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Random walk on the chambers of hyperplane arrangements is used to define
a family of card shuffling measures HW;x for a finite Coxeter group W and real
x 6= 0. By algebraic group theory, there is a map 8 from the semisimple orbits of
the adjoint action of a finite group of Lie type on its Lie algebra to the conjugacy
classes of the Weyl group. Choosing such a semisimple orbit uniformly at random
thereby induces a probability measure on the conjugacy classes of the Weyl group.
For types A, B, and the identity conjugacy class of W for all types, it is proved that
for q very good, this measure on conjugacy classes is equal to the measure arising
from HW;q. The possibility of refining 8 to a map to elements of the Weyl group is
discussed. © 2000 Academic Press
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1. INTRODUCTION

In a mathematical study of ordinary riffle shuffles of cards, Bayer and
Diaconis [1] introduced a 1-parameter class of probability measures (which
we denote by HSn; x

) on the symmetric group. When x = 2, these corre-
spond to a model of shuffling due to Gilbert–Shannon–Reeds which seems
close to the way real people shuffle. Repeated shuffling k times (convo-
lution on the symmetric group) was shown in [1] to correspond to HSn; 2k .
Further, a closed formula was found for HSn; x

. This was used to prove that
3
2 log2 n + c shuffles are necessary and suffice to mix up n cards. In later
work [9], a formula was given for the HSn; x

measure of a conjugacy class in
Sn. Letting ai be the number of i-cycles in a permutation in this conjugacy
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class, this formula was shown to equal the chance that a random monic
polynomial of degree n chosen over Fq (with x = q) has ai irreducible fac-
tors of degree i. This result seemed mysterious. One of the aims of the
present paper is to explain the mystery and show how the results generalize
to other Coxeter groups.

The first part of this paper defines signed measures HW;x for a finite
Coxeter group W and real x 6= 0. The meaning of a signed measure is an
element of the group algebra of W whose coefficients sum to 1. The key
tool in defining the measures HW;x will be the theory of random walks on
the chambers of hyperplane arrangements, as initiated in [5] and developed
in [6]. As noted in [12] (a follow-up to this paper), the measures defined
here generalize to any real hyperplane arrangement. The point of Sect. 2
is to focus on the case of arrangements coming from finite Coxeter groups.
The paper [5] had a hyperplane definition for type A shuffling, but not
using group theoretically defined face weights.

For type A these measures (not expressed using hyperplane walks) were
discovered by Bayer and Diaconis [1] in their analysis of riffle shuffling.
Their work was extended to type B in [2]. (It is amusing to note as in [1]
that for tarot cards, which often have up/down directions, type B shuffling is
a better model than type A shuffling.) For types A and B these measures
also arise in explicit versions of the Poincaré–Birkhoff–Witt theorem [4]
and in splittings of Hochschild homology [18]. Section 3.8 of [22] describes
the type A measure in the language of Hopf algebras. Richard Stanley
[26] has studied the measure on partitions obtained by applying the RSK
algorithm to permutations distributed as shuffles. This gives an elementary
probabilistic interpretation to Schur functions and connects card shuffling
with representation theory of the symmetric group.

Section 3 connects the measures HW;x with the finite groups of Lie type.
As mentioned, there is a natural map 8 from the semisimple orbits of
the adjoint action of a finite group of Lie type on its Lie algebra to the
conjugacy classes of the Weyl group. Choosing such a semisimple orbit
uniformly at random gives a probability measure on the conjugacy classes of
the Weyl group. For q very good, we show that in some cases this measure
on conjugacy classes is equal to the measure arising from HW;q. For instance
in type A the semisimple orbits correspond to monic degree n polynomials
with vanishing coefficient of xn−1. When the characteristic p is a very good
prime (i.e., p does not divide n), the chance that such a polynomial factors
into ai irreducibles of degree i is equal to the chance that a random monic
degree n polynomial has ai irreducible factors of degree i.

A long term goal is to refine this map 8 so that it associates to each
semisimple orbit an element of W . Furthermore, at least when Problem 1
has an affirmative answer, choosing an orbit at random and applying the
refined map should give the measures HW;q. In Section 4 of this paper we
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indicate how to do this unnaturally for types A and B. A refinement of
8 which is both natural and general remains elusive, but as explained in
the second paragraph of Sect. 4, could have important applications in alge-
braic number theory. It would also be interesting to relate these results to
Kirillov’s method of coadjoint orbits.

To close the introduction, we mention two follow-up papers. The pa-
per [14] considers analogous issues for semisimple conjugacy classes of the
finite groups of Lie type. The combinatorics there is significantly more in-
tricate, involving the affine Weyl group and leading to new shuffles which
we call affine shuffles. These seem quite interesting; for instance, the for-
mula for type A affine shuffles involves Ramanujan sums and depends on
a permutation through both its number of cyclic descents and major in-
dex. Remarkably, the results of [14] analogous to those here seem to need
no restriction on the characteristic, and the conjectured refinement of the
map analogous to 8 uses the affine Weyl group and is much more natural
than the refinement considered here. Connections with dynamical systems
are also given. The follow-up paper [10] relates affine shuffles to shuffles
followed by a uniform cut. It also proves the surprising fact (of interest in
casinos) that the use of cuts does not speed the convergence rate of riffle
shuffles to randomness.

2. DEFINITION AND PROPERTIES OF HW;x

To begin we review work of Bidigare, Hanlon, and Rockmore [5]. Let
A = �Hi x i ∈ I� be a central hyperplane arrangement (i.e.,

⋂
i∈I Hi = 0)

for a real vector space V . Let γ be a vector in the complement of A. Every
Hi partitions V into three pieces: H0

i = Hi, the open half-space H+i of V
containing γ, and the open half-space H−i of V not containing γ. The faces
of A are defined as the non-empty intersections of the form⋂

i∈I
H
εi
i ;

where εi ∈ �0;−;+�. Equivalently, A cuts V into regions called chambers
and the faces are the faces of these chambers viewed as polyhedra.

A random process (henceforth called the BHR walk) on chambers is then
defined as follows. Assign weights v�F� to the faces of A in such a way that
vF ≥ 0 for all F and

∑
F v�F� = 1. Pick a starting chamber C0. At step i,

pick a face Fi with chance of face F equal to v�F� and define Ci to be the
chamber adjacent to Fi which is closest to Ci−1 (separated from Ci−1 by the
fewest number of hyperplanes.) Such a chamber always exists.

To give our definition of HW;x, some additional notation is needed. Let
L be the set of intersections of the hyperplanes in A, taking V ∈ L. Par-
tially order L by reverse inclusion. (This lattice is not the same as the face
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lattice.) Recall that the Moebius function µ is defined by µ�X;X� = 1 and∑
X≤Z≤Y µ�Z;Y � = 0 if X < Y and µ�X;Y � = 0 otherwise. The charac-

teristic polynomial of L is defined as

χ�L;x� = ∑
X∈L

µ�V;X�xdim�X�:

Let 5 be a base of the positive roots of W . For J ⊆ 5, let Fix�WJ� denote
the fixed space of the parabolic subgroup WJ in its action on V . Let LFix�WJ�

denote the restricted poset �Y ∈ L�A� �Y ≥ Fix�WJ��. Define Des�w� to
be the simple positive roots which w maps to negative roots (also known
as the descent set of w) and let d�w� = �Des�w��. Let NW �WK� be the
normalizer of WK in W and let λ�K� be the subsets of 5 equivalent to K
under the action of W .

Definition. For W a finite Coxeter group and x 6= 0, define HW;x�w�
to be ∑

K⊆5−Des�w�

�WK�χ�LFix�WK�; x�
xn�NW �WK���λ�K��

:

To give a feeling for these measures and for later use, we recall formulas
for types A and B (obtained using descent algebras and also arising from
the above definition).

• ([1], [5])

HSn; x
�w� =

(
x+ n− 1− d�w�

n

)
xn

:

Physically, the inverse of this measure is obtained by cutting at card k
with probability

(n
k

)
/2n, then doing a uniformly chosen random interleaving

of the piles. The papers [9] and [11] investigate the cycle structure and
inversion structure of a random permutation chosen from HSn; x

.

• ([2], [12])

HBn; x
�w�

= �x+ 2n− 1− 2d�w���x+ 2n− 3− 2d�w�� · · · �x+ 1− 2d�w��
xnn!

:

The inverse of this measure also has a physical description if x is odd, ver-
ified for x = 3 in [2]. One cuts multinomially into an odd number of piles,
flips over the even numbered piles, and then does a random interleaving.
This is different from the type B notion in [1], which cuts into two piles.
However, these two types of shuffles can be placed in a unified setting,
using the affine Weyl group [14]. In future work we hope to study physi-
cal models of the shuffles HW;x for other finite Coxeter groups, viewed as
permutation groups.
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Next we comment on some properties of the measures HW;x, and give a
computationally useful expression for them.

• ([12]) For types A;B;C;H3 and rank-2 groups (but not for all types
as is explained below), the measures HW;x convolve in the sense that( ∑

w∈W
HW;x�w�w

)( ∑
w∈W

HW; y�w�w
)
= ∑

w∈W
HW;xy�w�w:

Thus n x-shuffles is the same as an xn shuffle. Observe also that in the
x → ∞ limit the measures HW;x become the uniform distribution. The
eigenvalues of an x-shuffle viewed as a Markov chain are 1/xi, i = 0; : : : ; r
with multiplicities, the number of w with an r-i dimensional fixed space in
its geometric representation.

• The Coxeter complex of W has as faces the left cosets wWK and as
chambers the elements of W . Consider the BHR walks on the chambers of
the Coxeter complex with face wieghts

v�wWK� =
�WK�χ�LFix�WK�; x�
xn�NW �WK���λ�K��

:

When these weights are non-negative, HW;x�w� can be interpreted as the
probability of moving from the identity chamber to w. Equations from
p. 282 of [20] imply that v�wWK� can be rewritten as

�−1�n−�K� χ�LFix�WK�; x�
xnχ�LFix�WK�;−1� :

As observed in [12], this leads to a notion of card shuffling for any real
hyperplane arrangement or oriented matroid. The Coxeter case gives rise
to the factorization

χ�LFix�WK�; x� =
dim�Fix�WK��∏

i=1

�x− bKi �

from [20] where the bKi are integers called coexponents. From the results
and tables in [20], all bKi are less than or equal to the maximum exponent of
W . From the table of bad primes for crystallographic types on p. 28 of [7],
the bad primes are precisely the primes less than the maximum exponent of
W which are not equal to exponents of W . (Equivalently, a prime is good
if it divides no coefficient of any root expressed as a linear combination
of simple roots.) Thus HW;q�w� ≥ 0 if W is crystallographic and q is a
good prime, because then every face weight is non-negative. This may be
regarded as evidence in favor of the philosophy underlying the statement
in Problem 1 in Section 3.
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• Orlik and Solomon [20] have calculated and tabulated χ�LFix�WK�; x�
for all types. By the previous remark, this gives a simple and unified method
for computing the measure HW;x. Applied to W of type H3, one concludes
that

HH3; x
�w� =



�x+ 9��x+ 5��x+ 1�
120x3 if d�w� = 0

�x+ 5��x+ 1��x− 1�
120x3 if d�w� = 1

�x+ 1��x− 1��x− 5�
120x3 if d�w� = 2

�x− 1��x− 5��x− 9�
120x3 if d�w� = 3.

This formula, together with the formulas for HW;x for W of types A;B
which appeared earlier in this paper, suggest that HW;x satisfies the follow-
ing factorization and reciprocity properties:

(1) HW;x�w� splits into linear factors as a function of x.

(2) HW;x�w� = HW;−x�ww0� where w0 is the longest element of W .

In fact neither of these properties holds. This is evident from the following
formula for HH4; x

which is obtained by using tables of Orlik and Solomon
as just described:

HH4; x
�w� =



�x+ 29��x+ 19��x+ 11��x+ 1�
14400x4 if d�w� = 0

�x+ 1��x− 1��x2 + 30x+ 149�
14400x4 if Des�w� = �α1� or

Des�w� = �α2�
�x+ 1��x− 1��x2 + 30x+ 269�

14400x4 if Des�w� = �α3� or
Des�w� = �α4�

�x+ 11��x+ 1��x− 1��x− 11�
14400x4 if d�w� = 2 and

Des�w� 6= �α3; α4�
�x+ 1�2�x− 1�2

14400x4 if Des�w� = �α3; α4�
�x+ 1��x− 1��x− 11��x− 19�

14400x4 if d�w� = 3

�x− 1��x− 11��x− 19��x− 29�
14400x4 if d�w� = 4.
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Incidentally this remark shows that HH4; x
does not convolve, because

HW;−1 places all mass on the longest element w0. The convolution prop-
erty would imply that Hx�w� = Hx�w�H−1�w0� = H−x�ww0�. Since w and
ww0 have complementary descent sets, this equality does not hold for w
with Des�w� = �α3; α4�. The same argument disproves the convolution
property in many cases.

Let id be the identity element of W and w0 the longest element of W .
Theorem 1 calculates the values of the measure HW;x on these elements.

Theorem 1. Let m1; : : : ;mr be the exponents of W . Then

HW;x�w0� =
∏r
i=1�x−mi�
xr �W � ;

HW;x�id� =
∏r
i=1�x+mi�
xr �W � :

Proof. The first assertion is easier. In fact,

HW;x�w0� =
χ�L;x�
xr �W � =

∏r
i=1�x−mi�
xr �W � :

The first equality is from the definition of HW;x and the second equality is
a well-known factorization of the characteristic polynomial of L (e.g., [20]).

For the second assertion, additional concepts are needed. Let L be the
lattice in V generated by 8̌ and let

L̂ = {v ∈ V � �v; α� ∈ Z for all α ∈ 8}:
Let f = �L̂ x L� be the index L in L̂. Let 5 = �αi� ⊂ 8+ be a set of simple
roots contained in a set of positive roots and let θ be the highest root in
8+. For convenience set α0 = −θ. Let 5̃ = 5 ∪ �α0�. Define coefficients
cα of θ with respect to 5̃ by the equations

∑
α∈5̃ cαα = 0 and cα0

= 1. For
S 6= 5̃ a proper subset of 5̃, define as in [23] p�S; x� to be the number of
solutions y in strictly positive integers to the equation∑

α∈5̃−S
cαyα = x:

In the equations which follow WK1
; : : : ;WKl with K1; : : : ;Kl ⊆ 5 are

representatives for the parabolic subgroups of W under conjugation. In [20]
it is proved that �λ�K�� is the number of J ⊆ 5 such that WJ is conjugate
to WK . We also make use of the fact [24] that if x is relatively prime to all
cα, then for any S ⊂ 5̃, S 6= 5̃, if p�S; x� is non-zero then WS is conjugate
to one of WK1

; : : : ;WKl : We denote conjugacy of parabolic subgroups by
the symbol ∼. One concludes that for infinitely many (and hence all) non-
zero x,
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HW;x�id� =
∑
K⊆5

�WK�χ�LFix�WK�; x�
xr �NW �WK���λ�K��

=
l∑
i=1

�WKi �χ�LFix�WKi �; x�
xr �NW �WKi��

= 1
xrf

l∑
i=1

f �WKi �χ�LFix�WKi �; x�
�NW �WKi��

= 1
xrf

l∑
i=1

∑
S⊆5̃;S 6=5̃
WS∼WKi

p�S; x�

= 1
xrf

∑
S⊂5̃
S 6=5̃

p�S; x�

= 1
xr �W �

r∏
i=1

�x+mi�:

The fourth and sixth equalities are results of [23].

3. SEMISIMPLE ORBITS OF LIE ALGEBRAS

This section connects (in some cases) the signed measures HW;x with
semisimple orbits of the adjoint action of finite groups of Lie type on their
Lie algebras.

Let G be a connected semisimple group defined over a finite field of
q elements. Suppose also that G is simply connected. Let G be the Lie
algebra of G. Let F denote both a Frobenius automorphism of G and
the corresponding Frobenius automorphism of G. Suppose that G is F-
split (analogous results for the non-split case should be sought). Since the
derived group of G is simply connected (the derived group of a simply
connected group is itself), a theorem of Springer and Steinberg [25] implies
that the centralizers of semisimple elements of G are connected. Let r be
the rank of G.

Now we define a map 8 (studied in [19] in somewhat greater general-
ity) from the F-rational semisimple orbits c of G to W , the Weyl group of
G. Pick x ∈ GF ∩ c. Since the centralizers of semisimple elements of G are
connected, x is determined up to conjugacy in GF and CG�x�, the central-
izer in G of x, is determined up to GF conjugacy. Let T be a maximally
split maximal torus in CG�x�. Then T is an F-stable maximal torus of G,
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determined up to GF conjugacy. By Proposition 3.3.3 of [7], the GF conju-
gacy classes of F-stable maximal tori of G are in bijection with conjugacy
classes of W . Define 8�c� to be the corresponding conjugacy class of W .

For example, in type An−1 the semisimple orbits c of sl�n; q� correspond
to monic degree n polynomials f �c� whose coefficient of xn−1 vanishes.
Such a polynomial factors as

∏
i f

ai
i where the fi are irreducible over Fq.

Letting di be the degree of fi, 8�c� is the conjugacy class of Sn correspond-
ing to the partition �daii �. This follows from Sect. 3 of [8].

As is standard in Lie theory, call a prime p very good if it divides no
coefficient of any root expressed as a linear combination of simple roots
and is relatively prime to the index of connection (the index of the coroot
lattice in the weight lattice). For example, in type A the very good primes
are those not dividing n. A result of Fleischmann shows that very good
primes are regular in the sense of [19].

Problem 1. When is the following statement true? “Let G be as above,
and suppose that the characteristic is a prime which is very good for G.
Choose c among the qr F-rational semisimple orbits of G uniformly at
random. Then for all conjugacy classes C of W ,

Probability �8�c� = C� = ∑
w∈C

HW;q�w�:”

Recall from the end of Sect. 2 that under the conditions of Problem
1, HW;q�w� ≥ 0 for all w ∈ W . This may be taken as evidence that the
statement in Problem 1 is correct. Theorems 2, 3, and 4 provide further
evidence. In cases where the convolution property of W does not hold,
we have doubts as to whether the statement in Problem 1 is always true.
Nevertheless, at present we have no examples to the contrary (type D4
would be a natural first place to look). It would be interesting to classify
conjugacy classes for which the equality holds.

Theorem 2. The statement in Problem 1 holds for G of all types (i.e.,
A–D;E6–8; F4;G2) when C is the identity conjugacy class of W .

Proof. Proposition 5.9 of [19]) implies that for q very good, the number
of F-rational semisimple orbits c of G which satisfy 8�c� = id is equal to

r∏
i=1

q+mi

1+mi

;

where r is the rank of G and mi are the exponents of W . Since there
are a total of qr F-rational semisimple orbits of G, and because �W � =∏r
i=1�1+mi�,

Probability �8�c� = id� =
∏r
i=1�q+mi�
qr �W � :

The proposition now follows from Theorem 1.
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We remark that the analog of Theorem 2 for affine shuffles [14] leads to
number theoretic reciprocity laws. Namely for any positive x; y the number
of ways (disregarding order and allowing repetition) of writing m (mod y)
as the sum of x integers of the set 0, 1, : : : , y − 1 is equal to the number
of ways of writing m (mod x) as the sum of y integers of the set 0, 1, : : : ,
x− 1.

Theorem 3. The statement of Problem 1 holds for G of type A, for all
conjugacy classes C of the symmetric group Sn.

Proof. Note that a monic, degree n polynomial f with coefficients in Fq
defines a partition of n, and hence a conjugacy class of Sn, by its factoriza-
tion into irreducibles. To be precise, if f factors as

∏
i f

ai
i where the fi are

irreducible of degree di, then �daii � is a partition of n. If the coefficient of
xn−1 in f vanishes, then f represents an F-rational semisimple orbit c of
sl�n; q�, and the conjugacy class of Sn corresponding to the partition �daii �
is equal to 8�c�.

In [9] it is shown that if f is uniformly chosen among all monic, degree
n polynomials with coefficients in Fq, then the measure on the conjugacy
classes of Sn induced by the factorization of f is equal to the measure in-
duced by HSn; q

. Thus, to prove the theorem, it suffices to show that the
random partition associated to a uniformly chosen monic, degree n polyno-
mial over Fq has the same distribution as the random partition associated
to a uniformly chosen monic, degree n polynomial over Fq with vanishing
coefficient of xn−1. Since the characteristic p is assumed to be very good, p
does not divide n. Thus for a suitable choice of k, the change of variables
x → x + k gives rise to a bijection between monic, degree n polynomi-
als with coefficient of xn−1 equal to b1 and monic, degree n polynomials
with coefficient of xn−1 equal to b2, for any b1 and b2. Since this bijection
preserves the partition associated to a polynomial, the theorem is proved.

Theorem 4 will confirm the statement of Problem 1 for all G of type B.
The proof will use the following combinatorial objects introduced in [21].
As Lemma 1 will show, these objects have interpretations in terms of
polynomials. Let a Z-word of length m be a vector �a1; : : : ; am� ∈ Zm.
For such a word define max�a� = max��ai��mi=1. The cyclic group C2m acts
on Z-words of length m by having a generator g act as g�a1; : : : ; am� =
�a2; : : : ; am;−a1�. Call a fixed-point free orbit P of this action a primitive
twisted necklace of size m. The group Z2 × Cm acts on Z-words of length
m by having the generator r of Cm act as a cyclic shift r�a1; : : : ; am� =
�a2; : : : ; am; a1� and having the generator v of Z2 act by v�a1; : : : ; am� =
�−a1; : : : ;−am�. Call an orbit D of this action a primitive blinking neck-
lace of size m if its Cm action is free (though its Z2 × Cm action need not
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be). Let a signed ornament o be a set of primitive twisted necklaces and
a multiset of primitive blinking necklaces. Say that o has type �Eλ; Eµ� =
��λ1; λ2; : : :�; �µ1; µ2; : : :�� if it consists of λm primitive blinking necklaces
of size m and µm primitive twisted necklaces of size m. Also define the size
of o to be the sum of the sizes of the primitive twisted and blinking neck-
laces which make up o, and define max�o� to be the maximum of max�D�
and max�P� for the primitive twisted and blinking necklaces which make
up o.

Lemma 1. Primitive twisted necklaces P of size m and with max�P� ≤ q−1
2

correspond to irreducible polynomials f �z� over Fq of degree 2m satisfying
f �z� = f �−z�. Primitive blinking necklaces D of size m and with max�D� ≤
q−1

2 correspond to products f �z�f �−z� with f �z�; f �−z� a pair of irreducible
polynomial of degree m over Fq. Signed ornaments given as sets of such P ’s
and multisets of such D’s correspond to polynomials of degree 2m over Fq
satisfying f �z� = f �−z�.

Proof. For the first assertion, let Fq2m be the degree 2m extension of Fq.
Choose α in Fq2m such that �αqi x 1 ≤ i ≤ 2m� is a basis over Fq. (Such a
basis is called a normal basis and is known to exist.) Let f �z� be an irre-
ducible polynomial of degree 2m satisfying f �z� = f �−z�. Let β be one
of its roots in Fq2m . Writing β =∑2m

i=1 ciα
qi , define a vector �c1; : : : ; cm� as-

sociated to β. Since the automorphism of Fq2m defined by α → αq
m

is its
unique automorphism of order two, it follows that βq is assigned the vector
�c2; : : : ; cm;−c1�. Thus the action of the Frobenius map x → xq corre-
sponds to the action of Z2 ×Cm on the vector �c1; : : : ; cm�, and irreducible
polynomials correspond to primitive orbits.

For the second assertion, choose α in Fqm such that �αqi x 1 ≤ i ≤ m�
is a basis over Fq. Let f �z� be an irreducible polynomial of degree m.
Let β be one of its roots in Fqm . Writing β = ∑m

i=1 ciα
qi , define a vector

�c1; : : : ; cm� associated to β. The Cm action on this vector is free because
f �z� is irreducible. The Z2 action sends f �z� to f �−z�.

For the final assertion, note that a polynomial f �z� satisfying f �z� =
f �−z� can be factored uniquely as a product∏

�φj�z�;φj�−z��
�φj�z�φj�−z��rφj

∏
φj xφj�z�=φj�−z�

φj�z�sφj ;

where the φj are monic irreducible polynomials and sφj ∈ �0; 1�.
Theorem 4 proves the statement of Problem 1 for type B.

Theorem 4. The statement of Problem 1 holds for G of type B, for all
conjugacy classes C of the hyperoctahedral group Bn.
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Proof. Note that because 2 is a bad prime for type B, it can be assumed
that the characteristic is odd. Recall that the type of a signed ornament is
parametrized by pairs of vectors �Eλ; Eµ�, where λi is the number of primitive
blinking necklaces of size i and µi is the number of primitive twisted neck-
laces of size i. From the theory of wreath products, the conjugacy classes
of the hyperoctahedral group Bn are also parametrized by pairs of vectors
�Eλ; Eµ�, where λi�w� and µi�w� are the number of positive and negative
cycles of w ∈ Bn, respectively.

The first step of the proof will be to show that the measure induced on
pairs �Eλ; Eµ� by choosing a random signed ornament o of size n satisfying
max�o� ≤ q−1

2 is equal to the measure induced on pairs �Eλ; Eµ� by choosing
w ∈ Bn according to the measure HBn; q

and then looking at its conjugacy
class. From the definition of descents given in Sect. 2, it is easy to see that
if one introduces the linear order 3 on the set of non-zero integers

+1 <3 +2 <3 · · · + n <3 · · · <3 −n <3 · · · <3 −2 <3 −1

then d�w�, the number of descents of w ∈ Bn, can be defined as ��i x 1 ≤
i ≤ n x w�i� >3 w�i+ 1���. Here w�n+ 1� = n+ 1 by convention.

It is proved in [21] that there is a bijection between signed ornaments
o of size n satisfying max�o� ≤ q−1

2 and pairs �w; Es� where w ∈ Bn and
Es = �s1; : : : ; sn� ∈ Nn satisifies q−1

2 ≥ s1 ≥ · · · ≥ sn ≥ 0 and si > si+1 when
w�i� >3 w�i+ 1� (i.e., when w has a descent at position i). Further, Reiner
shows that the type of o is equal to the conjugacy class vector of w. It is
easy to see that if w has d�w� descents, then the number of Es such that
q−1

2 ≥ s1 ≥ · · · ≥ sn ≥ 0 and si > si+1 when w�i� <3 w�i+ 1� is equal to q− 1
2
+ n− d�w�
n

 = �q+ 1− 2d�w�� · · · �q+ 2n− 1− 2d�w��
2nn!

:

Lemma 1 implies that there are qn signed ornaments f of size n satis-
fying max�f � ≤ q−1

2 . Thus choosing a random signed ornament induces a
measure on w ∈ Bn with mass on w equal to

�q+ 1− 2d�w�� · · · �q+ 2n− 1− 2d�w��
qn�Bn�

:

By the remarks in Sect. 2, this is exactly the mass on w under the measure
HBn; q

. Since in Reiner’s bijection the type of o is equal to the conjugacy
class vector of w, we have proved that the measure on conjugacy classes
�Eλ; Eµ� of Bn induced by choosing w according to HBn; q

is equal to the
measure on conjugacy classes �Eλ; Eµ� of Bn induced by choosing a signed
ornament uniformly at random and taking its type.

The second step in the proof is to show that if f is chosen uniformly
among the qn semisimple orbits of Spin�2n+ 1; q� on its Lie algebra, then
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the chance that 8�f � is the conjugacy class �Eλ; Eµ� of Bn is equal to the
chance that a signed ornament chosen randomly among the qn signed or-
naments o of size n satisfying max�o� ≤ q−1

2 has type �Eλ; Eµ�. It is known
that the semisimple orbits of Spin�2n+ 1; q� on its Lie algebra correspond
to monic, degree 2n polynomials f satisfying f �z� = f �−z�. From Sect. 3
of [8], one sees that 8�f � can be described as follows. Factor f uniquely
into irreducibles as∏

�φj�z�; φj�−z��
�φj�z�φj�−z��rφj

∏
φj xφj�z�=φj�−z�

φj�z�sφj ;

where the φj are monic irreducible polynomials and sφj ∈ �0; 1�. Then let
λi�f � =

∑
φ x deg�φ�=i rφ and µi�f � =

∑
φ x deg�φ�=2i sφ. The result now follows

from Lemma 1.

4. REFINING THE MAP 8 TO THE WEYL GROUP

As noted in the introduction, one long-term goal is to find a canonical
way to associate to an F-rational semisimple orbit c of G an element w of
W . The conjugacy class of w should equal 8�c� and choosing c uniformly
at random should induce the measure HW;q on W .

To see why such a result may be interesting, at least in type A, consider
a simple algebraic extension of Q with minimal polynomial f �x�. At un-
ramified primes the Frobenius automorphism is defined up to conjugacy in
the Galois group. Viewed as a permutation of the roots of f �x�, the cy-
cle structure of the Frobenius automorphism is given by the degrees of the
irreducible factors of the modulo p reduction of f �x�. This is simply the
map 8 in type A. Some important constructions in algebraic number theory
(see [15] for a survey) create generating functions combining this data over
all primes. It is not impossible that a natural refinement of the Frobenius
data will yield new number theoretic constructions.

Next we indicate a somewhat unnatural way to refine the map 8 in types
A and B. For type A, the refinement proceeds in two steps. Define a neck-
lace on an alphabet to be a sequence of cyclically arranged letters of the
alphabet. A necklace is said to be primitive if it is not equal to any of its
non-trivial cyclic shifts. For example, the necklace �a a b b� is primitive,
but the necklace �a b a b� is not.

The first step is to associate to a monic degree n polynomial over Fq a
multiset of primitive necklaces on a lexicographically ordered alphabet of
q − 1 symbols. One way to do this is using the concept of a normal basis,
that is to choose for each n an element αn such that its conjugates αp

j

n for
j = 0; : : : ; n− 1 are a basis of Fpn over Fp. Then a monic irreducible degree
i polynomial gives a primitive necklace of size i formed by the coefficients
cj of any one of its roots written as

∑
cjα

pj

i . (It is natural to require that
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for i�n, the norm of αn is αi.) This is the preferred method in the case of
semisimple adjoint orbits, because the involution sending f �x� to f �−x�
takes negatives of the necklace entries.

A second way to carry out this first step was noticed by Golomb [17].
For each n, pick an element βn generating the multiplicative group of the
field extension Fqn of Fq. A root of an irreducible polynomial φ of degree i
can be written βxi . Considering the mod q expansion of x gives a primitive
necklace of size i on the symbols �0; 1; : : : ; q − 1�. This is the preferred
construction in the case of semisimple conjugacy classes, because the invo-
lution f �x� 7→ tdeg�f �f � 1

t
�/f �0� on polynomials with non-zero constant term

takes negatives of the necklace entries.
The next step in the construction is to associate to a multiset of primi-

tive necklaces on �0; : : : ; q − 1� a permutation with cycle structure equal
to that of the necklace. A way to do this was found by Gessel and
Reutenauer [16]. To each entry of a necklace, first associate the infinite
word obtained by reading the necklace in the clockwise direction. Using
the example from [16], consider the multiset of necklaces

�1 2��1 2��2��2 3��2 3 2 3 3�:
Then the entry 2 on the necklace �2 3� would give the word 23232323 · · ·.
One then orders lexicographically the words obtained (after imposing an
arbitrary order on equal necklaces), and replaces each necklace entry by
the lexicographic order of its associated word. The example would thus
yield the permutation

�1 3��2 4��5��6 9��7 11 8 12 10�:
Arguing as in [9] (which does not mention correspondences between

polynomials and necklaces) shows that choosing a multiset of primitive
necklaces on the symbols �0; : : : ; q − 1� of total size n and applying the
Gessel–Reutenauer map gives a permutation distributed according to HSn; q

.
For a Bn analog, the bijection of Gessel should be replaced by the bi-

jection of Reiner [21] used in the proof of Theorem 4. The correspon-
dence between signed ornaments and degree 2n monic polynomials satisfy-
ing f �z� = f �−z� is given in the proof of Lemma 1.
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