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Abstract

We provide an explicit bijection between the ad-nilpotent ideals of a Borel subalgebra
of a simple Lie algebra and the orbits of) /(i + 1) Q under the Weyl group{ being
the coroot lattice andl the Coxeter number gf). From this result we deduce in a uniform
way a counting formula for the ad-nilpotent ideals.
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1. Introduction

Let g be a complex simple Lie algebra of rankLet b C g be a fixed Borel
subalgebra, with Cartan componéntand letA™ be the positive system of the
root systemA of g corresponding to the previous choice. For eaclkh A™
let g, denote the root space qf relative toa, andn = @, .+ g«, SO that
b=hHdn.

In this paper we continue the analysis, started in [CP1], of th& sat ad-
nilpotentideals ob, i.e. the ideals 0b consisting of ad-nilpotent elements. These

* Corresponding author.
E-mail addresses: cellini@gotham.sci.unich.it (P. Cellini), papi@mat.uniromal.it (P. Papi).

0021-8693/02/$ — see front mattér 2002 Elsevier Science (USA). All rights reserved.
PIl: S0021-8693(02)00532-X



P. Céellini, P. Papi / Journal of Algebra 258 (2002) 112-121 113

ideals are precisely the ideals bfwhich are contained im; in particular the
abelian ideals ob are ad-nilpotent.

The abelian ideals of Borel subalgebras were studied by Kostant in [Kol,
Ko2] in connection with representation theory of semisimple Lie groups, and very
recently by Panyushev and Rohrle [PR] in connection with the theory of spherical
orbits. In particular, in [Ko2] Kostant detailed the following unpublished theorem
of D. Peterson: the abelian ideals bbfare 2 in number, independently of the
type of g. In fact, Peterson gives a bijection between the abelian idedisaafi
a certain set of elements of the affine Wey! grdipof g. This leads to look for
a similar result for all ad-nilpotent ideals. In [CP1] we showed how to associate
to any ideal in Z a uniquely determined elememnt in W, and we characterized
the set{w; | i € Z} inside W. In this paper we develop our previous results and
prove the following theorem.

Let W denote the Weyl group af, andQ, 0 be the root and coroot lattices,
respectively. Moreover lgi be the Coxeter number &% andey, ..., e, be the
exponents ofW [Hu, Section 3.19]. We consider the natural action¥sfon

0/(h+1)Q.

Theorem 1. There exists an explicit bijection between the set of ad-nilpotent
ideals of b and the set of W-orbitsin Q/(h + 1) Q. In particular, the number
of the ad-nilpotent ideals of b is

l n
il E(h +e+1). (1)

The fact that formula (1) count®-orbits in é/(h + 1)@ follows from a
theorem of M. Haiman [Ha, Theorem 7.4.4].

As we shall recall in Section 4, the ad-nilpotent idealshaire naturally in
bijection with the antichains of the root poset™, <), hence with thed-sign
types of A, and with the regions of the Catalan hyperplane arrangement which
are contained in the fundamental chambeiafSo our result affords a uniform
enumeration for all these objects. In particular, it answers the question raised in
[S, Remark 3.7] regarding the (uniform) enumeration of sign types.

Formula (1) for the ad-nilpotent ideals already appears at the end of the
introduction of [KOP], where the authors asked for a proof of it avoiding case
by case inspection. Our main theorem also improves the known results on the
Catalan arrangement extending to any root system the enumeration formula (1),
which was proved by Athanasiadis for the classical systems [At1,At2].

We remark that Sommers [So] gives a generalization of formula (1), expressing
the Euler characteristic of the space of partial flags containing a certain regular
semisimple nil-elliptic element, in an affine Lie algebra.

Our paper is organized as follows. In the next section we fix notation and recall
some basic facts about affine Weyl groups. In Section 3 we prove Theorem 1 after
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recalling the results of [CP1] which are needed for the proof. In Section 4 we
briefly recall the known bijections between ad-nilpotent ideals, antichains of the
root poset(A™, <), @-sign types of A, and regions of the Catalan hyperplane
arrangement contained in the fundamental chamber. In Section 5 we illustrate the
bijection of Theorem 1 for the root types and B>.

2. Notation and preliminaries

Let IT ={ay, ..., a,} be the simple roots oA ™. We setV = b} = P_; Ra;
and denote by(,) the positive symmetric bilinear form induced &h by the
Killing form. We describe the affine root system associatedAt@s follows
[Kac, Chapter 6]. We extend and its inner product settinﬁ =V ®dRS D RA,
6,8)=(@6,V)=%,2)=(x,V)=0, and(5,r) = 1. We still denote by(,)
the resulting (non-degenerate) bilinear form. The affine root system associated
o AiSA=A+7Z8 = {a + k8 |a € A, k € Z}; remark that the affine roots
are non-isotropic vectors. The set of positive affine rootd fs= (A + N§) U
(A~ + NT§), whereA~™ = —A+. We denote by the highest root ofA and
setag = —0 + 8, IT = {ag, ..., ). For eacha e AT we denote bys, the
correspondlng reflection df ; the affine Weyl group assomatedmls the group
W generated bysy | @ € A+} Note thatw(8) = é for eachw € w.

W is a semidirect produdt x W, whereT = {t, | ‘L' € Q)= Qisthe subgroup
of trandations, and the action oW on T is vt,v™" = ty(r). The action oft,
onV @ Ré, in particular on the roots, is given by(x) = x — (x, 7)§, for each
x € V@ RS. (See [Kac] for the general definition gf on V.)

Consider thel-invariant affine subspacE ={x eV |(x,0)=1=V @&
RS + A. Let m: E — V 4+ A be the natural projection. Fow € W we set
w =1 o w|y+x. Then the mapw — w is injective. We identifyV + A with V
through the natural projection. In this way+— w induces an isomorphism oF
onto a groupg, ;s of affine transformations of , which is in fact the usual affine
representation of the affine Weyl group [B, VI, 82]. Roe W, ¥ is simply the
restriction ofv to V, so we omit the bar. Far e Q, t; is the true translation by.

Fork e N*, we set

Coo:{xev|(x,ai)>Of0reach'e{1,...,n}},
Ci={x €Cuo | (x,0) <k}.

C Is the fundamental chamber @f in V, andC; is the fundamental alcove of
Warin V. The closure€ ,, C1 are fundamental domains for the actionsioof
W, W,y, respectively.

As usual we denote byws, ..., ®,} the dual basis ofay,...,«,} and set
o; = &;/m;, wheref =miay + - - - + mpa,. For eachk e N*, C; (=kCy) is the
simplex whose vertices are kb1, . .., ko,.
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Let Tk = {7, | T € kQ} and setW; = T* x W. Note thatW; is the affine Weyl
group of%A andCy is its fundamental chamber with respec;}tﬂ. In particular,

Q NCy is a set of representatives of the orbitsQ;tmder the natural action <Wk
Fort € Q, consider its orbitV, (t). We haveW, (t) = W(t) +kQ = W +kQ)
hence the orbits of underw; naturally correspond to the orbits of/ k O under
the action ofW [Ha]. In fact, in order to prove Theorem 1, we shall prove that
is in bijection withQ N Cj41.

3. Proof of Theorem 1

In [CP1] we found an explicit encoding of the elementsZoby means of
certain elements o . We briefly recall this result. By definition any ad-nilpotent
ideali of b is included inn. Such an ideailis, in particular, ath)-stable, so there
exists®; C AT such thati = @,y go. We setdl = &; and o/ ! = (oF +
@) N AT, for eachk € N*, so thatP, o+ g0 €qualsi®), thekth element of the
descending central seriesiofThen we associate idhe following set of positive
affine roots:L; = Uk>1(_¢ik + k8). In [CP1, Proposition 2.4] we proved that
there exists a (unique); € W such that; = N (w;) = {¢ € A* | w; () <0}.
Theni — w; is the required encoding. We remark thiatis explicitly determined
by L;. We also gave the following characterization, which will play a crucial role
in the sequel.

Proposition 1 [CP1, Proposition 2.12).et w € W.Thenw = w; for someieZ
if and only if the following conditions hold:

(@) wl(a) >0foreach o € IT;
(b) if w(a) <Ofor somea € T, then w(a) =B — & for some B e A™T.

Fora e AT and! € Z set Hy, = {x e V| (x,a) =1}. We recall that, for
aeAt, leNt, meN, we W, we havew 1(—a +18) < 0 if and only if Hy;
separate§’; andw(C1), andw (e +ms) < 0 if and only if H,, o.—m Separate€’;
andw(C1). From Proposition 1 we obtain the following characterization.

Proposition 2. Let we W, w=1t,v, 7€ O, ve W. Set B = v(e;) for i €
{1,...,n}. Then w = w; for some i € Z if and only if the following conditions
hold:

(i) w(C1) C Co;
(iiy (r,B;)<1lforeachie{l,...,n}and(z,v(0)) > —

Proof. Itis clear that condition (a) of Proposition 1 is equivalenit@1) C Ceo.
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Assumew = w; for somei € Z. Then (i) holds and this implies, in particular,
thatt € C. Sinceg; € A, if B; < 0 then(z, B;) < 0. So we may assung > 0.

We havew(«;) = B; — (z, Bi)3, hence if(z, ;) > 0 we obtainw(¢;) < 0. Then
by Proposition 1w(«;) = B; — & and thus(z, 8;) = 1. Then we consider(6).
We havew(ag) = —v(0) + ((t,v(0)) + D)S. If (z,v(0)) < —1 thenw(ag) < O,
hence by Proposition 1z, v(9)) + 1= —1, hencgr, v(0)) = 2.

Conversely, assume that (i) and (ii) hold. Then condition (a) of Proposition 1
holds. Let 1< i < n andw(e;) < 0. Then either(z, 8;) > 0, or (z,8) =0
andB; < 0. The latter case cannot occur, otherwise,xfaxr C1 we would have
(wx), Bi) = (v(x), Bi) = (x, «;) > 0, which is impossible, since(x) belongs to
C andp; is negative. So we have, 8;) > 0, hence, by assumptian, ;) = 1,
so thatw(w;) = B; — 8. Finally assumev(ag) < 0. Then eithekz, v(0)) +1 <0,
or (r,v(0)) + 1 =0 andv(®) > 0. As above we see that the latter case cannot
occur, so, by assumptiotir, v(#)) = —2. This impliesv(9) < 0 andw(«g) =
—v(9) — §, hence the claim. O

Set
D=|teQ|(r.a)) <1foreach e {1,...,n} and(z,) > —2}.

Assumew; = t,vi forsomeie Z, ; € Q v; € W. Then by Proposition 2 we have
(ti, Bj) < 1foreachj e {1,...,n}and(r;, vi(0)) > -2, hence(vi‘l(n), aj) <1
for eachj e {1,...,n} and (v, (1), 6) > —2. It follows thatry, vi > v, (%) is
amap from{w; |ie€Z}to D.

Proposition 3. The map F:w; = t;v; > vfl(n) is a bijection between {w; |
ieZ}and D.

Proof. Set, for notational simplicityw; = . v, w; = t,u for somei andj in Z,

t,0 € Q andv,u € W. Assumev—1(r) = u~1(s). Sincet,o € Co, Which

is a fundamental domain foW, we haver = o and vu~1(z) = . Hence
v(C1) = frvu tu(C1) = vu Y (#Hu(C1)) = vu Yt u(Cr)) C vu 1(Cs). But

7;v(C1) C Coo, hencevu1 = 1. ThusF is injective. Next letr € D. We first see
that there exists € W such that,)v(C1) C C: Simply take the unique € W

such thatv(c + C1) C C. Now it is immediate that, since € D, #,()v also
satisfies condition (ii) of Proposition 2, hengg,)v = w; for somei in 7. It is

obvious thatF mapst,s)v to o, thusF is surjective. O

Remark. In a forthcoming paper [CP2] we provide characterizations for the
elements ofD corresponding through' to abelian ideals and, among them, for
those encoding maximal abelian ideals.
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Let P =Zao1 + - - - + Za, be the coweight lattice ofV. We denote byW‘/lf
the extended affine Wey! groupy, = T'xW,withT' ={i; |t € P}, i, the
translation byr. As usual, we sef = [W,, : W] = [P: O]

Lemma 1. Assume that k¥ and f are relatively prime. Then for each w’ € W/f
there exists w € W, such that w’(Cy) = w(Cy).

Proof. Letd =Y " ;mjo; andJ = {i | m; = 1. By [IM, Sections 1.7 and 1.8],
{0} U {®; | ] € J} is a set of representatives Bf/Q Moreover, for eachy € J,
Ck =ty wowo(Ck) wherewyg is the longest element ¥ andw0 is the longest
element in the maximal parabolic subgroupWf generated by the reflections
with respect to they; with i # j. It suffices to prove the lemma far’ € T/;
let w’ =7, with o € P. Then we havey'(Cy) = i, (Cy) = t'Hk,;,_/ wéwo(Ck), for
eachj e J. If k and f are relatively prime, thef0} U {ko; | j € J} and hence
{0} U{o +ke; | j € J} still are sets of representatives Bf Q. It follows that
exactly one element ifo} U {o + k®; | j € J} belongs toQ, hence one among
to, t‘Hkt;,_,,w{)'wo, j €J,belongstoW,r. O

Remark. A direct check shows that the prime divisors gfalso divide the
Coxeter number oW. Hence the assumption of Lemma 1 is satisfied by any
integerk relatively prime toh.

Theorem 1. 7 isin bijection with the orbits of Q/(h + 1) Q under W.

Proof. LetX ={x eV | (x,a;) <1lforeach €{1,...,n}and(x,0) > —2}and

0 = w1+ - -+, be the half sum of positive coroots. We have thatd) = h — 1,
thus X is the simplex whose vertices apgeandp — (h + 1)o;, fori=1,....n
HenceX = tﬁwo(@,H). By Lemma 1 and the above remark there exists W, s
such thatX = w(C41). Such aw gives a bijection fron€,;1NQto D = XN Q.

If i e Z and w; = tv;, with 3 € 0 andv; € W, then, using Proposition 3,
we obtain thatw v, *(z;) belongs toCh1 N Q0 andir> w v () is a
bijection betweerZ and C,4+1 N Q. This concludes the proof, smce as we
observed in Section 2, the cosets of the elemen,im N Q are a natural set of
representatives of the orbits Qf/(h + 1)Q under the actionoW. O

We can explicitly determine the elementwhich appears in the above proof.
Indeed we shall compute 1. If 5 € 0, then trivially w1 = = wot_;. Otherwise,
according to the proofs of Lemma 1 and of Theorem 1, there exists a unique
j € J suchthat the vertex — (h + 1)o; = p — (h+ D) @; of X belongs to0. Now

observe thaiué maps{e; | i # jito{—o; | i # j} and maps:; andd into positive
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roots. For any root let ht(a) = (a, p) be the height ofv. Then ht9) =h — 1,
and, sincej € J, htw}(6)) = ht(w}(@;)) — (h — 2). Sincew},¥) is positive
this implies that h‘twé(aj)) =h-1, hencewé(aj) =6 and wé(@) =aj. ltis
easily seen that this implies tha%t,m(hﬂ)c;j (X) = Cj41. Hence in order to
determinew it suffices to determine the aboye

Numbering the fundamental weights as in [B], by a direct computation we
obtain:

. 1
An: peQforneven j:%forn odd

B,: peQforn=03mod4 j=1forn=12mod4

Cp: j=mn;
D,: peQforn=01mod4 j=1forn=2,3mod4
Ezn: j=T,

Es, Es, Fa, Go: pe Q.

4. Theother bijections
4.1. Ahbijection between ad-nilpotent ideals of b and antichains of the root poset

In Section 3 we observed that any ad-nilpotent idedl isfa sum of (positive)
root spaces. Fob C AT, setig = D, co 9o If ip is an ideal ofb, thena € @,
BeAt, a+ B e Aimpliesa + B € @. If we endowA™ with the usual partial
order (lea < Bif B—a= Zyeﬁ ¢y, ¢y € N), then, by definitiong is a dual
order ideal of AT, ).

Itis a general fact that, in a finite poset dual order ideals and antichains (i.e.
sets consisting of pairwise non-comparable elements) are in canonical bijection:
map the antichaifias, ..., ax} to the dual order ideal which is the union of the
principal dual order ideal¥, ..., V,,, whereV, ={b € P | b > a}; the inverse
map sends a dual order ideal into the set of its minimal elements. It is clear that
ig — @ is the required bijection.

Remark. In combinatorial literature the antichains of the root paset, <) are
callednon-nesting partitions [R, Remark 2]. This name derives from the analysis
of the definition in typeA,. In that case, write the positive roots with respect to
the standard basig; }/*3 of R"*1, so thata* = {e; —¢; | 1<i < j <n+1}.
Then to an antichaid we can associate a partition {ff, . .., n + 1} by putting

in the same block, j whenevek; —¢; € A. It turns out that partitions arising in
this way are the ones characterized by the following property; éfappear in a
block B andb, d appear in a different block’ wherea < b < d < e, then there
existsc € B satisfyingb < ¢ < d.
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4.2. Abijection between antichains of the root poset and @-sign types of A or
regions of the Catalan arrangement which are contained in the fundamental
chamber

First we recall the definition ofp-sign type for the root systera. For
ac AT setHyy ={veV|@wa) >1}, Hho={veV|0< (v,a) <1},
Hy,_={veV|(v,a) <0}. Then a subsef C V is asign type (respectively
@-sign type) if it is of the form S = ("), c o+ Ha, x,, for some collection(Xy) e+
with X, € {+, 0, —} (respectivelyX, € {+, 0}).

We describe a bijection between dual order idealsa@sgign types, according
to Shi [S, Theorem 1.4]. Given a dual order idéalc A™*, map it to thed-sign
type (Xy)4c 4+ defined by

o ifaga,
Xa_{—f-, if « € .

This bijection appears also in a different context. Recall the two following
remarkable arrangements of real hyperplanes (cf. [At2, Section 3]).Shhe
arrangement S, relative toA, is the set of hyperplanes &f having equations

(x,a) =0, (x,a) =1, aeAT;
the Catalan arrangement C is the set of hyperplanes &f having equations
(x,a) =0, (x,a) =1, (x,0) =—1, aeAT.

We callregions of the hyperplane arrangement the connected components of the
complement inV of the union of all hyperplanes in the arrangement. By the
definition of S and( it is clear that both arrangements have the same number
of regions inside the fundamental chambemof A bijection between antichains

in AT and regions ofS or C lying in the fundamental chamber (which in [At1,
6.1] is attributed to Postnikov) can be made explicit mapping an anticham

the region

Xa= {x € Co (B,x) <1 otherwise

{(,B,x)>1 ifﬁ}aforsomeaeA,}

We illustrate in Table 1 the above bijections in the easy case of a root system
of type A».

Table 1
Ideals inZ Antichains Regions of within Cxso
i17=0 9 Xp={x|(x, 1) <1,(x,a2) <1, (x,0) <1}
irx=gp {6} Xo={x|(x,a1) <1, (x,2) <1, (x,0)>1}
i3=go; D0 {1} Xz={x|(x,21)>1,(x,a2) <1, (x,0)>1}
i4=0ga, ® 9o {an} Xa={x|(x,a1) <1, (x,02) > 1 (x,0) > 1}
i5=ga; D gap D 90 {1, a2} Xs={x|(x,21) > 1, (x,2) > 1,(x,0) > 1}
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Remark. It is worthwhile to recall that formula (1) also counts the number of
conjugacy classes of elements of order dividing 1 in a maximal torug" of

the connected simply connected simple algebraic g@umrresponding ta.
Indeed these classes are in bijection withorbits onQ /(g + 1) 0. In fact, regard
coroots as cocharacters Bf i.e. as morphism of algebraic groufg$ — 7. Fix

a primitive rth root of unityz; then, givenr € Q, the mapr — t(z) is bijection
fromQ/rQtoT, ={r € T | " = 1} and induces a bijection between theorbits

in O/r O and the conjugacy classes of elements,in

5. Examples

We illustrate the bijection of Theorem 1 whehis of type A» or Bs. For this
purpose we first need to give explicitly the elemenis w corresponding to the
idealsi € 7.

In the case ofd, the map frontZ into W is given in Table 2.

We haveh = 3 andQ = Q = Zay @ Zay;, we have alsgh = p =0 = a1 + ao.
The bijections of Proposition 3 and Theorem 1 are given in Table 3 (regarding the
bijection of Theorem 1, we write down the element®f,1 N O corresponding
to each ideal).

Now we consider the root typB,. Hereh = 4, andQ = Zay + 2Zao. Then
0 =201 + 302 ¢ Q but w1 = a1 + a2 SO thatp—5w1——3ot1—2a2€ Q
Moreover, in the notation of the proof of Theoremu]t’, wo = s2. The injection
of Zin Wis given in Table 4 (for shortness we do not wiNgw;)).

The bijection withCj,,1 N Q is made explicit in Table 5.

Table 2
Ideals inZ N (wy) wj
i1=0 ] 1
i2=gp {—0+3} 50
i3=go; Doy {(—0 46, —a1 + 5} 5052
4= gap D 90 {=6+6, —az+6} 5051
i5=goy D gay D 99 {(=0+38, —az+38, -0+ 25, —ag + 4} 50515251
Table 3
-1 -1
Wi = Iy Vi v “(T) wol_ 5 (v ~(11))
1 0 0
50 = lpS15251 —0 20
5052 = 195251 —aq a1 + 200
5051 = 195152 —a2 201 +ap

50515251 =1p 0 0
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Table 4
i1 =0 wil =1
i2=1g6 Wi, =50
3= gag+ap D 96 Wiy = 5052
i4=0ga; D Gay+ay D 90 Wi, = 505250
15 = gy D Gay+apr D 90 Wig = 50525152
ig=n Wig = $0525152505250
Table 5
-1 J -1
wi =t vy v (1) wot—ﬁ+(h+1)d;j (v " (w)
wi; =1 0 1 + 200
Wi, = 15525152 —G1—ap 207 + 287
Wig = tészsl —6!1 25[1 + 5[2
Wiy = 12647 +&,515251 —2d1 —dp &1 +do
Wig = I a1 +ap 4611 + 200
Wig = 134, +24,515251 =301 — a2 0
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