerated objects.

Lemma 3.6. Let Cog(C) be the class of all objects cogenerated by C. Then every C-compact 
object is Cog(C)-compact.

Proof. Let us suppose that an object C is not Cog(C)-compact and fix a sequence B :=
(Bi | i < ω) of objects of Cog(C) and a morphism ϕ ∈ A(C, 

⊕
B) such that ρj ◦ϕ �= 0 for 

each j < ω which exist by Theorem 2.5(1)→(2). Since Cog(C) is closed under subobjects 
we may suppose that ρj ◦ϕ are epimorphisms. Furthermore, for every j < ω there exists 
a non-zero morphism τj ∈ A(Bj , Tj) with Tj ∈ C. Form the sequence T := (Ti | i < ω). 
Let τ be the uniquely defined morphism from A(

⊕
B, 

⊕
T ) satisfying τ ◦ νj = νj ◦ τj . 

Then ρj ◦ τ ◦ νi = ρj ◦ νi ◦ τi which is equal to τi whenever i = j and it is zero otherwise, 
hence ρi ◦ τ ◦ νi ◦ ρi = ρi ◦ τ by the universal property of 

⊕
B. Finally, since ρi ◦ϕ is an 

epimorphism and τi is non-zero, τi ◦ ρi ◦ ϕ �= 0 and so

ρj ◦ τ ◦ ϕ = ρi ◦ τ ◦ νi ◦ ρi ◦ ϕ = ρi ◦ νi ◦ τi ◦ ρi ◦ ϕ = τi ◦ ρi ◦ ϕ �= 0

for every i < ω. Thus the composition τ ◦ ϕ implies that C is not C-compact again by 
Theorem 2.5(2)→(1). �

A complete abelian category A is called C-steady, if there exists an A-projective 
C-compact object G which finitely generates the class of all C-compact objects, i.e. for 
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every C-compact object F there exists n ∈ N and an epimorphism h ∈ A(G(n), F ). A is 
said to be steady whenever it is an Ao-steady category for the class Ao of all objects of 
A.

Example 3.7. Let R be a ring and let A = Mod-R denote the category of all right 
R-modules. Recall that a module M ∈ A is called small if it is compact in the category 
A. If R is a right steady ring, i.e. a ring over which every small module is finitely generated 
(for details see e.g. [5]), then A is a steady category.

Furthermore, in [9, Theorem 1.7] it was proved that a locally noetherian Grothendieck 
category is steady.

Recall that an object A is simple if for every B, any non-zero morphism from A(A, B)
is a monomorphism and an object is semisimple if it is isomorphic to a coproduct of 
simple objects. A category is called semisimple if all its objects are semisimple. We 
characterize steadiness of semisimple categories.

Lemma 3.8. Let A be a semisimple category, S be a representative class of simple objects 
and suppose that every object S ∈ S is compact. Then A is steady if and only if S is 
finite.

Proof. Note that all objects of A are projective and if and any nonzero ϕ ∈ A(S, T ) for 
S, T ∈ S is an isomorphism. Moreover, if S ′ is a subsystem of S then 

⊕
S ′ is compact 

if and only if S ′ is finite.
Suppose that A is steady. Then there exists a compact object A isomorphic to 

⊕
S ′

for a finite system of simple objects S ′, which finitely generates the class of all compact 
objects, in particular all simple objects. Since A(A, S) �= 0, there exists i ∈ I such that 
Si

∼= S for each S ∈ S, hence I is finite. If S is, on the other hand, finite, it is easy to 
see that A =

⊕
S finitely generates A, and so A is steady. �

Example 3.9. Let A be a category of semisimple right modules over a ring with an 
infinite set of pairwise non-isomorphic simple right modules as in Example 3.5. Then A
is a semisimple category which is not steady by Lemma 3.8. On the other hand, if the 
ring R is right steady, which is true for example for each countable commutative Von 
Neumann regular ring, then the category of all right R-modules is Mod-R steady.

We say that a complete abelian category A is 
∏

C-compactly generated if there is a 
set G of objects of A that generates A and the product of any system of objects in G is 
C-compact. Note that G consists only of C-compact objects.

Lemma 3.10. If E is a C-compact injective generator of A such that there exists a 
monomorphism m ∈ A(E(ω), E), then A is 

∏
C-compactly generated.

Proof. It follows immediately from Theorem 2.5(3)→(1). �
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Example 3.11. Let R be a right self-injective, purely infinite ring. Then E := R is an 
injective generator and there is an embedding 0 → R(ω) → R. By the previous lemma, 
the category Mod-R is 

∏
C-generated.

4. Products of compact objects

We start the section by an observation that the cokernel of the compatible coproduct-
to-product morphism over a countable family is C-compact where C is a class of objects 
in an abelian category A. This initial step will be later extended to families regardless 
of their cardinality.

Lemma 4.1. Let A be 
∏

C-compactly generated and let M be a countable family of ob-
jects in A. If t ∈ A (

⊕
M,

∏
M) is the compatible coproduct-to-product morphism, then 

cok(t) is C-compact.

Proof. As for a finite M there is nothing to prove, suppose that M = (Mn | n < ω). 
Let G be a family of objects of A such that every product of a system of objects in G is 
C-compact and let e ∈ A(

⊕
G, 

∏
M) be an epimorphism, which exists by the hypothesis. 

Let tc be the cokernel of t. Then both tc and e′ := tc ◦ e are epimorphisms and tc ◦ t = 0. 
We will show that for every countable subsystem Gω of G there exists a C-compact object 
F and a morphism f ∈ A(F, cok(t)) such that A (

⊕
Gω, cok(f)) 	 fc◦e′◦νGω

= 0 for the 
cokernel f c ∈ A(cok(t), cok(f)). By Theorem 2.5 this yields that cok(t) is C-compact.

Since for any finite Gω ⊆ G it is enough to take F :=
⊕

Gω and f := e′ ◦ νGω
, we 

may fix a countably infinite family Gω = (Gn | n < ω) ⊆ G. For each n < ω put 
Gn = (Gi | i ≤ n) and let πGn

∈ A (
∏

Gω,
∏

Gn) and πMn
∈ A (

∏
M,Mn) denote the 

structural morphisms, and let u−1 ∈ A (
∏

Gn,
⊕

Gn) be the inverse of the compatible 
coproduct-to-product morphism u ∈ A (

⊕
Gn,

∏
Gn) that exists for finite families.

First, let us fix n ∈ ω and we prove that νGk
= νGn

◦ u−1 ◦ πGn
◦ μGk

for 
each k ≤ n. Let νGk

∈ A(Gk, 
⊕

Gn) be the structural morphism of the coprod-
uct 

⊕
Gn, u ∈ A(

⊕
Gω, 

∏
Gω) the canonical coproduct-to-product morphism, and 

μGk
∈ A(Gk, 

∏
Gn) the associated morphism to the product 

∏
Gn. Since νGn

◦νGk
= νGk

and μGk
= u ◦νGk

(by Lemma 2.1(iii)), then we immediately infer the following equalities 
from Lemma 2.2(ii):

νGk
= νGn

◦ νGk
= νGn

◦ (u−1 ◦ u ◦ νGk
) = (νGn

◦ u−1) ◦ u ◦ νGk
=

= (νGn
◦ u−1) ◦ (πGn

◦ u ◦ νGn
) ◦ νGk

= (νGn
◦ u−1) ◦ πGn

◦ u ◦ νGk
=

= (νGn
◦ u−1) ◦ πGn

◦ μGk

Now, if we employ the universal property of the product (
∏

M, (πMn
| n < ω)) with 

respect to the cone (
∏

Gω, (πMn
◦ e ◦ νGn

◦ u−1 ◦ πGn
| n < ω)), then there exists a 

unique morphism α ∈ A(
∏

Gω, 
∏

M) such that the middle non-convex pentagon in the 
following diagram commutes:
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Gk

μGk

νGk

1Gk

⊕
Gω

u ∏
Gω

πGn

πMn◦α
α

⊕
M

t

Gk
νGk

1Gk

⊕
Gn

νGn

u

�

νGω◦νGn

∏
Gn Mn

∏
M

tc

πMn

Gk
ν̃Gk

⊕
G

πMn◦e

e

cok(t)

Then for each k ≤ n we deduce that

πMn
◦ (α ◦ μGk

− e ◦ ν̃Gk
) = πMn

◦ (α ◦ μGk
− e ◦ νGω

◦ νGn
◦ u−1 ◦ πGn

◦ μGk
) =

= (πMn
◦ α− πMn

◦ e ◦ νGω
◦ νGn

◦ u−1 ◦ πGn
) ◦ μGk

= 0

and α ◦ μGn
= e ◦ ν̃Gn

for every n < ω is yielded as the number n was fixed. Note that ∏
Gω is C-compact by the hypothesis. Now, consider fc the cokernel of the morphism 

f = tc ◦ α ∈ A (
∏

Gω, cok(t)). Then

0 = f c ◦ tc ◦ (e ◦ ν̃Gn
− α ◦ μGn

) =

= f c ◦ tc ◦ e ◦ ν̃Gn
− f c ◦ tc ◦ α ◦ μGn

= f c ◦ e′ ◦ ν̃Gn

hence 0 = f c ◦ e′ ◦ ν̃Gn
= f c ◦ e′ ◦ νGω

◦ νGn
for every n < ω, which finishes the proof. �

Let I be a non-empty subset of P(X), the power set of a set X. We recall that I is 
said to be

– an ideal if it is closed under subsets (i.e. if A ∈ I and B ⊆ A, then B ∈ I) and under 
finite unions, (i.e. if A, B ∈ I, then A ∪B ∈ I),

– a prime ideal if it is a proper ideal and for all subsets A, B of X, A ∩B ∈ I implies 
that A ∈ I or B ∈ I,

– a principal ideal if there exists a set Y ⊆ X such that I = P(Y ), the power set of 
Y .

The set I | Y = {Y ∩A | A ∈ I} is called a trace of an ideal I on Y .
Note that the trace of an ideal is also an ideal and that I is a prime ideal if and only 

if for every A ⊆ X, A ∈ I or X \ A ∈ I. Moreover, a principal prime ideal on X is of 
the form P(X \ {x}) for some x ∈ X.

Dually, a set F �= ∅ of non-empty subsets of X is said to be

– a filter if it is closed under finite intersections and supersets,
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– an ultrafilter if it is a filter which is not properly contained in any other filter on X.

We say that a filter F is λ-complete, if 
⋂
G ∈ F for every subset G ⊆ F such that |G| < λ

and F is countably complete, if it is ω1-complete.
Note that there is a one-to-one correspondence between ultrafilters and prime ideals 

on X defined by I �→ P(X) \ I for an ideal I.
Let M be a family of objects. Then there exists a set of indices I such that M =

(Mi | i ∈ I), i.e. there exists a bijection between objects of the family M and the set 
I. Since families of objects seem to be more convenient for a reader than using indexed 
sets, we will keep the notation. Thus in the sequel, we will understand families as sets 
in the described sense since we need to apply set-theoretical properties.

Now, we are able to generalize [10, Lemma 3.3].

Proposition 4.2. Let A be a 
∏

C-compactly generated category, M a family of C-compact 
objects of A and N = (Nn | n < ω) a countable family of objects of C. Suppose that 
ΨN is not surjective and fix ϕ ∈ A(

∏
M, 

⊕
N ) \ im ΨN . If we denote In = {J ⊆ M |

ρNk
◦ ϕ ◦ μJ = 0 ∀k ≥ n} and I =

⋃
n<ω In ⊆ P(M), then the following holds:

(i) In is an ideal for each n,
(ii) I is closed under countable unions of subfamilies,
(iii) there exists n < ω for which I = In,
(iv) there exists a subfamily U ⊆ M such that the trace of I on U forms a non-principal 

prime ideal.

Proof. Let G be a set of C-compact objects satisfying that every product of a system of 
objects in G is C-compact, which is guaranteed by the hypothesis.

(i) Obviously, ∅ ∈ In and In is closed under subsets. The closure of In under finite 
unions follows from Lemma 2.2(iii) applied on the disjoint decomposition J ∪ K =
J ∪ (K \ J ), i.e. from the canonical isomorphism 

∏
J ∪ K ∼=

∏
J ×

∏
K \ J .

(ii) First we show that I is closed under countable unions of pairwise disjoint sets. Let 
Kj , j < ω be pairwise disjoint subfamilies of I and put K =

⋃
· j<ωKj . Let Ki :=

∏
Ki. 

We show that there exists k < ω such that Kj ∈ Ik for each j < ω. Assume that for all 
n < ω there exist possibly distinct i(n) such that Ki(n) /∈ In. Hence ρNl(n)◦ϕ ◦μKi(n) �= 0
for some l(n) ≥ n and there is a C-compact generator Gn ∈ G and a morphism fn ∈
A(Gn, Ki(n)) with ρNl(n) ◦ ϕ ◦ μKi(n) ◦ fn �= 0. Set K′ := (Ki(n) | n < ω).

Put Gω := (Gj | j < ω) and denote by (
∏

Gω, (πGj
| j < ω)) the product of Gω and 

by μGj
∈ A (Gj ,

∏
Gω), j < ω, the associated morphisms given by Lemma 2.1(i). Then 

the universal property of the product 
∏

K′ applied to the constructed cone gives us a 
morphism f ∈ A (

∏
Gω,

∏
K′) such that fn ◦ πGn

= πKi(n) ◦ f , hence

fn = fn ◦ πGn
◦ μGn

= πKi(n) ◦ f ◦ μGn
= πKi(n) ◦ μKi(n) ◦ fn
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Since 
∏

Gω is C-compact by the hypothesis there exists arbitrarily large m < ω such 
that ρNl(m) ◦ ϕ ◦ μK′ ◦ f = 0 where μK′ ∈ A (

∏
K′,

∏
M) is the associated morphism to 

πK′ ∈ A(
∏

M, 
∏

K′) over the subcoproduct of K′. Hence

ρNl(m) ◦ ϕ ◦ (μKi(m) ◦ fm) = ρNl(m) ◦ ϕ ◦ μK′ ◦ f ◦ μGm
= 0,

a contradiction.
We have proved that there is some n < ω such that ρNk

◦ ϕ ◦ μKj
= 0 for each 

k ≥ n and j < ω, and without loss of generality we may suppose that n = 0. Denote 
by tc the cokernel of the compatible coproduct-to-product morphism t ∈ A (

⊕
K,

∏
K). 

As ϕ ◦ μK ◦ t = 0, the universal property of the cokernel ensures the existence of the 
morphism τ ∈ A(cok(t), 

⊕
N ) such that ϕ ◦ μK = τ ◦ tc. Hence there exists n < ω such 

that ρNk
◦ ϕ ◦ μK = 0 for each k ≥ n since cok(t) is C-compact by Lemma 4.1, which 

proves that K ⊆ In.
To prove the claim for whatever system (Jj | j < ω) in I is chosen, it remains to put 

J0 = K0 and Ji = Ki \
⋃

j<i Kj for i > 0.
(iii) Assume that I �= Ij for every j < ω. Then there exists a countable sequence of 

families of objects (Jj ∈ I \ Ij | j ∈ ω). By (ii) we get J :=
⋃

j<ω Jj ∈ I and there is 
some n < ω such that J ∈ In. Having Jn ⊆ J ∈ In leads us to a contradiction.

(iv) We will show that there exists a family U ⊆ M such that for every K ⊆ U , K ∈ I
or U \ K ∈ I. Assume that such U does not exist. Then we may construct a countably 
infinite sequence of disjoint families (Ki | i < ω) where Ki are non-empty for i > 0 in the 
following way: Put K0 = ∅ and J0 = M. There exist disjoint sets Ji+1, Ki+1 ⊂ Ji such 
that Ji = Ji+1∪Ki+1 where Ji+1, Ki+1 /∈ I. Now, for each n ≥ 1 there exists a compact 
generator Gn ∈ G and a morphism fn ∈ A(Gn, 

∏
Kn) such that ρNk

◦ ϕ ◦ μKn
◦ fn �=

0 for some k > n. This contradicts to the fact that 
∏

n<ω Gn is C-compact (hence 
ρNk

◦ ϕ ◦ μKn
◦ fn ◦ πn = 0 starting from some large enough k < ω).

The trace of I on U is a prime ideal and assume that it is principal, i.e. it consists of 
all subfamilies of U excluding one particular index U ∈ U , so I | U = P(U\{U}) ∈ I. 
On the other hand, U is C-compact itself, which implies {U} ∈ I. This yields I | U
containing U , a contradiction. �

As a consequence of Proposition 4.2 we can formulate a generalization of [10, Theorem 
3.4]:

Corollary 4.3. Let A be a 
∏

C-compactly generated category. Then the following holds:

(i) A product of countably many C-compact objects is C-compact.
(ii) If there exists a system M of cardinality κ of C-compact objects such that the product ∏

M is not C-compact, then there exists an uncountable cardinal λ < κ and a 
countably complete nonprincipal ultrafilter on λ.

Proof. (i) An immediate consequence of Proposition 4.2(iii).
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(ii) Let M be a system of cardinality κ of C-compact objects and suppose that 
∏

M
is not a C-compact object. Then there exists a countable family N such that ΨN is not 
surjective. By Lemma 4.2(iv) there exists a subfamily U ⊆ M such that the trace of I on 
U forms a non-principal prime ideal which is closed under countable unions of families 
by Lemma 4.2(ii). If we define V = P(U) \ (I | U) then V forms a countably complete 
non-principal ultrafilter on U . It is uncountable by applying (i). �

Before we formulate the main result of this section which answers the question from 
[6] for abelian categories, let us list several set-theoretical notions and their properties 
guaranteeing that the hypothesis of the theorem is consistent with ZFC.

A cardinal number λ is said to be measurable if there exists a λ-complete non-principal 
ultrafilter on λ and it is Ulam-measurable if there exists a countably complete non-
principal ultrafilter on λ. A regular cardinal κ is strongly inaccessible if 2λ < κ for each 
λ < κ. Recall that

• [15, Theorem 2.43.] every Ulam-measurable cardinal is greater or equal to the first 
measurable cardinal;

• [15, Theorem 2.44.] every measurable cardinal is strongly inaccessible;
• [11, Corollary IV.6.9] it is consistent with ZFC that there is no strongly inaccessible 

cardinal.

Theorem 4.4. Let A be a 
∏

C-compactly generated category, M a family of C-compact 
objects of A. If we assume that there is no strongly inaccessible cardinal, then every 
product of C-compact objects is C-compact.

Proof. Suppose that the product of an uncountable system of C-compact objects is not 
C-compact. Then Corollary 4.3(ii) ensures the existence of a countable complete ultra-
filter on λ. Thus there exists a measurable cardinal μ ≤ λ, which is necessarily strongly 
inaccessible. �
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