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1. Introduction

More than 20 years ago, G.J.A. Schneider [38] determined the vertices, sources and Green corre-
spondents of the simple modules for the sporadic simple Mathieu groups M11 and M12 in character-
istic 2. Later H. Gollan [20] settled the characteristic 3 case, with a few exceptions. Gollan’s results
were reproved by S. Koshitani and K. Waki [29] who also determined the vertices and Green corre-
spondents of the modules left open in Gollan’s thesis. Both Schneider’s and Gollan’s results build on
computations with the computer algebra system CAYLEY, whereas Koshitani and Waki do without any
computer calculations.

The purpose of this article is to determine the vertices of the simple modules for the large Mathieu
groups M22, M23 and M24 over a field F of characteristics 2 and 3, respectively. For each of these
simple modules we also investigate its sources and its Green correspondent with respect to the nor-
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malizer of some vertex. Both the sources and the Green correspondents will be described in terms
of their Loewy series. All of the simple modules for the Mathieu groups M22, M23 and M24 in char-
acteristics 2 and 3 have precisely the defect groups of the respective blocks as vertices, with two
exceptions. The first of these exceptional cases occurs for M24 in characteristic 2 where F M24 has
only one block. The simple F M24-module D of dimension 1792 has the Sylow 2-subgroups of the
commutator subgroups of the maximal subgroups of M24 with index 3795 as vertices. Moreover, each
vertex of D is a maximal subgroup of some Sylow 2-subgroup of M24. In characteristic 3 the principal
block of F M24 contains a simple module of dimension 483 whose vertices are maximal subgroups of
Sylow 3-subgroups of M24 and whose normalizers in M24 are isomorphic to the automorphism group
of M9 which is a split extension M9 : S3.

The Mathieu groups M23 and M24 have no non-trivial outer automorphisms, whereas the auto-
morphism group M22 : 2 of M22 is a split extension. Moreover, while, by [9], both M23 and M24 have
trivial Schur multipliers, M22 has a Schur multiplier which is cyclic of order 12. This has been shown
by Mazet in [33]. In consequence, M22 admits covering groups of order n|M22| = n · 27 · 32 · 5 · 7 · 11
for n ∈ {2,3,4,6,12}, and each of these is unique up to isomorphism. We will also focus on these
covering groups as well as on the automorphism group M22 : 2 and the respective simple modules
over a field F of characteristics 2 and 3, respectively. In analogy to the case of the Mathieu groups,
we will determine the vertices of these simple modules, and give a description of their sources and
Green correspondents in terms of Loewy series. We will see below that, for our purposes, only the
covering groups 2.M22 and 4.M22 in characteristic 3, and the covering group 3.M22 in characteristic 2
need to be considered explicitly. Once having determined vertices, sources and Green correspondents
for the simple modules in these cases, one obtains the respective results for the simple modules of
the remaining covering groups of M22 as well.

Finally, we will also investigate the simple modules for the bicyclic extensions n.M22.2 of M22
where n ∈ {2,3,4,6,12}. Here n.M22.2 is an extension of the automorphism group M22 : 2 of M22
by a cyclic group C = 〈c〉 of order n such that the outer automorphism of M22 lifts to an outer
automorphism of n.M22 mapping c to c−1.

It turns out that all simple modules for the covering groups and the bicyclic extensions of M22
considered throughout this article have precisely the defect groups of their blocks as vertices, and
in most cases this is a direct consequence of Knörr’s Theorem [27]. Two of the blocks investigated
here are particularly interesting, since all of their simple modules have trivial sources. We prove that
both blocks are Morita equivalent to their Brauer correspondents. This confirms Broué’s Abelian Defect
Group Conjecture for these blocks, in a strong form.

Suppose that G is an arbitrary finite group and that D is a simple F G-module with vertex Q
and trivial source. Then, by a theorem of Okuyama [36], the Green correspondent f (D) of D in
NG(Q ) is again simple. Thus Q acts trivially on f (D), and f (D) can be viewed as a simple projective
F [NG(Q )/Q ]-module. That is, the pair (Q , [ f (D)]) is a weight in Alperin’s sense [1]. In this way
every simple F G-module with trivial source defines a unique conjugacy class of weights, and non-
isomorphic simple F G-modules with trivial sources define different conjugacy classes of weights. Now
suppose that B is a block of F G such that every simple F G-module belonging to B has trivial source.
Then, in the way described above, we obtain an injection from the set of isomorphism classes of
simple F G-modules belonging to B into the set of conjugacy classes of F G-weights belonging to B .
According to Alperin’s Weight Conjecture [1], this injection should actually be a bijection. It would be
interesting to have a proof of this special case of Alperin’s Weight Conjecture.

If B has abelian defect group P , and still every simple F G-module belonging to B has trivial
source, then every simple F G-module belonging to B has vertex P , by Knörr’s Theorem [27], and
therefore the conjectured bijection of the previous paragraph should really be a one-to-one corre-
spondence between the set of isomorphism classes of simple F G-modules belonging to B and the set
of isomorphism classes of simple F NG(P )-modules belonging to the Brauer correspondent b of B . In
view of the examples in this paper and other examples we are wondering whether B and b have to
be Morita equivalent in general.

We begin by introducing the notation used throughout and by summarizing some known facts
which will be needed later in this article. Afterwards, in Section 3, we will present our results on the
vertices, sources and Green correspondents of the simple modules under consideration. In Section 4
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we will then prove the existence of Morita equivalences between the blocks just mentioned above
and their respective Brauer correspondents.

Most of our results are due to calculations with the computer algebra system MAGMA [4]. In
this context we were faced with the task of constructing the simple modules for a finite group G
over a finite field. MAGMA provides a function AbsolutelyIrreducibleModulesBurnside
whose input are a finite permutation or matrix group G and a finite field F, and which constructs
the absolutely simple modules of G over appropriate extension fields of F. According to the MAGMA
instructions, the underlying algorithm is based on the Brauer–Burnside Theorem (cf. [5,8]). The lat-
ter asserts that, given any faithful F G-module V , each indecomposable projective F G-module occurs
as a direct summand of some tensor power of V . In particular, each simple F G-module then oc-
curs as composition factor of some tensor power of V . Most of the simple modules investigated here
have been constructed via the MAGMA function AbsolutelyIrreducibleModulesBurnside.
The function considers modules for splitting only up to some dimension d. The bound d can be de-
fined by the user, and is by default set to 2000. However, in order to get all simple modules of the
given group, the chosen bound d might be too small so that MAGMA then does not return all sim-
ple modules. Moreover, for our purposes it is often not necessary to construct all simple modules
of a group but only those in some particular block. Therefore, in some cases simple modules have
been constructed somewhat more interactively. Details are given at the beginning of Section 3. In
order to determine the Loewy series of the Green correspondents and the sources of the simple mod-
ules investigated, we repeatedly used the MAGMA function JacobsonRadical which computes the
radical of a given module over a group algebra.

The programs for carrying out the actual vertex computation had been developed by R. Zimmer-
mann in [43], and were later extended by R. Zimmermann and the authors in [16]. For details we refer
the reader to [15,16,43]. Moreover, the MAGMA source code of our algorithms as well as part of the
results of this note are available on-line at http://users.minet.uni-jena.de/~susanned/.
We have not yet developed actual code for computing the Green correspondent of a given inde-
composable F G-module M . In most cases we just restricted M to the normalizer of some vertex P ,
and determined an indecomposable direct sum decomposition of this restriction applying the built-
in MAGMA function IndecomposableSummands. Among these summands we then identified the
unique one with vertex P . In the case of the simple F M24-module of dimension 1243 in characteris-
tic 3 we proceeded slightly differently; details are given in Section 3.8.

The information on blocks and decomposition numbers for the groups investigated has been
taken from the GAP character table library [19] (see also http://www.math.rwth-aachen.de/
homes/MOC/decomposition/).

We would like to mention that sources and Green correspondents of simple modules for the Math-
ieu groups are also examined in [13] and [40] as has been pointed out by the referee.

2. Prerequisites

2.1. General notation

(1) In what follows, F will always denote a field of prime characteristic p, and all groups con-
sidered here are finite. Whenever A is an F -algebra then A is supposed to be finite-dimensional,
associative and unitary, and any A-module is understood to be a finitely generated left A-module.
Moreover, the endomorphism algebra EndA(V ) is supposed to be acting on V from the left as well.
By A◦ we denote the opposite algebra of A. Given A-modules V and W such that W is isomorphic to
a direct summand of V , we write W | V .

(2) Suppose we are given groups G and H . For any F G-module V and any F H-module W , the
outer tensor product V ⊗F W =: V � W then becomes an F [G × H]-module in the obvious way.
Moreover, there is a canonical F -algebra isomorphism F [G × H] −→ F G ⊗F F H . Identifying F [G × H]
and F G ⊗F F H via this isomorphism, each block of F [G × H] may be written as B1 ⊗ B2, for some
block B1 of F G and some block B2 of F H .
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(3) When describing modules in terms of their Loewy series we will use the following notation:
given any F G-module V of Loewy length l ∈ N such that

Radi−1(V )/Radi(V ) = Di1 ⊕ · · · ⊕ Diri ,

for i = 1, . . . , l, appropriate ri ∈ N, and simple F G-modules Di1, . . . , Diri , we write

V ∼

⎡⎢⎢⎣
D11 . . . D1r1

D21 . . . D2r2

...

Dl1 . . . Dlrl

⎤⎥⎥⎦ .

If G is a p-group then we will only record the dimensions of the layers of the Loewy series of V ,
since these then determine the Loewy structure of V .

Suppose we are given any groups G and H , an F G-module V and an F H-module W with the
following properties:

• V and W have common Loewy length l ∈ N, and
• there is some bijection ϕ between the set of isomorphism classes of composition factors of V

and W such that Radi−1(V )/Radi(V ) ∼= Di1 ⊕ · · · ⊕ Diri is equivalent to Radi−1(W )/Radi(W ) ∼=
ϕ(Di1) ⊕ · · · ⊕ ϕ(Diri ), for i = 1, . . . , l and simple F G-modules Di1, . . . , Diri .

Then we say that V and W have the same Loewy structure.
(4) For any integer n � 1 we denote the symmetric and alternating group, respectively, of degree n

by Sn and An , respectively. Moreover, by Dλ we understand the simple FSn-module corresponding
to the p-regular partition λ of n. For details concerning the representation theory of the symmetric
groups we refer to [25].

2.2. Vertices, sources and the Green correspondence

Let G be a group, let V be an F G-module, and let H be a subgroup of G such that
V | IndG

H (ResG
H (V )). Then V is said to be relatively H-projective. In the case that V is indecompos-

able, a subgroup P of G which is minimal subject to the condition that V is relatively P -projective
is called a vertex of V . The vertices of an indecomposable F G-module form a conjugacy class of
p-subgroups of G . Moreover, if P is a vertex of an indecomposable F G-module V then there is an
indecomposable F P -module W , unique up to isomorphism and conjugation with elements in NG(P ),
such that V | IndG

P (W ). The module W is then called a source of V . For an introduction to the theory
of vertices, sources and Green correspondents of indecomposable F G-modules we refer the reader
to [35, Sections 4.3 and 4.4].

Suppose that D is a simple F G-module, and let P be a p-subgroup of G such that D is relatively
P -projective. As far as the question of determining the vertices of D is concerned, by Knörr’s The-
orem [27], we may suppose further that D belongs to a block with non-abelian defect groups. In
particular, D then cannot have cyclic vertices, by Erdmann’s Theorem [17]. Clearly, ResG

P (D) has an
indecomposable direct summand whose vertices are also vertices of D and, as just mentioned, we
may ignore all those indecomposable direct summands of ResG

P (D) which have cyclic vertices. In [16]
an algorithm is presented which detects and removes such summands from ResG

P (D) without com-
puting an explicit indecomposable direct sum decomposition first. We have applied this algorithm
several times throughout our computations in order to make these less time and memory consuming.
In the following, we will write V = cyc when V is an F G-module all of whose indecomposable direct
summands have cyclic vertices. If V is projective then we write V = proj.

Consider, for instance, the simple F M24-module D(483)24 of dimension 483 in characteristic 3
which occurs in Section 3.8. Let P be a Sylow 3-subgroup of M24. Then ResM24

P (D(483)24) =



S. Danz, B. Külshammer / Journal of Algebra 322 (2009) 3919–3949 3923
U1 ⊕ U2 ⊕ cyc. Here U1 and U2 are indecomposable of dimension 3 each, and both have elemen-
tary abelian vertices of order 9. Restricting D := D(483)24 to P , splitting off all the indecomposable
direct summands with cyclic vertices, and determining the vertices of U1 and U2 required 11 MB of
main memory and took roughly 10 seconds. Calling the function VxStart(D,P) (cf. [43]) directly
required 2350 MB of main memory and took 15 hours.

For another example, let again be p = 3, and consider the simple F M23-module D := D(770)23 of
dimension 770 occurring in Section 3.7. Then D belongs to the principal block. If P ∈ Syl3(M23) then
P is elementary abelian of order 9. By Knörr’s Theorem, D has thus vertex P . Moreover, ResM23

P (D) ∼=
F ⊕ F ⊕ cyc. So D has trivial source. Restricting D to P , and splitting off all indecomposable direct
summands with cyclic vertices took 34 seconds and required 13 MB of main memory. When trying to
decompose ResM23

P (D) using the MAGMA function IndecomposableSummands, after 13 minutes
MAGMA ran out of memory (16 GB).

We mention that algorithms for splitting projective direct summands off a given module over some
p-group can also be found in [11,13,39].

Remark 2.1. Among the known criteria for testing a given F G-module V for relative projectivity with
respect to subgroups of G , especially Higman’s criterion which involves the relative trace map has
proved to be a valuable tool (cf. [35, Thm. 4.2.2]). Moreover, when H is a normal subgroup of G such
that |G : H| = ps , for some s ∈ N, also the result below is often helpful for testing an F G-module for
relative projectivity with respect to H . For this recall that the isomorphism classes of indecomposable
direct summands of an F G-module V bijectively correspond to the simple EndF G(V )-modules, via
Fitting correspondence. More precisely, consider a fixed decomposition

V ∼= a1 V 1 ⊕ · · · ⊕ ar Vr,

with mutually non-isomorphic indecomposable F G-modules V 1, . . . , Vr , and corresponding multiplic-
ities a1, . . . ,ar ∈ N. Furthermore, set E := EndF G(V ), and let

E E ∼= b1 Ee1 ⊕ · · · ⊕ bn Een

be a decomposition of the left E-module E , with pairwise orthogonal non-associate primitive idempo-
tents e1, . . . , en in E and multiplicities b1, . . . ,bn ∈ N. Then r = n, and after appropriate re-numbering,
we have V i ∼= ei(V ) = ei V and ai = bi , for i = 1, . . . ,n. This follows from [35, Thm. 1.5.4].

For each f ∈ E , denote its image under the natural epimorphism E −→ E := E/J(E) by f̄ . Then,
by [35, Thm. 1.4.5], {Eē1, . . . , Eēn} is a transversal for the isomorphism classes of simple E-modules,
and each of these occurs as composition factor of the E-module V . With this notation, we obtain:

Proposition 2.2. Let V be an F G-module such that

V ∼= a1 V 1 ⊕ · · · ⊕ an Vn,

with pairwise non-isomorphic indecomposable F G-modules V 1, . . . , Vn and respective multiplicities
a1, . . . ,an ∈ N. As above, let {Eē1, . . . , Eēn} be the corresponding transversal for the isomorphism classes
of simple E-modules, and set di := [V : Eēi], for i = 1, . . . ,n. Moreover, let Ei := EndE(Eēi), for i = 1, . . . ,n.
Then ai · dimF (Ei) = dimF (Eēi), and di · dimF (Ei) = dimF (V i), for i = 1, . . . ,n.

Proof. Let i ∈ {1, . . . ,n}. In the notation of Remark 2.1, ai = bi which equals the multiplicity of the
simple E-module Eēi as composition factor of the E-module E E . By Wedderburn’s Theorem, this
multiplicity in turn equals dimEi (Eēi) = dimF (Eēi)/dimF (Ei). Therefore, ai dimF (Ei) = dimF (Eēi).

Furthermore, we have

Ei = EndE(Eēi) ∼= (ēi Eēi)
◦ ∼= (

(ei Eei)/J(ei Eei)
)◦

,
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so that the F -algebra ei Eei possesses exactly one simple module which has F -dimension dimF (Ei).
By [35, Thm. 1.8.11], the multiplicity di = [V : Eēi] equals the composition length of the ei Eei-
module ei V . Consequently, di dimF (Ei) = dimF (ei V ) = dimF (V i). This proves the proposition. �
Corollary 2.3. In the notation of Proposition 2.2, assume that Eēi is absolutely simple, for some i ∈ {1, . . . ,n}.
Then ai = dimF (Eēi), and di = dimF (V i). Moreover, the F G-module V i is then absolutely indecomposable. In
particular, if the E-module V has up to isomorphism precisely one composition factor and if this composition
factor is one-dimensional then V is absolutely indecomposable.

Proof. Consider any extension field F ′ of F . Then

EndF ′G(F ′ ⊗F V ) ∼= F ′ ⊗F EndF G(V ) ∼= b1(F ′ ⊗F Ee1) ⊕ · · · ⊕ bn(F ′ ⊗F Een),

by [35, Thm. 1.11.12]. Hence the F G-module V i is absolutely indecomposable if and only if the
E-module Eei is absolutely indecomposable, or equivalently, if the E-module Eēi is absolutely simple.
The rest now follows from the previous proposition. �
Corollary 2.4. Let H be a normal subgroup of G such that |G : H| = ps, for some s ∈ N. Moreover, let V be an
indecomposable F G-module such that the EndF H (V )-module ResG

H (V ) has an absolutely simple composition
factor occurring with multiplicity different from dim(V )/ps. Then V is not relatively H-projective.

Proof. If V were relatively H-projective then we would have ResG
H (V ) ∼= k(W1 ⊕ · · · ⊕ Wm), for

mutually non-isomorphic and G-conjugate indecomposable F H-modules W1, . . . , Wm . This follows
from [24, Thm. VII.9.3]. Moreover, V | IndG

H (W i), for i = 1, . . . ,m. By our hypothesis and Corollary 2.3,
W1, . . . , Wm are absolutely indecomposable so that V ∼= IndG

H (W i) for i = 1, . . . ,m, by Green’s Inde-
composability Theorem [21]. This yields the contradiction dim(V ) = ps dim(W i) �= dim(V ), and the
assertion follows. �
Remark 2.5. (a) Corollary 2.4 is helpful for computational purposes, especially in the following situ-
ation: suppose that G is a p-group and that V is an indecomposable F G-module which we suspect
to have vertex G . Let {H1, . . . , Hm} be a transversal for the conjugacy classes of maximal subgroups
of G . In order to verify that G is a vertex of V , it suffices to successively restrict V to each of
the maximal subgroups Hi , compute the endomorphism algebras Ei := EndF Hi (ResG

Hi
(V )), and search

for an absolutely simple composition factor of the F Ei -module ResG
Hi

(V ) occurring with multiplic-
ity different from dimF (V )/p. This enables us to avoid the computation of the relative trace maps
TrG

Hi
: EndF Hi (ResG

Hi
(V )) −→ EndF G(V ), for i = 1, . . . ,m, which is required when applying Higman’s

criterion.
(b) Let G be arbitrary again. Suppose that F ′ is any extension field of F , and let V be an indecom-

posable F G-module with vertex P . Then P is also a vertex of each indecomposable direct summand
of the F ′G-module F ′ ⊗F V . For a proof see for instance [18, L. II.4.14]. Each simple module D inves-
tigated in this paper has been constructed over a finite field Fq , for some p-power q, such that:

• D is absolutely simple,
• the sources and the Green correspondent of D are absolutely indecomposable,
• the composition factors of the Green correspondent of D are absolutely simple.

In order to check whether a given indecomposable FqG-module is absolutely indecomposable, we
applied the criterion given by Corollary 2.3. Hence, the FqG-module Fq ⊗Fq D is also simple and has
the same vertices as D . Moreover, if V and L are the Green correspondent and a source of D then
both Fq ⊗Fq V and Fq ⊗Fq L are indecomposable, and are the Green correspondent and a source of the

FqG-module Fq ⊗Fq D . Also the Loewy structures of the modules in question do not change under this
field extension. Therefore, unless stated otherwise, for the remainder of this article we may assume
the field F to be algebraically closed.
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In the sequel, we will have to deal with F G-modules which are obtained from modules for factor
groups of G via inflation. Therefore, recall that, given a normal subgroup N of G and an indecom-
posable F [G/N]-module V , the inflation V := Inf G

N (V ) is an indecomposable F G-module. Moreover,
if P is a vertex of V then P N/N is a vertex of V . A proof for this can, for instance, be found
in [31, Prop. 2.1]. In particular, P ∩ N is then a Sylow p-subgroup of N , and P is a Sylow p-subgroup
of P N which implies NG/N(P N/N) = NG(P )N/N . In analogy, also the Green correspondents and the
sources of V and V are related as follows:

Proposition 2.6. Let N be a normal subgroup of G, and let V be an indecomposable F G-module such that
V = Inf G

N (V ), for an indecomposable F [G/N]-module V . Suppose that V has vertex P so that NG/N(P N/N) =
NG(P )N/N. Let V ′ be the Green correspondent of V with respect to (G, P , NG(P )), and let V ′ be the Green
correspondent of V with respect to (G/N, P N/N, NG(P )N/N). Then V ′ ∼= ResNG (P )N

NG (P ) (Inf NG (P )N
N (V ′)). If L is

a P -source of V then there is a P N/N-source L of V such that L ∼= ResP N
P (InfP N

N (L)). In particular, the Loewy
structures of V ′ and V ′ , as well as those of L and L coincide.

For a proof of Proposition 2.6 see [22].

Proposition 2.7. Let N be a normal subgroup of G, and let V be a simple F G-module with vertex Q � N. Sup-
pose that |NG(Q ) : NN(Q )| = |G : N|, and denote the Green correspondence with respect to (G, Q , NG(Q ))

by f1 and the Green correspondence with respect to (N, Q , NN (Q )) by f2 . Consider an indecomposable direct
sum decomposition ResG

N (V ) = V 1 ⊕ · · · ⊕ Vn. Then Q is a vertex of V i for i = 1, . . . ,n, and

ResNG (Q )
NN (Q )

(
f1(V )

) ∼= f2(V 1) ⊕ · · · ⊕ f2(Vn).

Proof. We set H := NG(Q ) and K := NN(Q ). Then |G : H| = |N : K | so that the G-conjugates of Q are
precisely the N-conjugates of Q . By Clifford’s Theorem [35, Thm. 3.3.1], we have

ResG
N(V ) ∼= k(W1 ⊕ · · · ⊕ Wm),

for some k ∈ N, and simple F N-modules W1, . . . , Wm which are pairwise conjugate in G . We may
assume that W1 has vertex Q , and since the G-conjugates of Q are exactly the N-conjugates of Q ,
also W2, . . . , Wm have vertex Q . Furthermore,

ResG
H (V ) = f1(V ) ⊕ X1 ⊕ · · · ⊕ Xr,

ResN
K (W i) = f2(W i) ⊕ Yi1 ⊕ · · · ⊕ Yisi , for i = 1, . . . ,m.

Here, X1, . . . , Xr and Yi1, . . . , Yisi are indecomposable, and neither of these modules has vertex Q .
Now consider

k

(
f2(W1) ⊕ · · · ⊕ f2(Wm) ⊕

m⊕
i=1

(Yi1 ⊕ · · · ⊕ Yisi )

)
∼= ResG

K (V ) = ResH
K

(
f1(V )

) ⊕ ResH
K (X1) ⊕ · · · ⊕ ResH

K (Xr),

and assume that k( f2(W1) ⊕ · · · ⊕ f2(Wm)) � ResH
K ( f1(V )). Then there are some i ∈ {1, . . . ,m} and

some j ∈ {1, . . . , r} such that f2(W i) | ResH
K (X j). In particular, Q is H-conjugate to a subgroup of

some vertex of X j , that is Q is itself a vertex of X j , a contradiction. Consequently, k( f2(W1) ⊕ · · · ⊕
f2(Wm)) | ResH

K ( f1(V )). Since f1(V ) is relatively K -projective, ResH
K ( f1(V )) is a direct sum of inde-

composable F K -modules which are pairwise conjugate in H . This follows from [24, Thm. VII. 9.3].
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In particular, all indecomposable direct summands of ResH
K ( f1(V )) have vertex Q , and this finally

yields

f2(V 1) ⊕ · · · ⊕ f2(Vn) ∼= k
(

f2(W1) ⊕ · · · ⊕ f2(Wm)
) ∼= ResH

K

(
f1(V )

)
. �

Remark 2.8. Suppose that B is a block of F G with cyclic defect group C . The representation theory
of blocks with cyclic defect groups is well understood. In particular, such a block B is a Brauer tree
algebra. We refer to [23] for an introduction to the theory of Brauer trees. Given the Brauer tree of B
and the Green correspondent of one of the simple modules in B , one can also determine the Green
correspondents of the remaining simple modules in B . This is shown in [23, Sec. 4.4]. In fact, if B is
one of the blocks with cyclic defect groups investigated in this note then B occurs in characteristic 3,
and has a defect group C of order 3. In this special case, B contains either one or two simple F G-
modules, up to isomorphism. Moreover, by [23, Sections 6.4, 6.6 and 6.9], the Brauer tree of B is
either of shape

, (1)

where the node 3 is of type ◦ and the nodes 1 and 2 are of type ×, or of shape

, (2)

where the exceptional node 2 has type ◦, and the node 1 has type ×. In either case, [23, L. 4.4.12]
implies that all simple modules belonging to B have simple Green correspondents in NG(C). Hence,
by [35, Thm. 4.7.8], these simple modules must have trivial sources.

We also mention a misprint in [23]. In the Brauer tree of the block B8 of F [12.M22] in character-
istic 3, the labelling of the nodes by × and ◦ should be interchanged. This block has a central defect
group of order 3; its Brauer tree is of shape (2), and also here the exceptional node has type ◦, and
the non-exceptional node has type ×.

2.3. Group extensions

In this subsection we briefly recall some facts concerning the covering groups of a finite group.
For more details and proofs of the results quoted here, we refer to [3, Sec. 33]. A covering group of
a group G is a group G̃ containing a central subgroup H̃ such that H̃ � G̃ ′ and G̃/H̃ ∼= G . Here G̃ ′
denotes the commutator subgroup of G̃ . Provided that H̃ has order 2, 3, etc., one also speaks of G̃ as
a double cover, triple cover, etc., of G .

Now suppose that G is a perfect group, i.e. G equals its commutator subgroup G ′ . Then there exists
a covering group G̃ of G such that each covering group of G is isomorphic to a factor group of G̃ .
Furthermore, G̃ is determined up to isomorphism, and is called the Schur cover or Darstellungsgruppe
of G . Moreover, G̃ is itself a perfect group. If H̃ � Z(G̃) with G̃/H̃ ∼= G then H̃ is isomorphic to the
Schur multiplier of G .

Remark 2.9. As mentioned in the introduction, the Schur multiplier of M22 is cyclic of order 12,
and M22 therefore possesses covering groups of order 2|M22|, 3|M22|, 4|M22|, 6|M22| and 12|M22|. We
will use the Atlas notation, and write n.M22 to denote the covering group of M22 of order n|M22| =
n · 27 · 32 · 5 · 7 · 11, for n ∈ {2,3,4,6,12}.

Note that, as far as the determination of vertices of simple F [n.M22]-modules is concerned,
we only need to consider the cases where n is coprime to p = char(F ). Namely, if n = prq, for
some q, r ∈ N such that p � q, then there is a cyclic subgroup Z � Z(n.M22) of order pr such that
n.M22/Z ∼= q.M22. Moreover, by [35, Thm. 4.7.8], every simple F [n.M22]-module D corresponds to
a simple F [q.M22]-module D ′ , via inflation. If P � Z is a vertex of D then P/Z is a vertex of D ′ ,
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by [31, Prop. 2.1]. Furthermore, in consequence of Proposition 2.6 the Loewy structures of the Green
correspondents of D and D ′ coincide. The same applies to the sources of D and D ′ . Therefore, we
only need to investigate the simple F [3.M22]-modules for p = 2, and the simple F [2.M22]-modules
and the simple F [4.M22]-modules for p = 3 explicitly.

Remark 2.10. There are five bicyclic extensions of M22, namely 2.M22.2, 3.M22 : 2, 4.M22.2, 6.M22.2
and 12.M22.2. Let C12 ∼= C = 〈c〉 be the centre of 12.M22. The outer automorphism of M22 lifts to an
outer automorphism of 12.M22 which maps c to c−1. In particular, 12.M22.2 has a centre of order 2.
If p = 2 then we only need to consider the simple modules for F [3.M22 : 2]. For n ∈ {2,4,6,12} any
simple F [n.M22.2]-module D is the inflation of a simple module D ′ for F [M22 : 2] or F [3.M22 : 2],
by [35, Thm. 4.7.8]. Moreover, in these cases Proposition 2.6 implies that the vertices as well as the
Loewy structures of the sources and the Green correspondents of D can be deduced from those of D ′ .

Analogously, in the case where p = 3, it suffices to focus on the simple modules for F [2.M22.2]
and F [4.M22.2], respectively.

2.4. Equivalences between module categories

In Section 4 we will prove the existence of Morita equivalences between the faithful 3-block of
2.M22 of defect 2 and its Brauer correspondent, and between the faithful 3-block of 2.M22.2 of de-
fect 2 and its Brauer correspondent. For this we now briefly recall some facts concerning equivalences
between module categories. For more details on this subject we refer to [2].

Given any F -algebra A, we denote the category of finitely generated left A-modules by A-mod.
Furthermore, A-stab denotes the stable category of A. That is, the objects in A-stab are the same
as the objects in A-mod. But the morphisms between objects V and W in A-stab are equivalence
classes of A-homomorphisms between V and W modulo A-homomorphisms which factor through
projective A-modules.

Definition 2.11. Consider F -algebras A and B .
(i) The algebras A and B are called Morita equivalent if and only if there exist an A-B-bimodule V

and a B-A-bimodule W such that V ⊗B W ∼= A as A-A-bimodules and W ⊗A V ∼= B as B-B-bimodules.
(ii) We say that there exists a stable equivalence of Morita type between A and B if and only if there

exist an A-B-bimodule V and a B-A-bimodule W such that the following conditions are satisfied:

• V is projective both as left A-module and right B-module.
• W is projective both as left B-module and right A-module.
• V ⊗B W ∼= A ⊕ X as A-A-bimodules, where X is a projective A-A-bimodule.
• W ⊗A V ∼= B ⊕ Y as B-B-bimodules, where Y is a projective B-B-bimodule.

Remark 2.12. By Morita’s Theorem, the F -algebras A and B are Morita equivalent if and only if the
module categories A-mod and B-mod are equivalent. If there exists a stable equivalence of Morita
type between A and B then the stable categories A-stab and B-stab are equivalent.

With this notation, the following result will be essential:

Theorem 2.13. (See Linckelmann [32, Thm. 2.1].) Let A and B be indecomposable non-simple symmetric
F -algebras, and let W be a B-A-bimodule which is projective both as left B-module and right A-module. Sup-
pose further that the functor W ⊗A − induces a stable equivalence between A and B. Then the following
hold:

(i) If W is indecomposable and if D is a simple A-module, then W ⊗A D is an indecomposable non-projective
B-module.

(ii) If, for every simple A-module D, also W ⊗A D is a simple B-module then the functor W ⊗A − induces
a Morita equivalence between A and B.



3928 S. Danz, B. Külshammer / Journal of Algebra 322 (2009) 3919–3949
Remark 2.14. We consider subgroups K � H � G and an F G-module V . Then V K and V H will denote
the F -vector spaces of fixed points under the action of K and H , respectively, on V . Moreover, for
v ∈ V K , we define

TrH
K (v) :=

∑
g K∈H/K

gv.

This yields an F -linear map TrH
K : V K −→ V H which does not depend on the choice of the transversal

for H/K , and is called relative trace.

Definition 2.15. Let P be a p-subgroup of G , and let V be an F G-module. Then we set

V (P ) := V P
/( ∑

Q <P

TrP
Q

(
V Q ))

.

Remark 2.16. (a) In this way we obtain a functor

F G-mod −→ F NG(P )-mod, V �−→ V (P ),

which is called the Brauer functor or the Brauer construction with respect to P . In the following we list
some known facts concerning the Brauer functor. For details we refer to [6] and [41, §§11, 27].

(b) The Brauer functor is additive. That is, if V 1 and V 2 are F G-modules then the canonical map
V 1(P ) ⊕ V 2(P ) −→ (V 1 ⊕ V 2)(P ) is an isomorphism of F NG(P )-modules. We identify V 1(P ) ⊕ V 2(P )

and (V 1 ⊕ V 2)(P ) in this way. Also, we have a canonical homomorphism V 1(P ) ⊗F V 2(P ) −→
(V 1 ⊗F V 2)(P ).

(c) Suppose that A is a G-algebra over F . That is, A is both an F -algebra and an F G-module, and
for g ∈ G the map A −→ A,a �−→ ga, is an F -algebra automorphism of A. Then the canonical map

A(P ) ⊗F A(P ) −→ (A ⊗F A)(P ) −→ A(P )

turns A(P ) into an NG(P )-algebra over F .
(d) Let A be a G-algebra over F , and let V be an A-module. Suppose further that V is an F G-

module and that the canonical map A ⊗F V −→ V is an F G-homomorphism. Then the induced map

A(P ) ⊗F V (P ) −→ (A ⊗F V )(P ) −→ V (P )

gives an A(P )-module structure on V (P ) which is compatible with the action of NG(P ).
(e) Suppose that V is a p-permutation F G-module. That is, for every p-subgroup P of G there is

an F -basis of V stabilized by P . Let further P and Q be p-subgroups of G such that Q � P . Then
V (P ) ∼= (V (Q ))(P ). Note that V (Q ) is a p-permutation F NG(Q )-module. In particular, V (P ) �= 0 then
also implies V (Q ) �= 0.

(f) Let V 1 and V 2 be F G-modules such that V 1 or V 2 is a p-permutation F G-module. Then the
canonical map V 1(P ) ⊗F V 2(P ) −→ (V 1 ⊗F V 2)(P ) is an isomorphism.

(g) The group algebra F G is both a G-algebra over F and a p-permutation F G-module. Further-
more, its Brauer construction (F G)(P ) is canonically isomorphic to F CG(P ), as an NG(P )-algebra
over F . We identify (F G)(P ) and F CG(P ) in this way. If F G = F Ge1 ⊕ · · · ⊕ F Ger is the block de-
composition of F G then, via this identification and additivity, we get

(F G)(P ) = (F Ge1)(P ) ⊕ · · · ⊕ (F Ger)(P ) = F CG(P )BrP (e1) ⊕ · · · ⊕ F CG(P )BrP (er),

where BrP is the usual Brauer homomorphism. Thus the Brauer construction of a block is either 0 or
a direct sum of blocks of F CG(P ).
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In the following, for each subgroup H of G , we denote the respective diagonal subgroup of G × G
by �H := {(h,h) | h ∈ H}. Then the next result will play a crucial role in Section 4.

Theorem 2.17. (See Broué [7, Thm. 6.3].) Let G and H be groups with a common Sylow p-subgroup P such that
NG(P )/CG (P ) ∼= NH (P )/C H (P ). Moreover, let e and f be central idempotents in F G and F H, respectively,
and set A := F Ge and B := F H f . We suppose that there are an A-B-bimodule V and a B-A-bimodule W
such that

(1) V | IndG×H
�P (X), for some permutation F [�P ]-module X.

(2) If Q is a non-trivial subgroup of P then F CG(Q )BrQ (e) and F C H (Q )BrQ ( f ) are Morita equivalent via
the functors W (�Q ) ⊗F CG (Q )BrQ (e) − and V (�Q ) ⊗F C H (Q )BrQ ( f ) −.

Then the functors W ⊗A − and V ⊗B − induce a stable equivalence of Morita type between A and B.

3. Results

3.1. Constructing simple modules

We now present our results most of which have been obtained with computer assistance.
In the following, we consider M22 < M23 < M24 < S24 and M22 � M22 : 2 < S24. For j ∈

{22,23,24}, by D(di) j we understand the ith simple F M j-module of dimension d. We omit the in-
dex i whenever F M j has, up to isomorphism, exactly one simple module or two mutually dual simple
modules of dimension d. Analogously, the simple F [M22 : 2]-modules are denoted by D(di)22:2, and
for n ∈ {2,3,4,6,12}, the simple F [n.M22]-modules and the simple F [n.M22.2]-modules, respectively,
are denoted by D(di)n.22 and D(di)n.22.2, respectively.

A permutation representation of 2.M22 on 660 points and two permutation representations
of 4.M22 on 4928 points are given in [42]. In the case of 4.M22 we have worked with the first of
those two permutation representations. The simple modules for 4.M22 in characteristic 3 investi-
gated here all appear to be composition factors of the corresponding permutation module over F9.
The simple modules for 2.M22 in characteristic 3 have been constructed via the MAGMA func-
tion AbsolutelyIrreducibleModulesBurnside. To obtain the simple modules for 2.M22.2
in characteristic 3, we proceeded as follows: we started with the 10-dimensional irreducible matrix
representation of 2.M22.2 over F3 available at [42]. The GAP function IsomorphismPermGroup
then enables us to construct a permutation representation on 9240 points of the respective matrix
group. This also yields a permutation representation of 2.M22 � 2.M22.2 on 9240 points. The sim-
ple F9[2.M22.2]-modules investigated in Section 3.6 could then be obtained as composition factors of
inductions of simple F9[2.M22]-modules to 2.M22.2.

In order to construct the simple modules for 3.M22 in characteristic 2, we have taken the permuta-
tion representation for 3.M22 on 693 points from [42]. Then each of the non-projective faithful simple
F4[3.M22]-modules occurs as composition factor of the corresponding permutation module over F4.

The simple F9M24-modules D(45)24 and D(990)24 of dimension 45 and 990, respectively, have
been obtained as composition factors of the induction of one of the 45-dimensional simple F9M23-
modules. The remaining simple F9M24-modules have been constructed as composition factors of
appropriate tensor powers of the simple F9M24-module D(22)24 which is the unique non-trivial com-
position factor of the natural F9M24-permutation module of dimension 24.

All remaining simple modules considered below have actually been constructed via the MAGMA
function AbsolutelyIrreducibleModulesBurnside. It turns out that all modules considered
throughout, that is all simple modules as well as their sources and Green correspondents can be
realized over Fp2 , and that they are then also absolutely indecomposable. Absolute indecomposability
has always been checked using the criterion given by Corollary 2.3.

3.2. Determining Brauer characters

For most of the simple modules occurring in this article we also determined their corresponding
Brauer characters. In order to do this we proceeded as follows: suppose that n � 1, and let q := pn .
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For our purposes n is at most 2. Then, following the MAGMA instructions, calling the function GF(q)
the finite field Fq is constructed as Fp[x]/(Cn). Here Cn denotes the Conway polynomial of degree n.
This is consistent with the Atlas, see [26, Sec. 3]. The image of x in Fp[x]/(Cn) is denoted by Fq.1. If
n = 1 then Fp .1 = 1.

With this notation, Fq.1 is a generator of the multiplicative group F×
q . Let further ζ :=

exp(2π i/(q − 1)). Then the lifting map

Z[ζ ] −→ Fq

used in the Atlas is that mapping ζ to Fq.1 (cf. [26, Sec. 2, 3]).
In [42], standard presentations of the groups examined here are given. If in addition representa-

tives for the p-regular conjugacy classes as words in the standard generators are given then one can
identify the Brauer character of a given simple module.

Example 3.1. Let p = 2, and consider the Mathieu group M22. Standard generators of M22 are a and b
where a has order 2, b has order 4 and belongs to conjugacy class 4A, and where both ab and ababb
have order 11. By [42], ababababbbabb belongs to conjugacy class 7A, and ab belongs to conjugacy
class 11A. The simple modules of dimension 10 occurring in Section 3.3 can be realized over F2, the
ones of dimension 70 can be realized over F4. Using the standard permutation representation of M22
on 22 points from [42], and denoting Brauer characters as well as irrationalities in accordance with
the Atlas, we get:

Module Conj. class Modular character value

D(10)22 7A 0 = b7

D(70)22 11A F4.12 = F4.1 − 1 = −1 + b11

Hence, by [26], D(10)22 has Brauer character ϕ2, and D(70)22 has Brauer character ϕ5. This also
determines the labels of the Brauer characters of the simple modules D(10)∗22, D(70)∗22, D(34)22
and D(98)22.

In characteristic 3, the double cover 2.M22 has two simple modules of dimension 154. The val-
ues of the corresponding Brauer characters coincide, except on the conjugacy classes of elements of
order 8. There are two of the latter both of which are lying above the unique conjugacy class of
elements of order 8 of M22. Similarly, in characteristic 3, the covering group 4.M22 has two dual
pairs of simple modules of dimension 56. Also here, in order to determine the labels of the Brauer
characters afforded by these modules, one needs to know their values on the four conjugacy classes
lying above the unique conjugacy class of elements of order 8 of M22. There does not seem to be
an obvious way to distinguish these conjugacy classes of elements of order 8. Moreover, in order to
distinguish between the faithful blocks B5 and B6 = B∗

5 of F [4.M22] of defect 2, one has to make
a choice for a generator for the central subgroup of 4.M22 of order 4. Therefore we do not determine
the precise Brauer character labels of the 154-dimensional simple F [2.M22]-modules belonging to the
faithful block of defect 2, and we do not determine the precise Brauer character labels of the simple
F [4.M22]-modules belonging to the faithful blocks B5 and B6 just mentioned. For similar reasons we
do not deduce the precise labelling of the Brauer characters of the simple F [2.M22.2]-modules in
characteristic 3 either.

In order to distinguish simple modules of equal dimension, in these three cases, we give elements
in the respective groups, written as words in the standard generators, on which the Brauer character
values of the modules in question differ. In addition, whenever we have simple modules of equal
dimension for which representing matrices are available at [42], we attach to each of these its “ID” as
given in [42].

Throughout we use the notation D ↔ ϕ ↔ a to indicate that a simple module D has Brauer char-
acter ϕ , and ID a in [42]. The Brauer character afforded by the dual module D∗ is denoted by ϕ .
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Which conjugacy classes we actually used in order to determine the Brauer characters of the simple
modules are listed at http://users.minet.uni-jena.de/~susanned/mathieu.html.

In view of Remark 2.5 and the considerations in Section 3.1, from now on we may again suppose
that F is algebraically closed. For the next three subsections let further p = 2.

3.3. M22 in characteristic 2

We begin by investigating the Mathieu group M22 and its extensions. For simplicity of notation,
we set M := M22, throughout this subsection.

Remark 3.2. (a) There is only one block of F M , i.e. the principal block of defect 7. Moreover, F M has
the following seven simple modules:

D(1)22 = F ↔ ϕ1, D(10)22 ↔ ϕ2 ↔ a, D(10)∗22 ↔ ϕ3 ↔ b, D(34)22 ↔ ϕ4,

D(70)22 ↔ ϕ5 ↔ a, D(70)∗22 ↔ ϕ6 ↔ b, D(98)22 ↔ ϕ7.

(b) There is only one block of F [M : 2], i.e. the principal one, containing the following six simple
modules:

D(1)22:2 = F ↔ ϕ1, D(10)22:2 ↔ ϕ2 ↔ a, D(10)∗22:2 ↔ ϕ3 ↔ b,

D(34)22:2 ↔ ϕ4, D(98)22:2 ↔ ϕ7, D(140)22:2 ↔ ϕ5.

Here, IndM:2
M (D(70)22) ∼= D(140)22:2 ∼= IndM:2

M (D(70)∗22), and ResM:2
M (D(d)22:2) ∼= D(d)22, for d ∈ {1,10,

34,98}. In particular, D(140)22:2 is the only relatively M-projective simple F [M : 2]-module.

With this notation, we have the following:

Proposition 3.3. All seven simple F M-modules have vertex Q ∈ Syl2(M). Furthermore, the restriction of any
simple F M-module D to Q is also a source of D. For Q ∈ Syl2(M) we have NM(Q ) = Q , and thus the Green
correspondents of the simple F M-modules in Q are also sources. They have the following Loewy series:

Module D(1)22 D(10)22 D(10)∗22 D(34)22 D(70)22

Green 1 10 10 34 70
Layer dims. 1 1,2,1,2, 1,1,1,2 2,3,3,5,4, 1,3,4,6,7,8,9,

1,1,1,1 2,1,1,1 5,4,4,2,2 8,7,6,5,3,2,1

Module D(70)∗22 D(98)22

Green 70 98
Layer dims. 1,3,4,6,7,8,9, 2,5,6,9,10,12,

8,7,6,5,3,2,1 12,12,10,8,6,3,2,1

Proof. These results have been obtained by computer calculations. �
Proposition 3.4. The simple F [M : 2]-module D(140)22:2 has vertex Q ∈ Syl2(M). Moreover, the restriction of
D(70)22 to Q is a source of D(140)22:2 . The remaining simple F [M : 2]-modules have vertex P ∈ Syl2(M : 2),
and restrict indecomposably to P . Choosing Q � P , we have NM:2(P ) = P = NM:2(Q ), and the Green corre-
spondents of the simple F [M : 2]-modules in P have the following Loewy series:
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Module D(1)22:2 D(10)22:2 D(10)∗22:2 D(34)22:2 D(98)22:2
Green 1 10 10 34 98
Layer dims. 1 1,2,1,2, 1,1,1,2, 2,3,3,5,4, 2,5,6,9,10,12,

1,1,1,1 2,1,1,1 5,4,4,2,2 12,12,10,8,6,3,2,1

Module D(140)22:2
Green 140
Layer dims. 1,4,7,10,13,15,17,

17,15,13,11,8,5,3,1

Proof. As mentioned above, the only relatively M-projective simple F [M : 2]-module is D(140)22:2,
and ResM:2

M (D(140)22:2) ∼= D(70)22 ⊕ D(70)∗22. Thus, by the previous proposition, D(140)22:2 and
D(70)22 have common vertex Q and common source ResM

Q (D(70)22). Moreover, we have Q =
NM(Q ) � NM:2(Q ) = P and |P : Q | = 2. Consequently, ResM:2

P (D(140)22:2) is indecomposable and
therefore the Green correspondent of D(140)22:2 in P . Its Loewy series has been determined compu-
tationally. The remaining simple F [M : 2]-modules restrict irreducibly to M and are thus not relatively
M-projective. Since |(M : 2) : M| = 2, Proposition 3.3 implies that all these modules have vertex P , and
restrict indecomposably to P . The Loewy series of their Green correspondents have been computed to
be as stated. �
Remark 3.5. We observe that the Loewy series of the Green correspondents of the not relatively
M-projective simple F [M : 2]-modules and those of the respective simple F M-modules coincide. How-
ever, we do not have a good explanation for this.

Remark 3.6. Consider the non-split central extension 3.M of M by a group of order 3. Besides the
principal block whose simple modules are obtained from the simple F M-modules via inflation, the
group algebra F [3.M] has two faithful blocks B2 and B3 = B∗

2 of defect 7. The simple modules be-
longing to B2 and B3, respectively, are:

B2 : D(6)3.22 ↔ ϕ8 ↔ a, D(15)3.22 ↔ ϕ9 ↔ a, D(451)3.22 ↔ ϕ11 ↔ b,

D(452)3.22 ↔ ϕ10 ↔ a, D(84)3.22 ↔ ϕ12 ↔ a;
B3 : D(6)∗3.22 ↔ ϕ8, D(15)∗3.22 ↔ ϕ9, D(451)

∗
3.22 ↔ ϕ11,

D(452)
∗
3.22 ↔ ϕ10, D(84)∗3.22 ↔ ϕ12.

Moreover, F [3.M] has two blocks of defect 0. In view of [35, Thm. 4.7.8] and Proposition 2.6, it
suffices to determine the vertices, sources and Green correspondents of the simple F [3.M]-modules
belonging to the faithful blocks of positive defect.

Denoting a Sylow 2-subgroup of 3.M by P , we have N3.M(P ) ∼= Z(3.M) × P ∼= C3 × P . Hence
F [N3.M(P )] possesses three blocks each of which has defect 7 and contains one simple module. All
of these simple modules are one-dimensional, and we denote them by 11 = F ,12,13 = 1∗

2 where 12

belongs to the Brauer correspondent of B2, and 13 belongs to the Brauer correspondent of B3.

Proposition 3.7. All simple F [3.M]-modules belonging to the blocks B2 and B3 , respectively, have vertex
P ∈ Syl2(3.M), and restrict indecomposably to P . Thus, with the above parametrization, 12 is the unique
composition factor of the Green correspondents of the simple modules belonging to B2 , and 13 is the unique
composition factor of the Green correspondents of the simple modules belonging to B3 . The Loewy series of
these Green correspondents are as follows:
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Module D(6)3.22 D(6)∗3.22 D(15)3.22 D(15)∗3.22 D(451)3.22 D(451)
∗
3.22

Green 6 6 15 15 45 45
Layer dims. 1,1,1, 1,1,1, 1,2,2,2, 1,2,2,2, 2,3,4,6,5,6, 1,2,3,4,5,6,

1,1,1 1,1,1 2,2,2,1,1 2,2,2,1,1 5,5,3,3,2,1 6,6,5,4,2,1

Module D(452)3.22 D(452)
∗
3.22 D(84)3.22 D(84)∗3.22

Green 45 45 84 84
Layer dims. 1,2,3,4,5,6, 2,3,4,6,5,6, 2,4,6,8,9,10,10, 2,4,6,8,9,10,10,

6,6,5,4,2,1 5,5,3,3,2,1 10,8,6,5,3,2,1 10,8,6,5,3,2,1

Furthermore, for any simple F [3.M]-module belonging to B2 or B3 , the Loewy series of its sources and those
of its Green correspondent coincide.

Proof. Consider the modules D(15)3.22, D(451)
∗
3.22 and D(452)3.22 first. Since their dimensions are

not divisible by 2, they all have vertex P . Furthermore, we have determined the Loewy series of their
restrictions to N3.M(P ) with the computer. It turns out that each of these restricted modules has
a one-dimensional head, and, in particular, is thus indecomposable. Therefore the Green correspon-
dents of these three modules and their duals are precisely the indecomposable restrictions to N3.M(P ).
The concrete Loewy series have been determined computationally.

Finally we have computed that the simple modules D(6)3.22 and D(84)3.22 restrict indecomposably
to P , and that neither is relatively projective with respect to any maximal subgroup of P . Thus both
modules have vertex P , and their restrictions to P are also sources. The Loewy series of their Green
correspondents in N3.M(P ) have been determined by computer calculations to be as claimed.

The assertion concerning the Loewy series of the sources of the simple modules in question now
follows from [24, Thms. VII.7.21 and VII.9.15]. �
Remark 3.8. (a) Let G := 3.M : 2. Then F G possesses three blocks: the principal block B1 of defect 8,
the faithful block B2 of defect 7 and the block B3 of defect 0. The simple modules belonging to B1
are obtained from the simple F [M : 2]-modules via inflation. The simple modules belonging to the
block B2 are the following:

D(12)3.22.2 ↔ ϕ8, D(30)3.22.2 ↔ ϕ9, D(90)3.22.2 ↔ ϕ11,

D(90)∗3.22.2 ↔ ϕ10, D(168)3.22.2 ↔ ϕ12.

Moreover, the outer automorphism of 3.M interchanges the faithful blocks of defect 7 of F [3.M].
In consequence thereof, each of these faithful blocks of F [3.M] is Morita equivalent to B2 via the
respective induction functors. This is Fong’s first correspondence (cf. [30]). In particular, the simple
modules in B2 are precisely the inductions of the faithful simple F [3.M]-modules to G . We choose
notation such that IndG

3.M(D(451)3.22) ∼= D(90)3.22.2 ∼= IndG
3.M(D(452)

∗
3.22).

(b) Let Q be a Sylow 2-subgroup of 3.M , that is a defect group of B2. Then NG(Q ) is a split
extension N3.M(Q ) : 2 ∼= (C3 × Q ) : 2. Moreover, NG(Q )/Q ∼= S3 so that there are two simple
F NG(Q )-modules: the trivial module and the inflation of the projective simple FS3-module D(2,1)

of dimension 2; we denote the latter by 2. Here we obtain Morita equivalences between the block of
F [NG(Q )] containing 2 and each of the two non-principal blocks of F [N3.M(Q )] both of which are
nilpotent blocks. Again the Morita equivalences are obtained via the induction functors, and we have
IndNG (Q )

N3.M (Q )(12) ∼= 2 ∼= IndNG (Q )
N3.M (Q )(13) where 12 and 13 are as in Remark 3.6. The Green correspondence

with respect to (G, Q , NG(Q )) will be denoted by f2.

Proposition 3.9. Let G := 3.M : 2. Let Q ∈ Syl2(3.M) so that Q is a defect group of B2 . Then each sim-
ple F G-module belonging to B2 has vertex Q , and the 2-dimensional simple F NG(Q )-module is the unique
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composition factor of its Green correspondent. The Loewy series of the Green correspondents and those of the
sources of the simple modules in B2 are as follows:

Module D(12)3.22.2 D(30)3.22.2 D(90)3.22.2 D(90)∗3.22.2 D(168)3.22.2

Green 12 30 90 90 168
Layer 2,2,2, 2,4,4,4, 4,6,8,12,10,12, 2,4,6,8,10,12, 4,8,12,16,18,20,20,

dims. 2,2,2 4,4,4,2,2 10,10,6,6,4,2 12,12,10,8,4,2 20,16,12,10,6,4,2

Sce. 6 15 45 45 84
Layer 1,1,1, 1,2,2,2, 2,3,4,6,5,6, 1,2,3,4,5,6, 2,4,6,8,9,10,10,

dims. 1,1,1 2,2,2,1,1 5,5,3,3,2,1 6,6,5,4,2,1 10,8,6,5,3,2,1

Proof. We consider a simple F G-module V belonging to B2. Then there exists a simple F [3.M]-
module U such that V ∼= IndG

3.M(U ) and ResG
3.M(V ) ∼= U ⊕ g U , for some g ∈ G \ 3.M . Both V and U

have vertex Q ∈ Syl2(3.M), by Proposition 3.7, and they also have common sources. Furthermore, we
have N3.M(Q ) � NG(Q ) =: N , and |N : N3.M(Q )| = 2. By Proposition 3.7, the Green correspondents in
N3.M(Q ) of U and g U are isomorphic to Res3.M

N3.M (Q )(U ) and Res3.M
N3.M (Q )(

g U ), respectively. From this,

together with Proposition 2.7, we now deduce that f2(V ) = ResG
N (V ) and

IndN
N3.M (Q )

(
Res3.M

N3.M (Q )(U )
) ∼= ResG

N(V ) ∼= IndN
N3.M (Q )

(
Res3.M

N3.M (Q )

(g U
))

.

As explained in Remark 3.8, the induction functors yield Morita equivalences between each of the
two non-principal blocks of F [N3.M(Q )] and the Brauer correspondent of B2. Thus, in particular, the
Green correspondent of U in N3.M(Q ) and f2(V ) have the same Loewy structure, and the assertion
now follows from Proposition 3.7. �
3.4. M23 in characteristic 2

Remark 3.10. There are three blocks of F M23: the principal one and two dual blocks of defect 0. The
principal block has defect 7, and contains the following nine simple modules:

D(1)23 = F ↔ ϕ1, D(11)23 ↔ ϕ3 ↔ b, D(11)∗23 ↔ ϕ2 ↔ a, D(44)23 ↔ ϕ4 ↔ a,

D(44)∗23 ↔ ϕ5 ↔ b, D(120)23 ↔ ϕ6, D(220)23 ↔ ϕ8 ↔ b, D(220)∗23 ↔ ϕ7 ↔ a,

D(252)23 ↔ ϕ9.

Proposition 3.11. All simple F M23-modules belonging to the principal block have vertex P ∈ Syl2(M23).
Moreover, D(120)23 has sources of dimension 56, and D(252)23 has sources of dimension 28. The remaining
modules in the principal block restrict indecomposably to P . We have NM23 (P ) = P , and the Green correspon-
dents in P of the simple F M23-modules in the principal block are thus also sources of these. Their Loewy series
are as follows:

Module D(1)23 D(11)23 D(11)∗23 D(44)23 D(44)∗23 D(120)23

Green 1 11 11 44 44 56
Layer dims. 1 2,2,1,2, 1,1,1,2, 3,4,4,6,5, 2,3,4,5,5, 2,4,5,7,8,8,

1,1,1,1 2,2,1,1 6,5,5,3,2,1 6,6,6,3,3,1 7,6,4,2,2,1

Module D(220)23 D(220)∗23 D(252)23

Green 220 220 28
Layer dims. 3,8,12,18,22,26,27, 5,9,13,20,23,26, 3,4,4,5,

27,24,20,16,9,6,2 28,27,22,18,14,8,5,2 3,3,3,2,1
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Proof. Consider the modules D(120)23 and D(252)23 first. Then ResM23
P (D(120)23) = U ⊕ cyc, and

ResM23
P (D(252)23) = V ⊕ W ⊕ cyc. Here U , V and W are indecomposable of dimension 56, 28 and 32,

respectively. As mentioned earlier, the indecomposable direct summands with cyclic vertices are eas-
ily detected. Both U and V have vertex P and are thus sources and Green correspondents of D(120)23
and D(252)23, respectively. All other simple F M23-modules in the principal block restrict indecom-
posably to P , and are not relatively projective with respect to any maximal subgroup of P . The Loewy
series of the Green correspondents have been computed to be as stated. �
3.5. M24 in characteristic 2

Remark 3.12. (a) There is only one block of F M24, i.e. the principal one of defect 10. The 13 simple
F M24-modules are:

D(1)24 = F ↔ ϕ1, D(11)24 ↔ ϕ2 ↔ a, D(11)∗24 ↔ ϕ3 ↔ b, D(44)24 ↔ ϕ5 ↔ b,

D(44)∗24 ↔ ϕ4 ↔ a, D(120)24 ↔ ϕ6, D(220)24 ↔ ϕ8 ↔ b, D(220)∗24 ↔ ϕ7 ↔ a,

D(252)24 ↔ ϕ9, D(320)24 ↔ ϕ11 ↔ b, D(320)∗24 ↔ ϕ10 ↔ a, D(1242)24 ↔ ϕ12,

D(1792)24 ↔ ϕ13.

(b) By [12], M24 has three conjugacy classes of maximal subgroups with odd index in M24. These
are 24 : A8 of index 759, 26 : 3.S6 of index 1771, and 26 : (L3(2) × S3) of index 3795.

Proposition 3.13. All simple F M24-modules, except D(1792)24 , have vertex P ∈ Syl2(M24). Furthermore,
NM24 (P ) = P so that the Green correspondents of these modules are also sources. Their Loewy series are as
follows:

Module D(1)24 D(11)24 D(11)∗24 D(44)24 D(44)∗24

Green 1 11 11 44 44
Layer dims. 1 1,1,2,2, 1,1,1,2, 1,2,4,4,6,6, 2,2,3,4,4,6,

2,1,1,1 2,2,1,1 6,5,5,3,1,1 6,6,4,4,2,1

Module D(120)24 D(220)24 D(220)∗24 D(252)24

Green 120 220 220 252
Layer dims. 2,4,6,9,10,14, 1,3,6,10,14,20, 2,4,7,11,14,18, 3,5,7,13,17,22,

14,14,13,12, 23,26,26,25,21, 22,24,24,23,21, 25,29,28,27,23,

9,6,4,2,1 18,12,8,4,2,1 17,14,9,6,3,1 20,14,9,6,3,1

Module D(320)24 D(320)∗24 D(1242)24

Green 320 320 218
Layer dims. 1,3,6,11,17,23,29, 1,3,6,11,17,23,29, 3,6,9,14,17,21,

34,36,36,34,29, 34,36,36,34,29, 23,25,23,22,18,

23,17,11,6,3,1 23,17,11,6,3,1 14,10,7,3,2,1

The vertices of D(1792)24 have order 512, and are the M24-conjugates of the Sylow 2-subgroups
of the commutator subgroup of 26 : (L3(2) × S3) � M24 . Furthermore, NM24 (Q ) has order 3072, and
NM24 (Q )/Q ∼= S3 . Denoting the trivial F [NM24 (Q )]-module by 1, and the inflation of the two-dimensional
projective simple FS3-module by 2, the Green correspondent of D(1792)24 has dimension 256 and the fol-
lowing Loewy series:
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Layer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Multiplicity of 1 0 1 4 8 11 11 8 5 5 8 11 11 8 4 1 0
Multiplicity of 2 1 2 2 3 4 6 10 13 13 10 6 3 2 2 2 1

Moreover, D(1792)24 has sources of dimension 128, and the dimensions of their Loewy layers are 1, 3, 5, 9,
13, 15, 18, 18, 15, 13, 9, 5, 3, 1.

Proof. All simple F M24-modules, except D(1792)24 and D(1242)24, remain indecomposable when
restricted to P , and neither is relatively projective with respect to any maximal subgroup of P . More-
over, ResM24

P (D(1242)24) = U ⊕ proj, where U is indecomposable of dimension 218 and has vertex P .

Finally, consider D(1792)24. Our computations show that ResM24
P (D(1792)24) = V ⊕W ⊕proj, where V

and W are indecomposable of dimension 256 and 512, respectively. It turns out that W has ver-
tices of order 128. Furthermore, there is a maximal subgroup Q of P such that ResP

Q (V ) = V 1 ⊕ V 2

and IndP
Q (V 1) ∼= V ∼= IndP

Q (V 2), for indecomposable F Q -modules V 1 and V 2 of dimension 128
both of which have vertex Q . Therefore also D(1792)24 has vertex Q , and V 1 and V 2 are sources
of D(1792)24. Each maximal subgroup of M24 of odd index in M24 clearly contains an M24-conjugate
of Q . In fact, Q is conjugate to a Sylow 2-subgroup of (26 : (L3(2)×S3))

′ . The Loewy structures of the
Green correspondents and the sources of the simple F M24-modules have then also been determined
with the computer to be as claimed. �
3.6. M22 in characteristic 3

For the remainder of this article, let p = 3. We investigate the Mathieu group M22, its automor-
phism group M22 : 2 and their extensions 2.M22, 4.M22, 2.M22.2, 4.M22.2 first. For this we again set
M := M22.

Remark 3.14. There are five blocks of F M: the principal block B1 of defect 2 whose defect groups are
elementary abelian, the block B2 of defect 1, and the blocks B3, B4 = B∗

3, and B5 of defect 0. Thus,
in particular, all simple F M-modules have the defect groups of their blocks as vertices, by Knörr’s
Theorem [27]. For the sake of completeness, we will determine the sources and Green correspondents
of the simple modules belonging to the blocks of positive defect.

(a) The principal block B1 contains the following simple modules:

D(1)22 = F ↔ ϕ1, D(49)22 ↔ ϕ5 ↔ a, D(49)∗22 ↔ ϕ6 ↔ b, D(55)22 ↔ ϕ7,

D(231)22 ↔ ϕ10.

Let P be a Sylow 3-subgroup of M . The normalizer NM(P ) has order 23 · 32 = 72, and is isomorphic
to M9. Therefore F [NM(P )] has five simple modules: four of dimension 1, and one of dimension 2. We
denote these by 11 = F ,12,13,14,2. There are outer automorphisms ϕ and ψ of M9 mapping 12 to 13
and 14, respectively. Moreover, let f1 be the Green correspondence with respect to (M, P , NM(P )).

(b) Now consider the block B2 with defect group C ∼= C3 which contains the simple mod-
ules D(21)22 ↔ ϕ2 and D(210)22 ↔ ϕ9. The normalizer NM(C) has order 23 · 32 = 72; its Sylow
3-subgroups are elementary abelian of order 9, and its Sylow 2-subgroups are isomorphic to the dihe-
dral group D8 of order 8. Furthermore, F [NM(C)] possesses four simple modules: two of dimension 1,
and two of dimension 3. We denote them by 11 = F ,12,31,32. In fact, C acts trivially on these simple
modules, by [35, Thm. 4.7.8]. Moreover, we have NM(C)/C ∼= S4. We choose notation such that 31 is
isomorphic to D(3,1) , and 32 is isomorphic to D(2,12) , when regarded as FS4-modules. Considered
as FS4-module, the one-dimensional module 12 is isomorphic to the alternating FS4-module D(22) .
Denoting the Green correspondence with respect to (M, C, NM(C)) by f2, we obtain the following:
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Proposition 3.15. All simple F M-modules have the defect groups of their blocks as vertices. Furthermore, the
Loewy series of the Green correspondents and the sources of the simple modules in B1 and B2 are as follows:

Block B1 B2

Module D(1)22 D(49)22 D(49∗)22 D(55)22 D(231)22 D(21)22 D(210)22

Green F

[13
2

12

] [ 12
2

13

]
14

[ 2
14 11

2

]
31 32

Source F

[ F
F F
F

] [ F
F F
F

]
F

[ F
F
F

]
F F

Proof. The assertion concerning the vertices is clear. The Loewy series of the Green correspondents of
the simple modules belonging to B1 are given in the proof of [28, Prop. 4.2], and the Loewy series of
the sources of the simple modules in B1 have been determined with the computer to be as claimed.
As mentioned in Remark 2.8, by [23, Sec. 6.4 and L. 4.4.12], the simple modules belonging to B2 have
simple Green correspondents and thus trivial sources, by [35, Thm. 4.7.8]. We have explicitly checked
that 31 ∼= f2(D(21)22) which then implies f2(D(210)22) ∼= 32. �
Remark 3.16. Now, consider the automorphism group M : 2 of M . There are nine blocks of F [M : 2].
The ones of positive defect are the principal block B1 of defect 2, and the blocks B2 and B3 of defect 1.

(a) The principal block of F [M : 2] contains the following simple modules:

D(11)22:2 = F ↔ ϕ1,0, D(12)22:2 ↔ ϕ1,1, D(551)22:2 ↔ ϕ7,0 ↔ a, D(552)22:2 ↔ ϕ7,1,

D(98)22:2 ↔ ϕ5, D(2311)22:2 ↔ ϕ10,0 ↔ a, D(2312)22:2 ↔ ϕ10,1.

Here, we have IndM:2
M (D(49)22) ∼= D(98)22:2 ∼= IndM:2

M (D(49)∗22) and ResM:2
M (D(98)22:2) ∼= D(49)22 ⊕

D(49)∗22. The remaining simple F [M : 2]-modules are the extensions of the simple F M-modules
F = D(1)22, D(55)22 and D(231)22, respectively. The Brauer characters ϕi,0 are those whose values
are listed in the printed Atlas [26]. Let P be a Sylow 3-subgroup of M . By Proposition 3.15, all simple
F M-modules belonging to the principal block and thus also all simple F [M : 2]-modules belonging to
the principal block have vertex P . Furthermore, given a simple F [M : 2]-module D belonging to B1
and a simple F M-module D ′ such that D ′ | ResM:2

M (D) then D and D ′ have common sources.
Moreover, NM:2(P ) is isomorphic to a split extension NM(P ) : 2 ∼= M9 : 2, and F [M9 : 2] has seven

simple modules: four of dimension 1, and three of dimension 2. We denote these by 11 = F , 12, 13,
14, 21, 22, 23 = 2∗

2. In the notation of Remark 3.14 and Proposition 3.15, the restrictions of 22 and 23
to M9 are isomorphic to the 2-dimensional simple F M9-module, the restriction of 21 to M9 splits into
the direct sum of the simple F M9-modules 12 and 13. Furthermore, the restrictions of the F [M9 : 2]-
modules 12 and 14 to M9 are isomorphic to the F M9-module 14, and the restriction of 13 to M9 is
trivial. We identify NM(P ) with M9 and NM:2(P ) with M9 : 2. The Green correspondence with respect
to (M : 2, P , NM(P ) : 2) will be denoted by f1.

(b) The blocks of defect 1 contain the simple modules:

B2 : D(211)22:2 ↔ ϕ2,0 ↔ a, D(2101)22:2 ↔ ϕ9,1,

B3 : D(212)22:2 ↔ ϕ2,1, D(2102)22:2 ↔ ϕ9,0 ↔ a,

where

ResM:2
M

(
D(211)22:2

) ∼= D(21)22 ∼= ResM:2
M

(
D(212)22:2

)
,

ResM:2
M

(
D(2101)22:2

) ∼= D(210)22 ∼= ResM:2
M

(
D(2102)22:2

)
.
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Again, the Brauer characters ϕi,0 are those whose values occur in [26]. The simple modules in B2
and B3 have trivial sources and simple Green correspondents, by [23, Sec. 6.4 and L. 4.4.12],
and [35, Thm. 4.7.8]. If C � M is a defect group of both B2 and B3 then NM:2(C) has order 144.
Moreover, NM:2(C)/C ∼= S4 × C2. In particular, the simple F [NM:2(C)]-modules are precisely the infla-
tions of the simple F [S4 × C2]-modules.

Consider the natural epimorphism

ν :S4 −→ S4/A4
∼=−→ C2.

Then S4 × C2 has two subgroups isomorphic to S4, namely H1 := {(x,1) | x ∈ S4} and H2 :=
{(x, ν(x)) | x ∈ S4}. Both of these have C2 as a complement. In the following, we set N := NM:2(C), we
identify N/C with S4 × C2, and consider N/C as the inner direct product of H1 and C2. Then there
are eight simple F [N/C]-modules, namely

F � F , D(22) � F , F � sgn, D(22) � sgn,

D(3,1) � F , D(2,12) � F , D(3,1) � sgn, D(2,12) � sgn.

Here sgn denotes the alternating F C2-module. Note that this labelling depends on the identification
of N/C with S4 × C2. If we choose an essentially different identification, that is if we replace H1
by H2, then, for any simple FS4-module D , the labelling of the module D � F remains the same, but
the module D � sgn is replaced by (D ⊗ D(22)) � sgn.

With this notation we obtain:

Proposition 3.17. The simple F [M : 2]-modules belonging to the blocks of positive defect have the defect
groups of their blocks as vertices. Their Green correspondents have the following Loewy series:

Block B1

Module D(11)22:2 D(12)22:2 D(551)22:2 D(552)22:2 D(98)22:2 D(2311)22:2 D(2312)22:2

Green F 13 12 14

[ 21
22 23

21

] [ 22
11 14

23

] [ 23
12 13

22

]

Block B2 B3

Module D(211)22:2 D(2101)22:2 D(212)22:2 D(2102)22:2
Green Inf N

C (D(3,1) � F ) Inf N
C (D(2,12) � sgn) Inf N

C (D(3,1) � sgn) Inf N
C (D(2,12) � F )

Proof. We have explicitly determined the isomorphism types of the Green correspondents of the
simple modules belonging to B2. These then also determine the isomorphism types of the Green
correspondents of the simple modules belonging to B3. We also obtain that f1(D(11)22:2) = F ,
f1(D(12)22:2) ∼= 13, f1(D(551)22:2) ∼= 12 and f1(D(552)22:2) ∼= 14. From Propositions 3.15, 2.7
and [24, Thm. VII.7.21] we further deduce that

f1
(

D(98)22:2
) ∼

[ 21
X1 X2

21

]
, f1

(
D(2311)22:2

) ∼
[ Y1

Z1 Z2
Y2

]
, f1

(
D(2312)22:2

) ∼
[ Y3

Z3 Z4
Y4

]
,

where X1, X2 ∈ {22,23}, Y1, . . . , Y4 ∈ {22,23}, Z1, Z3 ∈ {11,13} and Z2, Z4 ∈ {12,14}. The actual iso-
morphism types of these simple modules can be read off from [28, proof of L. 4.5]. �
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Remark 3.18. The group algebra F [2.M] possesses nine blocks. In view of [35, Thm. 4.7.8] and Proposi-
tion 2.6, it suffices to consider the simple F [2.M]-modules belonging to the faithful blocks of F [2.M].
These are the block B3 of defect 2 whose defect groups are elementary abelian, and the block B4 of
defect 1.

(a) The simple modules belonging to B3 are

D(10)2.22 ↔ ϕ11 ↔ a, D(10)∗2.22 ↔ ϕ12 ↔ b, D(56)2.22 ↔ ϕ13,

D(154)2.22, D(154)∗2.22.

The Brauer character afforded by D(154)2.22 is either ϕ17 or ϕ18, and representing matrices for
D(154)2.22 are available at [42]. Let A and B be standard generators of 2.M , let ζ := exp(2π i/8),
and consider the lifting map − : Z[ζ ] −→ F9 as in Section 3.2. Then g := AB AB AB B B AB B has or-
der 8. For the Brauer character ϕ afforded by D(154)2.22, we have ϕ(g) = F9.1 + 1 = −2i, and hence
ϕ(g) = 2i.

Let P ∈ Syl3(2.M), i.e. a defect group of B3. Then N2.M(P ) has order 144, and if Q ∈ Syl2(N2.M(P ))

then Q /Z(2.M) is isomorphic to the quaternion group Q 8 of order 8. Furthermore, F [N2.M(P )] has
ten simple modules which are obtained from the simple F [N2.M(P )/P ]-modules via inflation. These
will be denoted by F = 11,12, . . . ,18,21,22. Moreover, we may choose notation such that the simple
modules belonging to the Brauer correspondent b3 of B3 are

15, 16 = 1∗
5, 21, 17, 18 = 1∗

7.

(b) The block B4 of defect 1 contains the simple modules D(120)2.22 ↔ ϕ14 and D(2101)2.22 ↔ ϕ19.
Let C ∼= C3 be a defect group of B4. Then N2.M(C) has order 144. Moreover, each simple F [N2.M(C)]-
module can be regarded as a simple F [N2.M(C)/C]-module. Actually, N2.M(C)/C ∼= S4 × C2 where C2
denotes a cyclic group of order 2. In analogy to Remark 3.16 above, we now identify N2.M(C)/C with
S4 × C2, and regard N2.M(C)/C as the inner direct product of the subgroups H1 := {(x,1) | x ∈ S4}
and C2. The eight simple F [N2.M(C)/C]-modules are also denoted as in Remark 3.16.

For a suitable labelling we get:

Proposition 3.19. All simple F [2.M]-modules belonging to B3 and B4 , respectively, have the defect groups of
their blocks as vertices. Moreover, all of these have trivial sources, and the following Green correspondents:

Block B3

Module D(10)2.22 D(10)∗2.22 D(56)2.22 D(154)2.22 D(154)∗2.22

Green 15 16 = 1∗
5 21 17 18 = 1∗

7

Block B4

Module D(120)2.22 D(2101)2.22

Green Inf
N2.M22 (C)

C (D(3,1) � sgn) Inf
N2.M22 (C)

C (D(2,12) � sgn)

Proof. The assertion concerning the vertices is clear, by Knörr’s Theorem [27]. The sources and Green
correspondents have been determined computationally to be as claimed. �
Remark 3.20. Next we turn to the group 4.M . Again it suffices to focus on the faithful blocks
of F [4.M]. These are the blocks B5 and B6 = B∗

5 of defect 2 containing the following simple mod-
ules:
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Block Module ID Brauer

B5 D(561)4.22 a ϕ20,ϕ21,ϕ20,ϕ21

D(562)4.22 b ϕ20,ϕ21,ϕ20,ϕ21

D(64)4.22 a ϕ22,ϕ22

D(1601)4.22 a ϕ25,ϕ26

D(1602)4.22 b ϕ26,ϕ25

B6 D(561)
∗
4.22 ϕ20,ϕ21,ϕ20,ϕ21

D(562)
∗
4.22 ϕ20,ϕ21,ϕ20,ϕ21

D(64)∗4.22 ϕ22,ϕ22

D(1601)
∗
4.22 ϕ26,ϕ25

D(1602)
∗
4.22 ϕ25,ϕ26

Column “Brauer” displays the possible Brauer characters of the simple modules in B5 and B6,
respectively. Again, we also record the ID’s of the modules appearing in [42]. Let A and B be standard
generators of 4.M as in [42], let ϕ be the Brauer character afforded by D(561)4.22, and let ψ be
the Brauer character afforded by D(562)4.22. Let further ζ := exp(2π i/8), and let − : Z[ζ ] −→ F9 be
the lifting map as in Section 3.2. Then g := AB AB AB B B AB B has order 8, ϕ(g) = 2F9.1 = 2z8, and
ψ(g) = F9.1 = −2z8. The element z := (AB AB AB AB AB2 AB AB2 AB2)63 ∈ Z(4.M22) of order 4 acts
on the simple modules in B5 via multiplication with F9.12, and on the simple modules in B6 via
multiplication with F9.16.

Consider further P ∈ Syl3(4.M). Then P is elementary abelian of order 9 and a defect group of B5
and B6. Its normalizer N4.M(P ) has order 288, and is isomorphic to a split extension P : (C4 : C8).
We denote the Green correspondence with respect to (4.M, P , N4.M(P )) by f . There are precisely 20
simple F [N4.M(P )]-modules, namely the inflations of the simple F [C4 : C8]-modules. These will be
denoted by F = 11, . . . ,116,21, . . . ,24.

In [34] J. Müller and M. Schaps have proved that the blocks B5 and B6 are derived equivalent to
their Brauer correspondents b5 and b6 = b∗

5, respectively, thereby proving Broué’s conjecture for B5
and B6. We choose notation such that the simple N4.M(P )-modules belonging to the block b5 are
12, 13, 14, 15, 21, and the simple N4.M(P )-modules belonging to the block b6 are 16 = 1∗

2, 17 = 1∗
3,

18 = 1∗
4, 19 = 1∗

5, 22 = 2∗
1. For a suitable labelling of the simple F N4.M(P )-modules, we obtain the

following:

Proposition 3.21. The simple F [4.M]-modules belonging to B5 and B6 , respectively, have vertex P . Moreover,
the Loewy series of their Green correspondents are as follows:

Block B5

Module D(561)4.22 D(562)4.22 D(64)4.22 D(1601)4.22 D(1602)4.22

Green

⎡⎢⎣
12 21

13 14 15
21 21

12

⎤⎥⎦
⎡⎢⎣

13 21
13 21

12 14 15
21

⎤⎥⎦ [12 14 15
21 21

13 14 15

] ⎡⎢⎣
14 21

12 13 15 21
12 13 15 21

14 21

⎤⎥⎦
⎡⎢⎣

15 21
12 13 14 21
12 13 14 21

15 21

⎤⎥⎦

Block B6

Module D(561)
∗
4.22 D(562)

∗
4.22 D(64)∗4.22 D(1601)

∗
4.22 D(1602)

∗
4.22

Green

⎡⎢⎣
1∗

2 2∗
1

1∗
2 2∗

1
1∗

3 1∗
4 1∗

5
2∗

1

⎤⎥⎦
⎡⎢⎣

1∗
3 2∗

1
1∗

2 1∗
4 1∗

5
2∗

1 2∗
1

1∗
3

⎤⎥⎦ [1∗
3 1∗

4 1∗
5

2∗
1 2∗

1
1∗

2 1∗
4 1∗

5

] ⎡⎢⎣
1∗

4 2∗
1

1∗
2 1∗

3 1∗
5 2∗

1
1∗

2 1∗
3 1∗

5 2∗
1

1∗
4 2∗

1

⎤⎥⎦
⎡⎢⎣

1∗
5 2∗

1
1∗

2 1∗
3 1∗

4 2∗
1

1∗
2 1∗

3 1∗
4 2∗

1
1∗

5 2∗
1

⎤⎥⎦
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If D is any of the simple modules belonging to B5 or B6 then the restriction of its Green correspondent f (D)

to P is also a source of D. Moreover, f (D) and ResN4.M (P )
P ( f (D)) have the same Loewy lengths, and the di-

mensions of the respective Loewy layers coincide.

Proof. The assertion concerning the vertices is obvious. The dimensions of the Green correspondents
of the simple modules belonging to B5 and B6, respectively, have already been determined in [34].
Moreover, the Green correspondents restrict indecomposably to P , by [34]. We have further calculated
the explicit Loewy structures of all Green correspondents with the computer, as stated. The assertion
regarding the sources follows from [24, Thm. VII.7.21]. �

To close this subsection, we investigate the simple modules for the bicyclic extensions 2.M.2
and 4.M.2 of M .

Remark 3.22. (a) The group algebra F [2.M.2] has 13 blocks, and due to our previous considerations
it suffices to investigate only the faithful ones of positive defect explicitly. These are the block B4 of
defect 2 and the blocks B5 and B6 of defect 1. In fact, the blocks B5 and B6 only differ by a linear
character, and are thus isomorphic.

(b) Consider the blocks B5 and B6 of defect 1 first. Here the block B5 contains the simple modules
D(1201)2.22.2 and D(2104)2.22.2, and the block B6 contains D(1202)2.22.2 and D(2103)2.22.2 where

Res2.M.2
2.M

(
D(1201)2.22.2

) ∼= D(120)2.22 ∼= Res2.M.2
2.M

(
D(1202)2.22.2

)
,

Res2.M.2
2.M

(
D(2103)2.22.2

) ∼= D(2101)2.22 ∼= Res2.M.2
2.M

(
D(2104)2.22.2

)
.

Let c and d be standard generators of 2.M.2 as in [42]. Then g := (cdd)3 is an element of order 2
belonging to one of the conjugacy classes of 2.M.2 lying above the conjugacy class 2B of M : 2. Let
− : Z −→ F3 be the residue map. If ϕ denotes the Brauer character afforded by D(1202)2.22.2 and if ψ

denotes the Brauer character afforded by D(2104)2.22.2 then ϕ(g) = 2 = 8, and ψ(g) = 1 = 28.
If C � 2.M is a defect group of both B5 and B6 then N2.M.2(C) ∼= N2.M(C).2 has order 288, and

each simple F N2.M(C)-module extends to two simple F N2.M.2(C)-modules. Thus there are 16 simple
F N2.M.2(C)-modules eight of which have dimension 1, and the remaining eight have dimension 3. We
may choose notation such that the Brauer correspondent b5 of B5 contains the simple modules 33
and 34, and the Brauer correspondent b6 of B6 contains the simple modules 35 and 36 where

ResN2.M.2(C)
N2.M (C) (33) ∼= Inf N2.M (C)

C

(
D(2,12) � sgn

) ∼= ResN2.M.2(C)
N2.M (C) (35)

and

ResN2.M.2(C)
N2.M (C) (34) ∼= Inf N2.M (C)

C

(
D(3,1) � sgn

) ∼= ResN2.M.2(C)
N2.M (C) (36),

in the notation of Remark 3.16(b).
Let f5 be the Green correspondence with respect to (2.M.2, C, N2.M.2(C)). In consequence of

Propositions 3.19 and 2.7, the simple modules belonging to B5 and B6, respectively, have simple
Green correspondents and trivial sources. More precisely, we have:

f5(D(1201)2.22.2) ∼= 34, f5(D(1202)2.22.2) ∼= 36, f5(D(2103)2.22.2) ∼= 35,

f5(D(2104)2.22.2) ∼= 33.

(c) The faithful block B4 contains the simple modules

D(101)2.22.2, D(102)2.22.2, D(101)
∗
2.22.2, D(102)

∗
2.22.2,

D(561)2.22.2, D(562)2.22.2, D(308)2.22.2,
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where notation is chosen such that

Ind2.M.2
2.M

(
D(10)2.22

) ∼= D(101)2.22.2 ⊕ D(102)2.22.2,

Ind2.M.2
2.M

(
D(10)∗2.22

) ∼= D(101)
∗
2.22.2 ⊕ D(102)

∗
2.22.2,

Ind2.M.2
2.M

(
D(56)2.22

) ∼= D(561)2.22.2 ⊕ D(562)2.22.2,

Ind2.M.2
2.M

(
D(154)2.22

) ∼= D(308)2.22.2 ∼= Ind2.M.2
2.M

(
D(154)∗2.22

)
.

In particular, all these simple modules have trivial sources, by Proposition 3.19, and thus simple
Green correspondents, by Okuyama’s Theorem [36]. Let P � 2.M be a Sylow 3-subgroup of 2.M.2,
i.e. a defect group of B4. Then N2.M.2(P ) ∼= N2.M(P ).2, and there are 14 simple F [N2.M.2(P )]-modules
seven of which belong to the Brauer correspondent b4 of B4. Among these are four of dimension 1
and three of dimension 2. Denoting the simple F N2.M(P )-modules as in Remark 3.18, we may label
the simple F N2.M.2(P )-modules belonging to b4 as 15,16,17 = 1∗

6,18 = 1∗
5,23,25,26 such that:

2.M.2 Brauer N2.M.2(P ) 2.M N2.M(P )

D(101)2.22.2 ϕ11,0,ϕ11,1 15 D(10)2.22 15

D(102)2.22.2 ϕ11,0,ϕ11,1 16 D(10)2.22 15

D(101)
∗
2.22.2 ϕ12,0,ϕ12,1 1∗

5 D(10)∗2.22 1∗
5

D(102)
∗
2.22.2 ϕ12,0,ϕ12,1 1∗

6 D(10)∗2.22 1∗
5

D(561)2.22.2 ϕ13,0,ϕ13,1 25 D(56)2.22 21

D(562)2.22.2 ϕ13,0,ϕ13,1 26 D(56)2.22 21

D(308)2.22.2 ϕ17 23 D(154)2.22 ⊕ D(154)∗2.22 17 ⊕ 18

The entries of this table should be read as follows: the first column displays the simple modules
in B4, the fourth column their restrictions to 2.M , and the third column their Green correspondents
in N2.M.2(P ). The last column contains the restrictions of these Green correspondents to N2.M(P ).
Column “Brauer” lists for each simple module in B4 the corresponding possible Brauer characters.
Again the ϕi,0 denote the Brauer characters whose values are printed in [26]. Let c and d be standard
generators of 2.M.2 as in [42], let ζ := exp(2π i/8), and let − : Z[ζ ] −→ F9 be the lifting map as in
Section 3.2. Then g := ccdcdcdcddcdd and h := g3 are non-conjugate elements of order 14. Moreover,
x := cdcdd has order 10. The modular character values of the above simple modules on these elements
are as follows:

Module g h x

D(101)2.22.2 F9.1 + 2 = b7 ∗ ∗ 2F9.1 = b7 0
D(102)2.22.2 F9.13 = −b7 ∗ ∗ F9.1 = −b7 0
D(101)

∗
2.22.2 b7 b7 ∗ ∗ 0

D(101)
∗
2.22.2 −b7 −b7 ∗ ∗ 0

D(561)2.22.2 0 0 −(F9.1 + 1) = −r5
D(562)2.22.2 0 0 F9.1 + 1 = r5

Remark 3.23. Finally consider 4.M.2. There are 16 blocks of F [4.M.2], and in view of our previous
results we only need to investigate the faithful block B7 of defect 2 containing five simple modules.
These are precisely the inductions of the simple F [4.M]-modules belonging to the faithful blocks B5
and B6 of F [4.M]. Here we actually have Morita equivalences between B7 and each of the blocks B5
and B6 of F [4.M], induced by the respective induction functors. Again this is Fong’s first correspon-
dence, see [30]. Similarly, via the induction functors, we also have Morita equivalences between the
Brauer correspondent b7 of B7 and each of the Brauer correspondents b5 and b6 of the blocks B5
and B6, respectively. Consequently, any simple F [4.M.2]-module in B7 and the corresponding simple
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F [4.M]-modules belonging to B5 and B6, respectively, have common vertices and common sources.
Furthermore, the Loewy structures of their Green correspondents coincide.

3.7. M23 in characteristic 3

Remark 3.24. There are seven blocks of F M23, namely the principal block B1 of defect 2 whose defect
groups are elementary abelian, the block B4 of defect 1, and the blocks B2, B3 = B∗

2, B5, B6 = B∗
5

and B7 of defect 0. Thus also all simple F M23-modules have the defect groups of their blocks as
vertices, by Knörr’s Theorem [27].

(a) The simple modules belonging to the principal block B1 are:

D(1)23 = F ↔ ϕ1, D(22)23 ↔ ϕ2, D(104)23 ↔ ϕ6 ↔ b, D(104)∗23 ↔ ϕ5 ↔ a,

D(253)23 ↔ ϕ8, D(770)23 ↔ ϕ10, D(770)∗23 ↔ ϕ9 ↔ a.

The normalizer NM23 (P ) of a Sylow 3-subgroup P of M23 has order 24 · 32 = 144. Actually,
NM23 (P ) ∼= M9 : 2, and we denote the seven simple F [M9 : 2]-modules as in Remark 3.16. The Green
correspondence with respect to (M23, P , NM23 (P )) is denoted by f1.

(b) The block B4 contains precisely one simple F M23-module, namely D(231)23 ↔ ϕ7. Let C ∼= C3
be a defect group of B4. The normalizer NM23 (C) has order 5 · 32 · 23 = 360, and it is isomorphic to
a split extension (A5 × C3) : 2. Furthermore, NM23 (C)/C ∼= S5, and F [NM23 (C)] has five simple mod-
ules. These are the inflations of the simple FS5-modules. Precisely one of them is projective, namely
the inflation of the simple FS5-module D(3,12) of dimension 6. Denoting the Green correspondence
with respect to (M23, C, NM23 (C)) by f4, we then have:

Proposition 3.25. All simple F M23-modules have the defect groups of their blocks as vertices. The Loewy series
of the sources and Green correspondents of the simple modules in B1 and B4 are as follows:

Block B1

Module D(1)23 D(22)23 D(104)23 D(104)∗23 D(253)23 D(770)23 D(770)∗23

Green F 13

[ 14
23
21

] [ 21
22
14

]
12 22 23

Source F F

[ F
F F
F F

] [ F F
F F
F

]
F F F

Block B4

Module D(231)23

Green Inf
NM23 (C)

C (D(3,12))

Source F

Proof. Again the assertion about the vertices is obvious. The simple module D(22)23 is a composition
factor, and hence a direct summand, of the natural permutation F M23-module on 23 points. Therefore,
D(22)23 has trivial source. Furthermore, ResM23

P (D(104)23) = V ⊕ cyc, ResM23
P (D(253)23) ∼= F ⊕ cyc and

ResM23
P (D(770)23) ∼= F ⊕ F ⊕ cyc. Here V is indecomposable of dimension 5 and therefore a source

of D(104)23. By Okuyama’s Theorem [36], D(22)23, D(770)23, D(770)∗23 and D(253)23 have simple
Green correspondents. Their actual isomorphism types, the Loewy series of the Green correspondents
of the remaining simple modules in B1 and the sources of D(104)23 and D(104)∗23 have been deter-
mined computationally.
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Finally, consider D(231)23. By [23, Sec. 6.6 and L. 4.4.12], it has a simple Green correspondent and
thus, by [35, Thm. 4.7.8], a trivial source. In view of Remark 3.24, when regarded as FS5-module,
f4(D(231)23) has to be the unique projective simple FS5-module D(3,12) . This proves the proposi-
tion. �
3.8. M24 in characteristic 3

Remark 3.26. There are six blocks of F M24. These are the principal block B1 of defect 3 whose defect
groups are extraspecial of exponent 3, the blocks B2, B3 = B∗

2, B4, B5 of defect 1, and B6 of defect 0.
The simple modules belonging to the blocks B2, . . . , B6 clearly have the respective defect groups as
their vertices.

(a) The simple F M24-modules belonging to B1 are:

D(1)24 = F ↔ ϕ1, D(22)24 ↔ ϕ2, D(231)24 ↔ ϕ5, D(483)24 ↔ ϕ7,

D(770)24 ↔ ϕ9 ↔ b, D(770)∗24 ↔ ϕ8 ↔ a, D(1243)24 ↔ ϕ13.

The normalizer NM24 (P ) of some Sylow 3-subgroup P of M24 has order 216, and NM24 (P )/P is
isomorphic to the dihedral group D8 of order 8. Consequently, the simple F [NM24 (P )]-modules are
precisely the inflations of the simple F D8-modules, and are denoted by F = 11,12,13,14,2. The mod-
ules 12 and 14 are interchanged by an outer automorphism of NM24 (P ). The Green correspondence
with respect to (M24, P , NM24 (P )) will be denoted by f1.

(b) By [37], M24 has two conjugacy classes of subgroups of order 3. If C3,1 and C3,2 are represen-
tatives for these, then NM24 (C3,1) ∼= L2(7) × S3 and NM24 (C3,2) is isomorphic to an extension 3.S6.
We will from now on identify NM24 (C3,1) with L2(7) × S3 and NM24 (C3,2) with 3.S6 via these
isomorphisms. As subgroups of S24 the group C3,1 is generated by a product of eight disjoint
3-cycles, and C3,2 is generated by a product of six disjoint 3-cycles. The defect groups of B2, B3
and B5 are conjugate to C3,1, and the defect groups of B4 are conjugate to C3,2. By [26], F L2(7)

has five simple modules: F = 11,31,32 = 3∗
1,61,71. Hence F [L2(7) × S3] has ten simple modules:

F = 11 � F , F � sgn,31 � F ,32 � F ,31 � sgn,32 � sgn,61 � F ,61 � sgn,71 � F ,71 � sgn. Here, sgn de-
notes the alternating FS3-module D(2,1) . Note that L2(7)×S3 possesses exactly one normal subgroup
isomorphic to S3, namely H := {(1, x) | x ∈ S3}. For i = 2,3,5 we denote the Brauer correspondent
of Bi by bi .

The group algebra F [3.S6] has seven simple modules. Namely, by [35, Thm. 4.7.8], each simple
F [3.S6]-module is also a simple FS6-module, and there are seven of those. There are two projective
simple FS6-modules: D(4,2) and D(22,12) = D(4,2) ⊗ sgn which have dimension 9. We denote the
Brauer correspondent of B5 by b5. For i = 2,3,4,5 and a suitable labelling, the blocks Bi and bi ,
respectively, contain the following simple modules:

B2 B3 B5 B4

D(45)24 ↔ ϕ3 ↔ a D(45)∗24 ↔ ϕ4 ↔ b D(1035)24 ↔ ϕ12 D(252)24 ↔ ϕ6
D(990)24 ↔ ϕ10 D(990)∗24 ↔ ϕ11 ↔ b D(2277)24 ↔ ϕ14 D(5544)24 ↔ ϕ15

b2 b3 b5 b4

31 � F 32 � F 61 � F Inf
NM24 (C3,2)

C3,2
(D(4,2))

31 � sgn 32 � sgn 61 � sgn Inf
NM24 (C3,2)

C3,2
(D(22,12))

With the above notation, the following holds:

Proposition 3.27. Apart from the module D(483)24 , all simple F M24-modules belonging to the principal block
have vertex P ∈ Syl3(M24). The vertices of D(483)24 are the M24-conjugates of a subgroup of M24 of order 9
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whose normalizer in M24 is isomorphic to the automorphism group of M9 which is a split extension M9 : S3 .
Furthermore, the Loewy series of the sources are as follows:

Module D(1)24 D(22)24 D(231)24 D(483)24 D(770)24 D(770)∗24 D(1243)24

Sce. 1 4 3 1 5 5 19

Layer dims. 1 1,2,1 1,1,1 1 1,2,2 2,2,1 2,3,4,2,4,2,2

Proof. The modules D(1)24, D(22)24, D(770)24, D(770)∗24 and D(1243)24 obviously have vertex P ,

since their dimensions are not divisible by 3. Moreover, ResM24
P (D(231)24) = V 1 ⊕ V 2 ⊕ cyc, where

V 1 and V 2 are indecomposable of dimension 3 with vertex P and therefore sources of D(231)24.
For D(483)24 we have ResM24

P (D(483)24) = U1 ⊕ U2 ⊕ cyc, where U1 and U2 are indecomposable of
dimension 3 and have vertex Q of order 9. Actually, NM24 (Q ) ∼= Aut(M9) ∼= M9 : S3 which determines
NM24 (Q ) up to M24-conjugacy, by [37]. The Loewy series of the sources of the non-trivial simple
F M24-modules belonging to B1 have been obtained by computer calculations. �
Remark 3.28. Let Q be a vertex of D(483)24. By the above proposition, its normalizer NM24 (Q ) is
isomorphic to M9 : S3. The factor group NM24 (Q )/Q is isomorphic to GL(2,3) which is one of the
double covers of S4. So each simple F [NM24 (Q )]-module can be regarded as simple F [GL(2,3)]-
module. Furthermore, F [GL(2,3)] has six simple modules two of which are projective. The latter
are precisely the inflations of the projective simple FS4-modules D(3,1) and D(2,12) . We denote the
simple F NM24 (Q )-module obtained from D(3,1) via inflation as 31, and the one obtained from D(2,12)

via inflation by 32. For the following, let further f be the Green correspondence with respect to
(M24, Q , NM24 (Q )).

Proposition 3.29. With the notation of Remarks 3.26 and 3.28, the Green correspondents of the simple F M24-
modules belonging to the principal block have the following Loewy series:

Module D(1)24 D(22)24 D(231)24 D(770)24 D(770)∗24 D(1243)24 D(483)

Green F

[12
2

12

] [ 2
11 13

2

] [ 14
2

13 14

] [13 14
2

14

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
11 12 13

2 2
13 14

2 2
11 12

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
31

Proof. Since D(483)24 has trivial source, its Green correspondent f (D(483)24) is simple, by
Okuyama’s Theorem [36]. Furthermore, f (D(483)24) can also be regarded as a simple projective
F [NM24 (Q )/Q ]-module. By the previous remark, f (D(483)24) has to be the inflation of one of the
projective simple FS4-modules. We have checked that it is actually isomorphic to that of D(3,1) .

The remaining Green correspondents and their Loewy series have been determined with the com-
puter. In order to determine f1(D(1243)24), let W be a source of D(1243)24, and set N := NM24 (P ). By
Proposition 3.27, dim(W ) = 19. Furthermore, our computations show that IndN

P (W ) = U1 ⊕ · · · ⊕ U6
where U1, . . . , U6 are pairwise non-isomorphic indecomposable modules such that dim(Ui) = 19
and dim(U j) = 38, for i ∈ {1,2,3,4} and j ∈ {5,6}. Precisely one of these summands is isomor-

phic to f1(D(1243)24). Now ResM24
P (D(1243)24) = W ⊕ 2W1 ⊕ 2W2 ⊕ proj where W1 and W2

are non-isomorphic indecomposable modules of dimension 9. Our computations also show that
ResM24

N (D(1243)24) has a submodule U isomorphic to one of the 19-dimensional modules U1, . . . , U4
such that U has vertex P , and

ResN
P (U ) ⊕ ResN

P

(
ResM24

N

(
D(1243)24

)
/U

) ∼= W ⊕ 2W1 ⊕ 2W2 ⊕ proj.
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Hence ResN
P (U ) is a direct summand of ResM24

P (D(1243)24), by [10, Thm. 1.5.8]. Since U is relatively

P -projective, [14, Thm. 19.2] implies that U is a direct summand of ResM24
N (D(1243)24). Consequently,

f1(D(1243)24) ∼= U , and its Loewy series has been computed to be as stated. �
Proposition 3.30. The simple F M24-modules belonging to the blocks B2 , B3 , B4 and B5 have the defect groups
of their blocks as vertices. Moreover, all these modules have trivial sources, and the following Green correspon-
dents:

Block B2 B3 B5

Module D(45)24 D(990)24 D(45)∗24 D(990)∗24 D(1035)24 D(2277)24

Green 31 � sgn 31 � F 32 � sgn 32 � F 61 � F 61 � sgn

Block B4

Module D(252)24 D(5544)24

Green Inf
NM24 (C3,2)

C3,2
(D(4,2)) Inf

NM24 (C3,2)

C3,2
(D(22,12))

Proof. The assertion about the vertices is obvious, and, by [23, Sec. 6.9 and L. 4.4.12], we also know
that all of these simple modules have simple Green correspondents and therefore trivial sources,
by [35, Thm. 4.7.8]. Let f2 be the Green correspondence with respect to (M24, C3,1, NM24 (C3,1)), and
let f4 be the Green correspondence with respect to (M24, C3,2, NM24 (C3,2)). We have constructed
f2(D(45)24), f2(D(1035)24) and f4(D(252)24). The restriction of f2(D(45)24) to the normal subgroup
H ∼= S3 of NM24 (C3,1) decomposes into the direct sum of three copies of the alternating module,
and the restriction of f2(D(1035)24) to H decomposes into the direct sum of six copies of the trivial
module. This determines the Green correspondents of the simple modules in B2, B3 and B5. Moreover,
we have computed that f4(D(252)24) is isomorphic to D(4,2) when regarded as FS6-module. This
then also yields the claimed assertion on the Green correspondents of the simple modules in B4. �
4. Morita equivalent blocks

In the following, let p = 3, M := M22, G = 2.M and P ∈ Syl3(G). As we have seen in Proposi-
tion 3.19, all simple F G-modules belonging to the faithful block B := B3 of F G with defect group P
have vertex P , trivial sources and simple Green correspondents. The aim of this section is to show
that B is Morita equivalent to its Brauer correspondent b in NG(P ) =: H .

The block B is an indecomposable F [G × G]-module with vertex �P = {(g, g) | g ∈ P } and trivial
sources, by [35, Thm. 5.10.8]. In particular, G × H and H × G both contain NG×G(�P ). We write

V := ResG×G
G×H (B) = V 0 ⊕ V 1 and W := ResG×G

H×G(B) = W0 ⊕ W1,

with submodules V 0, V 1, W0, W1 where V 0 and W0 are the Green correspondents of B in G × H and
H × G , respectively. Thus V 0 is an indecomposable F [G × H]-module with vertex �P belonging to
the block B ⊗ b, and W0 is an indecomposable F [H × G]-module with vertex �P belonging to the
block b ⊗ B . We will show that the functor W0 ⊗B − gives a Morita equivalence between B and b.

Remark 4.1. (a) We recall that P ∼= C3 × C3, |H| = 144 and CG(P ) = C H (P ) ∼= C3 × C6. Moreover, if
Q is a subgroup of P of order 3 then CG(Q ) ∼= A4 × C6 where A4 denotes the alternating group of
degree 4, and C H (Q ) = C H (P ) ∼= C3 × C6.

(b) We denote the block idempotents of B and b by e and f , respectively. Then f is the unique
non-principal block idempotent of F CG(P ), by (a), and f = z − 1 where Z(G) = 〈z〉. Thus ef = e.

By making use of Theorem 2.13, we now show:
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Proposition 4.2. The functors V 0 ⊗b − and W0 ⊗B − induce a stable equivalence of Morita type between B
and b.

Proof. Since V 0 has vertex �P and trivial source, it suffices to show that condition (2) of The-
orem 2.17 is satisfied, with V 0 and W0 in place of V and W . We show first that the func-
tors V 0(�P ) ⊗F C H (P )BrP ( f ) − and W0(�P ) ⊗F CG (P )BrP (e) − induce Morita equivalences between
F CG(P )BrP (e) and F C H (P )BrP ( f ). In fact, by Remark 4.1, we have CG(P ) = C H (P ) and BrP (e) =
BrP ( f ) = f = z − 1. Similarly,

V 0(�P ) ⊕ V 1(�P ) = V (�P ) = B(�P ) = F CG(P )BrP (e) = F CG(P ) f

is an indecomposable F CG(P ) f -F CG(P ) f -bimodule. Since V 0(�P ) �= 0, this implies V 1(�P ) = 0. In
the same way, W0(�P ) = F CG(P ) f is an indecomposable F CG (P ) f -F CG (P ) f -bimodule. Trivially the
functor F CG(P ) f ⊗F CG (P ) f − induces a Morita equivalence between F CG(P ) f and F CG(P ) f .

Now let Q be a subgroup of P of order 3. It remains to show that the functors

V 0(�Q ) ⊗F C H (Q ) BrQ ( f ) − and W0(�Q ) ⊗F CG (Q ) BrQ (e) −
induce Morita equivalences between F CG(Q )BrQ (e) and F C H (Q )BrQ ( f ). By Remark 4.1, we have
C H (Q ) ∼= C3 × C6 and BrQ ( f ) = f = z − 1. Also, we have CG(Q ) ∼= A4 × C6. Note that BrQ (e) f =
BrQ (e)BrQ ( f ) = BrQ (ef ) = BrQ (e). Since BrQ (e) is a sum of block idempotents with defect group P ,
this means that BrQ (e) = e1 f where e1 is the principal block idempotent of FA4. Since FA4e1 ∼= F C3,
this implies that F CG(Q )BrQ (e) ∼= F [C3 × C3] ∼= F C H (Q )BrQ ( f ). Arguing as above, we also obtain

V 0(�Q ) = F CG(Q )BrQ (e) ∼= F C H (Q )BrQ ( f )

and V 1(�Q ) = 0. Hence the functors V 0(�Q )⊗F C H (Q )BrQ ( f ) − and W0(�Q )⊗F CG (Q )BrQ (e) − trivially
induce Morita equivalences between the blocks F CG(Q )BrQ (e) and F C H (Q )BrQ ( f ). �

We now prove the main result of this section:

Theorem 4.3. The functor W0 ⊗B − induces a Morita equivalence between B and b.

Proof. By Proposition 4.2 and Theorem 2.13(ii), it suffices to show that W0 ⊗B D is a simple b-module,
for every simple B-module D . But

W0 ⊗B D|W ⊗B D = ResG×G
H×G(B) ⊗B D = ResG

H (D),

and W0 ⊗B D is an indecomposable non-projective F H-module, by Proposition 4.2 and Theo-
rem 2.13(i). Since computer calculations show that ResG

H (D) has a unique non-projective indecompos-
able direct summand, W0 ⊗B D is the Green correspondent of D in any case, and Proposition 3.19(i)
shows that W0 ⊗B D is in fact a simple b-module. This proves the theorem. �

To close, we now consider the bicyclic extension G̃ := 2.M.2 of M and the faithful block B4 of F G̃
which has defect group P . As we have seen in Remark 3.22, also all simple modules belonging to B4
have vertex P , trivial sources and simple Green correspondents. In analogy to the previous theorem,
we will show that B4 is Morita equivalent to its Brauer correspondent b4 in NG̃(P ) =: H̃ . For this we
set

Ṽ := ResG̃×G̃
G̃×H̃

(B4) = Ṽ 0 ⊕ Ṽ 1 and W̃ := ResG̃×G̃
H̃×G̃

(B4) = W̃0 ⊕ W̃1,

where Ṽ 0 and W̃0 denote the Green correspondents of B4 in G̃ × H̃ and H̃ × G̃ , respectively. With
this we now obtain:
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Theorem 4.4. The functor W̃0 ⊗B4 − induces a Morita equivalence between the blocks B4 and b4 .

Proof. The proof is similar to that of Theorem 4.3, so we omit the details here. Notice that

C H̃ (P ) = CG̃(P ) = CG(P ) ∼= C3 × C6,

and if Q is any subgroup of P of order 3 then

CG̃(Q ) ∼= S4 × C6 and C H̃ (Q ) ∼= S3 × C6.

Arguing as in the proof of Proposition 4.2 and applying Theorem 2.17, we deduce that the functors
Ṽ 0 ⊗b4 − and W̃0 ⊗B4 − induce a stable equivalence of Morita type between the blocks B4 and b4.

Moreover, our computations show that, given any simple B4-module D , the F H̃-module ResG̃
H̃
(D) has

a unique non-projective indecomposable direct summand, namely the simple Green correspondent
of D in H̃ . Since, by Theorem 2.13(i),

W̃0 ⊗B4 D|ResG̃
H̃
(D)

is indecomposable and non-projective, W̃0 ⊗B4 D is the Green correspondent of D and thus a simple
b4-module. The assertion of the theorem now follows from Theorem 2.13(ii). �
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