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1. Introduction

The classical Weyl character formula describes the character of a simple finite-
dimensional module over a Lie algebra in terms of characters of modules which are 
easy to compute. This formula admits generalizations to infinite-dimensional Lie alge-
bras as well as to some Lie superalgebras. It turns out that a particularly interesting case 
is when the formula is specialized to the trivial representation. In this case, one side of 
the equality is easy to understand, namely it is 1, and since the other side is a fraction, 
the resulting identity is called the denominator identity.

Denominator identities for Lie algebras have numerous applications to algebra, com-
binatorics and number theory. For example, the denominator identities for affine Lie 
algebras [16] turned out to be the famous Macdonald identities [20]. The simplest case of 
this is the Jacobi triple product identity, which is the Macdonald identity for the affine 
root system of type A1 and is the denominator identity for the affine Lie algebra ŝl(2).

Denominator identities for Lie superalgebras are also fascinating and useful. For ex-
ample, V. Kac and M. Wakimoto showed that a specialization of the affine denominator 
gives formulas for computing the number of ways to decompose an integer as a sum of 
k-squares or as a sum of triangular numbers for certain values of k in [19, Section 5]. In 
addition, super denominator identities were used to determine the simplicity conditions 
of various W -algebras in [6,14] and to recover the Theta correspondence for compact 
dual pairs of real Lie groups in [7].

The denominator identity for simple Lie algebras and symmetrizable Kac–Moody 
algebras takes the form

eρR =
∑
w∈W

(sgnw)w (eρ) ,

where R is the denominator, W is the Weyl group and ρ is a certain element in the dual of 
the Cartan subalgebra [16]. For Lie superalgebras, one needs another ingredient, namely 
the notion of a maximal isotropic set of roots, which was introduced by V. Kac and 
M. Wakimoto in [19] and now plays a key role in character formulas for Lie superalgebras.

Denominator identities for simple basic classical Lie superalgebras and queer Lie 
superalgebras, and for their non-twisted affinizations were formulated by V. Kac and 
M. Wakimoto in [19], where they proved the defect one case. The proofs of these de-
nominator identities were completed by M. Gorelik and D. Zagier in [9–11,26], and 
generalizations appeared in [12,22,7].

The only classical finite-dimensional Lie superalgebra that remained was the periplec-
tic Lie superalgebra p(n). This algebra first appeared in V. Kac’s well-known classifica-
tion of simple finite-dimensional Lie superalgebras [17]. The family p(n) is one of the 
families of “strange” Lie superalgebras, which have no even invariant bilinear form. In 
fact, p(n) does not admit a nondegenerate even or odd invariant bilinear form, and thus 
has no affinization.



C. Hoyt et al. / Journal of Algebra 567 (2021) 459–474 461
The representation theory of p(n) has been studied by V. Serganova in [23] and others 
in [21,3]; however, one difficulty arises owing to the lack of a quadratic Casimir element 
(see [8] for a description of the center of the universal enveloping algebra of p(n)). Re-
cently, a large breakthrough in the representation theory of p(n) was accomplished after 
the introduction of a “fake Casimir”, a.k.a. tensor Casimir [1]. This advancement has 
promoted a resurgence of interest in the Lie superalgebra p(n); see for example [2,4,5,15].

In this paper, we state and prove two different denominator identities for the periplec-
tic Lie superalgebra, namely for two nonconjugate Borel subalgebras bthick and bthin (see 
Section 2.2). These identities take the form

eρR =
∑
w∈W

(sgnw)w
(

eρ

(1 − e−β1)(1 − e−β1−β2) · · · (1 − e−β1−...−βr )

)
,

where {β1, . . . , βr} is an explicitly defined maximal set of mutually orthogonal odd roots. 
These denominator identities are similar to the identities given in [18, Thm. 1.1] for basic 
Lie superalgebras. For the Borel subalgebra bthin, we also have an identity in a form 
similar to [19, Thm 2.1]. We note that other Borel subalgebras of p(n) cannot admit a 
denominator identity in the classical form, as eρR is not W -anti-invariant in these other 
cases (see Remark 2.3).

Our paper is organized as follows. Section 2 contains preliminary definitions and 
lemmas. In Sections 3 and 4, we state and prove the thin and thick denominator identities, 
respectively. The proofs are of a combinatorial nature and do not rely on deep theorems. 
The final section of our paper contains a remark on character formulas and an open 
problem concerning the homological complex behind these denominator identities.

1.1. Acknowledgments

The authors would like to thank Maria Gorelik and Inna Entova-Aizenbud for useful 
discussions and helpful suggestions.

2. The periplectic Lie superalgebra

2.1. Lie superalgebras

Let gl(n|n), the general linear Lie superalgebra over C, and let V = V0̄ ⊕ V1̄ be a 
Z2-graded vector superspace. The parity of a homogeneous vector v ∈ V0̄ is defined as 
v̄ = 0̄ ∈ Z2 = {0̄, ̄1}, while the parity of an odd vector v ∈ V1̄ is defined as v̄ = 1̄. If the 
parity of a vector v is 0̄ or 1̄, then v has degree 0 or 1, respectively. If the notation v̄
appears in formulas, we will assume that v is homogeneous.

The general linear Lie superalgebra may be identified with the endomorphism algebra 
End(V0̄ ⊕ V1̄), where dim V0̄ = dim V1̄ = n. Then gl(n|n) = gl(n|n)0̄ ⊕ gl(n|n)1̄, where

gl(n|n)0̄ = End(V0̄) ⊕ End(V1̄) and gl(n|n)1̄ = Hom(V0̄, V1̄) ⊕ Hom(V1̄, V0̄).



462 C. Hoyt et al. / Journal of Algebra 567 (2021) 459–474
So gl(n|n)0̄ consists of parity-preserving linear maps while gl(n|n)1̄ consists of parity-
switching maps. We also have a bilinear operation on gl(n|n):

[x, y] = xy − (−1)x̄ȳyx

on homogeneous elements, which then extends linearly to all of gl(n|n). By fixing a basis 
of V0̄ and V1̄, the Lie superalgebra gl(n|n) can be realized as the set of 2n × 2n matrices, 
where

gl(n|n)0̄ =
{(

A 0
0 B

)
: A,B ∈ Mn,n

}
and gl(n|n)1̄ =

{(
0 C
D 0

)
: C,D ∈ Mn,n

}
,

where Mn,n are n × n complex matrices.
Let V be an (n|n)-dimensional vector superspace equipped with a non-degenerate odd 

symmetric form

β : V ⊗ V → C, β(v, w) = β(w, v), and β(v, w) = 0 if v̄ = w̄. (1)

Then EndC(V ) inherits the structure of a vector superspace from V .
The periplectic superalgebra p(n) is defined to be the Lie superalgebra of all X ∈

EndC(V ) preserving β, i.e., β satisfies the condition

β(Xv,w) + (−1)X̄v̄β(v,Xw) = 0.

Remark 2.1. With respect to fixed bases for V , the matrix of X ∈ p(n) has the form (
A B
C −At

)
, where A, B, C are n × n matrices such that Bt = B and Ct = −C. Note 

that p(n) is not itself simple; however, the subalgebra sp(n) obtained by imposing the 
additional condition trA = 0 is simple and has codimension 1 in p(n).

2.2. Root systems

From this point on, we will let g := p(n). Fix the Cartan subalgebra h of g which 
consists of diagonal matrices and let {ε1, . . . , εn} be the standard basis of h∗. Note that 
h ⊂ g0̄. We have a root space decomposition g = h ⊕

(⊕
α∈Δ gα

)
, where Δ denotes the 

set of roots of g. The set Δ decomposes as

Δ = Δ(g−1) ∪ Δ(g0) ∪ Δ(g1),

where

Δ(g0) = {εi − εj : 1 ≤ i 	= j ≤ n},
Δ(g1) = {εi + εj : 1 ≤ i ≤ j ≤ n} and Δ(g−1) = {−(εi + εj) : 1 ≤ i < j ≤ n},
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and moreover, g has a (short) Z-grading g = g−1 ⊕ g0 ⊕ g1, where gk :=
⊕

α∈Δ(gk) gα. 
This Z-grading is compatible with the Lie superalgebra structure on g as g0̄ = g0 and 
g1̄ = g−1 ⊕ g1.

Additionally, Δ decomposes into even and odd roots Δ = Δ0̄ ∪ Δ1̄, where Δ0̄ = Δ0

and Δ1̄ = Δ−1 ∪ Δ1. We can choose a set of positive roots Δ+ ⊂ Δ and consider the 
corresponding Borel subalgebra b = h ⊕

(⊕
α∈Δ+ gα

)
. In what follows, we will always 

assume that

Δ+
0̄ = {εi − εj : 1 ≤ i < j ≤ n}

and that Δ+
1̄ is either Δ(g1) or Δ(g−1). We denote the corresponding Borel subalgebras 

of g by bthick := b0 ⊕ g1 and bthin := b0 ⊕ g−1, respectively. Let ρ0̄ := 1
2

(∑
α∈Δ+

0̄
α
)
, 

ρ1̄ := 1
2

(∑
α∈Δ+

1̄
α
)

and ρ = ρn := ρ0̄ − ρ1̄.
We will work over the rational function field generated by eλ, where λ ∈ h∗. Let

R0,n =
∏

α∈Δ+(g0)

(1− e−α), R1,n =
∏

α∈Δ(g1)

(1− e−α), R−1,n =
∏

α∈Δ(g−1)

(1− e−α).

We will write R0, R1 R−1, respectively, when it is clear what the algebra is. We let 
R = R0

R1̄
, where R1̄ = R1 or R−1.

Remark 2.2. The inverse of e2ρR is the supercharacter of U(n) (up to a sign), where n
denotes the nilradical of b (here b = bthick or bthick for R1̄ = R1 or R−1, respectively). 
One can also consider character versions of the denominator identity. See Section 5.1.

A polynomial f is anti-invariant or skew-invariant if w.f = (sgnw)f for any w ∈ W . 
Note that R−1, R1 are W -invariant and eρR0 is W -anti-invariant.

Remark 2.3. The sets Δ(g1) and Δ(g−1) are the only choices of positive odd roots for 
which eρR is W -anti-invariant with respect to our fixed choice of positive even roots. 
Thus, there does not exist a denominator identity of this form for other Borel subalgebras, 
since eρR can not equal an alternating sum over the Weyl group.

Define FW (a) :=
∑

w∈W (sgnw)w(a). Let y =
∑

μ aμe
μ, where aμ ∈ Q. The support 

of y is defined to be

supp(y) = {μ : aμ 	= 0}.

An element λ =
∑

aiεi is regular if and only if it has a distinct coefficient for every εi. 
That is, λ is regular if w(λ) = λ implies w = Id. Moreover, its orbit is of maximal size.

We cite [11, Lemma 4.1.1 (ii)]:
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Lemma 2.4. For any μ ∈ h∗R, the stabilizer of μ in W is either trivial or contains a 
reflection.

This implies the stabilizer of a non-regular point μ in W contains a reflection. Thus 
the space of W -anti-invariant elements is spanned by FW (eμ), where μ is regular.

We call the orbit W (μ) regular if μ is regular; thus, regular orbits consist of regular 
points.

Lemma 2.5. The support of a W -anti-invariant element is a union of regular W -orbits.

Proof. Since FW

(
eλ
)

= 0 for non-regular λ, only regular elements appear in the support 
of FW (a). �
3. Thin denominator identity for p(n)

In this section, we present denominator identities for the Borel subalgebra bthin of p(n), 
namely when Δ+

1̄ = Δ(g−1). In this case, ρ1̄ =
( 1−n

2
)∑n

i=1 εi and ρ =
∑n

i=1(n − i)εi.
Let R = R0

R−1
, where R−1 =

∏
1≤i<j≤n (1 − eεi+εj ). Set r =

⌊
n
2
⌋

and let

β1 = −(ε1 + ε2), β2 = −(ε3 + ε4), . . . , βr = −(ε2r−1 + ε2r).

We define

ρ⇑ := ρ + (n− 2)β1 + (n− 4)β2 + . . . + (n− 2r)βr = ε1 + ε3 + . . . + ε2r−1.

Here is one form of the thin denominator identity.

Theorem 3.1. Let g = p(n) and Δ+
1̄ = Δ(g−1). Then

eρR = 1
r!

∑
w∈W

(sgnw)w
(

eρ
⇑∏

β∈S (1 − e−β)

)
,

where S = {β1, β2, . . . , βr}.

Proof. By applying the permutation τn := (2t − 1 → t; 2t → n + 1 − t) to the RHS we 
obtain the equivalent expression

eρR = (sgn τn) 1
r!

∑
w∈W

(sgnw)w
(

eε1+ε2+...+εr∏
β′∈S′ (1 − e−β′)

)
, (2)

where S′ = {−(ε1 + εn), −(ε2 + εn−1), . . . , −(εr + εn+1−r)}.
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Since R−1 is W -invariant, equation (2) is equivalent to

(sgn τn)r!eρR0 = FW

⎛⎝eε1+ε2+...+εr
∏

α∈Δ(g−1)\S′

(
1 − e−α

)⎞⎠ . (3)

Since ρ1̄ is W -invariant, the Weyl denominator identity for sl(n) yields the equivalent 
expression

(sgn τn)r!FW (eρ) = FW

⎛⎝eε1+ε2+...+εr
∏

(i,j)∈U

(1 − eεi+εj )

⎞⎠ , (4)

where

U := {(i, j) ∈ Z>0 × Z>0 | 1 ≤ i < j ≤ n, i + j 	= n + 1}.

Note that the Weyl denominator identity for the Lie algebra g0̄ gives eρ0̄R0 = FW (eρ0̄). 
So we can multiply both sides by e−ρ1̄ and pass it through FW since it is invariant. We 
also note that both sides of (4) are W -skew-invariant. Let

A := eε1+ε2+...+εr
∏

(i,j)∈U

(1 − eεi+εj ) =
∑
ν

aνe
ν . (5)

Then

supp(A) ⊂
{

n∑
i=1

kiεi : 0 ≤ ki ≤ n− 1, 1 ≤ k1, . . . , kr ≤ n− 1,

0 ≤ kn+1−r, . . . , kn ≤ n− 2
}
, (6)

since A can be expressed using ki, i.e., we get the bounds on the coefficients ki by 
counting the elements in the set U , and the regular elements in supp(A) lie in the orbit 
W (ρ) since elements in the orbits of W (ρ) have coefficients 0, 1, . . . , n −1 (in some order). 
Now since FW (eμ) = 0 for non-regular elements μ ∈ h∗, we have that the RHS of (4)
equals

FW (A) = FW

⎛⎝∑
y∈W

ayρe
yρ

⎞⎠ = j FW (eρ) ,

where

j :=
∑

(sgn y) ayρ,

y∈W
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by switching the sums and then changing the indexing set. We get a summation of the 
form FW (eyρ), and we reindex since the sum is over all of W . Hence to prove (4) and 
deduce the theorem, it remains to show that j = (sgn τn)r!.

Consider the following embedding ι : Sr → Sn: each permutation σ ∈ Sr maps to the 
corresponding permutation of the set 1, 2, . . . , r and the corresponding permutation of 
the set n, n − 1, . . . , n + 1 − r (for instance, for n = 5 we have ι((12)) = (12)(54)); note 
that ι(Sr) consists of even permutations. Clearly, A is ι(Sr)-invariant, as

A = eε1+ε2+...+εrR−1∏
β′∈S′ (1 − e−β′) .

So by fixing a set of representatives of the left cosets of ι(Sr) in Sn to be

Sn/Sr := {σ ∈ Sn : σ(n− (r − 1)) < . . . < σ(n− 1) < σ(n)},

we have

j = r!
∑

y∈Sn/Sr

(sgn y)ayρ.

We derive from (5) that

A =
∑
P⊂U

(−1)|P |eε1+ε2+...+εr+
∑

(i,j)∈P (εi+εj),

where each P is a subset of U , and |P | denotes the number of elements in P . Suppose

ε1 + ε2 + . . . + εr +
∑

(i,j)∈P ′

(εi + εj) =
n∑

i=1
kiεi = y′ρ

for some y′ ∈ Sn/Sr and P ′ ⊂ U . We will prove that necessarily y′ = Id and

P ′ = {(i, j) ∈ Z>0 × Z>0 : i < j, i + j ≤ n}.

First, note that

{k1, . . . , kn} = {0, 1, . . . , n− 1} and kn+1−r > . . . > kn−1 > kn

since ρ =
∑n

i=1(n − i)εi and y′ ∈ Sn/Sr. Also, recall the conditions on supp(A) given in 
(6).

We will prove that ki = n − i for all i = 1, . . . , n. Our base case is to show that 
k1 = n − 1, kn = 0, and that (1, i) ∈ P ′ ⇔ i 	= 1, n. Now since ki ≥ 1 for i ≤ r and 
kn < ki for i ∈ {n + 1 − r, . . . , n − 1}, we can have either kn = 0 or kr+1 = 0 (in the 
case that n = 2r + 1). However, if kr+1 = 0 we reach a contradiction that (n − 1) could 
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not occur as a coefficient. Indeed, suppose n = 2r + 1 and kr+1 = 0 and take j such 
that kj = n − 1. Then j ≤ r and the elements (j, j), (j, r + 1), (j, n + 1 − j) are not in 
P ′. Since kj = n − 1, two of these pairs must coincide, implying j = r + 1, which is a 
contradiction. Hence, kn = 0 and so (i, n) /∈ P ′ for all i. Take j such that kj = n − 1; 
then j ≤ r and (j, i) ∈ P ′ for all i 	= j, n + 1 − j, n. Thus n + 1 − j = n, that is j = 1. 
Therefore, we obtain k1 = n − 1, kn = 0. It follows that (1, i) ∈ P ′ if and only if i 	= 1, n.

Let t ≤ r, and suppose for the induction hypothesis that for all i = 1, . . . , t − 1 we 
have: ki = n − i, kn+1−i = i − 1, and

(i, j) ∈ P ′ ⇔ i ≤ min{j − 1, n− j}. (7)

One can prove that the induction hypothesis implies that ki ≥ t for all i ≤ r, and 
that ki < n − t for i > r. Suppose kp = n − t and kq = t − 1. Then t ≤ p ≤ r and 
r < q ≤ n + 1 − t. It follows (indirectly) from the induction hypothesis that

(p, p), (p, n + 1 − p), (p, q), (p, n), (p, n− 1), (p, n− 2), . . . , (p, n + 2 − t) /∈ P ′.

This implies that p + q = n + 1. It follows that kt = n − t since p 	= q and kt > ki
for all r < i < t. Hence, kn+1−t = t − 1. Finally, since the elements (t, t), (t, n), (t, n −
1), . . . , (t, n +1 − t) are not in P ′ and yet kt = n − t, we see that condition (7) also holds 
for i = t. This concludes the induction proof. Hence, ki = n − i for each i and y′ = Id. 
Therefore, ayρ = 0 for y ∈ Sn/Sr such that y 	= Id.

Next we will prove that aρ = sgn τn. For this, we need to show that sgn τn = (−1)|P ′|, 
where

ε1 + ε2 + . . . + εr +
∑

(i,j)∈P ′

(εi + εj) = ρ.

We claim that sgn τn = 1 if n is even, and sgn τn = (−1)k for n = 2k + 1. Indeed, one 
can check directly that τ1, τ2 = Id,

τ2k+1 = (k + 1, k + 2, . . . , 2k + 1)τ2k, τ2k = (k + 1, k + 2, . . . , 2k)τ2k−1.

Thus, sgn τ2k+2 = sgn τ2k = 1, while sgn τ2k+1 = (−1)(sgn τ2k−1) = (−1)k, and the claim 
follows by induction. On the other hand, counting coefficients for ρ −(ε1+ε3+. . .+ε2r−1)
yields

|P ′| = 1
2

(
n(n− 1)

2 −
⌊n

2

⌋)
.

If n is even then |P ′| = n(n−2)
4 , which is always even. If n is odd then |P ′| =

(
n−1

2
)2, 

which is even precisely when n = 4k + 1 for some k ∈ N. Thus aρ = (−1)|P ′| = sgn τ .
Therefore, j = (sgn τ)r!, and the theorem follows. �
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Here is another form of the thin denominator identity.

Theorem 3.2. Let g = p(n) and Δ+
1̄ = Δ(g−1). Then

eρR =
∑
w∈W

(sgnw)w
(

eρ

(1 − e−β1)(1 − e−β1−β2) · · · (1 − e−β1−...−βr)

)
,

where r = �n/2
 and β1 = −(ε1 + ε2), β2 = −(ε3 + ε4), . . . , βr = −(ε2r−1 + ε2r).

Proof. For μ ∈ h∗, write

Xμ := FW

(
eμ

(1 − e−β1)(1 − e−β1−β2) · · · (1 − e−β1−...−βr)

)
.

We show that

Xρ = 1
r!FW

(
eρ

⇑

(1 − e−β1)(1 − e−β2) · · · (1 − e−βr)

)
, (8)

where ρ⇑ = ε1 + ε3 + . . . + ε2r−1.
We first claim that Xρ = Xρ⇑ . We expand Xρ and Xρ⇑ as a geometric series in the 

domain |eα| < 1 for α > 0. Note that wβi > 0 for every w ∈ W . Thus,

Xρ =
∑

m1≥m2≥...≥mr≥0

FW

(
eρ−m1β1−...−mrβr

)
=

∑
m1≥m2≥...≥mr≥0

FW

(
e(n−1+m1)ε1+(n−2+m1)ε2+(n−3+m2)ε3+(n−4+m3)ε4+...+(1+mr)εr−1+mrεr

)

and

Xρ⇑ =
∑

m1≥m2≥...≥mr≥0
FW

(
eρ

⇑−m1β1−...−mrβr

)
=

∑
m1≥m2≥...≥mr≥0

FW

(
e(1+m1)ε1+m1ε2+(1+m2)ε3+m2ε4+...+(1+mr)εr−1+mrεr

)
.

Note that

FW

(
e(1+m1)ε1+m1ε2+(1+m2)ε3+m2ε4+...+(1+mr)εr−1+mrεr

)
is nonzero only if m1, . . . , mr, mr + 1, . . . , mr + 1 are distinct. Since m1 ≥ m2 ≥ . . . ≥
mr ≥ 0, we get that mr ≥ 0, mr−1 ≥ 2, mr−2 ≥ 4, . . . , m1 ≥ 2r−1. Thus all the nonzero 
terms in Xρ and Xρ⇑ are the same and we get the equality.
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Now

Xρ⇑ =
∑

m1>m2>...>mr>0
FW

(
e(1+m1)ε1+m1ε2+(1+m2)ε3+m2ε4+...+(1+mr)εr−1+mrεr

)
= 1

r!
∑

m1 	=m2 	=... 	=mr 	=0

FW

(
e(1+m1)ε1+m1ε2+(1+m2)ε3+m2ε4+...+(1+mr)εr−1+mrεr

)
= 1

r!
∑

m1,m2,...,mr≥0
FW

(
e(1+m1)ε1+m1ε2+(1+m2)ε3+m2ε4+...+(1+ml)εr−1+mrεr

)

= 1
r!FW

(
eρ

⇑

(1 − e−β1)(1 − e−β2) · · · (1 − e−βr)

)
,

and the claim follows from (8) and Theorem 3.1. �
Remark 3.3. After completing this paper, it was pointed out to us by V. Serganova 
that this theorem can also be proven using the following method: let V be the natural 
representation of gl(n). Then R−1

−1 = ch Sym(
∧2

V ). Since the character of a simple gl-
module of highest weight λ is e−ρR−1

0 · FW

(
ew(λ+ρ)), one can use the decomposition of 

Sym(
∧2

V ) into direct sum of simple gl(n)-modules to prove the formula. See [13, Prop. 
2] and [24, Thm. 2D] for the decomposition.

4. Thick denominator identity for p(n)

In this section, we present denominator identities for the Borel subalgebra bthick of 
p(n), namely when Δ+

1̄ = Δ(g1). In this case, Δ+
1̄ = Δ1, so ρ1̄ = n

2
∑n

i=1 εi and ρ =
ρn = − 

∑n
i=1 iεi. Let R = R0

R1
, where R1 =

∏
1≤i≤j≤n

(
1 − e−(εi+εj)

)
.

We have the following theorem.

Theorem 4.1. Let g = p(n) and Δ+
1̄ = Δ(g1). Then

eρR =
∑
w∈W

(sgnw)w
(

eρ

(1 − e−β1)(1 − e−β1−β2) · · · (1 − e−β1−...−βn)

)
,

where β1 = 2εn, β2 = 2εn−1, . . . , βn = 2ε1.

Proof. We prove the identity by induction on n. For n = 1, the Weyl group W consists of 
the identity element and the only root is β1 = 2ε1. Thus the identity is evident. Suppose 
that the identity holds for p(n − 1).

Fix the obvious root embedding of p(n − 1) in p(n) for which h∗
p(n−1) = span

{
ε2, . . . ,

εn
}
. For this embedding, ρn−1 = − 

∑n−1
i=1 iεi+1 and ρn = ρn−1 − ε1 − . . .− εn. Then

RHS = FW

(
eρn

−2εn −2εn−1−2εn −2ε1−...−2εn

)

(1 − e ) (1 − e ) · · · (1 − e )
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= e−ε1−...−εn

1 − e−2ε1−...−2εn
FSn

(
eρn−1

(1 − e−2εn) (1 − e−2εn−1−2εn) · · · (1 − e−2ε2−...−2εn)

)
= e−ε1−...−εn

1 − e−2ε1−...−2εn
FSn/Sn−1

×FSn−1

(
eρn−1

(1 − e−2εn) (1 − e−2εn−1−2εn) · · · (1 − e−2ε2−...−2εn)

)
induction= e−ε1−...−εn

1 − e−2ε1−...−2εn
FSn/Sn−1 (eρn−1Rn−1)

= 1
eε1+...+εn − e−ε1−...−εn

FSn/Sn−1 (eρn−1Rn−1) ,

where Sn/Sn−1 denotes a set of left coset representatives. Thus the theorem is equivalent 
to (

eε1+...+εn − e−ε1−...−εn
)
eρnRn = FSn/Sn−1 (eρn−1Rn−1) . (9)

To translate this identity to be an identity of finite expressions (and not rational 
functions), we multiply both sides of (9) by R1,n = R1,n−1

∏n
i=1 (1 − e−ε1−εi), which is 

W -invariant, and we get

(
eε1+...+εn − e−ε1−...−εn

)
eρnR0,n = FSn/Sn−1

(
eρn−1R0,n−1

n∏
i=1

(
1 − e−ε1−εi

))
.

By the denominator identity of sl(n) and the fact that ρn,0̄−ρn is Sn-invariant, we have

eρnR0,n = FSn
(eρn) and eρn−1R0,n = FSn−1 (eρn−1) .

So the identity becomes

(
eε1+...+εn − e−ε1−...−εn

)
FSn

(eρn) = FSn/Sn−1

(
FSn−1 (eρn−1)

n∏
i=1

(
1 − e−ε1−εi

))
.

(10)
Since the term 

∏n
i=1 (1 − e−ε1−εi) is Sn−1-invariant, the RHS of (10) equals

FSn/Sn−1

(
FSn−1 (eρn−1)

n∏
i=1

(
1 − e−ε1−εi

))

= FSn/Sn−1

(
FSn−1

(
eρn−1

n∏
i=1

(
1 − e−ε1−εi

)))

= FSn

(
eρn−1

n∏
i=1

(
1 − e−ε1−εi

))
.
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Hence, as (eε1+...+εn − e−ε1−...−εn) is Sn-invariant, (10) becomes

FSn

(
eρn

(
eε1+...+εn − e−ε1−...−εn

))
= FSn

(
eρn−1

n∏
i=1

(
1 − e−ε1−εi

))
. (11)

Finally, we are left to prove an equality between two Sn-anti-invariant finite expres-
sions, and by Lemma 2.5, we are reduced to studying regular elements. The LHS of (11)
has two Sn-orbits, which correspond to FSn

(eρn+ε1+...+εn) and FSn
(−eρn−ε1−...−εn).

By expanding the inside of the RHS of (11) we obtain

eρn−1

n∏
i=1

(
1 − e−ε1−εi

)
=

∑
A⊂{ε1+εi|i=1,...,n}

aλA
eλA , (12)

where λA = ρn−1 −
∑

α∈A α and aλA
= (−1)|A|.

If A is empty, then λA = ρn−1 = ρn + ε1 + . . .+ εn is regular and aλA
= 1. If A is the 

entire set, then λA = −2ε2 − 3ε3 − . . . − nεn − (n + 1)ε1 is regular and aλA
= (−1)n. 

In the latter case, λA = y(ρn − ε1 − . . .− εn) where y is the permutation (12 . . . n) and 
sgn y = (−1)n−1. We claim that if n is odd then these are the only two regular elements 
in the RHS of (11), while if n is even then we have two more regular elements that cancel 
each other in the sum. This will imply that (12) holds as required.

Now suppose A � {ε1 + εi | i = 1, . . . , n} and A is nonempty. Write

λA =
n∑

i=1
biεi.

Then the coefficients b1, . . . , bn are contained in {1, 2, . . . , n}, and they are distinct since 
λA is assumed to be regular. Moreover, for k ≥ 2, either bk = k − 1 or bk = k. Let 
k ≥ 2 be the smallest integer for which bk = k. Then bi = i for all i ≥ k, since 
b1, . . . , bn are distinct. It follows that k > 2 since we assume that A is not the entire 
set and that λA is regular. We have two possibilities: A = {ε1 + εk, . . . , ε1 + εn} and 
A′ = {ε1 + εk, . . . , ε1 + εn, 2ε1}. Regularity implies that k = n

2 + 1 in the former case, 
while k = n

2 + 2 in the latter case. Clearly, this implies that n is even. Finally, since λA

differs from λA′ only by the transposition (1 n2 ), we conclude that these two additional 
regular elements cancel each other in the sum. �
Remark 4.2. Similarly to Remark 3.3, in the thick case, R−1

1 = ch
(
Sym(Sym2 V )

)
where 

V is the natural gl(n)-module. Then Theorem 4.1 can also be proven using the decom-
position of Sym(Sym2 V ) into simple gl(n)-modules. See [13, Prop. 1], [24, Thm. 2C], 
and [25, Thm. III] for the decomposition.
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5. Some remarks

5.1. The character version of the denominator identity

The denominator identities written in this paper are given in terms of super-
characters. One can translate them into characters. In this case R0 stays the same, 
R1 =

∏
α∈Δ(g1) (1 + e−α), the identity in Theorem 3.1 takes the form

eρR = 1
r!

∑
w∈W

(sgnw)w
(

eρ
⇑∏

β∈S (1 + e−β)

)
,

and the identities in Theorem 3.2 and Theorem 4.1 take the form

eρR = FW

(
eρ

(1 + e−β1)(1 − e−β1−β2) · · · (1 + (−1)re−β1−...−βr )

)

for the appropriate choices of β1, . . . , βr.

5.2. Representation-theoretical meaning of the denominator identity

It would be interesting to find a complex of thin Kac modules (or thick Kac modules) 
whose Euler characteristic yields the denominator identity.

For a given dominant integral weight λ, we let V (λ) denote the simple g0-module 
with highest weight λ with respect to the fixed Borel b0 of g0. The thin Kac module 
corresponding to λ is defined to be ∇(λ) := Coindg

g0⊕g1
V (λ), where we take the parity 

of the superspace V (λ) to be purely even or odd according the sign convention used in 
[15, Section 2.3], and denote this parity by sgnλ. Then the supercharacter of ∇(λ) is

sch∇(λ) = (sgnλ) R−1

eρR0
· FW

(
eλ+ρ

)
(see [15, Lemma 2.4.1]). After substitution, the formula in Theorem 3.2 takes the form

schL(0) =
∑

(−1)i1+...+ir sch∇ (−i1β1 − . . .− irβr) .

i1≥...≥ir≥0
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For r = 2, we conjecture that we have the following bi-complex:

. . .

. . . ∇(−nβ1 − nβ2)

. . .
...

. . .

. . . ∇(−nβ1 − 2β2) . . . ∇(−2β1 − 2β2)

. . . ∇(−nβ1 − β2) . . . ∇(−2β1 − β2) ∇(−β1 − β2)

. . . ∇(−nβ1) . . . ∇(−2β1) ∇(−β1) ∇(0) L(0) 0.
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