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Abstract

We provide an explicit bijection between the ad-nilpotent ideals of a Borel subalgebra
of a simple Lie algebrag and the orbits ofQ̌/(h + 1)Q̌ under the Weyl group (̌Q being
the coroot lattice andh the Coxeter number ofg). From this result we deduce in a uniform
way a counting formula for the ad-nilpotent ideals.
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1. Introduction

Let g be a complex simple Lie algebra of rankn. Let b ⊂ g be a fixed Borel
subalgebra, with Cartan componenth, and let∆+ be the positive system of the
root system∆ of g corresponding to the previous choice. For eachα ∈ ∆+
let gα denote the root space ofg relative to α, and n = ⊕

α∈∆+ gα , so that
b = h ⊕ n.

In this paper we continue the analysis, started in [CP1], of the setI of ad-
nilpotent ideals ofb, i.e. the ideals ofb consisting of ad-nilpotent elements. These
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ideals are precisely the ideals ofb which are contained inn; in particular the
abelian ideals ofb are ad-nilpotent.

The abelian ideals of Borel subalgebras were studied by Kostant in [Ko1,
Ko2] in connection with representation theory of semisimple Lie groups, and very
recently by Panyushev and Röhrle [PR] in connection with the theory of spherical
orbits. In particular, in [Ko2] Kostant detailed the following unpublished theorem
of D. Peterson: the abelian ideals ofb are 2n in number, independently of the
type ofg. In fact, Peterson gives a bijection between the abelian ideals ofb and
a certain set of elements of the affine Weyl groupŴ of g. This leads to look for
a similar result for all ad-nilpotent ideals. In [CP1] we showed how to associate
to any ideali in I a uniquely determined elementwi in Ŵ , and we characterized
the set{wi | i ∈ I} insideŴ . In this paper we develop our previous results and
prove the following theorem.

Let W denote the Weyl group ofg, andQ,Q̌ be the root and coroot lattices,
respectively. Moreover leth be the Coxeter number ofW ande1, . . . , en be the
exponents ofW [Hu, Section 3.19]. We consider the natural action ofW on
Q̌/(h+ 1)Q̌.

Theorem 1. There exists an explicit bijection between the set of ad-nilpotent
ideals of b and the set of W -orbits in Q̌/(h + 1)Q̌. In particular, the number
of the ad-nilpotent ideals of b is

1

|W |
n∏

i=1

(h+ ei + 1). (1)

The fact that formula (1) countsW -orbits in Q̌/(h + 1)Q̌ follows from a
theorem of M. Haiman [Ha, Theorem 7.4.4].

As we shall recall in Section 4, the ad-nilpotent ideals ofb are naturally in
bijection with the antichains of the root poset(∆+,�), hence with the⊕-sign
types of ∆̌, and with the regions of the Catalan hyperplane arrangement which
are contained in the fundamental chamber ofW . So our result affords a uniform
enumeration for all these objects. In particular, it answers the question raised in
[S, Remark 3.7] regarding the (uniform) enumeration of sign types.

Formula (1) for the ad-nilpotent ideals already appears at the end of the
introduction of [KOP], where the authors asked for a proof of it avoiding case
by case inspection. Our main theorem also improves the known results on the
Catalan arrangement extending to any root system the enumeration formula (1),
which was proved by Athanasiadis for the classical systems [At1,At2].

We remark that Sommers [So] gives a generalization of formula (1), expressing
the Euler characteristic of the space of partial flags containing a certain regular
semisimple nil-elliptic elementnt in an affine Lie algebra.

Our paper is organized as follows. In the next section we fix notation and recall
some basic facts about affine Weyl groups. In Section 3 we prove Theorem 1 after
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recalling the results of [CP1] which are needed for the proof. In Section 4 we
briefly recall the known bijections between ad-nilpotent ideals, antichains of the
root poset(∆+,�), ⊕-sign types of ∆̌, and regions of the Catalan hyperplane
arrangement contained in the fundamental chamber. In Section 5 we illustrate the
bijection of Theorem 1 for the root typesA2 andB2.

2. Notation and preliminaries

Let Π = {α1, . . . , αn} be the simple roots of∆+. We setV ≡ h∗
R

= ⊕n
i=1 Rαi

and denote by( , ) the positive symmetric bilinear form induced onV by the
Killing form. We describe the affine root system associated to∆ as follows
[Kac, Chapter 6]. We extendV and its inner product settinĝV = V ⊕ Rδ ⊕ Rλ,
(δ, δ) = (δ,V ) = (λ,λ) = (λ,V ) = 0, and(δ, λ) = 1. We still denote by( , )
the resulting (non-degenerate) bilinear form. The affine root system associated
to ∆ is ∆̂ = ∆ + Zδ = {α + kδ | α ∈ ∆, k ∈ Z}; remark that the affine roots
are non-isotropic vectors. The set of positive affine roots is∆̂+ = (∆+ + Nδ) ∪
(∆− + N+δ), where∆− = −∆+. We denote byθ the highest root of∆ and
set α0 = −θ + δ, Π̂ = {α0, . . . , αn}. For eachα ∈ ∆̂+ we denote bysα the
corresponding reflection of̂V ; the affine Weyl group associated to∆ is the group
Ŵ generated by{sα | α ∈ ∆̂+}. Note thatw(δ)= δ for eachw ∈ Ŵ .

Ŵ is a semidirect productT �W , whereT = {tτ | τ ∈ Q̌} ∼= Q̌ is the subgroup
of translations, and the action ofW on T is vtτ v

−1 = tv(τ ). The action oftτ
on V ⊕ Rδ, in particular on the roots, is given bytτ (x) = x − (x, τ )δ, for each
x ∈ V ⊕ Rδ. (See [Kac] for the general definition oftτ on V̂ .)

Consider theŴ -invariant affine subspaceE = {x ∈ V | (x, δ) = 1} = V ⊕
Rδ + λ. Let π :E → V + λ be the natural projection. Forw ∈ Ŵ we set
w = π ◦ w|V+λ. Then the mapw �→ w is injective. We identifyV + λ with V

through the natural projection. In this wayw �→w induces an isomorphism of̂W
onto a groupWaf of affine transformations ofV , which is in fact the usual affine
representation of the affine Weyl group [B, VI, §2]. Forv ∈ W , v is simply the
restriction ofv to V , so we omit the bar. Forτ ∈ Q̌, t̄τ is the true translation byτ .

For k ∈ N+, we set

C∞ = {
x ∈ V

∣∣ (x,αi) > 0 for eachi ∈ {1, . . . , n}},
Ck = {

x ∈C∞
∣∣ (x, θ) < k

}
.

C∞ is the fundamental chamber ofW in V , andC1 is the fundamental alcove of
Waf in V . The closuresC∞,C1 are fundamental domains for the actions onV of
W,Waf , respectively.

As usual we denote by{ω̌1, . . . , ω̌n} the dual basis of{α1, . . . , αn} and set
oi = ω̌i/mi , whereθ =m1α1 + · · · +mnαn. For eachk ∈ N

+, Ck (= kC1) is the
simplex whose vertices are 0, ko1, . . . , kon.
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Let T k = {t̄τ | τ ∈ kQ̌} and setWk = T k �W . Note thatWk is the affine Weyl
group of 1

k
∆ andCk is its fundamental chamber with respect to1

k
Π . In particular,

Q̌∩Ck is a set of representatives of the orbits ofQ̌ under the natural action ofWk .
Forτ ∈ Q̌, consider its orbitWk(τ). We haveWk(τ)=W(τ)+kQ̌ =W(τ +kQ̌),
hence the orbits of̌Q underWk naturally correspond to the orbits ofQ̌/kQ̌ under
the action ofW [Ha]. In fact, in order to prove Theorem 1, we shall prove thatI
is in bijection withQ̌∩Ch+1.

3. Proof of Theorem 1

In [CP1] we found an explicit encoding of the elements ofI by means of
certain elements of̂W . We briefly recall this result. By definition any ad-nilpotent
ideali of b is included inn. Such an ideali is, in particular, ad(h)-stable, so there
existsΦi ⊆ ∆+ such thati = ⊕

α∈Φi
gα . We setΦ1

i
= Φi andΦk+1

i
= (Φk

i
+

Φi)∩∆+, for eachk ∈ N+, so that
⊕

α∈Φk
i
gα equalsi(k), thekth element of the

descending central series ofi. Then we associate toi the following set of positive
affine roots:Li = ⋃

k�1(−Φk
i

+ kδ). In [CP1, Proposition 2.4] we proved that

there exists a (unique)wi ∈ Ŵ such thatLi = N(wi) = {α ∈ ∆̂+ | w−1
i
(α) < 0}.

Theni �→wi is the required encoding. We remark thatwi is explicitly determined
byLi. We also gave the following characterization, which will play a crucial role
in the sequel.

Proposition 1 [CP1, Proposition 2.12].Let w ∈ Ŵ . Then w = wi for some i ∈ I
if and only if the following conditions hold:

(a) w−1(α) > 0 for each α ∈Π;
(b) if w(α) < 0 for some α ∈ Π̂ , then w(α) = β − δ for some β ∈∆+.

For α ∈ ∆+ and l ∈ Z setHα,l = {x ∈ V | (x,α) = l}. We recall that, for
α ∈ ∆+, l ∈ N+, m ∈ N, w ∈ Ŵ , we havew−1(−α + lδ) < 0 if and only ifHα,l

separatesC1 andw(C1), andw−1(α+mδ) < 0 if and only ifHα,−m separatesC1
andw(C1). From Proposition 1 we obtain the following characterization.

Proposition 2. Let w ∈ Ŵ , w = tτ v, τ ∈ Q̌, v ∈ W . Set βi = v(αi) for i ∈
{1, . . . , n}. Then w = wi for some i ∈ I if and only if the following conditions
hold:

(i) w(C1)⊂ C∞;
(ii) (τ,βi)� 1 for each i ∈ {1, . . . , n} and (τ, v(θ))� −2.

Proof. It is clear that condition (a) of Proposition 1 is equivalent tow(C1)⊂ C∞.
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Assumew = wi for somei ∈ I. Then (i) holds and this implies, in particular,
thatτ ∈ C∞. Sinceβi ∈∆, if βi < 0 then(τ,βi)� 0. So we may assumeβi > 0.
We havew(αi) = βi − (τ,βi)δ, hence if(τ,βi) > 0 we obtainw(αi) < 0. Then
by Proposition 1,w(αi) = βi − δ and thus(τ,βi) = 1. Then we considerv(θ).
We havew(α0) = −v(θ) + ((τ, v(θ)) + 1)δ. If (τ, v(θ)) < −1 thenw(α0) < 0,
hence by Proposition 1,(τ, v(θ))+ 1 = −1, hence(τ, v(θ)) = −2.

Conversely, assume that (i) and (ii) hold. Then condition (a) of Proposition 1
holds. Let 1� i � n and w(αi) < 0. Then either(τ,βi) > 0, or (τ,βi) = 0
andβi < 0. The latter case cannot occur, otherwise, forx ∈ C1 we would have
(w(x),βi)= (v(x),βi)= (x,αi) > 0, which is impossible, sincew(x) belongs to
C∞ andβi is negative. So we have(τ,βi) > 0, hence, by assumption(τ,βi)= 1,
so thatw(αi)= βi − δ. Finally assumew(α0) < 0. Then either(τ, v(θ))+ 1< 0,
or (τ, v(θ)) + 1 = 0 andv(θ) > 0. As above we see that the latter case cannot
occur, so, by assumption,(τ, v(θ)) = −2. This impliesv(θ) < 0 andw(α0) =
−v(θ)− δ, hence the claim. ✷

Set

D = {
τ ∈ Q̌

∣∣ (τ,αi)� 1 for eachi ∈ {1, . . . , n} and(τ, θ)� −2
}
.

Assumewi = tτivi for somei ∈ I, τi ∈ Q̌, vi ∈W . Then by Proposition 2 we have
(τi, βj )� 1 for eachj ∈ {1, . . . , n} and(τi, vi(θ))� −2, hence(v−1

i
(τi), αj )� 1

for eachj ∈ {1, . . . , n} and(v−1
i
(τi), θ) � −2. It follows thattτivi �→ v−1

i
(τi) is

a map from{wi | i ∈ I} toD.

Proposition 3. The map F :wi = tτivi �→ v−1
i
(τi) is a bijection between {wi |

i ∈ I} and D.

Proof. Set, for notational simplicity,wi = tτ v, wj = tσ u for somei and j in I,
τ, σ ∈ Q̌ and v,u ∈ W . Assumev−1(τ ) = u−1(σ ). Sinceτ, σ ∈ C∞, which
is a fundamental domain forW , we haveτ = σ and vu−1(τ ) = τ . Hence
t̄τ v(C1) = t̄τ vu

−1u(C1) = vu−1(t̄τ u(C1)) = vu−1(t̄σ u(C1)) ⊂ vu−1(C∞). But
t̄τ v(C1)⊂ C∞, hencevu−1 = 1. ThusF is injective. Next letσ ∈D. We first see
that there existsv ∈W such thattv(σ )v(C1)⊂ C∞: simply take the uniquev ∈W

such thatv(σ + C1) ⊂ C∞. Now it is immediate that, sinceσ ∈ D, tv(σ )v also
satisfies condition (ii) of Proposition 2, hencetv(σ )v = wi for somei in I. It is
obvious thatF mapstv(σ )v to σ , thusF is surjective. ✷
Remark. In a forthcoming paper [CP2] we provide characterizations for the
elements ofD corresponding throughF to abelian ideals and, among them, for
those encoding maximal abelian ideals.
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Let P̌ = Zω̌1 + · · · + Zω̌n be the coweight lattice ofW . We denote byW ′
af

the extended affine Weyl group,W ′
af = T ′ � W , with T ′ = {t̄τ | τ ∈ P̌ }, t̄τ the

translation byτ . As usual, we setf = [W ′
af : Waf ] = [P̌ : Q̌].

Lemma 1. Assume that k and f are relatively prime. Then for each w′ ∈ W ′
af

there exists w ∈Waf such that w′(Ck)=w(Ck).

Proof. Let θ = ∑n
i=1miαi andJ = {i | mi = 1}. By [IM, Sections 1.7 and 1.8],

{0} ∪ {ω̌j | j ∈ J } is a set of representatives ofP̌ /Q̌. Moreover, for eachj ∈ J ,

Ck = tkω̌j w
j

0w0(Ck), wherew0 is the longest element ofW andwj

0 is the longest
element in the maximal parabolic subgroup ofW generated by the reflections
with respect to theαi with i �= j . It suffices to prove the lemma forw′ ∈ T ′;
let w′ = t̄σ with σ ∈ P̌ . Then we havew′(Ck) = t̄σ (Ck)= t̄σ+kω̌j w

j

0w0(Ck), for
eachj ∈ J . If k andf are relatively prime, then{0} ∪ {kω̌j | j ∈ J } and hence
{σ } ∪ {σ + kω̌j | j ∈ J } still are sets of representatives ofP̌ /Q̌. It follows that
exactly one element in{σ } ∪ {σ + kω̌j | j ∈ J } belongs toQ̌, hence one among

t̄σ , t̄σ+kω̌j w
j

0w0, j ∈ J , belongs toWaf . ✷
Remark. A direct check shows that the prime divisors off also divide the
Coxeter number ofW . Hence the assumption of Lemma 1 is satisfied by any
integerk relatively prime toh.

Theorem 1. I is in bijection with the orbits of Q̌/(h+ 1)Q̌ under W .

Proof. LetX = {x ∈ V | (x,αi)� 1 for eachi ∈ {1, . . . , n} and(x, θ)� −2} and
ρ̌ = ω̌1+· · ·+ ω̌n be the half sum of positive coroots. We have that(ρ̌, θ)= h−1,
thusX is the simplex whose vertices areρ̌ and ρ̌ − (h + 1)oi , for i = 1, . . . , n.
HenceX = tρ̌w0(Ch+1). By Lemma 1 and the above remark there existsw ∈Waf

such thatX =w(Ch+1). Such aw gives a bijection fromCh+1∩Q̌ toD = X∩Q̌.
If i ∈ I and wi = tτivi, with τi ∈ Q̌ and vi ∈ W , then, using Proposition 3,
we obtain thatw−1v−1

i
(τi) belongs toCh+1 ∩ Q̌ and i �→ w−1v−1

i
(τi) is a

bijection betweenI and Ch+1 ∩ Q̌. This concludes the proof, since, as we
observed in Section 2, the cosets of the elements inCh+1 ∩ Q̌ are a natural set of
representatives of the orbits ofQ̌/(h+ 1)Q̌ under the action ofW . ✷

We can explicitly determine the elementw which appears in the above proof.
Indeed we shall computew−1. If ρ̌ ∈ Q̌, then triviallyw−1 =w0t−ρ̌ . Otherwise,
according to the proofs of Lemma 1 and of Theorem 1, there exists a unique
j ∈ J such that the vertex̌ρ− (h+1)oj = ρ̌− (h+1)ω̌j of X belongs toQ̌. Now

observe thatwj

0 maps{αi | i �= j } to {−αi | i �= j } and mapsαj andθ into positive
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roots. For any rootα let ht(α) = (α, ρ̌) be the height ofα. Then ht(θ) = h − 1,
and, sincej ∈ J , ht(wj

0(θ)) = ht(wj

0(αj )) − (h − 2). Sincewj

0(θ) is positive

this implies that ht(wj

0(αj )) = h − 1, hencewj

0(αj ) = θ andwj

0(θ) = αj . It is

easily seen that this implies thatwj

0t−ρ̌+(h+1)ω̌j (X) = Ch+1. Hence in order to
determinew it suffices to determine the abovej .

Numbering the fundamental weights as in [B], by a direct computation we
obtain:

An: ρ̌ ∈ Q̌ for n even; j = n+ 1

2
for n odd;

Bn: ρ̌ ∈ Q̌ for n≡ 0,3 mod 4; j = 1 for n≡ 1,2 mod 4;
Cn: j = n;
Dn: ρ̌ ∈ Q̌ for n≡ 0,1 mod 4; j = 1 for n≡ 2,3 mod 4;
E7: j = 7;
E6, E8, F4, G2: ρ̌ ∈ Q̌.

4. The other bijections

4.1. A bijection between ad-nilpotent ideals of b and antichains of the root poset

In Section 3 we observed that any ad-nilpotent ideal ofb is a sum of (positive)
root spaces. ForΦ ⊆ ∆+, setiΦ = ⊕

α∈Φ gα . If iΦ is an ideal ofb, thenα ∈ Φ,

β ∈ ∆+, α + β ∈ ∆ impliesα + β ∈ Φ. If we endow∆+ with the usual partial
order (i.e.α � β if β −α = ∑

γ∈∆+ cγ γ , cγ ∈ N), then, by definition,Φ is a dual
order ideal of(∆+,�).

It is a general fact that, in a finite posetP , dual order ideals and antichains (i.e.
sets consisting of pairwise non-comparable elements) are in canonical bijection:
map the antichain{a1, . . . , ak} to the dual order ideal which is the union of the
principal dual order idealsVa1, . . . , Vak , whereVa = {b ∈ P | b � a}; the inverse
map sends a dual order ideal into the set of its minimal elements. It is clear that
iΦ �→Φ is the required bijection.

Remark. In combinatorial literature the antichains of the root poset(∆+,�) are
callednon-nesting partitions [R, Remark 2]. This name derives from the analysis
of the definition in typeAn. In that case, write the positive roots with respect to
the standard basis{εi}n+1

i=1 of Rn+1, so that∆+ = {εi − εj | 1 � i < j � n + 1}.
Then to an antichainA we can associate a partition of{1, . . . , n+ 1} by putting
in the same blocki, j wheneverεi − εj ∈A. It turns out that partitions arising in
this way are the ones characterized by the following property: ifa, e appear in a
blockB andb, d appear in a different blockB ′ wherea < b < d < e, then there
existsc ∈ B satisfyingb < c < d .
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4.2. A bijection between antichains of the root poset and ⊕-sign types of ∆̌ or
regions of the Catalan arrangement which are contained in the fundamental
chamber

First we recall the definition of⊕-sign type for the root system∆. For
α ∈ ∆+ set Hα,+ = {v ∈ V | (v, α̌) > 1}, Hα,0 = {v ∈ V | 0 < (v, α̌) < 1},
Hα,− = {v ∈ V | (v, α̌) < 0}. Then a subsetS ⊂ V is a sign type (respectively
⊕-sign type) if it is of the formS = ⋂

α∈∆+ Hα,Xα for some collection(Xα)α∈∆+
with Xα ∈ {+,0,−} (respectivelyXα ∈ {+,0}).

We describe a bijection between dual order ideals and⊕-sign types, according
to Shi [S, Theorem 1.4]. Given a dual order idealΦ ⊆ ∆+, map it to the⊕-sign
type(Xα̌)α̌∈∆̌+ defined by

Xα̌ =
{

0, if α /∈Φ,
+, if α ∈Φ.

This bijection appears also in a different context. Recall the two following
remarkable arrangements of real hyperplanes (cf. [At2, Section 3]). TheShi
arrangement S, relative to∆, is the set of hyperplanes ofV having equations

(x,α)= 0, (x,α)= 1, α ∈∆+;
theCatalan arrangement C is the set of hyperplanes ofV having equations

(x,α)= 0, (x,α)= 1, (x,α)= −1, α ∈∆+.
We callregions of the hyperplane arrangement the connected components of the
complement inV of the union of all hyperplanes in the arrangement. By the
definition of S andC it is clear that both arrangements have the same number
of regions inside the fundamental chamber ofW . A bijection between antichains
in ∆+ and regions ofS or C lying in the fundamental chamber (which in [At1,
6.1] is attributed to Postnikov) can be made explicit mapping an antichainA to
the region

XA =
{
x ∈ C∞

∣∣∣∣
{
(β, x) > 1 if β � α for someα ∈A,
(β, x) < 1 otherwise

}
.

We illustrate in Table 1 the above bijections in the easy case of a root system
of typeA2.

Table 1

Ideals inI Antichains Regions ofC within C∞
i1 = 0 ∅ X1 = {x | (x,α1) < 1, (x,α2) < 1, (x, θ) < 1}
i2 = gθ {θ} X2 = {x | (x,α1) < 1, (x,α2) < 1, (x, θ) > 1}
i3 = gα1 ⊕ gθ {α1} X3 = {x | (x,α1) > 1, (x,α2) < 1, (x, θ) > 1}
i4 = gα2 ⊕ gθ {α2} X4 = {x | (x,α1) < 1, (x,α2) > 1, (x, θ) > 1}
i5 = gα1 ⊕ gα2 ⊕ gθ {α1, α2} X5 = {x | (x,α1) > 1, (x,α2) > 1, (x, θ) > 1}
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Remark. It is worthwhile to recall that formula (1) also counts the number of
conjugacy classes of elements of order dividingh + 1 in a maximal torusT of
the connected simply connected simple algebraic groupG corresponding tog.
Indeed these classes are in bijection withW -orbits onQ̌/(q+1)Q̌. In fact, regard
coroots as cocharacters ofT , i.e. as morphism of algebraic groupsC∗ → T . Fix
a primitiverth root of unityz; then, givenτ ∈ Q̌, the mapτ �→ τ (z) is bijection
from Q̌/rQ̌ to Tr = {t ∈ T | tr = 1} and induces a bijection between theW -orbits
in Q̌/rQ̌ and the conjugacy classes of elements inTr .

5. Examples

We illustrate the bijection of Theorem 1 when∆ is of typeA2 or B2. For this
purpose we first need to give explicitly the elementswi ∈ Ŵ corresponding to the
idealsi ∈ I.

In the case ofA2 the map fromI into Ŵ is given in Table 2.
We haveh= 3 andQ̌=Q= Zα1 ⊕ Zα2; we have alsǒρ = ρ = θ = α1 + α2.

The bijections of Proposition 3 and Theorem 1 are given in Table 3 (regarding the
bijection of Theorem 1, we write down the element ofCh+1 ∩ Q̌ corresponding
to each ideal).

Now we consider the root typeB2. Hereh = 4, andQ̌ = Zα1 + 2Zα2. Then
ρ̌ = 2α1 + 3α2 /∈ Q̌, but ω̌1 = α1 + α2 so thatρ̌ − 5ω̌1 = −3α1 − 2α2 ∈ Q̌.
Moreover, in the notation of the proof of Theorem 1,w

j

0 = w1
0 = s2. The injection

of I in Ŵ is given in Table 4 (for shortness we do not writeN(wi)).
The bijection withCh+1 ∩ Q̌ is made explicit in Table 5.

Table 2

Ideals inI N(wi) wi

i1 = 0 ∅ 1
i2 = gθ {−θ + δ} s0
i3 = gα1 ⊕ gθ {−θ + δ,−α1 + δ} s0s2
i4 = gα2 ⊕ gθ {−θ + δ,−α2 + δ} s0s1
i5 = gα1 ⊕ gα2 ⊕ gθ {−θ + δ,−α2 + δ,−θ + 2δ,−α1 + δ} s0s1s2s1

Table 3

wi = tτi vi v
−1
i

(τi) w0t−ρ̌ (v
−1
i

(τi))

1 0 θ

s0 = tθ s1s2s1 −θ 2θ
s0s2 = tθ s2s1 −α1 α1 + 2α2
s0s1 = tθ s1s2 −α2 2α1 + α2
s0s1s2s1 = tθ θ 0
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Table 4

i1 = 0 wi1
= 1

i2 = gθ wi2
= s0

i3 = gα1+α2 ⊕ gθ wi3
= s0s2

i4 = gα1 ⊕ gα1+α2 ⊕ gθ wi4
= s0s2s0

i5 = gα2 ⊕ gα1+α2 ⊕ gθ wi5
= s0s2s1s2

i6 = n wi6
= s0s2s1s2s0s2s0

Table 5

wi = tτivi v−1
i

(τi) w
j
0t−ρ̌+(h+1)ω̌j (v

−1
i

(τi))

wi1
= 1 0 3α̌1 + 2α̌2

wi2
= t

θ̌
s2s1s2 −α̌1 − α̌2 2α̌1 + 2α̌2

wi3
= t

θ̌
s2s1 −α̌1 2α̌1 + α̌2

wi4
= t2α̌1+α̌2

s1s2s1 −2α̌1 − α̌2 α̌1 + α̌2
wi5

= t
θ̌

α̌1 + α̌2 4α̌1 + 2α̌2
wi6

= t3α̌1+2α̌2
s1s2s1 −3α̌1 − α̌2 0
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