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The study of the equivalence relations of particular multialgebras
for which the factor multialgebras are universal algebras satisfying
certain identities is a very important and intensively studied topic
in multialgebra theory and not only. Our paper provides a general
multialgebraic approach for the construction of all these relations
and also some important and interesting properties concerning
the construction of the corresponding factor universal algebra.
One of the purposes of our approach is to improve some results
concerning α∗-relations of hyperrings and Krasner hyperrings and
we will do this in the last sections of this paper.
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1. Introduction

Multialgebras are particular relational systems which generalize universal algebras. They offer
a wide range of possibilities of application to different areas of mathematics and computer science
(see [7]). The first multialgebras (called hypergroups) emerged as factorizations of groups modulo
some equivalence relations determined by subgroups. Later, G. Grätzer proved in [17] that any multi-
algebra can be obtained by an appropriate factorization of a universal algebra modulo an equivalence
relation. But the importance of the construction of the factor multialgebra is not only related to the
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genesis of multialgebras. Such factorizations of rings proved to be useful tools in approaching alge-
braic geometry and number theory topics (see [6]). From the very beginning of multialgebra theory,
special attention was paid to those equivalence relations which determine factor multialgebras which
are universal algebras. The study of these equivalence relations and the investigation of the corre-
sponding factor multialgebras have been thriving since the last decade of the 20th century, mostly for
particular multialgebras. We mention that such factorizations are used in [34] to define invariants for
some particular G-algebras (G group).

We initiated a general approach of these relations of a multialgebra A using the polynomial func-
tions of the universal algebra P∗(A) of the nonempty subsets of A in [3, Theorem 13] and we gave a
characterization for these relations in [27, Proposition 4.1]. By then, the term functions of P∗(A) had
already proved to be important tools in multialgebra theory (see, for instance, [9,10,22,32] or [33]).
In our opinion, a general multialgebraic approach may provide, sometimes, not only widely applicable
results, but even stronger results than the existing ones. This statement is supported by some of our
previous papers [24–27] and is also proved by the present paper.

The current paper is strongly related to [13] and [21]. An interesting situation appears in [13] for
hyperrings. Even if the form of the smallest equivalence relation of a hyperring for which the factor is
a commutative ring is not very simple, [13, Theorem 6] shows that we can avoid using it to determine
(up to an isomorphism) the corresponding ring. Unfortunately, there are some missing steps in the
proof of this theorem. While trying to fill in the blanks of [13, Theorem 6], we managed to give a
“recipe” for such results to hold.

We will start by mentioning a few things we consider to be missing from the proof of [13, Theo-
rem 6] because this will show how our paper came into being. It seems that the authors start their
proof considering that (R/γ ∗,�,�) is a hyperring. But the factorization of the hyperring (R,+, ·)
through γ ∗ (which is defined using only the multiplication ·) preserves the identities of the hyper-
group (R,+) in a weak manner. Thus the fact that they are preserved in a strong manner, if it is the
case, should be proved. Take, for instance, associativity. If it does not hold in a strong manner, then
one cannot use [13, Theorem 5] (which, by the way, is valid only if the multiplication is commuta-
tive) to show that (R/γ ∗)/γ ∗� is a commutative ring, and, hence, the proof of the inclusion α∗ ⊆ θ

is not complete. Of course, in a hypergroupoid (R,+) with + only weak associative, the (hyper)sum∑n
i=1 xi is meaningless for n � 3, so it seems that these (hyper)sums should be replaced with images

of singletons through term functions of the nonempty subsets of (R/γ ∗,�).
But, if we work with term functions of a groupoid which we do not know to be a semigroup,

is it necessary to consider hyperrings or the result is valid for a larger class of multialgebras? As
we will see in Example 5, the identities of + do not seem to be important. We will show that
the important fact is that the multiplication is distributive with respect to addition and, somehow,
the multialgebra (R/γ ∗,�,�) inherits the essential part of this property. Actually, we will prove
that [13, Theorem 6] is a consequence of a more general result which holds for any multialgebras
satisfying certain subdistributivity conditions. Our results allow a different approach of α∗-relations
for Krasner hyperrings which will improve some main results from [21].

The first part of the paper contains a general multialgebraic approach of those equivalence re-
lations of a multialgebra which act like hyperrings’ α∗-relations and some isomorphism theorems
involving these relations. The last sections are dedicated to three particular multialgebras: (a more
general type of) hyperrings, Krasner hyperrings, and (m,n)-hyperrings. We consider the third class
of multialgebras the best choice for showing that our general results can be applied to other mul-
tialgebras than hyperrings, without losing touch with the problems which can occur in the case of
hyperrings.

2. Preliminary notions and notations

Let F be a set of function symbols such that an arity n ∈ N is assigned to each symbol f from F
and let Fn be the subset of the n-ary symbols from F . Let A be a set, n ∈ N and let P∗(A) denote
the set of the nonempty subsets of A. An n-ary multioperation f on A is a mapping f : An → P∗(A).
A multialgebra A = 〈A, F 〉 of type F (or an F -multialgebra) consists of a set A and a family of multi-
operations F obtained by associating to each symbol f from F a multioperation f A on A. When the
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notation is not ambiguous, we write f instead of f A . If the multialgebra A has no nullary operations,
then we allow the underlying set A to be empty. If each image of each multioperation from F is a
singleton, then A is a universal algebra.

If f ∈Fn and A1, . . . , An ∈ P∗(A), by defining

f P∗(A)(A1, . . . , An) =
⋃{

f A(a1, . . . ,an)
∣∣ ai ∈ Ai, i ∈ {1, . . . ,n}},

one obtains an operation on P∗(A). Thus P∗(A) can be organized as a universal algebra (see [30]).
We denote this algebra by P∗(A) and we call it the algebra of the nonempty subsets of the multialge-
bra A.

Let m ∈ N. Let Clom(P∗(A)) be the set of the m-ary term functions on P∗(A) and Polm(P∗(A)) the
set of the m-ary polynomial functions of the universal algebra P∗(A). We denote by p (or by pP∗(A)

when necessary) the term function from Clom(P∗(A)) induced by the m-ary term p.
Let a ∈ A, i ∈ {1, . . . ,m} and the mappings

cm
a , em

i : P∗(A)m → P∗(A), cm
a (A1, . . . , Am) = {a}, em

i (A1, . . . , Am) = Ai .

We denote by PolA
m(P∗(A)) the subuniverse of 〈Polm(P∗(A)), F 〉 generated by

{
cm

a

∣∣ a ∈ A
} ∪ {

em
i

∣∣ i ∈ {1, . . . ,m}}.
A mapping h : A → B between the multialgebras A and B of the same type F is a homomorphism

if for any n ∈ N, f ∈Fn and any a1, . . . ,an ∈ A,

h
(

f A(a1, . . . ,an)
) ⊆ f B(

h(a1), . . . ,h(an)
)
. (1)

A multialgebra isomorphism is a bijective map h such that for any n ∈N, f ∈Fn and any a1, . . . ,an ∈ A

h
(

f A(a1, . . . ,an)
) = f B(

h(a1), . . . ,h(an)
)
. (1′)

Let ρ be an equivalence relation on A and A/ρ = {x/ρ | x ∈ A} (x/ρ denotes the class of x
modulo ρ). If f ∈Fn , the equalities

f A/ρ(a1/ρ, . . . ,an/ρ) = {
b/ρ

∣∣ b ∈ f A(b1, . . . ,bn), ai ρ bi, i ∈ {1, . . . ,n}}
define a multioperation f A/ρ on A/ρ (see [17]). One obtains a multialgebra A/ρ on A/ρ which will
be called the factor multialgebra of A modulo ρ . The canonical projection πρ : A → A/ρ , πρ(a) = a/ρ is
a surjective homomorphism. Using [9, Proposition 2.6] one can deduce that if p is an m-ary term,

{
a/ρ

∣∣ a ∈ pP∗(A)(a1, . . . ,am)
} ⊆ pP∗(A/ρ)(a1/ρ, . . . ,am/ρ), ∀a1, . . . ,am ∈ A.

Lemma 1. Let A = 〈A, F 〉 be an F -multialgebra and let τ , ρ be equivalence relations on A such that τ ⊆ ρ .
For any m-ary term p and any a1, . . . ,am ∈ A,

a/τ ∈ pP∗(A/τ )(a1/τ , . . . ,am/τ ) ⇒ a/ρ ∈ pP∗(A/ρ)(a1/ρ, . . . ,am/ρ).
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Proof. Let πτ and πρ be the canonical projections of τ and ρ , respectively. Since τ ⊆ ρ , there exists
a unique mapping ϕ which makes the diagram

A
πτ

πρ

A/τ

ϕ

A/ρ

commutative (i.e. ϕ(a/τ ) = a/ρ , for any a ∈ A). Moreover, ϕ is a multialgebra homomorphism be-
tween A/τ and A/ρ . Indeed, if f ∈Fn , a1, . . . ,an ∈ A, and

a/τ ∈ f A/τ (a1/τ , . . . ,an/τ ),

there exist b1, . . . ,bn ∈ A, a1 τ b1, . . . ,an τ bn such that a ∈ f A(b1, . . . ,bn). But τ ⊆ ρ , thus a1 ρ b1, . . . ,

an ρ bn , and, consequently,

ϕ(a/τ ) = a/ρ ∈ f A/ρ(a1/ρ, . . . ,an/ρ) = f A/ρ
(
ϕ(a1/τ ), . . . ,ϕ(an/τ )

)
.

Consequently, for any m-ary term p of type F and any a1, . . . ,am ∈ A,

ϕ
(

pP∗(A/τ )(a1/τ , . . . ,am/τ )
) ⊆ pP∗(A/ρ)

(
ϕ(a1/τ ), . . . ,ϕ(am/τ )

)
(see, for instance, [9, Proposition 2.6]), thus we obtain the implication from the statement. �

Let q, r be two m-ary terms and let A be a multialgebra of type F . The m-ary (strong) identity
q = r is satisfied in the multialgebra A if

qP∗(A)(a1, . . . ,am) = rP∗(A)(a1, . . . ,am), ∀a1, . . . ,am ∈ A.

The weak identity q ∩ r �= ∅ is satisfied in the multialgebra A if

qP∗(A)(a1, . . . ,am) ∩ rP∗(A)(a1, . . . ,am) �= ∅, ∀a1, . . . ,am ∈ A.

Remark 1. For any multialgebra A satisfying an identity q ∩ r �= ∅ or q = r, the weak identity q ∩ r �= ∅
is satisfied in the factor multialgebra A/ρ .

3. On some equivalence relations of a multialgebra determined by identities

Let ρ be an equivalence relation on the set A. We denote by ρ the relation defined on P∗(A) as
follows: if X, Y ∈ P∗(A), then

X ρ Y ⇔ xρ y, ∀x ∈ X, ∀y ∈ Y (⇔ X × Y ⊆ ρ).

Denote by Eua(A) or Eua(〈A, F 〉) the set of all equivalence relations ρ of a multialgebra A = 〈A, F 〉 for
which A/ρ is a universal algebra.

Proposition 2. (See [27, Proposition 4.1].) Let A = 〈A, F 〉 be an F -multialgebra and let ρ be an equivalence
relation on A. The following conditions are equivalent:
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(a) ρ ∈ Eua(A);
(b) if n ∈ N, f ∈Fn, a,b, x1, . . . , xn ∈ A and a ρ b, then, for any i ∈ {1, . . . ,n},

f A(x1, . . . , xi−1,a, xi+1, . . . , xn)ρ f A(x1, . . . , xi−1,b, xi+1, . . . , xn);

(c) if n ∈ N, f ∈Fn, xi, yi ∈ A and xi ρ yi for any i ∈ {1, . . . ,n}, then

f A(x1, . . . , xn)ρ f A(y1, . . . , yn);

(d) if m ∈ N, p is a polynomial function from PolA
m(P∗(A)), xi, yi ∈ A and xi ρ yi for any i ∈ {1, . . . ,m}, then

p(x1, . . . , xm)ρ p(y1, . . . , ym).

Remark 2. We can add to the above list of equivalent conditions the following two:

(e) if m ∈ N, p is a term function from Clom(P∗(A)), xi, yi ∈ A and xi ρ yi for any i ∈ {1, . . . ,m}, then

pP∗(A)(x1, . . . , xm)ρ pP∗(A)(y1, . . . , ym);

(f) if p ∈ PolA
1 (P∗(A)) is a unary polynomial function, x, y ∈ A and xρ y then

p(x)ρ p(y),

since (d) ⇒ (e) ⇒ (c) and (d) ⇒ (f) ⇒ (b).

If ρ ∈ Eua(A), then the operations in the factor multialgebra (which is a universal algebra) are
defined as follows: if f ∈Fn and a1, . . . ,an ∈ A then

f A/ρ(a1/ρ, . . . ,an/ρ) = b/ρ, ∀b ∈ f A(a1, . . . ,an). (2)

Remark 3. If ρ ∈ Eua(A), p ∈ Clom(P∗(A)) and a1, . . . ,am ∈ A, then

pP∗(A/ρ)(a1/ρ, . . . ,am/ρ) = pA/ρ(a1/ρ, . . . ,am/ρ) = b/ρ, ∀b ∈ pP∗(A)(a1, . . . ,am)

(see [28, Remark 13]), hence any (weak or strong) identity of A becomes an identity of the universal
algebra A/ρ .

Lemma 3. Let A = 〈A, F 〉 be a multialgebra of type F and let τ , ρ be equivalence relations on A such that
τ ⊆ ρ and ρ ∈ Eua(A). If p is an m-ary term of type F , and a1, . . . ,am ∈ A, then

b/τ ∈ pP∗(A/τ )(a1/τ , . . . ,am/τ ), b′ ∈ pP∗(A)(a1, . . . ,am) ⇒ b ρ b′.

Proof. According to Lemma 1, from τ ⊆ ρ we obtain

b/τ ∈ pP∗(A/τ )(a1/τ , . . . ,am/τ ) ⇒ b/ρ ∈ pP∗(A/ρ)(a1/ρ, . . . ,am/ρ),

and ρ ∈ Eua(A) leads us to

b/ρ = pP∗(A/ρ)(a1/ρ, . . . ,am/ρ) = pA/ρ(a1/ρ, . . . ,am/ρ) = b′/ρ,

thus b ρ b′ . �
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The poset 〈Eua(A),⊆〉 is an algebraic closure system on A × A (see [27, Lemma 4.2]). The smallest
relation from Eua(A) is called the fundamental relation of A and it is denoted by α∗〈A,F 〉 or α∗

A . We

denote by αA the closure operator corresponding to 〈Eua(A),⊆〉. The smallest relation from Eua(A)

which contains a relation θ ⊆ A × A is

αA(θ) =
⋂{

ρ ∈ Eua(A)
∣∣ θ ⊆ ρ

}
.

This relation can be characterized as the congruence of a universal algebra generated by a given
relation (see [18, Theorem 10.4]).

Theorem 4. Let A = 〈A, F 〉 be a multialgebra of type F and θ ⊆ A × A. The relation αA(θ) is defined as
follows: 〈x, y〉 ∈ αA(θ) if and only if there exist k ∈ N∗ , a sequence x = t0, t1, . . . , tk = y of elements from A,
some pairs 〈b1, c1〉, . . . , 〈bk, ck〉 ∈ θ and some unary polynomial functions p1, . . . , pk from PolA

1 (P∗(A)) such
that for all i ∈ {1, . . . ,k},

〈ti−1, ti〉 ∈ pi(bi) × pi(ci) or 〈ti, ti−1〉 ∈ pi(bi) × pi(ci).

Proof. Let η be the relation defined as follows

xη y ⇔ ∃〈b, c〉 ∈ θ, ∃p ∈ PolA
1

(
P∗(A)

): 〈x, y〉 ∈ (
p(b) × p(c)

) ∪ (
p(c) × p(b)

)
.

Taking p = c1
a for some a ∈ A, we deduce that η is reflexive. Obviously, η is symmetric, hence its

transitive closure η∗ is an equivalence relation on A. The relation η∗ is the relation in the statement
and we will show that

αA(θ) = η∗. (3)

In order to prove that η∗ ∈ Eua(A), we will use the condition (f) from Remark 2. For this, let us
take p ∈ PolA

1 (P∗(A)) and x, y ∈ A such that xη∗ y. It means that there exist k ∈ N∗ , a sequence
x = t0, t1, . . . , tk = y, some pairs 〈bi, ci〉 ∈ θ and some pi ∈ PolA

1 (P∗(A)) (i ∈ {1, . . . ,k}) such that

〈ti−1, ti〉 ∈ (
pi(bi) × pi(ci)

) ∪ (
pi(ci) × pi(bi)

)
, ∀i ∈ {1, . . . ,k}.

We deduce that for all i ∈ {1, . . . ,k},

p(ti−1) × p(ti) ⊆ (
p
(

pi(bi)
) × p

(
pi(ci)

)) ∪ (
p
(

pi(ci)
) × p

(
pi(bi)

))
.

But p′
i = p ◦ pi ∈ PolA

1 (P∗(A)), hence for all i ∈ {1, . . . ,k},

p(ti−1) × p(ti) ⊆ (
p′

i(bi) × p′
i(ci)

) ∪ (
p′

i(ci) × p′
i(bi)

) ⊆ η∗.

From the transitivity of η∗ it results p(x) × p(y) = p(t0) × p(tk) ⊆ η∗ or, equivalently, p(x)η∗ p(y).
If we consider p = e1

1, we obtain the inclusion θ ⊆ η, therefore η∗ is an equivalence from Eua(A)

which contains θ . The relation η∗ is the smallest relation from Eua(A) which contains θ since, if we
consider ρ ∈ Eua(A) with θ ⊆ ρ , we have η ⊆ ρ . This is a consequence of the following implication

〈b, c〉 ∈ θ, p ∈ PolA
1

(
P∗(A)

) ⇒ p(b) × p(c) ⊆ ρ (4)
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which can be verified by using the inductive construction of the polynomial functions from
PolA

1 (P∗(A)). Indeed, if a ∈ A and p = c1
a then p(b) = p(c) = a and 〈a,a〉 ∈ ρ . If p = e1

1 then p(b) = b,
p(c) = c and 〈b, c〉 ∈ θ ⊆ ρ . Assume that the statement is true for p1, . . . , pn , consider f ∈F an n-ary
symbol and p = f A(p1, . . . , pn). If

x ∈ p(b) = f A(p1, . . . , pn)(b) = f A(
p1(b), . . . , pn(b)

)
and

y ∈ p(c) = f A(p1, . . . , pn)(c) = f A(
p1(c), . . . , pn(c)

)
there exist xi ∈ pi(b), yi ∈ pi(c) (i ∈ {1, . . . ,n}) such that x ∈ f A(x1, . . . , xn) and y ∈ f A(y1, . . . , yn).
But pi(b) × pi(c) ⊆ ρ , hence xi ρ yi for all i = 1, . . . ,n. Using Proposition 2, we obtain xρ y. This
completes the proof of (4), hence also the proof of (3). �

For some considerations regarding the behaviour of the homomorphisms with respect to term
functions, in some cases it is more convenient to use images of term functions instead of the images
of unary polynomial functions from the above characterization theorem. This can be done since the
algebraic functions from [18] are the polynomial functions from [4], so we have:

Lemma 5. Let A = 〈A, F 〉 be a multialgebra of type F . For any unary polynomial function p ∈ PolA
1 (P∗(A)),

there exist m ∈N, m � 1, b1, . . . ,bm ∈ A and a term function t ∈ Clom(P∗(A)) such that

pP∗(A)(A1) = tP∗(A)(A1,b2, . . . ,bm), ∀A1 ∈ P∗(A).

If I is a set and, for any i ∈ I , qi , ri are mi -ary terms of type F (mi ∈ N∗), then the smallest
equivalence relation of the multialgebra A = 〈A, F 〉 of type F for which the factor multialgebra is a
universal algebra satisfying all the identities from I = {qi = ri | i ∈ I} is the relation α(RA

I), where

RA
I =

⋃{
qP∗(A)

i (a1, . . . ,ami ) × rP∗(A)
i (a1, . . . ,ami )

∣∣ a1, . . . ,ami ∈ A, i ∈ I
}
.

Looking at the Introduction of [2], it is easy to notice that the relations α(RA
I) are generalizations

of the verbal congruence relations of universal algebras. Thus one can see these relations as the
smallest equivalence relations of the multialgebra A for which the factor multialgebras are in some
given varieties of universal algebras of type F .

We will write α instead of αA and RI instead of RA
I when we do not have to emphasize the

multialgebra we are dealing with. Also, if I is a one-element set and the considered identity is q = r,
we will write Rqr instead of RI and we will denote α(Rqr) by α∗

qr .

Remark 4. If the identities from I are satisfied at least in a weak manner on A then α∗
A = α(RI). In

particular, for any terms q, r for which the weak identity q ∩ r �= ∅ holds on A, we have α∗
A = α∗

qr .

By applying Theorem 4 to R = RI , we obtain [29, Theorem 7] which can be restated according to
Lemma 5 as follows:

Theorem 6. (See [29, Theorem 7].) Let I �= ∅ be a set and for any i ∈ I , let qi, ri be mi-ary terms of type F , let
I = {qi = ri | i ∈ I}, and let A = 〈A, F 〉 be a multialgebra of type F . Let αI ⊆ A × A be the relation defined
as follows:
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xαI y ⇔ ∃i ∈ I, ∃ni ∈N∗, ∃pi ∈ Cloni

(
P∗(A)

)
, ∃ai

1, . . . ,ai
mi

,bi
2, . . . ,bi

ni
∈ A:

x ∈ pP∗(A)
i

(
qP∗(A)

i

(
ai

1, . . . ,ai
mi

)
,bi

2, . . . ,bi
ni

)
,

y ∈ pP∗(A)
i

(
rP∗(A)

i

(
ai

1, . . . ,ai
mi

)
,bi

2, . . . ,bi
ni

)
,

or

y ∈ pP∗(A)
i

(
qP∗(A)

i

(
ai

1, . . . ,ai
mi

)
,bi

2, . . . ,bi
ni

)
,

x ∈ pP∗(A)
i

(
rP∗(A)

i

(
ai

1, . . . ,ai
mi

)
,bi

2, . . . ,bi
ni

)
.

The transitive closure α∗
I of αI is the smallest equivalence relation on A for which the factor multialgebra is a

universal algebra satisfying all the identities from I , i.e. α∗
I = α(RI).

Applying the above theorem to the case when I consists of only one identity q = r, we obtain
another statement for [27, Theorem 4.4]. Taking I �= ∅, we did not lose the fundamental relation from
our study, since for any variable x, α∗

A = α∗
xx = α(Rxx). Thus, we also have:

Corollary 7. (See [28, Corollary 11].) Let A = 〈A, F 〉 be a multialgebra of type F . The fundamental relation α∗
A

of the multialgebra A is the transitive closure of the relation αA defined as follows

xαA y ⇔ ∃n ∈N, ∃p ∈ Clon
(
P∗(A)

)
, ∃a1, . . . ,an ∈ A: x, y ∈ pP∗(A)(a1, . . . ,an).

Example 1. A multialgebra 〈H, · 〉 with one binary associative multioperation is called semihypergroup.
A semihypergroup 〈H, · 〉 satisfying the reproducibility condition (i.e. a · H = H · a = H , for any a ∈ H)
is called hypergroup. Applying Corollary 7 to the (semi)hypergroup 〈H, · 〉 (and using Remark 3) one
obtains the well-known characterization of the fundamental relation β∗ as the transitive closure of
the relation β = ⋃

n∈N∗ βn , where

xβn y ⇔ ∃a1, . . . , an ∈ H : x, y ∈ a1 · · ·an

(see, for instance, [15, Section 2.2]). In particular, if 〈H, · 〉 is a hypergroup, then β is already transitive,
hence β = β∗ .

Remark 5. In the hypergroup 〈H, · 〉, the reproducibility condition defines two binary multioperations
/,\ : H × H → P∗(H) as follows

b/a = {x ∈ H | b ∈ x · a}, a\b = {x ∈ H | b ∈ a · x}.

Thus, the hypergroup 〈H, · 〉 can be seen as a multialgebra 〈H, ·, /,\〉 with three binary multiopera-
tions. The fundamental relations of 〈H, · 〉 and 〈H, ·, /,\〉 coincide since Eua(〈H, · 〉) = Eua(〈H, ·, /,\〉)
(see [28, Remark 15]). For the same reason, 〈H/ρ, · 〉 is a group for any ρ ∈ Eua(〈H, · 〉).

Example 2. (See [27, Example 5].) In Theorem 6, let us take the multialgebra A to be a semihypergroup
〈A, · 〉 and I = {x1 · x2 = x2 · x1}. One obtains α∗

I to be the transitive closure of the union of all pairs
(x, y) for which x = y or

∃n ∈N, n � 2, ∃a1, . . . ,an ∈ A, ∃i ∈ {1, . . . ,n − 1}: x ∈ a1 · · ·ai−1aiai+1ai+2 · · ·an,

y ∈ a1 · · ·ai−1ai+1aiai+2 · · ·an.
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Since the transpositions (1,2), (2,3), . . . , (n − 1,n) generate the symmetric group Sn (n � 2), α∗
I is

equal to the relation γ ∗ defined in [14, Section 1] as the transitive closure of the relation

xγ y ⇔ ∃n ∈N∗, ∃a1, . . . ,an ∈ A, ∃σ ∈ Sn: x ∈
n∏

i=1

ai, y ∈
n∏

i=1

aσ (i).

If 〈A, · 〉 is a hypergroup, γ is already transitive (see [14, Theorem 3.3]), so α∗
I = γ . Of course, if 〈A, · 〉

is a group, then α∗
I is the congruence determined by its commutator subgroup, thus the abelianiza-

tions of groups are particular cases of the factorizations we will further investigate.

Example 3. The hyperrings from [13] are multialgebras 〈R,+, · 〉 for which 〈R,+〉 is a hypergroup,
〈R, · 〉 is a semihypergroup and the multioperation · is distributive with respect to the multiopera-
tion +. If A is a hyperring 〈A,+, · 〉 and I = {x1 + x2 = x2 + x1, x1 · x2 = x2 · x1}, then α∗

I is the
smallest equivalence relation on A for which the factor multialgebra is a commutative ring and it co-
incides with the relation defined in [13, Definition 1] as the transitive closure of the relation consisting
of all the pairs 〈x, y〉 for which there exist n,k1, . . . ,kn ∈ N∗ , a permutation τ ∈ Sn , xi1, . . . , xiki ∈ A,
and σi ∈ Ski (i = 1, . . . ,n) such that

x ∈
n∑

i=1

( ki∏
j=1

xij

)
and y ∈

n∑
i=1

( ki∏
j=1

xτ (i)στ(i)( j)

)
.

For details concerning the equality of these relations, see [29, Section 4]. Obviously, if 〈A,+, · 〉 is a
ring, then α∗

I is the congruence determined by its commutator ideal.

Example 4. Let n ∈ N, n � 2. A multialgebra 〈H, f 〉 with one n-ary associative multioperation is called
n-semihypergroup. If f is an operation, then 〈H, f 〉 is an n-semigroup. If we use the associativity
of f , it is easy to notice that the relation from Corollary 7 will provide in this case the relation β∗
from [20, Section 4]. If we take I = { f (x1, . . . ,xn) = f (xσ(1), . . . ,xσ(n)) | σ ∈ Sn}, then α∗

I from The-
orem 6 is the smallest equivalence relation of H for which the factor multialgebra is a commutative
n-semigroup. The equality of α∗

I with the relation γ̂ from [12, Definition 4.4] follows as in the proof
of [29, Theorem 14].

In the proof of [29, Theorem 18] we showed that the following result holds.

Lemma 8. Let I be a set of identities and let A be an F -multialgebra. For any universal algebra B of type F
which satisfies the identities from I and any multialgebra homomorphism h : A → B there exists a unique
universal algebra homomorphism h which makes the following diagram commutative:

A
πα∗

I

h

A/α∗
I

h

B

Corollary 9. If in the above lemma B = A/α∗
I and h = πα∗

I
, then h is the identity homomorphism 1A/α∗

I
of

A/α∗
I .

Remark 6. The above property was used to prove that the variety M(I) of the F -algebras which
satisfy all the identities from I is a reflective subcategory of the category of F -multialgebras (see
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[29, Theorem 18]). Consequently, the factorization of F -multialgebras modulo α∗
I provides a functor

which is a reflector for M(I).

Next, we will consider two disjoint nonempty sets I , J , the mi-ary terms qi , ri of type F (i ∈ I ∪ J ),
and two sets of identities

I = {qi = ri | i ∈ I} and J = {qi = ri | i ∈ J }.
For a multialgebra A = 〈A, F 〉 of type F , we will denote by

α∗
I∪J = αA(

RA
I ∪ RA

J
)
, α∗

I = αA(
RA
I
)
, α∗

J = αA(
RA
J

)
,

the smallest equivalence relations on A for which the factor multialgebras are universal algebras sat-
isfying all the identities from I ∪J , I , and J , respectively. Obviously, α∗

I ⊆ α∗
I∪J and α∗

J ⊆ α∗
I∪J .

The relation R
A/α∗

J
I consists of all the pairs

〈
q

A/α∗
J

i

(
a1/α

∗
J , . . . ,ami /α

∗
J

)
, r

A/α∗
J

i

(
a1/α

∗
J , . . . ,ami /α

∗
J

)〉
with a1, . . . ,ami ∈ A, i ∈ I , and αA/α∗

J (R
A/α∗

J
I ) is the congruence of A/α∗

J generated by R
A/α∗

J
I or,

equivalently, the smallest congruence on A/α∗
J for which the factor algebra satisfies the identities

from J . Let us denote

α∗
I = αA/α∗

J
(

R
A/α∗

J
I

)
, α∗

J = αA/α∗
I
(

R
A/α∗

I
J

)
,

and let us consider that the presence or the absence of the superscript ∗ has the same meaning as in
Theorem 6 (and its corollary).

Theorem 10. If A = 〈A, F 〉 is a multialgebra of type F then

A/α∗
I∪J ∼= (

A/α∗
J

)
/α∗

I ∼= (
A/α∗

I
)
/α∗

J .

Proof. Let πα∗
I∪J , πα∗

J
be the canonical projections of A determined by α∗

I∪J and α∗
J , respectively,

and let πα∗
I

be the canonical projection of A/α∗
J determined by α∗

I . Applying Lemma 8 for multi-
algebra A, the set of identities I ∪ J and the universal algebra (A/α∗

J )/α∗
I , one gets the existence

of a unique universal algebra homomorphism ϕ which makes the left diagram below commutative
(defined by the correspondence a/α∗

I∪J �→ (a/α∗
J )/α∗

I ).

A
πα∗

I∪J

πα∗
I

πα∗
J

A/α∗
I∪J

ϕ

(A/α∗
J )/α∗

I

A
πα∗

J

πα∗
I∪J

A/α∗
J

πα∗
I

(A/α∗
J )/α∗

I

ψ

A/α∗
I∪J

Applying successively Lemma 8 for the multialgebra A, the set of identities J and the universal alge-
bra A/α∗

I∪J , and then, for the (multi)algebra A/α∗
J , the set of identities I and the algebra A/α∗

I∪J ,
we obtain the existence of a unique algebra homomorphism ψ which makes the right diagram above
commutative. From Corollary 9, we deduce that ϕ ◦ ψ = 1(A/α∗

J )/α∗
I

and ψ ◦ ϕ = 1A/α∗
I∪J , thus ϕ is a

universal algebra isomorphisms (and ψ is its inverse).
The isomorphism A/α∗

I∪J ∼= (A/α∗
I)/α∗

J can be proved in a similar way. �
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If, in the above theorem, we take J = {x = x}, then α∗
J = α∗

A is the fundamental relation of the
multialgebra A. Clearly, RJ is the equality relation on A. This implies RJ ⊆ α∗

I , hence α∗
I∪J = α∗

I ,
and we have:

Corollary 11. If A = 〈A, F 〉 is an F -multialgebra, then A/α∗
I

∼= (A/α∗
A)/α∗

I .

Considering that the first factor multialgebra is the fundamental algebra of A and the second
one is the factor of a universal algebra modulo a verbal congruence relation, one can say that we
already made the construction of the universal algebra A/α∗

I less difficult. Yet, the construction of the
fundamental algebra of A is not necessarily easy. But, as we will see in the next section, it also can be
done by successive factorizations by fundamental relations of multialgebras with less multioperations,
the construction of which is, at least theoretically, easier.

4. Subdistributivity, factor multialgebras and universal algebras

Let F and G be two sets of function symbols such that a nonnegative arity is assigned to each
symbol from F ∪ G . In this section, we will prove some interesting results concerning multialgebras
A = 〈A, F , G〉 of type F ∪G for which every multioperation g ∈ G associated to any symbol from G is
subdistributive with respect to every multioperation f ∈ F associated to any symbol from F .

For a multialgebra A = 〈A, F , G〉 of type F ∪ G , we will say that the n-ary multioperation g ∈ G
is subdistributive with respect to the m-ary multioperation f ∈ F if for any a1, . . . ,am,b1, . . . ,bn ∈ A,
and any i ∈ {1, . . . ,n},

g
(
b1, . . . ,bi−1, f (a1, . . . ,am),bi+1, . . . ,bn

)
⊆ f

(
g(b1, . . . ,bi−1,a1,bi+1, . . . ,bn), . . . , g(b1, . . . ,bi−1,am,bi+1, . . . ,bn)

)
.

Thus, for an n-ary symbol g ∈ G , an m-ary symbol f ∈ F and the variables x1, . . . ,xm,y1, . . . ,yn , the
subdistributivity of g with respect to f consists of n particular weak identities which can be written
formally

g
(
y1, . . . ,yi−1, f (x1, . . . ,xm),yi+1, . . . ,yn

)
⊆ f

(
g(y1, . . . ,yi−1,x1,yi+1, . . . ,yn), . . . , g(y1, . . . ,yi−1,xm,yi+1, . . . ,yn)

)
,

for all i ∈ {1, . . . ,n}. Of course, if one replaces ⊆ in the definition of subdistributivity by =, one gets
the definition of the distributivity (of g with respect to f ). The above defined subdistributivity of
g ∈ G with respect to f ∈ F is inherited by P∗(A) and it is not difficult to prove the following result:

Lemma 12. Let A = 〈A, F , G〉 be a multialgebra of type F ∪ G . If the n-ary multioperation g ∈ G is subdis-
tributive with respect to each multioperation f ∈ F and p is an m-ary term function of type F on P∗(A)

(m,n ∈N), then

g
(

B1, . . . , Bi−1, p(A1, . . . , Am), Bi+1, . . . , Bn
)

⊆ p
(

g(B1, . . . , Bi−1, A1, Bi+1, . . . , Bn), . . . , g(B1, . . . , Bi−1, Am, Bi+1, . . . , Bn)
)
,

for any i ∈ {1, . . . ,n}, and any A1, . . . , Am, B1, . . . , Bn ∈ P∗(A).

Remark 7. If the n-ary multioperation g ∈ G is distributive with respect to each multioperation f ∈ F ,
and p is an m-ary term function of type F on P∗(A) (m,n ∈ N), A1, . . . , Am ∈ P∗(A), b1, . . . ,bn ∈ A,
and i ∈ {1, . . . ,n}, then
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g
(
b1, . . . ,bi−1, p(A1, . . . , Am),bi+1, . . . ,bn

)
= p

(
g(b1, . . . ,bi−1, A1,bi+1, . . . ,bn), . . . , g(b1, . . . ,bi−1, Am,bi+1, . . . ,bn)

)
.

But, if g is distributive with respect to f , A1, . . . , Am, B1, . . . , Bn ∈ P∗(A), and i ∈ {1, . . . ,n}, we do
not necessarily have

g
(

B1, . . . , Bi−1, f (A1, . . . , Am), Bi+1, . . . , Bn
)

= f
(

g(B1, . . . , Bi−1, A1, Bi+1, . . . , Bn), . . . , g(B1, . . . , Bi−1, Am, Bi+1, . . . , Bn)
)
.

This is obvious since in the power algebra of the ring of integers (Z,+, ·),

{1,2} · (1 + 1) = {1,2} · 2 = {2,4}� {2,3,4} = {1,2} + {1,2} = {1,2} · 1 + {1,2} · 1.

The identities satisfied in the variety determined by the globals of the universal algebras from a given
variety are determined in [19] and [22] contains a multialgebra theoretical version of this problem.
These results can be useful for multialgebra theorists, since dealing with subsets instead of elements
is a frequent situation in multialgebra theory.

We organized the next part of the paper so as to prove that the situation in [13, Theorem 6]
will occur for any hyperstructure with two multioperations such that one of them is subdistributive
with respect to the other one. We do not claim that subdistributivity is a minimal condition for a
hyperstructure with two multioperations to satisfy a [13, Theorem 6]-like property. Finding a minimal
condition for this to happen can be an open problem, but we do not approach it here. As we mention
in Introduction, one of the first hints which challenged us to approach the problem as we do was
provided by the following example.

Example 5. Let R = {e, v, w, x, y, z} be a 6-elements set endowed with two binary operations + and ·
such that 〈R,+〉 is isomorphic to the group 〈S3,◦〉 of the permutations of a 3-elements set and 〈R, · 〉
is isomorphic to the 6-elements cyclic group 〈Z6,+〉 as follows:

+ e v w x y z

e e v w x y z

v v w e y z x

w w e v z x y

x x z y e w v

y y x z v e w

z z y x w v e

· e v w x y z

e e v w x y z

v v w x y z e

w w x y z e v

x x y z e v w

y y z e v w x

z z e v w x y

The universal algebra 〈R,+, · 〉 satisfies all the identities from the hyperring definition from [13],
except for (sub)distributivity, because

x(y + z) = x · w = z �= e = v + w = xy + xz.

Using the notations from [13, Theorem 6], the relation γ ∗ is the equality relation on R , since 〈R, · 〉
is already an Abelian group, hence γ ∗� is the equivalence relation ρ{e,v,w} determined by the derived
subgroup of the group 〈R,+〉, so

〈(
R/γ ∗)/γ ∗� ,+, ·〉 = 〈R/ρ{e,v,w},+, · 〉.



116 C. Pelea / Journal of Algebra 383 (2013) 104–128
It is known that the congruence relations of a group are the equivalence relations determined by
its normal subgroups, thus 〈(R/γ ∗)/γ ∗� ,+, · 〉 is not a universal algebra, since {e, v, w} is not even a
subgroup of 〈R/γ ∗, · 〉 = 〈R, · 〉.

Lemma 13. Let A = 〈A, F , G〉 be a multialgebra of type F ∪ G . If the multioperation g ∈ G is subdistribu-
tive with respect to the multioperation f ∈ F and ρ ∈ Eua(〈A, g〉), then, in the factor multialgebra A/ρ , the
operation gA/ρ is subdistributive with respect to the multioperation f A/ρ .

Proof. If the arity of f is m and the arity of g is n (m,n ∈ N), we have to show that for any i ∈
{1, . . . ,n} and any a1, . . . ,am,b1, . . . ,bn ∈ A we have

gA/ρ
(
b1/ρ, . . . ,bi−1/ρ, f A/ρ(a1/ρ, . . . ,am/ρ),bi+1/ρ, . . . ,bn/ρ

)
⊆ f A/ρ

(
gA/ρ(b1/ρ, . . . ,bi−1/ρ,a1/ρ,bi+1/ρ, . . . ,bn/ρ), . . . ,

gA/ρ(b1/ρ, . . . ,bi−1/ρ,am/ρ,bi+1/ρ, . . . ,bn/ρ)
)
.

If x/ρ ∈ gA/ρ(b1/ρ, . . . ,bi−1/ρ, f A/ρ(a1/ρ, . . . ,am/ρ),bi+1/ρ, . . . ,bn/ρ), there exists a/ρ ∈
f A/ρ(a1/ρ, . . . ,am/ρ) such that

x/ρ = gA/ρ(b1/ρ, . . . ,bi−1/ρ,a/ρ,bi+1/ρ, . . . ,bn/ρ).

Thus, there exist a′
1, . . . ,a′

m ∈ A with a j ρ a′
j for all j ∈ {1, . . . ,m} such that

a ∈ f A(
a′

1, . . . ,a′
m

)
(5)

and there exists x′ ∈ A, xρ x′ such that

x′ ∈ gA(b1, . . . ,bi−1,a,bi+1, . . . ,bn). (6)

From (5) and (6), it follows

x′ ∈ gA(
b1, . . . ,bi−1, f A(

a′
1, . . . ,a′

m

)
,bi+1, . . . ,bn

)
⊆ f A(

gA(
b1, . . . ,bi−1,a′

1,bi+1, . . . ,bn
)
, . . . , gA(

b1, . . . ,bi−1,a′
m,bi+1, . . . ,bn

))
.

Thus, for each j ∈ {1, . . . ,m}, there exists

x j ∈ gA(
b1, . . . ,bi−1,a′

j,bi+1, . . . ,bn
)

(7)

such that

x′ ∈ f A(x1, . . . , xm). (8)

From (7) we deduce that for each j ∈ {1, . . . ,m}

x j/ρ = gA/ρ
(
b1/ρ, . . . ,bi−1/ρ,a′

j/ρ,bi+1/ρ, . . . ,bn/ρ
)

= gA/ρ(b1/ρ, . . . ,bi−1/ρ,a j/ρ,bi+1/ρ, . . . ,bn/ρ),

hence, according to (8), we have
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x/ρ = x′/ρ ∈ f A/ρ(x1/ρ, . . . , xm/ρ)

= f A/ρ
(

gA/ρ(b1/ρ, . . . ,bi−1/ρ,a1/ρ,bi+1/ρ, . . . ,bn/ρ), . . . ,

gA/ρ(b1/ρ, . . . ,bi−1/ρ,am/ρ,bi+1/ρ, . . . ,bn/ρ)
)
,

which ends the proof of the lemma. �
Let I �= ∅, let qi , ri be mi -ary terms of type F (i ∈ I) and

I = {qi = ri | i ∈ I}.
Let A = 〈A, F , G〉 be a multialgebra of type F ∪ G . We will denote by αF ,I the relation defined as
in Theorem 6 for the multialgebra 〈A, F 〉 and for the set of identities I , and by α∗

F ,I its transitive
closure. Thus,

α∗
F ,I = α〈A,F 〉(R〈A,F 〉

I
)

is the smallest equivalence relation on A providing a factor multialgebra of A for which all the mul-
tioperations from F are operations and which satisfies all the identities from I .

Lemma 14. Let A = 〈A, F , G〉 be a multialgebra of type F ∪ G such that each multioperation g ∈ G is an
operation. If each operation g ∈ G is subdistributive with respect to each multioperation f ∈ F , then the factor
multialgebra

A/α∗
F ,I = 〈

A/α∗
F ,I , F , G

〉
is a universal algebra.

Proof. The factor multialgebra A/α∗
F ,I is a universal algebra if and only if α∗

F ,I is a congru-
ence relation on the universal algebra 〈A, G〉. So, we have to show that for any n-ary g ∈ G , any
x1, . . . , xn, x, y ∈ A, and any j ∈ {1, . . . ,n}, 〈x, y〉 ∈ α∗

F ,I implies that in A we have

g(x1, . . . , x j−1, x, x j+1, . . . , xn)α
∗
F ,I g(x1, . . . , x j−1, y, x j+1, . . . , xn)

(see [5, Proposition II.6.1]). If we use the definition of the transitive closure of αF ,I , it is not difficult to
observe that it is enough to prove the property for 〈x, y〉 ∈ αF ,I . According to Theorem 6, 〈x, y〉 ∈ αF ,I
means that there exist i ∈ I , ni ∈ N∗ , some ni -ary term functions pi of type F on P∗(A), and some
elements ai

1, . . . ,ai
mi

,bi
2, . . . ,bi

ni
∈ A such that

x ∈ pi
(
qi

(
ai

1, . . . ,ai
mi

)
,bi

2, . . . ,bi
ni

)
, y ∈ pi

(
ri

(
ai

1, . . . ,ai
mi

)
,bi

2, . . . ,bi
ni

)
,

or

y ∈ pi
(
qi

(
ai

1, . . . ,ai
mi

)
,bi

2, . . . ,bi
ni

)
, x ∈ pi

(
ri

(
ai

1, . . . ,ai
mi

)
,bi

2, . . . ,bi
ni

)
.

We assume that

x ∈ pi
(
qi

(
ai

1, . . . ,ai
mi

)
,bi

2, . . . ,bi
ni

)
, y ∈ pi

(
ri

(
ai

1, . . . ,ai
mi

)
,bi

2, . . . ,bi
ni

)
because the other case can be treated the same way. Then
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g(x1, . . . , x j−1, x, x j+1, . . . , xn)

∈ g
(
x1, . . . , x j−1, pi

(
qi

(
ai

1, . . . ,ai
mi

)
,bi

2, . . . ,bi
ni

)
, x j+1, . . . , xn

)
,

g(x1, . . . , x j−1, y, x j+1, . . . , xn)

∈ g
(
x1, . . . , x j−1, pi

(
ri

(
ai

1, . . . ,ai
mi

)
,bi

2, . . . ,bi
ni

)
, x j+1, . . . , xn

)
.

Since pi , qi , ri are term functions of type F , we can successively apply Lemma 12 and thus obtain

g(x1, . . . , x j−1, x, x j+1, . . . , xn)

∈ pi
(

g
(
x1, . . . , x j−1,qi

(
ai

1, . . . ,ai
mi

)
, x j+1, . . . , xn

)
,

g
(
x1, . . . , x j−1,bi

2, x j+1, . . . , xn
)
, . . . , g

(
x1, . . . , x j−1,bi

ni
, x j+1, . . . , xn

))
⊆ pi

(
qi

(
g
(
x1, . . . , x j−1,ai

1, x j+1, . . . , xn
)
, . . . , g

(
x1, . . . , x j−1,ai

mi
, x j+1, . . . , xn

))
,

g
(
x1, . . . , x j−1,bi

2, x j+1, . . . , xn
)
, . . . , g

(
x1, . . . , x j−1,bi

ni
, x j+1, . . . , xn

))
,

and, similarly,

g(x1, . . . , x j−1, y, x j+1, . . . , xn)

∈ pi
(
ri

(
g
(
x1, . . . , x j−1,ai

1, x j+1, . . . , xn
)
, . . . , g

(
x1, . . . , x j−1,ai

mi
, x j+1, . . . , xn

))
,

g
(
x1, . . . , x j−1,bi

2, x j+1, . . . , xn
)
, . . . , g

(
x1, . . . , x j−1,bi

ni
, x j+1, . . . , xn

))
.

Since g(x1, . . . , x j−1,ai
1, x j+1, . . . , xn), . . . , g(x1, . . . , x j−1,ai

mi
, x j+1, . . . , xn) and g(x1, . . . , x j−1,bi

2, x j+1,

. . . , xn), . . . , g(x1, . . . , x j−1,bi
ni

, x j+1, . . . , xn) are elements from A, it follows that

g(x1, . . . , x j−1, x, x j+1, . . . , xn)αF ,I g(x1, . . . , x j−1, y, x j+1, . . . , xn),

which ends the proof of the lemma. �
From the above theorem, one deduces that α∗

F ,I ∈ Eua(〈A, F , G〉). Of course, the algebra

〈A/α∗
F ,I , F , G〉 satisfies all the identities from I . From Theorem 6, we easily deduce that α∗

F ,I ⊆ α∗
I .

But α∗
I is the smallest relation from Eua(〈A, F , G〉) for which the factor of 〈A, F , G〉 satisfies the

identities from I . Thus, we have:

Corollary 15. If A = 〈A, F , G〉 is a multialgebra of type F ∪ G and each multioperation g ∈ G is an operation
that is subdistributive with respect to each multioperation f ∈ F , then α∗

I = α∗
F ,I .

As a matter of fact, Lemma 14 and Corollary 15 are equivalent statements. If I = {x = x} for some
variable x, then α∗

F ,I = α∗〈A,F 〉 and α∗
I = α∗〈A,F ,G〉 . Hence, we also have:

Corollary 16. If A = 〈A, F , G〉 is a multialgebra of type F ∪ G and each g ∈ G is an operation subdistributive
with respect to each multioperation f ∈ F , then the fundamental relation of A is the fundamental relation of
〈A, F 〉.

Theorem 17. Let A = 〈A, F , G〉 be a multialgebra of type F ∪G . If each multioperation g ∈ G is subdistributive
with respect to each multioperation f ∈ F and ρ ∈ Eua(〈A, G〉) then the factor multialgebra
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(A/ρ)/α∗
F ,I = 〈

(A/ρ)/α∗
F ,I , F , G

〉
is a universal algebra.

Proof. According to Lemma 13, in the factor multialgebra A/ρ = 〈A/ρ, F , G〉, each multioperation
gA/ρ ∈ G is an operation which is subdistributive with respect to each multioperation f A/ρ ∈ F . By
applying Lemma 14 to A/ρ we reach the conclusion that (A/ρ)/α∗

F ,I is a universal algebra. �
Remark 8. Since the factor of any multialgebra preserves the multialgebra’s identities, at least in their
weak form (see Remark 1), all the (weak or strong) identities of the multialgebras A and A/ρ will
turn into identities of the universal algebra (A/ρ)/α∗

F ,I . In particular, each operation g(A/ρ)/α∗
F ,I is

distributive with respect to each operation f (A/ρ)/α∗
F ,I .

Consider two disjoint nonempty sets I , J , let qi , ri be mi-ary terms of type F (i ∈ I), q j , r j m j-ary
terms of type G ( j ∈ J ) and

I = {qi = ri | i ∈ I}, J = {q j = r j | j ∈ J }.

In the next part of the paper, for a multialgebra A = 〈A, F , G〉 of type F ∪ G , we will denote

α∗
I∪J = αA(

RA
I ∪ RA

J
)
, α∗

G,J = α〈A,G〉(RA
J

)
, α∗

F ,I = α
〈A/α∗

G,J ,F 〉(R
〈A/α∗

G,J ,F 〉
I

)
,

and we will consider that the presence or the absence of the superscript ∗ has the same meaning as
in Theorem 6.

Thus, α∗
I∪J is the smallest equivalence relation on A for which the factor multialgebra is a uni-

versal algebra satisfying all the identities from I ∪J ,

α∗
G,J = α〈A,G〉(RA

J
) = α〈A,G〉(R〈A,G〉

J
)

is the smallest equivalence relation on A providing a factor multialgebra on A for which all the mul-
tioperations from G are operations and which satisfies all the identities from J , and α∗

F ,I is the
smallest equivalence relation on A/α∗

G,J providing a factor multialgebra of A/α∗
G,J = 〈A/α∗

G,J , F , G〉
for which all the multioperations from F are operations and which satisfies all the identities from I .
From Theorem 6, one can easily deduce the inclusion α∗

G,J ⊆ α∗
I∪J .

Theorem 18. Let A = 〈A, F , G〉 be a multialgebra of type F∪G . If each multioperation g ∈ G is subdistributive
with respect to each multioperation f ∈ F , then

A/α∗
I∪J ∼= (

A/α∗
G,J

)
/α∗

F ,I .

Proof. Our intention is to show that the correspondence

a/α∗
I∪J �→ (

a/α∗
G,J

)
/α∗

F ,I (9)

defines the required universal algebra isomorphism. Since (A/α∗
G,J )/α∗

F ,I is a universal algebra (see
Theorem 17), this will follow by applying Pickett’s isomorphism theorem to the composition of the
projections

A → A/α∗
G,J → (

A/α∗
G,J

)
/α∗

F ,I . (10)
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More precisely, we have to show that the kernel of the above composition is α∗
I∪J , hence to show

that for any a,b ∈ A,

aα∗
I∪J b ⇔ 〈

a/α∗
G,J ,b/α∗

G,J
〉 ∈ α∗

F ,I . (11)

From Remark 8 it follows that (A/α∗
G,J )/α∗

F ,I is a universal algebra satisfying all the identities from
I∪J . Since the factor of the multialgebra A modulo the kernel of the composition (10) is isomorphic
to the universal algebra (A/α∗

G,J )/α∗
F ,I , we deduce that the kernel of the composition (10) is a

relation from Eua(A) for which the corresponding factor algebra satisfies all the identities from I ∪J ,
thus it contains the relation α∗

I∪J . This proves the left–right implication from (11).
Since α∗

F ,I is the transitive closure of αF ,I , in order to prove the right–left implication from (11)

it is enough to show that

〈
a/α∗

G,J ,b/α∗
G,J

〉 ∈ αF ,I ⇒ aα∗
I∪J b. (12)

According to Theorem 6, 〈a/α∗
G,J ,b/α∗

G,J 〉 ∈ α F ,I if and only if there exist i ∈ I , ni ∈N∗ , some ni -ary

terms pi of type F , and ai
1, . . . ,ai

mi
,bi

2, . . . ,bi
ni

∈ A such that

a/α∗
G,J ∈ p

P∗(A/α∗
G,J )

i

(
q

P∗(A/α∗
G,J )

i

(
ai

1/α
∗
G,J , . . . ,ai

mi
/α∗

G,J
)
,bi

2/α
∗
G,J , . . . ,bi

ni
/α∗

G,J
)
,

b/α∗
G,J ∈ p

P∗(A/α∗
G,J )

i

(
r

P∗(A/α∗
G,J )

i

(
ai

1/α
∗
G,J , . . . ,ai

mi
/α∗

G,J
)
,bi

2/α
∗
G,J , . . . ,bi

ni
/α∗

G,J
)
,

or

b/α∗
G,J ∈ p

P∗(A/α∗
G,J )

i

(
q

P∗(A/α∗
G,J )

i

(
ai

1/α
∗
G,J , . . . ,ai

mi
/α∗

G,J
)
,bi

2/α
∗
G,J , . . . ,bi

ni
/α∗

G,J
)
,

a/α∗
G,J ∈ p

P∗(A/α∗
G,J )

i

(
r

P∗(A/α∗
G,J )

i

(
ai

1/α
∗
G,J , . . . ,ai

mi
/α∗

G,J
)
,bi

2/α
∗
G,J , . . . ,bi

ni
/α∗

G,J
)
.

Let us consider that we are in the first of the two cases above (the latter can be solved similarly). If
we take

a′ ∈ pP∗(A)
i

(
qP∗(A)

i

(
ai

1, . . . ,ai
mi

)
,bi

2, . . . ,bi
ni

)
,

b′ ∈ pP∗(A)
i

(
rP∗(A)

i

(
ai

1, . . . ,ai
mi

)
,bi

2, . . . ,bi
ni

)
, (13)

and we apply Lemma 3 to A, α∗
G,J , α∗

I∪J , we obtain aα∗
I∪J a′ , b′α∗

I∪J b. By using again Theorem 6,
from (13) we get a′ α∗

I∪J b′ . Thus, a α∗
I∪J b, and the proof of (12) is now complete. �

Remark 9. Taking J = {x = x} or I = {x = x} for some variable x, one can replace the correspond-
ing equivalence from the right side of the isomorphism in the above theorem by the corresponding
fundamental relation, while the index J or I , respectively, disappears from the left side of the iso-
morphism.

If we take both J and I to be {x = x}, we have:

Corollary 19. For any multialgebra A = 〈A, F , G〉 of type F ∪ G for which each g ∈ G is subdistributive with
respect to each f ∈ F we have

A/α∗〈A,F ,G〉 ∼= (
A/α∗〈A,G〉

)
/α∗

〈A/α∗〈A,G〉,F 〉.
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Remark 10. There are situations when Theorem 10 and Theorem 18 provide the same isomorphism
for A multialgebras satisfying the required subdistributivity conditions. But, in general, for the iso-
morphic image of A/α∗

I∪J in Theorem 10, the first factor multialgebra is a universal algebra which
is then factorized through a congruence, while for the isomorphic image of A/α∗

I∪J in Theorem 18
both factorizations could be factors of multialgebras. The advantage of Theorem 18 consists in the
fact that the construction of the equivalence relations involved could be easier. As for the construc-
tion of the isomorphic image of A/α∗

I∪J , this can be a difficult task in both cases. A combination
of the two theorems can be useful sometimes in this respect. One can apply first Corollary 11 and
then Corollary 19 to determine the required factor (multi)algebra. Such a situation will appear in
Section 5.

Next, we will apply our results to some particular classes of multialgebras. We will emphasize the
importance of our general results by showing how they can be used to improve some of the results
from [13] and [21].

5. Applications to hyperrings

There are many types of hyperrings known in the literature (to get a partial picture of this, it
is enough to read the remarks that follow Definition 1.2 from [23]). Most of them require a set
R endowed with two binary multioperations + and · such that 〈R,+〉 is a hypergroup, 〈R, · 〉 is a
semihypergroup and · is subdistributive with respect to +, i.e.

a(b + c) ⊆ ab + ac, (b + c)a ⊆ ba + ca, ∀a,b, c ∈ R.

We will call a multialgebra 〈R,+, · 〉 defined by the above “minimal” conditions a hyperring-like struc-
ture in order to avoid a possible terminological confusion. We insist that this should be seen rather
like a description of the multialgebra 〈R,+, · 〉 than the definition of a new type of hyperring.

A hyperring-like structure 〈R,+, · 〉 is a Krasner hyperring if 〈R,+〉 is a canonical hypergroup (i.e.
a commutative hypergroup with an element 0 such that 0 + a = a, for any a ∈ R , which satisfies the
property that for each a ∈ R there exists an element −a ∈ R such that for any b, c ∈ R , c ∈ a + b
implies b ∈ (−a) + c), 〈R, · 〉 is a semigroup,

0 · a = a · 0 = 0, ∀a ∈ R,

and the operation · is distributive with respect to the multioperation +.

Remark 11. The element 0 above is uniquely determined, and for each a ∈ R , there exists only one
element −a ∈ R satisfying the above condition. Moreover, for each a ∈ R , −a is the only element such
that 0 ∈ a + (−a).

Thus, a Krasner hyperring can be seen as a multialgebra 〈R,+, /,\, 0,−, · 〉 with /,\ defined as
in Remark 5, 0 nullary operation, − unary operation and · binary operation, satisfying some iden-
tities (see [26, Example 13]). Important particular nonzero Krasner hyperrings are those which have
a multiplicative identity 1 (see, for instance, [6]). We can see this identity as an additional nullary
operation. Krasner hyperfields are such particular hyperrings.

Remark 12. If 〈R,+, · 〉 be a Krasner hyperring and ρ ∈ Eua(〈R,+, · 〉), then 〈R/ρ,+〉 is an Abelian
group, 0/ρ is its zero element, the symmetric −(a/ρ) of a/ρ is (−a)/ρ , 〈R/ρ, · 〉 is a semigroup,
and · is distributive with respect to +. Thus, 〈R/ρ,+,0/ρ,−, · 〉 is a ring. If the Krasner hyper-
ring 〈R,+, · 〉 has a multiplicative identity 1, then 1/ρ is a multiplicative identity for 〈R/ρ, · 〉, hence
〈R/ρ,+,0/ρ,−, ·,1/ρ〉 is a ring with identity.
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If we want to factorize a hyperring-like structure 〈R,+, · 〉 in order to obtain a ring, we must
make + commutative in the factor multialgebra. For this ring to be commutative, · must become a
commutative operation, too. Thus, taking the binary symbols +, ·, and the variables x1,x2, our sets of
identities will be

I = {x1 + x2 = x2 + x1} and J = {x1 · x2 = x2 · x1},
and (using Remark 5 and Remark 3) one deduces that α∗

I∪J is the smallest equivalence of 〈R,+, · 〉
for which the factor multialgebra is a commutative ring.

Remark 13. According to Theorem 10, the commutative ring 〈R/α∗
I∪J ,+, · 〉 can be obtained as fol-

lows: we factorize 〈R,+, · 〉 over the smallest equivalence relation from Eua(〈R,+, · 〉) for which the
operation + is commutative, we obtain a ring, then we take the factor of this ring over its commuta-
tor ideal.

Using again Remark 3, we have:

Proposition 20. For a hyperring-like structure 〈R,+, · 〉 with + at least weak commutative, the fundamental
relation of 〈R,+, · 〉 and α∗

I coincide, α∗
I∪J = α∗

J and the ring 〈R/α∗
I∪J ,+, · 〉 is isomorphic to the factor of

the fundamental ring of 〈R,+, · 〉 over its commutator ideal.

A hyperring-like structure 〈R,+, · 〉 with + and · operations is a distributive nearring. Since the
distributive nearrings which have multiplicative identity are (associative) rings (see, for instance, [13,
p. 3309]), we have:

Lemma 21. If 〈R,+, · 〉 is a hyperring-like structure with a multiplicative identity and ρ ∈ Eua(〈R,+, · 〉),
then 〈R/ρ,+, · 〉 is an associative ring.

An immediate consequence of Proposition 20 and Lemma 21 is the following:

Corollary 22. For a hyperring-like structure 〈R,+, · 〉 with a multiplicative identity the fundamental relation
of 〈R,+, · 〉 and α∗

I coincide, α∗
I∪J = α∗

J and the ring 〈R/α∗
I∪J ,+, · 〉 is isomorphic to the factor of the

fundamental ring of 〈R,+, · 〉 over its commutator ideal.

Let 〈R,+, · 〉 be a hyperring-like structure. We denote by β+ and β× the relations defined as in
Example 1 for 〈R,+〉 and 〈R, · 〉 respectively, by γ+ and γ× the relations defined as in Example 2 for
〈R,+〉 and 〈R, · 〉 respectively, and by β∗+ , β∗× , γ ∗+ , γ ∗× their transitive closures. Thus

β∗+ = α∗〈R,+〉, β∗× = α∗〈R,· 〉, γ ∗+ = α∗{+},I , γ ∗× = α∗{·},J .

We us also denote

β∗+ = α∗
〈R/β∗×,+〉, γ ∗+ = α∗{+},I .

As we mentioned in Examples 1 and 2, the relations β+ and γ+ are transitive, hence β∗+ = β+ and
γ ∗+ = γ+ . From Corollary 15 and Corollary 16 we deduce:

Proposition 23. If 〈R,+, · 〉 is a hyperring-like structure with · operation, then:

(i) the fundamental relation of 〈R,+, · 〉 and β+ coincide;
(ii) the multialgebra 〈R/γ+,+, · 〉 is a ring or, equivalently, α∗

I = γ+;
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(iii) if the operation · is commutative, then α∗
I∪J = α∗

I = γ+;
(iv) if the operation · is commutative and it has an identity element, then

α∗
I∪J = α∗

J = α∗
I = γ+ = β+

and they are all equal to the fundamental relation of 〈R,+, · 〉;
(v) if + and · are (at least weak) commutative, then

α∗
I∪J = α∗

J = α∗
I = γ+ = β+.

Remark 14. If + and · are operations, one can recognize in (ii) from the above proposition an ele-
mentary property of nearrings: the derived subgroup of the additive group of a distributive nearring R is an
ideal of R (see, for instance, [1, p. 355]).

Let 〈R,+, · 〉 be a Krasner hyperring and let us denote, as in [21], the fundamental relation α∗〈R,+,· 〉
of 〈R,+, · 〉 by Γ ∗ . From Proposition 23 and the commutativity of the addition of a Krasner hyperring
we have:

Corollary 24. If 〈R,+, · 〉 is a Krasner hyperring, then

Γ ∗ = α∗
I = γ ∗+ = γ+ = β∗+ = β+ and α∗

I∪J = α∗
J .

If the multiplication of 〈R,+, · 〉 is commutative, then

α∗
I∪J = α∗

J = α∗
I = Γ ∗ = γ+ = β+.

From Theorem 18, it follows:

Proposition 25. For a hyperring-like structure 〈R,+, · 〉 we have

R/α∗
I∪J ∼= (

R/γ ∗×
)
/γ ∗+.

Remark 15. If · is distributive with respect to +, the hyperring-like structures 〈R,+, · 〉 are the hy-
perrings from [13], the relation α∗

I∪J is the α∗-relation from [13], Proposition 23(iii) becomes [13,
Theorem 5] and Proposition 25 becomes [13, Theorem 6]. If 〈R,+, · 〉 is a Krasner hyperring, then
α∗
I∪J is the α∗-relation from [21], [21, Theorem 2.1] is an immediate consequence of Proposition 23,

and Corollary 24 is a stronger version of [21, Theorem 2.1].

It is easy to notice that the isomorphism from Proposition 25 is independent from the axioms of +
and from the axioms of ·, so Proposition 25 could be stated as follows: for a multialgebra 〈R,+, · 〉 with
two binary multioperations, if · is subdistributive with respect to +, then R/α∗

I∪J ∼= (R/γ ∗×)/γ ∗+ . Yet, the
axioms of + and · improve the form of the relations involved in this isomorphism. The associativity
of · gives γ ∗× the friendly form in Example 2. A close look at the proof of [13, Lemma 2] shows that
only the subdistributivity of · with respect to + is needed for the lemma to hold. Using the approach
from [29, Section 4], one easily deduces that, for the hyperring-like structure 〈R,+, · 〉, the relation
α∗
I∪J is the relation from Example 3.

Remark 16. Since we do not know anything about the associativity of + in 〈R/γ ∗×,+〉, we cannot
characterize γ ∗+ as in Example 2. Yet, it is not very difficult to use Theorem 6 (or [27, Theorem 4.4])
to determine it.
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Remark 17. As we anticipated in Remark 10, for obtaining the ring 〈R/α∗
I ,+, · 〉 we can first factorize

〈R,+, · 〉 modulo the fundamental relation β∗× of 〈R, · 〉, then we factorize 〈R/β∗×,+, · 〉 over the funda-
mental relation β∗+ of 〈R/β∗×,+〉 and, finally, we factorize the distributive nearring 〈(R/β∗×)/β∗+,+, · 〉
by the derived subgroup of its additive group.

Proposition 23 also makes us see some of the isomorphism theorems from [21, Section 3] in a
different way. For instance, using [25, Proposition 7], one can get a stronger result than [21, Theo-
rem 3.5] without the exhausting computations from [21, Lemma 3.2, Theorem 3.3 and Theorem 3.4].
Also, [21, Theorem 3.10] is only a rewritten version of the well-known ring homomorphism theo-
rem.

Since the fundamental algebra preserves multialgebra’s identities, [25, Theorem 1] can be rewritten
for hyperring-like structures:

Proposition 26. Let 〈R1,+, · 〉, 〈R2,+, · 〉 be two hyperring-like structures with + at least weak commutative
(or with a multiplicative identity), let Γ ∗

1 , Γ ∗
2 be their fundamental relations, and let π1 , π2 , respectively,

be the corresponding canonical projections. For any homomorphism f : R1 → R2 there exists a unique ring
homomorphism f : R1/Γ

∗
1 → R2/Γ

∗
2 which makes the following diagram commutative:

R1
f

π1

R2

π2

R1/Γ
∗

1

f
R2/Γ

∗
2

Remark 18. For two hyperring-like structures with both + and · commutative, their α∗-relations
coincide with their fundamental relations. Even if we are not dealing with strong homomorphisms,
the ideal defined in [21, Definition 3.8 and Lemma 3.9] is the kernel of the ring homomorphism f
introduced by Proposition 26, and [21, Theorem 3.10] needs no proof, since it is a particular case of
the ring homomorphism theorem.

Theorem [25, Theorem 1] shows that the construction of the fundamental algebra determines a
functor from the category of F -multialgebras into the category of the universal algebras of type F
(which is the functor from Remark 6 in the case I = {x = x} for some variable x). This functor does
not preserve the finite (direct) products. Yet, we found in [25, Corollary 5] a sufficient condition for
the fundamental algebra of a finite direct product of multialgebras to be isomorphic to the direct
product of their fundamental algebras. In [25, Proposition 7], we showed that hypergroups fulfill this
condition, so we have:

Lemma 27. If 〈H1,+〉, 〈H2,+〉 are two hypergroups and β1 , β2 , respectively, are their fundamental relations,
then the fundamental group of the direct product 〈H1 × H2,+〉 is isomorphic to 〈H1/β1 × H2/β2,+〉.

Remark 19. As a matter of fact, if A1, A2 are multialgebras, e1, e2 are the canonical projections
of the direct product A1 × A2, e1, e2 are the induced homomorphisms between the correspond-
ing fundamental algebras (see [25, Theorem 1]), and p1, p2 are the projections of the product
A1/α

∗
A1

× A2/α
∗
A2

, from the universal property of the direct product one deduces that the corre-
spondence 〈a1,a2〉/α∗

A1×A2
�→ 〈a1/α

∗
A1

,a2/α
∗
A2

〉 defines the unique universal algebra homomorphism
ϕ : (A1 × A2)/α

∗
A1×A2

→ A1/α
∗
A1

× A2/α
∗
A2

for which p1 ◦ϕ = e1 and p2 ◦ϕ = e2. The homomorphism
ϕ is surjective, and, if the condition from [25, Corollary 5] holds (as it happens for hypergroups in
Lemma 27), ϕ is an isomorphism.

In the next part of this section, we consider 〈R1,+, · 〉 and 〈R2,+, · 〉 to be hyperring-like structures
for which · is an operation and + is at least weak commutative – in particular, they can be Krasner
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hyperrings – or hyperring-like structures for which · is an operation which has an identity element. It
is not difficult to verify that the condition from [25, Corollary 5] holds for such pairs of hyperring-like
structures, and it is even easier to show that ϕ is an isomorphism in their case using Proposition 23.

Theorem 28. If Γ ∗
1 and Γ ∗

2 are the fundamental relations of 〈R1,+, · 〉 and 〈R2,+, · 〉, respectively, then the
fundamental ring of 〈R1 × R2,+, · 〉 is isomorphic to 〈R1/Γ

∗
1 × R2/Γ

∗
2 ,+, · 〉.

Proof. Let Γ ∗
12, β1, β2, and β12 be the fundamental relations of 〈R1 × R2,+, · 〉, 〈R1,+〉, 〈R2,+〉, and

〈R1 × R2,+〉, respectively. In our case, ϕ from Remark 19 is a surjective ring homomorphism from
(R1 × R2)/Γ

∗
12 into R1/Γ

∗
1 × R2/Γ

∗
2 . According to (i) from Proposition 23,

R1/Γ
∗

1 = R1/β1, R2/Γ
∗

2 = R2/β2, (R1 × R2)/Γ
∗

12 = (R1 × R2)/β12,

so ϕ : (R1 × R2)/β12 → R1/β1 × R2/β2 is the mapping from Lemma 27. Thus ϕ it is also injective,
which means it is a ring isomorphism. �

It is easy to show that the commutator ideal of a direct product of two rings is the direct product
of their commutator ideals and, consequently, the factor of the direct product modulo its commuta-
tor ideal is isomorphic to the product of the factors of the rings by their commutator ideals – as a
matter of fact, for unitary rings, this is the ring theoretical version of [21, Theorem 3.4 and Theo-
rem 3.5]. Based on this fact, the above theorem, Proposition 20 and Corollary 22, one easily deduces
the following:

Corollary 29. If α∗
1 , α∗

2 and α∗
12 are the α∗-relations of 〈R1,+, · 〉, 〈R2,+, · 〉 and 〈R1 × R2,+, · 〉, respectively,

then we have the following ring isomorphism

(R1 × R2)/α
∗
12

∼= R1/α
∗
1 × R2/α

∗
2 .

Remark 20. Since Krasner’s hyperrings are a particular case of the hyperring-like structures involved
in Theorem 28 and Corollary 29, [21, Theorem 3.5] follows immediately from the above corollary.
Corollary 29 also shows that [21, Theorem 3.5] can be restated for any Krasner hyperrings, not only
for those which have multiplicative identity.

6. Applications to (m,n)-hyperrings

Let m,n ∈N, m,n � 2. An m-semihypergroup 〈R, f 〉 satisfying condition

R = f (a1, . . . ,ai−1, R,ai+1, . . . ,am), ∀a1, . . . ,am ∈ R, ∀i ∈ {1, . . . ,m} (14)

is called an m-hypergroup. The condition (14) can also be written as follows:

∀b,a1, . . . ,am ∈ R, ∀i ∈ {1, . . . ,m}, ∃x ∈ R: b ∈ f (a1, . . . ,ai−1, x,ai+1, . . . ,am). (∗)

If f is an operation and the element x from (∗) is unique, then 〈R, f 〉 is an m-group. A multialgebra
〈R, f , g〉 is an (m,n)-hyperring if 〈R, f 〉 is an m-hypergroup, 〈R, g〉 is an n-semihypergroup and the
multioperation g is distributive with respect to f (see [11, Section 5]). The (2,2)-hyperrings are
the hyperrings from [13], so the results from this section generalize some results from the previous
section. 〈R, f , g〉 is an (m,n)-ring if 〈R, f 〉 is a commutative m-group, 〈R, g〉 is an n-semigroup and
the operation g is distributive with respect to f (see [8]).
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Remark 21. Using (14) we can organize the m-hypergroup 〈R, f 〉 as a multialgebra 〈R, f , f1, . . . , fm〉
where for all i ∈ {1, . . . ,m}, f i is the m-ary multioperation which assigns to each m-tuple
〈a1, . . . ,ai−1,b,ai+1, . . . ,am〉 the nonempty subset

f i(a1, . . . ,ai−1,b,ai+1, . . . ,am) = {
x ∈ R

∣∣ b ∈ f (a1, . . . ,ai−1, x,ai+1, . . . ,am)
}
. (15)

The similar configuration of m-groups can be found in [16, Section 1] and the corresponding configu-
ration of 2-hypergroups (i.e. hypergroups) is presented (in great detail) in [28].

Lemma 30. Let us configure the m-hypergroup 〈R, f 〉 like in the above remark as a multialgebra 〈R, f , f1,

. . . , fm〉 and let ρ ∈ Eua(〈R, f 〉). In the factor multialgebra of 〈R, f , f1, . . . , fm〉 over ρ , each fi determines an
operation which associates to each m-tuple 〈a1/ρ, . . . ,ai−1/ρ,b/ρ,ai+1/ρ, . . . ,am/ρ〉 the unique element x
for which

b/ρ = f (a1/ρ, . . . ,ai−1/ρ, x,ai+1/ρ, . . . ,am/ρ).

Proof. Let us denote by f ′
1, . . . , f ′

m the multioperations which correspond to f1, . . . , fm in the factor
multialgebra of 〈R, f , f1, . . . , fm〉. Since the associativity of f is determined by a set of identities
of 〈R, f 〉, f is an associative operation in the factor multialgebra 〈R/ρ, f , f ′

1, . . . , f ′
m〉. For any i ∈

{1, . . . ,m},

x ∈ f ′
i (a1/ρ, . . . ,ai−1/ρ,b/ρ,ai+1/ρ, . . . ,am/ρ)

if and only if there exist a′
1, . . . ,a′

m,b′, c ∈ R such that a1ρa′
1, . . . ,amρa′

m , bρb′ , x = c/ρ and

c ∈ f i
(
a′

1, . . . ,a′
i−1,b′,a′

i+1, . . . ,a′
m

)
. (16)

But (16) is equivalent to b′ ∈ f i(a′
1, . . . ,a′

i−1, c,a′
i+1, . . . ,a′

m), hence

b′/ρ = f
(
a′

1/ρ, . . . ,a′
i−1/ρ, c/ρ,a′

i+1/ρ, . . . ,a′
m/ρ

)
in the factor multialgebra 〈R/ρ, f , f ′

1, . . . , f ′
m〉, or, equivalently,

b/ρ = f
(
a1/ρ, . . . ,ai−1/ρ, x,ai+1/ρ, . . . ,am/ρ

)
. (17)

According to a remark from [31, p. 213], if f is associative, the existence of a solution x for (each of)
the equations (17) implies its uniqueness, which completes the proof of the lemma. �

Using the notations from the above lemma, we have:

Corollary 31. Eua(〈R, f 〉) = Eua(〈R, f , f1, . . . , fn〉).

But Eua(〈R, f , g〉) = Eua(〈R, f 〉) ∩ Eua(〈R, g〉) and

Eua
(〈R, f , f1, . . . , fn, g〉) = Eua

(〈R, f , f1, . . . , fn〉
) ∩ Eua

(〈R, g〉).
Thus, we also have:

Corollary 32. Eua(〈R, f , f1, . . . , fn, g〉) = Eua(〈R, f , g〉).
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Remark 22. Lemma 30 and its corollaries are very important for the next part of this section. They
allow us not to consider the multioperations f1, . . . , fn in the characterization of the smallest equiv-
alence relations of 〈R, f 〉 (or 〈R, f , g〉) for which the factor multialgebra is an m-group (or an (m,n)-
ring, respectively) satisfying certain identities. Moreover, they show that the factor (multi)algebras
determined by such relations do not lose the information provided by the equalities (14), even if
these equalities do not look (in this form) as multialgebra identities. In particular, the fundamental
relation of the m-hypergroup 〈R, f 〉 coincides with the fundamental relation of the m-semihypergroup
〈R, f 〉 (and it can be found in [20, Section 4]).

Since we do not have to add fundamental operations to the multialgebra 〈R, f , g〉 and g is
distributive with respect to f , we can apply the results from Section 4 to (m,n)-hyperrings. The
following results are valid because of the subdistributivity of g with respect to f . From Corollary 15,
we deduce:

Proposition 33. If g is an operation in the (m,n)-hyperring 〈R, f , g〉, the fundamental relations α∗
〈R, f ,g〉 of

〈R, f , g〉 and α∗
〈R, f 〉 of 〈R, f 〉 coincide.

As for the construction of the fundamental algebra of an (m,n)-hyperring, from Corollary 19, we
have:

Proposition 34. Let 〈R, f , g〉 be an (m,n)-hyperring. Consider the factor multialgebra of 〈R, f , g〉 modulo
the fundamental relation of 〈R, g〉 and then the factor of this multialgebra over the fundamental relation of
〈R/α∗〈R,g〉, f 〉. The resulting multialgebra is an algebra isomorphic to the fundamental algebra of the (m,n)-
hyperring of 〈R, f , g〉.

Even if we do not know if 〈R/α∗〈R,g〉, f 〉 is an m-semihypergroup, the characterization of its fun-
damental relation follows immediately from Corollary 7. The resulting fundamental algebra might not
be an (m,n)-ring since the operation f might not be commutative. But if we take I to be the set
of the identities which characterize the commutativity of f and we call the algebra 〈R/α∗

I , f , g〉
fundamental (m,n)-ring, then we have:

Proposition 35. Let 〈R, f , g〉 be an (m,n)-hyperring. Consider the factor multialgebra of 〈R, f , g〉 modulo the
fundamental relation of 〈R, g〉 and then the factor of this multialgebra over α∗

f ,I . The resulting multialgebra
is isomorphic to the fundamental (m,n)-ring of 〈R, f , g〉.

More generally, if I is the set of identities for which the terms are constructed using only f and
J the set of identities for which the terms are constructed using only g (in particular, I can be the
set of the identities which characterize the commutativity of f and J the set of the identities which
characterize the commutativity of g), then, from Corollary 15 and Theorem 18, we deduce:

Proposition 36. If g is operation in the (m,n)-hyperring 〈R, f , g〉, then

α∗
I = α∗

f ,I .

Proposition 37. If 〈R, f , g〉 is an (m,n)-hyperring then〈
R/α∗

I∪J , f , g
〉 ∼= 〈(

R/α∗
g,J

)
/α∗

f ,I , f , g
〉
.
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