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Introduction

In 1972, a simultaneous breakthrough in understanding the structure of Artin–Tits 
groups was made by Brieskorn and Saito [10], and independently, by Deligne [26]. The 
initial spark came from Garside’s discovery [36] of the fundamental element Δn in Artin’s 
braid group, which led to a solution of the conjugacy problem and the determination 
of the centre. The fascination about these insights gave birth to the rapidly developing 
theory of Garside groups (see [25,19,22,23]). According to [22], the philosophy of Garside’s 
theory in its current perception consists in the study of certain groups as groups of 
fractions of monoids with special utilization of divisibility.

In the present paper, we pick up this view and propose to study Garside groups and 
similar groups without a Garside element as close relatives of lattice-ordered groups, 
briefly called l-groups, to take profit from their well-developed theory (see, e.g., [1,3,17,
43]). To this end, we introduce right l-groups, that is, groups G with a lattice structure 
such that

a � b =⇒ ac � bc (1)

holds for all a, b, c ∈ G. In contrast to l-groups, the left-hand version of this law need 
not be satisfied. Garside groups are then to be viewed as bounded atomic right l-groups 
with finitely many atoms having a strong order unit (Section 6).

With this perspective in mind, we show first that the negative (!) cone of a right 
l-group can be characterized as a pair of left and right self-similar hoops [63] with a 
common multiplication (Theorem 1). Recall that a left hoop [7,63] is a monoid M with 
a binary operation → satisfying the equations

a → a = 1

ab → c = a → (b → c)

(a → b)a = (b → a)b.
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With the opposite multiplication, M is said to be a right hoop. A left hoop M is called 
self-similar [63] if it satisfies a → ba = b instead of the weaker equation a → a = 1. Due 
to their origin in algebraic logic [6,5], hoops have a unit element that stands for the truth 
value 1, the greatest element, which explains our preference of the negative cone. The 
binary operation “→” stands for the logical implication, while multiplication interprets 
the logical conjunction.

As in the case of l-groups, right l-groups are determined by their positive (or negative) 
cone, and vice versa. The missing left-hand version of (1) entails that the partial order 
of the positive cone and that of the negative cone are no longer related by the inversion 
x �→ x−1. So there are actually two partial orders, a phenomenon that is well known 
in the theory of Garside groups. Similar to l-groups, every element of a right l-group G
has a unique representation of the form ab−1 with orthogonal a, b ∈ G (Corollary 4 of 
Theorem 1). However, a and b no longer commute.

Garside groups, and in particular, braid groups, form a class of right l-groups where 
every element can be factored into a finite product of atoms such that the number of fac-
tors is bounded. As a lattice, they satisfy the ascending and descending chain condition. 
Totally ordered right l-groups, also called right ordered groups, form another class of 
right l-groups. Introduced and first studied by Conrad [16], they play an important rôle 
in group theory and low-dimensional topology. For example, the mapping class group 
of a compact surface with finitely many punctures and non-empty boundary is right 
orderable [59,65]. In particular, braid groups (i.e. mapping class groups of punctured 
discs), are right orderable, a celebrated result which was first proved by Dehornoy [18]. 
Using the hyperbolic structure, many right orderings can be constructed by a method of 
Thurston [65,55]. Right orderability of 3-manifolds is still a mystery that has yet to be 
revealed. For example, Boyer, Rolfsen and Wiest [9] have shown that the fundamental 
group of a compact connected P 2-irreducible 3-manifold with positive first Betti number 
is right orderable. In particular, all knot groups are right orderable [47]. On the other 
hand, the fundamental group of many L-spaces is not right orderable. Boyer, Gordon, 
and Watson [8] conjectured that an irreducible rational homology 3-sphere is an L-space 
if and only if its fundamental group is not left orderable. For further results on right 
orderability, we refer to the excellent account of Navas [54] and the literature cited there.

There is a close relationship between right ordered groups and l-groups. By the 
Cayley–Holland theorem [17], every l-group can be right ordered, and its partial or-
der is the intersection of right orders. As a consequence, a group is right orderable if and 
only if it is isomorphic to a subgroup of an l-group. Surprisingly, right l-groups, being 
closest to both l-groups and right ordered groups, appear to be uncharted in the litera-
ture. One purpose of this article is to remedy this shortcoming. For a striking example 
how proofs can be reduced by using right l-groups, see Proposition 3.

Another purpose and a starting point of this paper has been to clarify the rôle of 
Garside groups that come from set-theoretic solutions of the quantum Yang–Baxter 
equation (QYBE). For the theory of such solutions and their occurrence in other parts 
of mathematics, the reader may consult [39,42,33,50,32,66,40,60,11,56,61,13,12,41]. For 
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our present investigation, we drop the finiteness of the set of atoms to include infinite 
solutions of the QYBE.

Recently, Chouraqui [15] observed that the structure group of a finite non-degenerate 
unitary solution of the QYBE is a Garside group. Such Garside groups are of I-type [42], 
which means that their lattice is distributive and made up from n-cubes, equipped with 
a labelling so that the group structure can be read off from the labelling of a single cube. 
We attack the more general problem to characterize modular Garside groups, which 
leads to an extension and deeper understanding of “I-type”. In the modular case, we 
obtain noetherian right l-groups as a patchwork of isomorphic projective spaces, the rule 
of attachment being encoded in the labelling of a single space (Sections 7 and 8).

Before giving more details at the end of this introduction, let us consider the special 
case of distributive right l-groups arising from solutions of the QYBE. The “geometry” 
of these groups is given by the n-cube of flats: every line has exactly two points, which 
means that the geometry splits into n distinct points. In other words, there is no geometry 
– all structure is contained in the labelling. To include infinite solutions of the QYBE, 
we have to dismiss the Garside element and consider noetherian right l-groups G. We 
show that a nice lattice structure of G depends on the set X̃(G−) = X(G−) � {1} of 
elements of length � 1, that is, the set X(G−) of atoms together with the unit element 1. 
The labelling is then contained in a binary operation → on the negative cone G−, and 
the operation → is determined by its restriction to the set X(G−) of atoms. We will 
show that X̃(G−) is closed with respect to → if and only if the lattice of G is lower 
semimodular (Proposition 5). Under these equivalent assumptions, the equation

(x → y) → (x → z) = (y → x) → (y → z) (2)

is valid in X̃(G−). Together with the implication

x → y = x → z =⇒ y = z,

Eq. (2) defines a cycle set [60], a structure that is known to be equivalent to a left 
non-degenerate unitary (set-theoretic) solution of the QYBE. We will show that G is 
distributive if and only if in addition to modularity, the above implication holds for 
x, y, z ∈ X(G−). Thus X̃(G−) is almost a cycle set, with the only exception that the 
implication does not hold in the special case x = y �= z = 1.

One way to avoid this anomaly is to deal with X(G−) rather than X̃(G−). For 
a modular noetherian right l-group G, we define a duality to be a bijective map 
D: X(G−) → X(G−) satisfying

D(x → y) = (y → x) → D(y)

for atoms x �= y. The existence of a duality D entails its uniqueness and implies that the 
lattice of G is distributive (Proposition 7). We prove that a duality exists if and only if G



474 W. Rump / Journal of Algebra 439 (2015) 470–510
is isomorphic to the structure group of a non-degenerate unitary solution of the QYBE 
(Theorem 2). If the set of atoms is finite, G is a Garside group.

Apart from its relationship to solutions of the QYBE, Eq. (2) connects l-group the-
ory with algebraic logic [63]. In this context, an element 1 of a set X with a binary 
operation → is said to be a logical unit if x → x = x → 1 = 1 and 1 → x = x hold
for all x ∈ X. Such an element 1 is unique. (In propositional logic, the unit 1 stands 
for a “true” proposition.) If X has a logical unit and satisfies Eq. (2) together with 
x → y = y → x = 1 ⇒ x = y, then X is called an L-algebra [63]. Every L-algebra 
admits a canonical embedding into a self-similar left hoop S(X), the self-similar closure, 
which reveals a close relationship between algebraic logic and l-group theory [63]. On the 
other hand, the primitive elements as well as the simple elements [25,19] of a Garside 
group form an L-algebra. If an L-algebra admits a smallest element 0, there is a unique 
monoid homomorphism τ : S(X) → S(X), given by τ(a)0 = 0a for all a ∈ S(X). If τ is 
bijective, every a ∈ S(X) has a unique normal decomposition a = x1 · · ·xn with xi ∈ X

(Proposition 12) similar to the normal decomposition in Garside groups, but without 
any kind of atomicity or noetherian hypothesis.

Our second main result (Theorem 3) places Garside groups into the context of intervals 
in l-groups, a theory initiated by Mundici’s famous theorem [52] relating abelian l-groups 
with strong order unit to MV-algebras. This class of algebras was introduced by Chang 
[14] as the semantics of Łukasiewicz’ calculus of infinite-valued logic. Mundici’s theorem 
was extended to non-commutative l-groups by Dvurečenskij [31]. We further extend 
Dvurečenskij’s result to right l-groups G with strong order unit (Definition 6). Here the 
prefix “strong” acquires a new meaning: It is assumed that conjugation by the order 
unit u maps the positive cone G+ onto itself, a condition that obviously holds if G
is an l-group. For example, every Garside element in the positive cone of a Garside 
group is a strong order unit. Theorem 3 gives a one-to-one correspondence between the 
isomorphism classes of right l-groups with strong order unit and pairs of L-algebras with 
common bounds 0 and 1 satisfying four equations (Definition 5).

Sections 7 and 8 deal with semimodular noetherian right l-groups G. Garside groups 
among them are those with a finite set of atoms. The Basterfield–Kelly theorem [2] im-
plies that such Garside groups are modular. If X(G−) denotes the set of atoms, the finite 
meets of elements in X(G−) form a (dual) geometric lattice defining the geometry of G. 
The structure of G is then determined by the L-algebra X̃(G) = X(G−) �{1}. As the el-
ements of X(G−) are pairwise incomparable, we call such an L-algebra discrete. We show 
first that discrete L-algebras are equivalent to a class of lower semimodular lattices with a 
consistent labelling of the edges called a block labelling (Proposition 18). If the geometry 
is finite-dimensional, the labelling gives a map from the points to the hyperplanes. The 
self-similar closure [63] of such an L-algebra can be viewed as a “negative cone” which, 
however, need not embed into its group of left fractions. To get an embedding, the block 
labelling has to be non-degenerate which implies that the map from points to hyper-
planes is bijective. Matchings between points and hyperplanes of projective geometries 
have been studied by various authors (see [51,27,45,29,37,49]). At present, the geometric 
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meaning of block labellings is completely unexplored. We show that finite geometric lat-
tices need not admit a block labelling (Example 4) and exhibit a non-degenerate block 
labelling for the Fano plane (Example 5).

Our third main theorem establishes a one-to-one correspondence between non-
degenerate discrete L-algebras and modular geometric right l-groups (see Theorem 4
and its corollary). As a consequence, we get a simple description of modular Garside 
groups by means of discrete L-algebras (Theorem 5). In particular, this extends and 
reformulates the correspondence between groups of I-type together with their associated 
solutions of the QYBE, and cycle sets, which thus turn out to be equivalent to a special 
class of discrete L-algebras.

The last section gives a brief account on the quasi-centre of a right l-group, introduced 
by Brieskorn and Saito in the case of Artin–Tits groups. For an archimedean right 
l-group G, the quasi-centre is the “l-group part” of G where the left and right partial order 
meet together. As in the theory of l-groups, noetherian right l-groups are order-complete, 
while order-complete right l-groups are archimedean. If G is noetherian, an old theorem 
of Birkhoff [4] implies that the quasi-centre is abelian, hence a cardinal sum of infinite 
cyclic groups. For a Garside group G, this decomposition of the quasi-centre parallels 
Picantin’s bi-crossed product decomposition of G (see [57]).

1. Preliminaries on Garside groups

Recall that a monoid M satisfies the left Ore condition if for each pair a, b ∈ M , 
there exist x, y ∈ M with xa = yb. Assume that M is left Ore and right cancellative, 
that is, ac = bc implies a = b for all a, b, c ∈ M . Then we can form the group of 
left fractions G(M) which consists of formal fractions a−1b with a, b ∈ M (see [38], 
Chapter I). For a, b, c ∈ M , the equation a−1b = (ca)−1(cb) holds in G(M), and the left 
Ore condition guarantees that in this way, two arbitrary left fractions can be transformed 
into left fractions with a common denominator. They are defined to be equal in G(M)
if the common denominator can be chosen so that the numerators become equal in M . 
Therefore, the natural map M → G(M) is injective if and only if M is left cancellative, 
that is, ab = ac implies b = c for all a, b, c ∈ M . If M is left cancellative and satisfies 
the right Ore condition, then G(M) is a two-sided group of fractions, that is, G(M) =
M−1M = MM−1.

Let M be a monoid with unit element 1. By M× we denote the group of invertible 
elements, the unit group of M . An element a ∈ M is said to be a right divisor of b ∈ M , 
or equivalently, b is called a left multiple of a, if xa = b for some x ∈ M . We write a � b

if a is a right divisor of b. The relation � is also called the algebraic preorder of M . If 
M is right cancellative, the algebraic preorder is a partial order if and only if the unit 
group M× is trivial. Thus, assume that M is right cancellative with M× = {1}. A meet 
a ∧ b with respect to the algebraic order in M is then called a right greatest common 
divisor, and a join a ∨ b is said to be a left least common multiple of a and b (see [19]). 



476 W. Rump / Journal of Algebra 439 (2015) 470–510
Note that the existence of a ∨ b implies that there are x, y ∈ M with xa = yb = a ∨ b. In 
other words, M satisfies the left Ore condition.

Similarly, an element a of a monoid M is a left divisor of b ∈ M , written a � b, if 
ax = b for some x ∈ M . If M is left cancellative with M× = {1}, we write a � b and 
a � b for the meet and join with respect to �.

Definition 1. A monoid M is said to be noetherian if bounded ascending sequences 
a0 � a1 � a2 � · · · or b0 � b1 � b2 � · · · in M become stationary, that is, an+1 � an, 
respectively bn+1 � bn, for some n ∈ N.

An atom of a monoid M is an element x ∈ M with x �= 1 such that x = ab implies 
that x = a or x = b, and M is said to be atomic if every a ∈ M can be represented as 
a product a = x1 · · ·xn of atoms. If the number n of factors in such a representation is 
bounded, we call M bounded atomic. The set of atoms will be denoted by X(M). The 
following proposition is well known and obvious.

Proposition 1. Every bounded atomic monoid is noetherian. Conversely, a noetherian 
left and right cancellative monoid M with M× = {1} is atomic.

A monoid M has been called Gaussian [19,25] if M is bounded atomic, left and right 
cancellative, and a lattice with respect to each of the partial orders � and �. Although 
the term “Gaussian” has become out of date for some years, we occasionally reuse it 
by lack of an equivalent and because of its brevity. Since a Gaussian monoid M is 
cancellative and satisfies the left and right Ore condition, M has a two-sided group of 
fractions G(M). Accordingly, G(M) has been called a Gaussian group [25,19].

Each pair of elements a, b ∈ M of a Gaussian monoid M determines four elements 
[19] by the equations

a ∨ b = (a/b)b = (b/a)a (3)

a � b = a(a\b) = b(b\a). (4)

An element Δ ∈ M is said to be Garside [25,19] if the set of left divisors of Δ is finite, 
generates M , and coincides with the set of right divisors of Δ. If M is Gaussian having 
a Garside element Δ, then M is called a Garside monoid, and G(M) is said to be a 
Garside group [25,19].

2. Right l-groups

A right partially ordered group is a group G with a partial order � satisfying

a � b ⇒ ac � bc
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for all a, b, c ∈ G. Equivalently, G is given by a submonoid P with trivial unit group 
P× = P ∩ P−1. Namely, a � b ⇐⇒ ba−1 ∈ P , where P = G+ := {a ∈ G | a � 1} is the 
positive cone of G. By symmetry, P−1 is the negative cone G− := {a ∈ G | a � 1}.

Every right partial order � of a group G corresponds to a left partial order

a � b :⇐⇒ b−1 � a−1 ⇐⇒ a−1b ∈ G+

which can be viewed as a right partial order of Gop. We say that a right partially ordered 
group G is a right l-group if G is a lattice. In particular, G is a lattice-ordered group 
[3,17] or simply an l-group if G is a right l-group for which the left and right partial 
orders coincide.

A monoid M with a binary operation → is said to be a left hoop [63] if

a → a = 1 (5)

ab → c = a → (b → c) (6)

(a → b)a = (b → a)b (7)

hold for a, b, c ∈ M . By [63], Proposition 3, the unit element 1 of a left hoop M is a 
logical unit, that is, every a ∈ M satisfies

a → a = a → 1 = 1, 1 → a = a. (8)

Moreover, M has a natural partial order

a � b :⇐⇒ a → b = 1 (9)

which is opposite to the algebraic order:

Proposition 2. Let M be a left hoop. Every pair of elements a, b ∈ M satisfies

a � b ⇐⇒ ∃x ∈ M : a = xb.

Proof. If a � b, then Eq. (7) implies that a = (b → a)b. Conversely, assume that a = xb. 
Then Eqs. (5) and (6) give a → b = xb → b = x → (b → b) = x → 1 = 1. �

By virtue of (9), Eq. (6) yields the adjointness relation

ab � c ⇐⇒ a � b → c,

which shows that the operation → and the multiplication of M determine each other. 
So the multiplication of a left hoop can be eliminated. For example, by [63], Corollary 2 
of Proposition 2, Eq. (7) is equivalent to

(a → b) → (a → c) = (b → a) → (b → c). (10)
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On the other hand, a left hoop can be regarded as a special type of monoid. By [63], 
Proposition 4, every left hoop M is a ∧-semilattice with meet

a ∧ b = (a → b)a (11)

for a, b ∈ M .
Furthermore, by [63], Proposition 5, a left hoop M is right cancellative if and only if 

it satisfies the equation

a → ba = b. (12)

Such a left hoop M is said to be self-similar [63]. Note that Eq. (7) implies the left Ore 
condition. Therefore, every self-similar left hoop M admits a group of left fractions.

Dually, a right hoop is a monoid M with a binary operation � satisfying

a � a = 1

ab � c = b � (a � c)

a(a � b) = b(b � a)

for a, b, c ∈ M . In other words, Mop (opposite multiplication) is a left hoop. Accordingly, 
a right hoop M is called self-similar if Mop is self-similar.

Definition 2. We define a right l-cone to be a monoid M with binary operations → and 
� which make M into is a left and right self-similar hoop.

The terminology is justified by the following

Theorem 1. Let G be a right l-group. The negative cone G− is a right l-cone with oper-
ations

a → b := ba−1 ∧ 1, a � b := (b−1a ∨ 1)−1. (13)

Conversely, every right l-cone arises in this way.

Proof. Let G be a right l-group. Since 1 is the greatest element of G−, Eq. (5) follows. 
By definition, the right multiplications x �→ xa are isotone, hence lattice automorphisms. 
Using (13), this yields Eqs. (6), (7), and (12). Thus G− is a self-similar left hoop. The 
group isomorphism G ∼−→ Gop given by a �→ a−1 maps G− onto the positive cone G+. 
Furthermore, Eqs. (13) yield a binary operation

b/a = (a−1 � b−1)−1 = ba−1 ∨ 1
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on G+ which can be viewed as a counterpart of → on G−. Hence G+ with this operation 
and the opposite order � is a self-similar left hoop. Thus (G−; �) is a self-similar right 
hoop, which shows that G− is a right l-cone. Every g ∈ G can be written as g = a−1b

with a := (g ∧ 1)g−1 and b := (g ∧ 1) in G−. So G is the group of left fractions of G−.
Conversely, let M be a right l-cone, and let G = G(M) be its group of left fractions. 

Since M is a left and right hoop, it satisfies the left and right Ore condition and is 
cancellative. Hence G is a two-sided group of fractions, and M can be regarded as a 
submonoid of G. We make G into a right partially ordered group with negative cone M . 
This means that G is endowed with the partial order

a � b ⇐⇒ ab−1 ∈ M.

By Proposition 2, this partial order of G induces the partial order (9) on M . Since 
G = MM−1, each pair of elements a, b ∈ G is of the form a = ce−1, b = de−1 with 
c, d, e ∈ M . Hence (c ∧d)e−1 is the meet of a and b in G. Dually, the right hoop M defines 
the corresponding left partial order a � b ⇔ b−1a ∈ M on G. So the positive cone G+

becomes a left hoop with partial order a � b ⇔ b−1 � a−1 ⇔ ab−1 ∈ G− ⇔ ba−1 ∈ G+. 
Hence G+ is a ∨-semilattice, and the above argument shows that G is a lattice. Thus G
is a right l-group with negative cone M . Since → and � are uniquely determined by the 
multiplication of M which is induced by the multiplication of G, Eqs. (13) follow from 
the first part of the proof. �

As an immediate consequence, we obtain the first part of

Corollary 1. Up to isomorphism, there is a one-to-one correspondence between right 
l-groups and right l-cones. In particular, a Gaussian group is the same as a right l-group 
with a bounded atomic negative cone.

Proof. To prove the second part, let M be a Gaussian monoid. With the algebraic 
ordering, M can be identified with the positive cone of G := G(M). Applying x �→ x−1

to Eqs. (4) gives Eqs. (7) and (11) with

a → b = (a−1\b−1)−1.

In particular, (a → a)a = a ∧ a = a, which yields Eq. (5). Furthermore, Eq. (6) follows 
by [19], Lemma 1.7. Since G− is right cancellative, this implies that G− is a self-similar 
left hoop. By symmetry, G− is a right l-cone. Whence G is a right l-group. The converse 
is trivial. �
Remark. By Proposition 2, the partial order (9) of a right l-cone M is opposite to the 
algebraic order of M . This discrepancy resolves within the group G = G(M) where the 
partial order on M = G− and the algebraic order on G+ are induced by the partial order 
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of the whole group. In other words, a right l-cone M is the negative cone in its group of 
fractions G(M) while a Gaussian monoid M is the positive cone in G(M).

For a right l-cone M , Theorem 1 shows that the partial order of Mop is given by

a � b ⇐⇒ a � b = 1.

Therefore, Mop = (Mop; �, →) is a right l-cone with corresponding right l-group Gop. 
We call Mop the dual of M .

One may wonder if the join in M admits an explicit representation like Eq. (11) for 
the meet. This is indeed the case:

Corollary 2. Let M = (M ; →, �) be a right l-cone. Then

a ∨ b =
(
(b → a) � (a → b)

) � b (14)

holds for all a, b ∈ M .

Proof. By Eqs. (13) and (11), we have

(
(b → a) � (a → b)

) � b =
(
(a → b)−1(b → a) ∨ 1

)−1 � b

=
(
b−1((a → b)−1(b → a) ∨ 1

)−1 ∨ 1
)−1

=
((

(a → b)−1(b → a)b ∨ b
)−1 ∨ 1

)−1

=
((

(a → b)−1(a → b)a ∨ b
)−1 ∨ 1

)−1

=
(
(a ∨ b)−1 ∨ 1

)−1 = a ∨ b. �
Corollary 3. Let M = (M ; →, �) be a right l-cone. For all a, b ∈ M ,

(a � b) ∨ (b � a) = 1.

Proof. By Theorem 1, we have to verify that (b−1a ∨1)−1∨(a−1b ∨1)−1 = 1. Multiplying 
with (a−1b ∨1)b−1a = 1 ∨b−1a from the right, the equation turns into the valid equation 
(b−1a ∨ 1)−1(1 ∨ b−1a) ∨ b−1a = 1 ∨ b−1a. �

For an element g of a right l-group G, we define

g+ := (g ∨ 1)−1, g− := g(g ∨ 1)−1.

Note that g+, g− ∈ G−. We call g+ the positive and g− the negative part of g.

Corollary 4. Let G be a right l-group. Every element g ∈ G has a unique representation 
g = ab−1 with a ∨ b = 1, namely, a = g− and b = g+.
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Proof. As G is a left group of fractions of G−, there exist a, b ∈ G with g = a−1b. 
Since a(a � b) = b(b � a), this gives g = (a � b)(b � a)−1. By Corollary 3, we have 
(a � b) ∨ (b � a) = 1, which yields the required representation. Conversely, assume that 
g = ab−1 with a ∨ b = 1. Then b−1 = (a ∨ b)b−1 = ab−1 ∨ 1. Hence b = (g ∨ 1)−1 = g+, 
and thus a = gb = g−. �

Corollary 4 extends a fundamental property of l-groups to right l-groups. Another 
basic property of right l-groups is given by

Proposition 3. Every right l-group G is torsion-free.

Proof. If gn = 1, then h := 1 ∨ g ∨ · · · ∨ gn−1 satisfies hg = h. Whence g = 1. �
The proof that braid groups are torsion-free has thus been reduced to a single line.1

Example 1. Let Ω be the set of ordinals α with |α| < κ for a fixed infinite cardinal κ. With 
respect to addition, the monoid Ω is a self-similar right hoop with α � β := inf{γ ∈
Ω | α+γ � β}. In particular, Ω admits a group of right fractions. Moreover, Eqs. (5)–(7)
and (12) hold whenever the operation α → β := inf{γ ∈ Ω | γ + α � β} is defined on 
both sides of the equation. Note that for α, β ∈ Ω, an ordinal γ with γ +α � β need not 
exist. Thus, in general, α → β is not defined everywhere, and Ω is not a right l-cone.

3. Noetherian right l-groups with duality

Much of the vast theory of l-groups has no counterpart for right l-groups. The reason 
is that the positive and the negative cone are too loosely connected. Nevertheless, there 
are strong similarities yet to be exploited. The main difference between a right l-group 
and a classical l-group consists in the splitting of the lattice order into a left and right 
one. Their intersection is an l-subgroup, the quasi-centre, which will be briefly discussed 
in Section 9.

Let us call a right l-group G noetherian if its negative cone G− is noetherian. 
Equivalently, this means that every bounded increasing or decreasing sequence becomes 
stationary. If G is an l-group, it is enough to assume that bounded increasing sequences 
become stationary.

An old theorem of Birkhoff [4] states that noetherian l-groups are abelian, and that 
every such group is a cardinal sum Z(I), where Z stands for the additive group of integers. 
Trivially, such groups are Gaussian. In general, a Gaussian group need not even be 
distributive as a lattice, a phenomenon that is typical for Artin–Tits groups and other 

1 Such a proof was first given by Fadell, Fox and Neuwirth [34,35] by topological arguments. Using Garside 
calculus, direct proofs became possible [20,58]. Later, Dehornoy eliminated the unnecessary noetherian 
hypothesis which led to a much shorter proof [21].
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Garside groups. However, there is an important class of noetherian groups behaving more 
regularly and being more closely related to l-groups.

Recall that an element a of a lattice covers b if a > b and there are no other elements 
between a and b. The set of elements b covered by a will be denoted by a−. A lattice is 
said to be upper semimodular if a ∨ b covers b whenever a covers a ∧ b. Lattices satisfying 
the reverse implication are called lower semimodular. A modular lattice is defined by the 
implication

a � c ⇒ (a ∨ b) ∧ c = a ∨ (b ∧ c).

Proposition 4. Let M be a noetherian right l-cone. For x, y ∈ X(M) with x �= y,

(x → y) � (y → x) = x = (x � y) → (y � x).

Proof. Since (X; �) is right self-similar, Eq. (14) implies that

(
(x → y) � (y → x)

)
(x ∨ y) =

(
(x → y) � (y → x)

)((
(x → y) � (y → x)

) � x
)

= x
(
x � (

(x → y) � (y → x)
))

= x
(
(x → y)x � (y → x)

)
= x

(
(y → x)y � (y → x)

)
= x1 = x.

As x �= y, this gives the first equation. Passage to Mop yields the second equation. �
For a monoid M , consider the set

X̃(M) := X(M) ∪ {1}

of atoms together with the unit element 1.

Proposition 5. Let M be a noetherian right l-cone with group of fractions G = G(M).

(a) G is upper semimodular if and only if x, y ∈ X̃(M) implies that x � y ∈ X̃(M).
(b) G is lower semimodular if and only if x, y ∈ X̃(M) implies that x → y ∈ X̃(M).
(c) G is modular if and only if X̃(M) is closed with respect to → and �.

Proof. Assume first that G is upper or lower semimodular, and let x, y ∈ X̃(M) be given. 
Since 1 is a logical unit of M as a left or right hoop, we can assume that x, y ∈ X(M)
and x �= y. Then we have the Hasse diagrams
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�

x � y y � x

1

(x � y) ∧ (y � x)

x y

where the label of any edge, multiplied from the left with the upper node yields the lower 
node of the edge. So the left-hand diagram is equivalent to Eq. (11). As to the right-hand 
diagram, Corollary 3 of Theorem 1 shows that (x � y) ∨ (y � x) = 1. So it remains to 
verify that x(x � y) = (x � y) ∧ (y � x). By Eq. (11), this follows from Proposition 4.

If M is lower semimodular, the first diagram shows that x → y and y → x are 
atoms. Similarly, the second diagram implies that x � y, y � x ∈ X(M) if M is upper 
semimodular. This proves half of (a) and (b). Conversely, assume that X̃(M) is closed 
with respect to the operation →. Then the first diagram, multiplied from the right by any 
element of G, gives a weak form of lower semimodularity: If a and b are covered by a ∨ b, 
they cover a ∧ b. Since M is noetherian, every bounded descending chain in G becomes 
stationary. Hence G is lower semimodular by [28], Lemma 3.3. This establishes (b). 
Using the right-hand diagram, a similar argument proves (a). Now (c) follows by [28], 
Lemma 3.4. �
Remark. Note that for an upper or lower semimodular noetherian right l-group G, the 
length of maximal chains of any interval are equal. So G is a Gaussian group.

Proposition 6. Let M be a noetherian right l-cone. The following are equivalent.

(a) The group of fractions G(M) is distributive.
(b) G(M) is modular and x → y = x → z ⇒ y = z holds for x, y, z ∈ X(M).
(c) G(M) is modular and x � y = x � z ⇒ y = z holds for x, y, z ∈ X(M).

Proof. By symmetry, it is enough to verify the equivalence (a) ⇔ (b).

(a) ⇒ (b): Let x, y, z be atoms with x → y = x → z. Multiplying with x from the right 
gives x ∧y = x ∧z. Suppose that y �= z. Then x = x ∧(y∨z) = (x ∧y) ∨(x ∧z) = x ∧y = x ∧z, 
which implies that x � y and x � z. Hence x = y = z, a contradiction.

(b) ⇒ (a): Suppose that G(M) is not distributive. Then G(M) contains a diamond 
sublattice (see [44], Chapter II, Theorem 2). Multiplying with a suitable element from 
the right, we can assume that the greatest element of the diamond is 1:
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Choose an atom z ∈ X(M) with c � z, and define

x := (z ∧ b) ∨ a

y := (z ∧ a) ∨ b.

Since G(M) is modular, x, y ∈ X(M). Furthermore, the modularity gives x ∧ z = (z ∧
b) ∨ (a ∧ z) � y. Hence (z → x)z = z ∧ x = z ∧ y = (z → y)z, and thus z → x = z → y, 
which yields x = y, contrary to a ∨ b = 1. �
Definition 3. Let G be a noetherian right l-group. We define a duality of G to be a 
bijection D: X(G−) → X(G−) which satisfies

D(x → y) = (y → x) → D(y) (15)

for all x, y ∈ X(G−) with x �= y.

Proposition 7. Every modular noetherian right l-group G with duality D is distributive 
and satisfies

D−1(x � y) = (y � x) � D−1(y) (16)

for x, y ∈ X(G−) with x �= y.

Proof. We show first that x → y = x → z implies y = z for x, y, z ∈ X(G−). Assume 
first that x = y. Then x → z = 1, which yields z = x = y. So we can assume that x �= y

and x �= z. Then D(y → x) = (x → y) → D(x) = (x → z) → D(x) = D(z → x). Hence 
y → x = z → x, and thus (y → x)y = (x → y)x = (x → z)x = (z → x)z = (y → x)z, 
which yields y = z. By Proposition 6, it follows that G is distributive.

To verify Eq. (16), suppose that D−1(y) = y � x. Then D(y � x) = y, and Corol-
lary 3 of Theorem 1 implies that x � y �= y � x. Therefore, Proposition 4 yields 
D(x) = D

(
(x � y) → (y � x)

)
=

(
(y � x) → (x � y)

)
→ D(y � x) = y → y = 1, 

which is impossible. Hence D−1(y) �= y � x. With u := D−1(y) � (y � x)
and v := (y � x) � D−1(y), Proposition 4 yields D−1(y) = u → v. Hence 
(y � x) → (x � y) = y = D(u → v) = (v → u) → D(v) = (y � x) → D(v). So 
Proposition 6 implies that x � y = D(v). Thus D−1(x � y) = v = (y � x) � D−1(y), 
which establishes Eq. (16). �
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Next we show that a bijective map which satisfies Eq. (15) must be unique.

Proposition 8. Let G be a modular noetherian right l-group with duality D. Assume that 
x ∈ X(G). Then D(x) is the unique element y ∈ X(G−) such that the interval [yx, 1] is 
a chain.

Proof. We show first that [D(x)x, 1] is a chain. Suppose that there is an element y ∈
X(G−) with D(x)x = x ∧y. Then D(x) = x → y. Hence D(y → x) = (x → y) → D(x) =
1, a contradiction. Conversely, let y ∈ X(G−) be an atom with y �= D(x) such that 
[yx, 1] is a chain. By Proposition 4, we have D(x) = (D(x) → y) � (y → D(x)). Hence 
D(x) → y �= y → D(x). Therefore, Eq. (16) and Proposition 4 yield x = D−1D(x) =(
(y → D(x)) � (D(x) → y)

) � D−1(y → D(x)) = y � D−1(y → D(x)). So yx =
y
(
y � D−1(y → D(x))

)
= D−1(y → D(x))z with z := D−1(y → D(x)) � y ∈ X(G−). 

Since [yx, 1] is a chain, we infer that z = x, which yields D−1(y → D(x)) = y. Hence 
y → D(x) = D(y), and thus 1 = (y → D(x)) → D(y) = D(D(x) → y) ∈ X(G−), 
a contradiction. �
4. The quantum Yang–Baxter equation

As an application of Section 3, we now characterize the class of noetherian groups 
arising from solutions of the quantum Yang–Baxter equation. Let V be a vector space. 
Every linear map R: V ⊗ V → V ⊗ V gives rise to maps Rij : V ⊗n → V ⊗n where R acts 
on the ith and jth component of the tensor product V ⊗n with n � 2. For example, 
R12 = R⊗ 1, where 1 denotes the identity map on V ⊗(n−2). The quantum Yang–Baxter 
equation is the equation

R12R13R23 = R23R13R12 (17)

in End(V ⊗3). Note that the identity map 1V⊗V is a solution of Eq. (17). To initiate 
the study of solutions which cannot be obtained as deformations of the trivial solution 
R = 1, Drinfeld [30] introduced set-theoretic solutions, that is, solutions R induced by a 
map X2 → X2 for a basis X of the vector space V . Thus R(x, y) = (xy, xy) is given by 
two binary operations (x, y) �→ xy and (x, y) �→ xy on X.

A set-theoretic solution R of Eq. (17) is said to be unitary if R21R = 1. It is called 
left non-degenerate if the component map x �→ xy is bijective for all y ∈ X. If the maps 
y �→ xy are bijective, too, the solution R is said to be non-degenerate [33]. By [60], 
Proposition 1, the left non-degenerate unitary solutions R: X2 → X2 are equivalent to 
binary operations · on X with bijective left multiplications y �→ x · y such that

(x · y) · (x · z) = (y · x) · (y · z) (18)

for x, y, z ∈ X. Sets X with such an operation · are called cycle sets [60]. Under this 
correspondence, the map y �→ x · y is inverse to y �→ yx for all x ∈ X. The solution R
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associated to a cycle set X is non-degenerate if and only if the square map x �→ x · x is 
bijective ([60], Proposition 2). Accordingly, such cycle sets are called non-degenerate.

The structure group [33] of a solution R of Eq. (17) on a set X is the group GX

generated by X with relations

x ◦ y = xy ◦ xy (19)

for all x, y ∈ X. In terms of cycle sets, the structure group can be obtained as follows.
A cycle set A with an abelian group structure is said to be linear [60] if it satisfies 

the equations

a · (b + c) = a · b + a · c (20)

(a + b) · c = (a · b) · (a · c). (21)

Note that Eq. (21) implies Eq. (18) by the commutativity of addition. Linear cycle 
sets are equivalent to braces [61]. They carry a group structure (the adjoint group) 
G(A) = (A, ◦) given by

a ◦ b := ab + b, (22)

where a �→ ab is inverse to a �→ b · a.
Every non-degenerate cycle set X admits a unique extension to a brace Z(X) on the 

free abelian group generated by X. The operation · on Z(X) is obtained inductively 
from equations (20) and (21). The adjoint group G(Z(X)) is isomorphic to the above 
mentioned structure group GX (see [60], Section 2). Using the substitution x �→ y · x, 
the defining equation (19) turns into (y · x) ◦ y = (x · y) ◦ x = x + y, which connects the 
adjoint group with the additive group of Z(X).

Etingof et al. [33] have shown that the structure group GX is solvable if X is fi-
nite. Chouraqui [15] recently observed that GX is a Garside group. More generally, the 
following theorem gives a precise characterization of the right l-groups associated to 
non-degenerate unitary solutions of the quantum Yang–Baxter equation. As our proof 
does not make use of [15], it includes a new proof and extension of Chouraqui’s result.

Theorem 2. The map X �→ GX defines a one-to-one correspondence between

(a) non-degenerate cycle sets X, or equivalently,
(b) non-degenerate unitary set-theoretic solutions of the QYBE (17), and
(c) modular noetherian right l-groups with duality.

Proof. The equivalence between (a) and (b) follows by [60], Propositions 1 and 2. Let 
R: X2 → X2 be a non-degenerate unitary solution of Eq. (17), and let X be the corre-
sponding cycle set. Thus A := Z(X) is a brace, and GX = G(A) is the structure group 
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of R. To avoid confusion, the inverse of a ∈ GX will be denoted by a′. With the positive 
cone N(X), the group GX has a right partial order

a � b ⇐⇒ b ◦ a′ ∈ N(X).

By Eqs. (20) and (22), and [61], Eqs. (18) and (21), we have b ◦ a′ = ba
′ + a′ = (a ·

b) − (a · a) = a · (b − a). Since c �→ a · c is a bijection N(X) → N(X), this shows that 
a � b ⇐⇒ b −a ∈ N(X). So the right partial order of GX coincides with the natural partial 
order of Z(X). Thus GX is a noetherian right l-group, with a distributive lattice structure. 
For x, y ∈ X with x �= y, Eqs. (11) and (21) give (x ·y) ◦x = x +y = x ∧y = (x → y) ◦x. 
Hence

x · y = x → y (23)

for x �= y in X. Define a duality D: X → X by

D(x) := x · x.

Since X is non-degenerate, the map D is bijective. For x �= y in X, Eq. (23) implies that 
D(x → y) = (x · y) · (x · y) = (y · x) · (y · y) = (y → x) → D(y).

Conversely, let G be a modular noetherian right l-group with duality D. By Proposi-
tion 7, G is distributive. Define an operation · on X := X(G−) by

x · y :=
{
x → y for x �= y

D(x) for x = y.
(24)

Then X is closed under · by Proposition 5, which shows that the operation (24) is well 
defined. To verify Eq. (18), assume first that x, y, z ∈ X are distinct. By Proposition 6, 
this implies that x · y �= x · z and y · x �= y · z. Hence (18) follows by Eq. (10). Therefore, 
by symmetry, we can assume that x �= y = z. So we have to deal with the equation 
(x · y) · (x · y) = (y · x) · (y · y). By Eq. (24), this is just equivalent to Eq. (15).

It remains to verify that the maps σ(x): X → X with σ(x)(y) := x · y are bijective for 
all x ∈ X. Assume that x ·y = x ·z holds for some x, y, z ∈ X. If x �= y and x �= z, then x →
y = x → z, which yields y = z by Proposition 6. So we can assume that x = z. Suppose 
that y �= z. Then Eq. (15) gives D(y → x) = (x → y) → D(x) = (x · y) → (x · z) = 1, 
a contradiction. Thus σ(x) is injective. Now let x, y ∈ X be given. To show that σ(x) is 
surjective, we have to find an atom z with x ·z = y. If D(x) = y, then x ·x = y. Therefore, 
assume that D(x) �= y. Then Proposition 4 implies that (y → D(x)) � (D(x) → y) = y

and (D(x) → y) � (y → D(x)) = D(x). Hence y → D(x) �= D(x) → y, and, as in 
the proof of Proposition 8, Eq. (16) gives x = y � D−1(y → D(x)). Consequently, 
y �= D−1(y → D(x)), and thus Proposition 4 yields

y =
(
y � D−1(y → D(x))

)
→

(
D−1(y → D(x)) � y

)
= x →

(
D−1(y → D(x)) � y

)
= x ·

(
D−1(y → D(x)) � y

)
. �
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5. L-algebras and normal decompositions

A set X with a binary operation → is said to be an L-algebra [63] if X has a logical 
unit 1 (see Eq. (8)) and satisfies Eq. (10) such that the relation � given by (9) is 
antisymmetric. Thus every left or right hoop is an L-algebra. By [63], Proposition 2, every 
L-algebra X is partially ordered by (9), with greatest element 1. A smallest element 0 
(if it exists) will be called a zero element of X. If X has a zero element, we define

x := x → 0

for x ∈ X. Note that an L-algebra with 0 satisfies

0 = 1, 1 = 0.

A subset Y of an L-algebra X is said to be an L-subalgebra if 1 ∈ Y and Y is closed 
with respect to →. By [63], Theorem 3, every L-algebra X has a self-similar closure S(X), 
that is, a self-similar left hoop such that X is an L-subalgebra which generates S(X) as 
a monoid. (The multiplication in S(X) will always be denoted by concatenation.) Up to 
isomorphism, the self-similar closure is unique. The preorder

a � b :⇐⇒ ∃ c ∈ S(X): a = bc (25)

of S(X) induces a preorder on X, and the multiplication in S(X) induces a partial 
multiplication on X.

Proposition 9. Let X be an L-algebra with 0. For x, y ∈ X and a ∈ S(X), we have 
a → x ∈ X and

0 � a =⇒ a ∈ X =⇒ 0 � a (26)

0 � xy ⇐⇒ y � x. (27)

Proof. First, we have 1 → x = x ∈ X, and a → x ∈ X implies that ya → x = y → (a →
x) ∈ X. Hence a → x ∈ X for all a ∈ S(X).

To verify (26), assume that 0 � a. Then 0 = ab for some b ∈ S(X). Hence a =
b → ab = b → 0 ∈ X. Moreover, a ∈ X implies 0 → a = 1, that is, 0 � a. By [63], 
Proposition 5(e), 0 → xy =

(
(y → 0) → x

)
(0 → y) = y → x, which yields (27). �

In general, the implications (26) are not equivalences. For any x ∈ X, we have xx =
(x → 0)x = x ∧ 0 = 0 in S(X). Hence 0x = xxx = x 0. By iteration, this shows that for 
any a ∈ S(X) there is an element τ(a) ∈ S(X) with

τ(a)0 = 0a (28)
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such that τ(x) = x for x ∈ X. Since S(X) is self-similar, hence right cancellative, this 
gives a well-defined monoid homomorphism

τ :S(X) → S(X). (29)

For Garside monoids, the homomorphism τ is well known (see [25], Proposition 2.6).
If τ is bijective, Proposition 9 can be refined.

Proposition 10. Let X be an L-algebra with 0 such that the map τ : S(X) → S(X) is 
bijective. Then S(X) is cancellative, and X = {a ∈ S(X) | 0 � a} = {a ∈ S(X) | 0 � a}. 
For any x ∈ X, there is a unique x̃ ∈ X with xx = xx̃ = 0.

Proof. To verify that S(X) is left cancellative, it is enough to show that xa = xb with 
x ∈ X and a, b ∈ S(X) implies that a = b. Note first that xx = (x → 0)x = x ∧ 0 = 0. 
Multiplying xa = xb from the left with x then gives 0a = 0b. Hence τ(a)0 = 0a = 0b =
τ(b)0, and thus τ(a) = τ(b). Since τ is injective, this gives a = b.

For any x ∈ X, we define

x̃ := τ−1(x).

Since xx = 0, we have 0 = τ−1(0) = τ−1(x)τ−1(x) = xx̃. On the other hand, 0 = xx

gives 0 = τ−1(0) = τ−1(x)τ−1(x) � τ−1(x) = x̃. Thus Proposition 9 yields x̃ ∈ X.
Finally, assume that a ∈ S(X) satisfies 0 � a. Then 0 = xa for some x ∈ S(X). Thus 

0 � x, and Proposition 9 implies that x ∈ X. Hence xx̃ = 0 = xa, and thus 0 � x̃ = a. 
By (26), this completes the proof. �

Our next result shows that bijectivity of τ can be expressed in terms of X.

Proposition 11. Let X be an L-algebra with 0. The map τ : S(X) → S(X) is bijective if 
and only if X is ∧-closed and τ |X : X → X is an order isomorphism.

Proof. Assume that τ : S(X) → S(X) is bijective. For x, y ∈ X, Proposition 9 implies 
that 0 � x ∧ y. Thus Proposition 10 shows that x ∧ y ∈ X. Furthermore, Proposition 10
implies that xx̃ = 0 for some x̃ ∈ X. Hence x0 = xx̃˜̃x = 0˜̃x, which shows that τ |X is 
surjective. Since τ is a monoid homomorphism, τ is monotonic. Assume that x, y ∈ X

satisfy τ(x) � τ(y). Then x = ay for some a ∈ S(X). Hence 0 = xx = ay x � y x, and 
Proposition 10 implies that 0 � y x. So there is an element b ∈ S(X) with 0 = y x b. 
Thus y xx = y 0 = 0y = y xby. Since S(X) is left cancellative by Proposition 10, we infer 
that x = by � y. Whence τ |X is an order isomorphism.

Conversely, let X be ∧-closed and τ |X be an order isomorphism. For x, y ∈ X, this 
implies that τ(x ∧ y) = τ(x) ∧ τ(y). Hence τ(x → y)τ(x) = τ(x ∧ y) = τ(x) ∧ τ(y) =
(τ(x) → τ(y))τ(x), which shows that

τ(a → b) = τ(a) → τ(b) (30)
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holds for all a, b ∈ X. Assume that Eq. (30) has been verified for a ∈ X and a fixed 
b ∈ S(X). For x, y ∈ X, we use [63], Proposition 5(e) to obtain

τ(x → by) = τ((y → x) → b)τ(x → y) = (τ(y → x) → τ(b))τ(x → y)

=
(
(τ(y) → τ(x)) → τ(b)

)
(τ(x) → τ(y)) = τ(x) → τ(b)τ(y)

= τ(x) → τ(by).

This proves Eq. (30) for a ∈ X and b ∈ S(X). Assume now that (30) has been verified 
for a fixed a ∈ S(X) and all b ∈ S(X). For x, y ∈ X, this yields

τ(xa → b) = τ(x → (a → b)) = τ(x) → τ(a → b) = τ(x) → (τ(a) → τ(b))

= τ(x)τ(a) → τ(b) = τ(xa) → τ(b).

Thus Eq. (30) holds for all a, b ∈ S(X). Since τ |X is surjective, τ : S(X) → S(X) is 
surjective, too.

Finally, assume that τ(a) = τ(b) for some a, b ∈ S(X). Then τ(a → b) = τ(a) →
τ(b) = 1. Suppose that a → b �= 1. Then a → b � x < 1 for some x ∈ X. Hence τ(x) = 1, 
and thus x = 1, a contradiction. Consequently, a � b, and by symmetry, b � a. So τ is 
bijective. �
Definition 4. Let X be an L-algebra with 0. For an element a ∈ S(X) � {1} we define 
a normal decomposition to be a representation a = x1 · · ·xn with xi ∈ X such that 
xi → xi+1 = xi for all i ∈ {1, . . . , n − 1}. The empty word (n = 0) will be regarded as a 
normal decomposition of a = 1.

The following proposition is well known for Garside groups. It will be applied in the 
next section.

Proposition 12. Let X be an L-algebra with 0. Assume that the map (29) is bijective. Then 
every element a ∈ S(X) has a unique normal decomposition a = x1 · · ·xn. If a = xb �= 1
with x ∈ X and b ∈ S(X), then x1 � x and b � x2 · · ·xn.

Proof. By Proposition 10, any x ∈ X satisfies xx = 0 = x x̃. Since S(X) is left cancella-
tive, this yields

x̃ = x.

Let a = x1 · · ·xn be a normal decomposition with n � 2. With c := x1 · · ·xn−2, this 
implies that a → 0 = cxn−1 → xn = c → (xn−1 → xn) = c → xn−1 = cxn−1 → 0. 
Thus, by induction, we get a → 0 = x1 → 0 = x1. Hence x1 = x̃1 is uniquely determined 
by a. Since S(X) is left cancellative, the same argument can be applied to x2 · · ·xn. By 
induction, this proves that normal decompositions are unique.
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Assume that a = xb with x ∈ X and b ∈ S(X). Then Proposition 9 implies that 
z := x ∧ (b → 0) � 0. Therefore, Proposition 10 shows that z ∈ X. So we obtain 
(x → (b → 0))x1 = (a → 0)x1 = 0 = zz̃ = (x → (b → 0))xz̃, which yields x1 = xz̃ � x. 
Hence xb = x1 · · ·xn = xz̃x2 · · ·xn, and thus b = z̃x2 · · ·xn � x2 · · ·xn.

Finally, let a ∈ S(X) be given. If a �= 1, we set x1 := ã → 0. Then

(a → 0)a = (0 → a)0 = 0τ−1(0 → a) = (a → 0)x1τ
−1(0 → a).

Hence a = x1b with b := τ−1(0 → a). If b �= 1, the same argument yields b = x2c with 

x2 = b̃ → 0. Furthermore, x1 → x2 = x1 → (b → 0) = x1b → 0 = a → 0 = x1. By 
induction, this gives a normal decomposition of a. �

Under the assumptions of Proposition 12, we introduce the length l(a) of an element 
a ∈ S(X) to be the unique n ∈ N such that a has a normal decomposition a = x1 · · ·xn. 
Thus l(1) = 0 and l(x) = 1 for all x ∈ X with x �= 1. The following corollaries are 
classical in the context of Garside groups (see, e.g., [19], Section 3).

Corollary 1. Let X be an L-algebra with 0 such that the map τ : S(X) → S(X) is bijective. 
Then a � b implies l(a) � l(b) for any a, b ∈ S(X).

Proof. Without loss of generality, we can assume that a = xb for some x ∈ X. Further-
more, we exclude the trivial case b = 1. Let a = x1 · · ·xn and b = y1 · · · ym be normal 
decompositions. Then m, n > 0. Since x1 � x, there is an element y ∈ S(X) with x1 = xy. 
Hence y ∈ X by Proposition 10. Since S(X) is left cancellative, yx2 · · ·xn = y1 · · · ym. 
Now the same argument gives y1 = yz for some z ∈ X. Hence zy2 · · · ym = x2 · · ·xn. By 
induction, this gives n − 1 � m − 1. Thus n � m. �

For an L-algebra X with 0 and n ∈ N, let Xn ⊂ S(X) denote the set of all products 
x1 · · ·xn with at most n factors xi ∈ X. Thus X0 = {1} and X1 = X ∪ {1}.

Corollary 2. Let X be an L-algebra with 0 such that the map τ : S(X) → S(X) is bijective. 
An element a ∈ S(X) belongs to Xn if and only if l(a) � n.

Proof. Assume that a ∈ Xn �X. Then a = xb with x ∈ X and b ∈ Xn−1. We have to 
show that l(a) � n. By induction, we can assume that l(b) � n − 1. Let a = x1 · · ·xm be 
the normal decomposition of a. Then x1 = xy for some y ∈ X. Hence b = yx2 · · ·xm �
x2 · · ·xm, and Corollary 1 implies that m − 1 � l(b) � n − 1. Thus l(a) = m � n. �
Remark. Note that the normal decomposition of Proposition 12 holds without any atom-
icity or noetherian hypothesis. For example, the closed unit interval I := [0, 1] in R with 
a → b := min{b − a + 1, 1} is an L-algebra which satisfies the assumptions of Proposi-
tion 12. The group of fractions of S(I) is then the additive group of R.
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6. Right l-groups with strong order unit

In this section, we extend Dvurečenskij’s non-commutative version [31] of Mundici’s 
famous equivalence [52,53] between MV-algebras and abelian l-groups with strong order 
unit to arbitrary right l-groups. In this context, Garside groups can be regarded as 
Gaussian groups with finitely many atoms and a strong order unit.

Definition 5. We define a right brick to be a set X with binary operations → and � such 
that (X; →) and (X; �) are L-algebras with the same logical unit 1 and a simultaneous 
zero element 0 such that the equations x̃ = x and

x → x � y = y → y � x, x � x̃ → y = y � ỹ → x (31)

x̃ → y = x̃ → ỹ (32)

are satisfied for x, y ∈ X, where x := x → 0 and x̃ := x � 0.

Our terminology appeals to Bosbach’s “bricks” which can be represented as intervals 
in l-groups (see [64]). Note that Eq. (32) is not self-symmetric with respect to → and 
�. The example below gives a standard construction of right bricks.

Definition 6. Let G be a right l-group. We call an element u ∈ G normal if uG+u−1 = G+. 
We say that u ∈ G+ is a strong order unit if u is normal such that for any a ∈ G+, there 
is an n ∈ N with a � un.

Thus u ∈ G is normal if and only if a � b ⇐⇒ ua � ub holds for all a, b ∈ G. For 
l-groups, the concept of strong order unit coincides with the usual one [3,17].

Proposition 13. Let G be a right l-group. An element u ∈ G+ is a strong order unit if 
and only if {x ∈ G+ | x � u} = {x ∈ G+ | x � u} and this set generates G+.

Proof. Let u be a strong order unit. Assume that 1 � x � u. Then ax = u for some 
a ∈ G+. Hence x−1u = u−1au ∈ G+, which shows that x � u. By symmetry, this shows 
that {x ∈ G+ | x � u} = {x ∈ G+ | x � u}. For any a ∈ G+, there is an n ∈ N with 
a � un. Since u−1 is normal, this implies that u−1a � a ∧un−1. As u is normal, we obtain 
a � u(a ∧ un−1). Hence x := a(a ∧ un−1)−1 belongs to the set X := {x ∈ G+ | x � u}, 
and a = x(a ∧ un−1). By induction, this shows that X generates the monoid G+.

Conversely, assume that X := {x ∈ G+ | x � u} = {x ∈ G+ | x � u} generates G+. 
For any x ∈ X, this implies that there exist xl, xr ∈ X with u = xlx = xxr. Hence 
ux = xllxlx = xllu and xu = xxrxrr = uxrr. Since X generates G+, this shows that for 
any a ∈ G+ there exist b, c ∈ G+ with ua = bu and au = uc. Hence uG+ = G+u, and 
thus u is normal. If a ∈ G+ satisfies a � un, and x ∈ X, then ax � unx = yun for some 
y ∈ X. Hence ax � ylyun = un+1. By induction, this shows that u is a strong order 
unit. �
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As an immediate consequence, we get

Corollary. A Gaussian group with finitely many atoms is a Garside group if and only if 
it has a strong order unit.

Example 2. Let G be a right l-group with a strong order unit u. Consider the interval 
X = [u−1, 1] = {x ∈ G | u−1 � x � 1} in G. Since u is normal, every a ∈ G satisfies 
u−1 � a ⇔ au ∈ G+ ⇔ a ∈ G+u−1 = u−1G+ ⇔ ua ∈ G+ ⇔ u−1 � a. For x ∈ X, 
Eqs. (13) give x = u−1x−1 ∧ 1 = u−1x−1 and x̃ = (ux ∨ 1)−1. Since u−1 � x, we have 
x−1 � u, which yields 1 � ux. Hence x̃ = (ux)−1 = x−1u−1. Therefore, the maps x �→ x

and x �→ x̃ are inverse to each other.
For x, y ∈ X, we have u−1x−1 ∈ G+u−1, which gives u−1x � u−1 � y. Thus u−1 �

x → y � 1. Similarly, u−1 � y � x−1y gives u−1 � x−1y. Hence y−1x ∨ 1 � u, and 
thus u−1 � (y−1x ∨ 1)−1 = x � y. This shows that X is closed with respect to → and 
�. So (X; →) and (X; �) are L-algebras with simultaneous logical unit 1 and common 
zero element u−1. Furthermore, x → x � y = x → u−1(y−1x ∨ 1) = u−1(y−1 ∨ x−1) ∧ 1
and x � x̃ → y = x � (yx−1 ∧ 1)−1u−1 =

(
u(yx−1 ∧ 1)x ∨ 1

)−1 =
(
u(y ∧ x) ∨ 1

)−1. By 
symmetry, this proves Eqs. (31). Finally, using the map (29), Eq. (32) can be written as 
τ(x → y) = τ(x) → τ(y). This follows since τ is an automorphism of the monoid S(X). 
Thus X is a right brick.

Conversely, every right brick can be represented as an interval:

Theorem 3. Let X be a right brick. Up to isomorphism, there exists a unique right l-group 
G with a strong order unit u such that X ∼= [u−1, 1] := {x ∈ G− | u−1 � x}.

Proof. We regard X as an L-subalgebra of the self-similar closure S(X) of (X; →). 
Eq. (32) with x = 0 yields ỹ = ỹ. Thus

x̃ = x = x̃ (33)

holds for all x ∈ X. Since xx = (x → 0)x = x ∧ 0 = 0, this implies that

xx = xx̃ = 0. (34)

Next we prove the equivalences

x̃ � ỹ ⇐⇒ y � x ⇐⇒ x � y ⇐⇒ y � x = 1 (35)

for x, y ∈ X. Assume that x̃ � ỹ. Then x̃ = aỹ for some a ∈ S(X). Hence y0 = yỹ˜̃y =
xx̃˜̃y = xaỹ˜̃y = xa0. Thus y = xa, that is, y � x. Now assume that y = xa. Then 
Eq. (28) gives xy = 0a = τ(a)0 = τ(a)yy � yy, and thus x � y. Next assume that 
x � y. The second equation of (31) gives x = x � 0 = x � x̃ → y = y � ỹ → x. Hence 
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y � x = (y � 0) � (y � ỹ → x) = (0 � y) � (0 � ỹ → x) = 1 � 1 = 1. Finally, 
assume that y � x = 1. By the first equation of (31), this gives x → x � y = y. So 
xx = 0 � x � y yields x � x → x � y = y. Therefore, Eq. (32) yields x̃ � ỹ, which 
establishes (35).

In particular, (35) shows that the partial order (25) restricts to the partial order of 
(X; �). Suppose that there exists an element a ∈ S(X) �X with 0 � a. Then a = bxy for 
some b ∈ S(X) and x, y ∈ X with xy /∈ X. Since 0 � a � xy, Proposition 9 gives y � x, 
and (35) implies that x̃ � y. Hence 0 = xx̃ � xy, and thus xy ∈ X, a contradiction. 
Since 0 = xx̃ � x for all x ∈ X, the implications (26) yield

X = {a ∈ S(X) | a � 0} = {a ∈ S(X) | a � 0}. (36)

In particular, this implies that X is ∧-closed. By Eqs. (33) and Proposition 11, the map 
(29) is bijective.

Now we extend the operation x � y to arbitrary x, y ∈ S(X) =
⋃∞

n=1 X
n. By 

Proposition 12, every element of S(X) admits a unique normal decomposition. For x ∈ X

and a ∈ S(X) with normal decomposition a = x1 · · ·xn and n � 2, we set x � 1 := 1
and

x � a := (x � x1)
(
(x1 � x) � b

)
, (37)

where b := x2 · · ·xn. Note that Eq. (37) remains valid for n = 1. Furthermore, Eq. (37)
implies that

1 � a = a

for all a ∈ S(X). To complete the definition of � on S(X), assume that a, c ∈ S(X)
such that a has a normal decomposition a = x1 · · ·xn with n � 2, and b := x2 · · ·xn. 
Then we set

a � c := b � (x1 � c).

Again, this remains valid for n = 1, and

a � 1 = 1

holds for all a ∈ S(X). Assume that x, y ∈ X such that xy ∈ X. Then Proposition 9
gives y � x. So the second equation of (31) yields x � xy = x � x̃y = x � x̃ → y =
y � ỹ → x = ỹ = y. So we get

x � xy = y (38)
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for x, y ∈ X with xy ∈ X. For z ∈ X this gives xy � z = (xy � x) � (xy � z) = (x �
xy) � (x � z) = y � (x � z), and thus

xy � z = y � (x � z) (39)

for x, y, z ∈ X with xy ∈ X. Since (x � 0) � (x � y) = (0 � x) � (0 � y) = 1 holds 
for arbitrary x, y ∈ X, the equivalences (35) give x � y � x. Thus Proposition 9 with 
Eqs. (36) yields x(x � y) ∈ X. By the first equation of (31), we obtain x(x � y) = x →
x � y = y → y � x = y(y � x). Hence

x(x � y) = y(y � x) ∈ X (40)

for all x, y ∈ X.
Next we prove

x � yb = (x � y)
(
(y � x) � b

)
(41)

for arbitrary x, y ∈ X and b ∈ S(X). We proceed by induction. Assume first that yb ∈ X. 
Then (36) implies that b ∈ X. By Eqs. (40) and (38), we obtain

x � yb = (x � yb)
(
(yb � x) � 1

)
= (x � yb)

(
(yb � x) � (yb � y)

)
= (x � yb)

(
(x � yb) � (x � y)

)
= (x � y)

(
(x � y) � (x � yb)

)
= (x � y)

(
(y � x) � (y � yb)

)
= (x � y)

(
(y � x) � b

)
.

Now suppose that Eq. (41) has been verified for yb ∈ Xn, where n � 1. Assume that 
yb ∈ Xn+1, and consider normal decompositions yb = y0 · · · yn and b = z0 · · · zm. With 
c := y1 · · · yn and d := z1 · · · zm, Proposition 12 implies that y0 = yz for some z ∈ X. 
Thus b = zc = z0d, which yields z0 = zt for some t ∈ X, and c = td. Since c ∈ Xn, 
Eq. (39) and the inductive hypothesis yield

x � yb = x � y0c = (x � y0)
(
(y0 � x) � c

)
= (x � y)

(
(y � x) � z

)(
(z � (y � x)) � c

)
= (x � y)

(
(y � x) � z

)(
(z � (y � x)) � t

)((
t � (z � (y � x))

) � d
)

= (x � y)
(
(y � x) � zt

)((
t � (z � (y � x))

) � d
)

= (x � y)
(
(y � x) � z0

)(
(z0 � (y � x)) � d

)
= (x � y)

(
(y � x) � z0d

)
= (x � y)

(
(y � x) � b

)
,

which establishes Eq. (41).
Using Eq. (41), we prove

xa � b = a � (x � b) (42)
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for arbitrary x ∈ X and a, b ∈ S(X). Assume first that xa ∈ X. Let b = z1 · · · zn be a 
normal decomposition with e := z2 · · · zn. By Eq. (39), we only have to deal with the 
case n � 2. By induction, we can assume that Eq. (42) holds for xa ∈ X and e instead 
of b. Then (z1 � x)((x � z1) � a) = z1 � xa ∈ X. Therefore, Eqs. (37), (39), and (41)
yield

xa � b = (xa � z1)
(
(z1 � xa) � e

)
= (xa � z1)

(
(z1 � x)((x � z1) � a) � e

)
=

(
a � (x � z1)

)(
((x � z1) � a) � ((z1 � x) � e)

)
= a � (x � z1)

(
(z1 � x) � e

)
= a � (x � z1e) = a � (x � b).

Proceeding by induction, suppose that Eq. (42) has been verified for xa ∈ Xn and 
arbitrary b ∈ S(X). Assume that xa ∈ Xn+1, and let xa = x0 · · ·xn and a = y0 · · · ym be 
normal decompositions with n, m � 1. Then x0 = xy for some y ∈ X. With c := x1 · · ·xn

and d := y1 · · · ym, this gives a = y0d = yc. Hence y0 = yz for some z ∈ X, which yields 
zd = c ∈ Xn. Thus, by the inductive hypothesis, we get

xa � b = x0c � b = c � (x0 � b) = c � (
y � (x � b)

)
= d � (

z � (y � (x � b))
)

= d � (
y0 � (x � b)

)
= y0d � (x � b) = a � (x � b).

From Eq. (42), we easily obtain

ab � c = b � (a � c) (43)

for all a, b, c ∈ S(X). For a ∈ X, this is just Eq. (42). Assume that Eq. (43) has been 
verified for a ∈ Xn. For x ∈ X and a ∈ Xn, we then have (xa)b � c = ab � (x � c) =
b � (

a � (x � c)
)

= b � (xa � c), which proves Eq. (43).
Now we extend Eq. (41) to all x ∈ S(X). Assume that

a � yb = (a � y)
(
(y � a) � b

)
(44)

has been verified for all y ∈ X and b ∈ S(X), and a ∈ Xn. For x ∈ X and a ∈ Xn, 
Eq. (43) gives

xa � yb = a � (x � yb) = a � (x � y)
(
(y � x) � b

)
=

(
a � (x � y)

)(
((x � y) � a) � ((y � x) � b)

)
= (xa � y)

(
(y � x)((x � y) � a) � b

)
= (xa � y)

(
(y � xa) � b

)
,

which establishes Eq. (44).
Next we prove

a(a � b) = b(b � a) (45)
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for a, b ∈ S(X). By Eq. (40), this holds for x, y ∈ X. Assume that Eq. (45) has been 
shown for b ∈ X and a ∈ Xn. For such a, b and x ∈ X, Eqs. (43) and (44), and the 
inductive hypothesis give xa(xa � b) = xa(a � (x � b)) = x(x � b)

(
(x � b) � a

)
=

b(b � x)
(
(x � b) � a

)
= b(b � xa). Thus Eq. (45) holds for all a ∈ S(X) and b ∈ X. 

Assume that Eq. (45) has been verified for a ∈ S(X) and b ∈ Xn. For such a, b and 
y ∈ X, Eqs. (43) and (44) then imply that a(a � yb) = a(a � y)

(
(y � a) � b

)
=

y(y � a)
(
(y � a) � b

)
= yb

(
b � (y � a)

)
= yb(yb � a). This proves Eq. (45).

To show that a � a = 1 holds for all a ∈ S(X), assume that this has been proved for 
a particular a ∈ S(X). Then Eqs. (43) and (44) give xa � xa = a � (x � xa) = a �
(x � x)

(
(x � x) � a

)
= a � a = 1 for all x ∈ X. With Eqs. (43) and (45), this shows 

that (S(X); �) is a right hoop. To show that (S(X); �) is self-similar, we have to verify

a � ab = b (46)

in S(X). For a ∈ X, this follows by Eq. (44). Assume that (46) has been verified for a 
particular a ∈ S(X). For any x ∈ X, this implies that xa � (xa)b = a � (x � xab) =
a � ab = b. Thus (S(X); �) is a self-similar right hoop.

So we have proved that S(X) is a right l-cone. By Theorem 1, the group of fractions 
is a right l-group G with G− = S(X). By the dual of Proposition 13, 0−1 is a strong 
order unit of G. The proof is complete. �
Remarks. 1. Theorem 3 implies that every right brick (X; →, �) has a mirror image 
(X; �, →) which is a right brick with the opposite multiplication in S(X). Therefore, 
Eq. (32) in Definition 5 has a symmetric counterpart

x̃ � ỹ = x̃ � y

which holds in every right brick.
2. By Theorem 3, every right brick is a lattice. Eqs. (13) show that the meet and join 

can be represented as

x ∧ y = ((x → y) → x)∼, x ∨ y = x̃ → x̃ � ỹ.

3. For any right brick X, each interval [0n, 1] in the corresponding right l-group G is 
again a right brick. The direct limit of the intervals [0n, 1] is the negative cone of G.

7. Discrete L-algebras and block labellings

In Section 4, solutions of the quantum Yang–Baxter equation have been associated to 
modular noetherian right l-groups with duality. By Proposition 7, the underlying lattice 
of such a right l-group G is distributive. If G is a Garside group, the set X(G−) of atoms 
is finite, and G is of I-type ([48], Theorem 2.2; cf. [62], Theorem 1). So the structure of 
G is encoded in the hypercube generated by the cycle set X(G−).
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Our next aim is to show that the concept of “I-type” admits a vast extension to a 
class of right l-groups G containing all modular Garside groups. Instead of a hypercube, 
the interval [

∧
X(G−), 1] is then a (dual) geometric lattice, so that G is completely 

determined by the corresponding geometry. In particular, this will imply that every 
finite dimensional projective space over a skew-field with a “non-degenerate” labelling 
(see Section 8) corresponds to a modular right l-group G of generalized “I-type”. The 
construction of G from the translates of [

∧
X(G−), 1] can be viewed as an “S-pasted 

sum” in the sense of Herrmann [46].
Let L be a lower semimodular lattice with ascending chain condition. (In what follows, 

it will be convenient to work with lower instead of upper semimodular lattices.) Recall 
that i ∈ L is meet-irreducible if i �= 1 and i = a ∧ b implies that i = a or i = b. Thus 
every a ∈ L is a finite meet of meet-irreducibles. For any a ∈ L, the maximal chains in 
the interval [a, 1] are of the same length r(a) ∈ N ∪ {∞}, the rank of a. The elements of 
rank 1 are called points, and the elements of rank 2 are the lines of L. The set of points 
will be denoted by X(L).

If L has a smallest element 0, then dimL := r(0) − 1 is called the dimension of L. If 
every meet-irreducible i ∈ L is a point, Lop is said to be a geometric lattice (see [44]). 
Every geometric lattice admits a unique decomposition into indecomposable geometric 
lattices, which can be characterized by the property that every line contains at least three 
points. Modular indecomposable geometric lattices of dimension � 3 are equivalent to 
projective spaces over a skew-field [44].

Definition 7. Let L be a lower semimodular lattice with ascending chain condition. Con-
sider the ∧-sublattice

Λ(L) := {x1 ∧ · · · ∧ xn | x1, . . . , xn ∈ X(L)}.

The sublattice Rad(L) := {a ∈ L | ∃ b ∈ Λ(L): b � a} will be called the radical of L. We 
call a right l-group G is geometric if G is noetherian and lower semimodular such that 
Rad(G−) = Λ(G−). The dimension dimG := dim Λ(G−) will be called the dimension
of G.

Note that for a < b in Λ(G−), the lower semimodularity of G implies that b covers 
a in Λ(G−) if and only if b covers a in G. Hence Λ(G−) is a lower semimodular lattice, 
and thus Λ(G−)op is geometric.

Proposition 14. Let G be a lower semimodular noetherian right l-group. Then Λ(G−)op
is a geometric lattice. If G is modular, G is geometric in the sense of Definition 7.

Proof. The first assertion has already been proved. Thus assume that G is modular. For 
a given a ∈ Λ(G−), let p be join-irreducible in [a, 1], and let p0 be the single element in 
p− ∩ [a, 1]. The lower semimodularity implies that x � p0 for any x ∈ X(G−) ∩ [a, 1]. 
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Hence p0 = a. Since every b ∈ [a, 1] is a join of join-irreducibles, this implies that 
b = c1 ∨ · · · ∨ cn for suitable ci ∈ [a, 1] with a ∈ c−i . Now the dual argument shows that 
the meet-irreducibles of [a, 1] belong to X(G−). Whence [a, 1] ⊂ Λ(G−). �

The relationship to Theorem 3 is given by

Proposition 15. Let G be a modular noetherian right l-group. If Δ :=
∧
X(G−) exists 

in G, then Δ−1 is a strong order unit of G.

Proof. For x, y ∈ X(G−) with x �= y, we have Δx � (x → y)x = x ∧ y. Hence Δx � Δ, 
and thus ΔxΔ−1 � 1. If c ∈ G covers xΔ, then either c = Δ or c ∨Δ covers Δ. Suppose 
that c �� 1. By the modularity of G, the lattice [c ∨ Δ, c ∨ 1] is isomorphic to [Δ, 1]. 
So there are elements a1, . . . , an ∈ G covered by c ∨ 1 such that a1 ∧ · · · ∧ an ∧ 1 = Δ. 
Right multiplication by (c ∨ 1)−1 would then carry a1, . . . , an, 1 into lower neighbors
of 1, and their meet would be less than Δ, which is impossible. Hence xΔ = Δy for 
some y ∈ X(G−), and thus Δ is normal. Furthermore, an easy induction shows that any 
a ∈ G− satisfies Δn � a for a sufficiently large n ∈ N. �

Next we show that modularity follows if X(G−) is finite.

Proposition 16. Let G be a noetherian right l-group with X(G−) finite. With Δ :=∧
X(G−), the following are equivalent.

(a) The interval [Δ, 1] is lower semimodular.
(b) X̃(G−) is closed with respect to the operation →.
(c) G is modular.

A group G with these equivalent properties is a Garside group.

Proof. (a) ⇒ (b): For x, y ∈ X(G−) with x �= y, the interval [x ∧ y, x] is of length 1. 
Hence x ∧ y = (x → y)x yields x → y ∈ X(G−), which proves (b).

(b) ⇒ (c): By Proposition 5, G is lower semimodular. Since finite meets exist in Λ(G−), 
it follows that Λ(G−) is a lattice. If a, b ∈ Λ(G−) and a covers b in Λ(G−), there is an 
atom x ∈ X(G−) with x ∧a = b. So a covers b in G. Hence Λ(G−) is lower semimodular, 
and thus Λ(G−)op is a geometric lattice. Let H denote the set of elements h ∈ G which 
cover Δ. The theorem of Basterfield and Kelly [2] (cf. [45], Theorem 1) implies that 
|X(G−)| � |H ∩ Λ(G−)| � |H|. For any h ∈ H, the equation (h → Δ)h = h ∧ Δ = Δ
shows that h → Δ ∈ X(G−). Furthermore, Eq. (14) yields (h → Δ) � Δ = h ∨ Δ = h. 
Therefore, we get |X(G−)| = |H|. By Greene’s theorem ([45], Theorem 2), this implies 
that Λ(G−) is modular and H ⊂ Λ(G−). Hence Gop satisfies (a), and thus G is modular 
by Proposition 5.
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Finally, assume that (a)–(c) hold. By the Remark after Proposition 5, G is Gaussian. 
Thus G is Garside by Proposition 15 and the corollary of Proposition 13. �
Corollary 1. Every distributive noetherian right l-group is geometric. If Δ :=

∧
X(G−)

exists, G is a Garside group.

Proof. The first statement follows by Proposition 14. If Δ exists, the interval [Δ, 1] is 
finite. By Proposition 16, G is Garside. �
Corollary 2. The structure group GX of a finite cycle set X is geometric.

Proof. By Theorem 2, GX is a modular noetherian right l-group with duality. Hence 
GX is distributive by Proposition 7. So the assertion follows by Corollary 1. �
Definition 8. We call an L-algebra X discrete if every element x < 1 is maximal.

By Proposition 5, any lower semimodular noetherian right l-group G gives rise to a 
discrete L-algebra 

(
X̃(G−); →

)
. In the following definition, we use the notation

↓x := {y ∈ Ω | y � x}

for elements x of a partially ordered set Ω.

Definition 9. Let L be a lower semimodular lattice with Rad(L) = L and ascending 
chain condition. We define a block assignment of L to be a collection of injective lattice 
homomorphisms ex: ↓x → L for each x ∈ X(L) such that ex(x) = 1 and eex(x∧y)ex(a) =
eey(x∧y)ey(a) for distinct x, y ∈ X(L) and a � x ∧y. A lattice L with a block assignment 
will be called a block.

For a discrete L-algebra X, consider the self-similar closure S(X) (see [63], Theorem 3) 
with its partial ordering of Proposition 2. Thus a ∈ S(X) covers b ∈ S(X) if and only if 
b = xa for some x ∈ S1(X) := X � {1}. Therefore, S(X) has a natural partition

S(X) = �
n∈N

Sn(X)

with Sn(X) := {x1 · · ·xn | x1, . . . , xn ∈ S1(X)}. In particular, S(X) satisfies the ascend-
ing chain condition. Hence S(X) is a lattice.

Proposition 17. Up to isomorphism, there is a one-to-one correspondence between discrete 
L-algebras and blocks.

Proof. Let X be a discrete L-algebra. For a ∈ S(X) and distinct x, y ∈ S1(X), Eq. (11)
yields xa ∧ ya = (x ∧ y)a = (x → y)xa = (y → x)ya. By [28], Lemma 3.3, this implies 
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that the lattice S(X) is lower semimodular. We show that B := Rad(S(X)) is a block. 
For x ∈ S1(X) and a ∈ B ∩ ↓x we define ex(a) := x → a. Since (x → a)x = a, 
the map ex is injective. Moreover, for any a ∈ B ∩ ↓x, the interval [a, x] is mapped 
onto [ex(a), 1]. In fact, if ex(a) � b, then a → bx =

(
(x → a) → b

)
(a → x) = 1 and 

ex(bx) = x → bx = b. By [63], Proposition 4, this implies that ex: B ∩ ↓x → B is a 
lattice homomorphism with ex(x) = 1. For distinct x, y ∈ S1(X) and a � x ∧ y, we have 
ex(x ∧ y) = x → (x → y)x = x → y. Hence eex(x∧y)ex(a) = (x → y) → (x → a) =
(y → x) → (y → a) = eey(x∧y)ey(a), which proves the claim.

Conversely, let B be a block with block assignment ex: ↓x → B for x ∈ X(B). Define 
a binary operation → on X := X(B) �{1} with 1 as logical unit and x → y := ex(x ∧ y)
for distinct x, y ∈ X(B). Then

(x → y) → (x → z) = (y → x) → (y → z) (47)

clearly holds if x, y, z are not all distinct or one of them is equal to 1. Otherwise, (x →
y) → (x → z) = ex(x ∧ y) → ex(x ∧ z) = eex(x∧y)

(
ex(x ∧ y) ∧ ex(x ∧ z)

)
= eex(x∧y)ex(x ∧

y ∧ z). By symmetry, this proves that X is a discrete L-algebra. If B is of the form 
B = Rad(S(Y )) for a discrete L-algebra Y , then X ∼= Y .

To show that B ∼= Rad(S(X)), we use the block assignment to construct an embedding
f : B ↪→ S(X). We start with the natural embedding X ↪→ S(X). For any a ∈ B, let l(a)
be the length of the interval [a, 1]. If l(a) > 1, there exists an element x ∈ X(B) with 
a � x. Thus l(ex(a)) = l(a) −1. Inductively, we define f(a) := f(ex(a))x. If x �= y ∈ B(X)
and a � y, then ex(a) � ex(x ∧y) ∈ X(B). Since ex(x ∧y)x = f(x ∧y) = ey(x ∧y)y, this 
gives f(ex(a))x = f(eex(x∧y)ex(a))ex(x ∧ y)x = f(eey(x∧y)ey(a))ey(x ∧ y)y = f(ey(a))y. 
Hence f is well defined and multiplicative. As f preserves the length of intervals, f is 
injective. For a ∈ B and distinct x, y ∈ X(B), we have f(xa ∧ ya) = f(x ∧ y)f(a), 
where f(x ∧ y) = ex(x ∧ y)x = (x → y)x = x ∧ y. Thus f induces a lattice isomorphism 
B

∼−→ Rad(S(X)). �
Block assignments can be conveniently described as follows.

Definition 10. Let L be a lower semimodular lattice with Rad(L) = L and ascending 
chain condition. To any pair (a, b) ∈ L2 with a ∈ b− we attach a label λ(a, b) ∈ X(L) in 
such a way that λ(x, 1) = x for x ∈ X and the following are satisfied:

(1) For any b ∈ L, the labels λ(a, b) with a ∈ b− are distinct.
(2) If a, b ∈ c− and a �= b, then λ(a ∧ b, a) = λ

(
λ(a, c) ∧ λ(b, c), λ(a, c)

)
.

If such a labelling λ exists, we call it a block labelling of Lop.

Example 3. X(L) = {x, y, z, t}
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The labels give rise to a block assignment. For example, the labels λ(c, z) with c ∈ z−

determine the embedding ez: [0, z] 
∼−→ [a, 1] ↪→ L. If the meet-irreducible b ∈ L is 

dropped, we obtain a block labelled modular lattice which retains the whole information: 
From the labelling, b can be reconstructed!

Proposition 18. Up to isomorphism, there is a one-to-one correspondence between discrete 
L-algebras and geometric lattices with a block labelling.

Proof. Let X be a discrete L-algebra. We embed X into S(X). For a, b ∈ Λ(S(X)) with 
a ∈ b−, define λ(a, b) := b → a. Then λ has values in X(G−), and it is easily checked 
that λ is a block labelling of Λ(S(X))op. Moreover, Λ(S(X))op is a geometric lattice, 
and the block labelling recovers the L-algebra X.

Conversely, let λ be a block labelling of a geometric lattice Lop. For distinct x, y ∈
X(L), we set x → y := λ(x ∧ y, x). Adjoining a logical unit 1 to X(L), we get a discrete 
L-algebra X := X(L) � {1}. To prove this, it is enough to verify Eq. (47) for distinct 
x, y, z ∈ X(L). There are two cases.

Case 1: The x ∧ y, x ∧ z, and y ∧ z are pairwise distinct.
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By Definition 10, this gives (x → y) → (x → z) = λ(x ∧ y, x) → λ(x ∧ z, x) = λ
(
λ(x ∧

y, x) ∧ λ(x ∧ z, x), λ(x ∧ y, x)
)

= λ(x ∧ y ∧ z, x ∧ y), and Eq. (47) follows by symmetry.
Case 2: x ∧ y = y ∧ z.
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Then (x → y) → (x → z) = λ(x ∧ y, x) → λ(x ∧ z, x) = 1, and similarly, (y → x) →
(y → z) = 1.

To verify that L ∼= Λ(S(X)), we extend λ to a function on {(a, b) ∈ L2 | a � b}
with values in S(X). For a maximal chain a = c0 < c1 < · · · < cn = b we set 
λ(a, b) := λ(c0, c1) · · ·λ(cn−1, cn). Let a = c′0 < c′1 < · · · < c′n = b be another 
chain in L with c′n−1 �= cn−1. Then x := λ(cn−1, b) and y := λ(c′n−1, b) are distinct, 
and λ(cn−1 ∧ c′n−1, cn−1) = x → y. Similarly, λ(cn−1 ∧ c′n−1, c

′
n−1) = y → x. Hence 

λ(a, cn−1 ∧ c′n−1)λ(cn−1 ∧ c′n−1, cn−1)λ(cn−1, b) = λ(a, cn−1 ∧ c′n−1)(x ∧ y), which shows 
that the extension of λ is well defined. Moreover, the construction shows that the map 
f : L → S(X) with f(a) := λ(a, 1) is injective and length preserving. As in the proof of 
Proposition 17, it follows that f is a lattice embedding. Thus L ∼= Λ(S(X)). �

Example 3 shows that Λ(S(X)) can be smaller than Rad(S(X)). By Proposition 14, 
this implies that a block labelling of a finite modular geometric lattice need not lead to 
a geometric right l-group.

8. Geometric Garside groups

Next we determine the discrete L-algebras for which the lattice S(X) is modular.

Proposition 19. Let X be a discrete L-algebra. The lattice S(X) is modular if and only if 
for x, y, u, v ∈ X � {1} with x �= y and (x → y) → u = (y → x) → v, there is an element 
z ∈ X with x → z = u and y → z = v.

Proof. Assume that S(X) is modular, and let x, y, u, v ∈ X � {1} with x �= y and (x →
y) → u = (y → x) → v be given. If (x → y) → u = 1, then x → y = u and y → x = v, 
and z := x ∧ y meets the requirement. Therefore, assume that (x → y) → u < 1. Then 
ux ∧ (x ∧ y) = ux ∧ y = (ux → y)ux =

(
u → (x → y)

)
ux =

(
(x → y) → u

)
(x → y)x =(

(y → x) → v
)
(y → x)y. By symmetry, this yields ux ∧ (x ∧ y) = vy ∧ (x ∧ y). So we 

have a subposet
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of S(X). As S(X) is modular, z := ux ∨ vy ∈ S1(X) satisfies x → z = u and y → z = v.
Conversely, assume that the condition of the proposition holds, and let a, b ∈ S(X)

be distinct elements with a− ∩ b− �= ∅. Suppose that the interval [a, a ∨ b] is of length 
l > 1. Then there exist c, d ∈ (a ∨ b)− with a < c and b < d. Hence c ∧d > a ∧ b. So there 
exists an element e � c ∧ d with a ∧ b ∈ e−. If e < c ∧ d, we can replace a, b by a, e or b, e
or a ∨ e, b ∨ e to get a smaller length l. Thus, by induction, we can assume that e = c ∧d. 
Now there are x, y, u, v ∈ S1(X) with c = x(a ∨ b), d = y(a ∨ b), a = uc, and b = vd. 
Furthermore, x �= y and c → d = x(a ∨ b) → d = x →

(
(a ∨ b) → d

)
= x → y. Hence e =

(c → d)c = (x → y)c. Similarly, we obtain 
(
(x → y) → u

)
e = a ∧ b =

(
(y → x) → v

)
e, 

which yields (x → y) → u = (y → x) → v. So there is an element z ∈ S1(X) with 
x → z = u and y → z = v. Hence a = ux(a ∨ b) � z(a ∨ b), and similarly, b � z(a ∨ b), 
which gives a ∨ b � z(a ∨ b), a contradiction. �

A discrete L-algebra X which satisfies the equivalent conditions of Proposition 19 will 
be called modular.

Definition 11. We call a discrete L-algebra X and the corresponding block labelling 
non-degenerate if X is modular and satisfies

(1) ∀x, y ∈ S1(X): x → y = y → x =⇒ x = y.
(2) For distinct x, y ∈ S1(X) there exist u, v ∈ S1(X) with x = u → v and y = v → u.

Theorem 4. Let X be a non-degenerate discrete L-algebra. Then S(X) is a right l-cone, 
and its group of fractions is a modular geometric right l-group G with X̃(G−) = X.

Proof. We show first that S(X) is left cancellative. Thus let a, b ∈ S(X) and z ∈ S1(X)
with za = zb be given. We have to show that a = b. If a ∨ b < 1, there exist c, d ∈ S(X)
and x ∈ S1(X) with a = cx and b = dx. Thus zc = zd, and a, b can be replaced by c, d. 
So we can assume that a ∨ b = 1. Suppose that a �= b. Then za = zb � a ∧ b. Hence z �
a → b < 1, and thus z = a → b = b → a. Consequently, a ∧b = (a → b)a = za = zb. Since 
S(X) is modular, this implies that a, b ∈ S1(X). Therefore, condition (1) of Definition 11
yields a = b, a contradiction. Thus S(X) is left cancellative, hence cancellative. By [63], 
Section 4, we infer that S(X) embeds into the group G of left fractions.

The left Ore condition implies that any pair of elements a, b ∈ G has a lower bound. 
So there are sequences a0, . . . , an and b0, . . . , bm in G with a0 = b0, an = a, and bm = b, 
such that xi := ai−1a

−1
i ∈ S1(X) and yj := bj−1b

−1
j ∈ S1(X) for i ∈ {1, . . . , n} and 

j ∈ {1, . . . , m}. Assume that a and b are incomparable and n + m is minimal. Then 
n, m > 0 and a1 �= b1. We will show that a and b admit an upper bound c such that 
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the length l[a, c] of the interval [a, c] is m while l[b, c] = n. We proceed by induction on 
n + m.

Suppose that there is no such c. By condition (2) of Definition 11, there exist x, y ∈
S1(X) with x1 = x → y and y1 = y → x. Hence x1x = y1y, which yields yx−1a1 =
y−1
1 x1a1 = y−1

1 y1b1 = b1. Thus x−1a1 is an upper bound of a1 and b1. So we can assume 
that n > 1. Then the inductive hypothesis implies that a1 and b has an upper bound d
with l[a1, d] = m and l[b, d] = 1. Similarly, there is an upper bound c of a and d with 
l[a, c] = m and l[d, c] = n − 1. Thus c � a, b with l[a, c] = m and l[b, c] = n.

Since ac−1, bc−1 ∈ G−, it follows that G is a modular lattice. Whence G is a noethe-
rian right l-group with negative cone S(X), and X̃(G−) = X. By Proposition 14, G is 
geometric. �

As a consequence, we get our main result for discrete L-algebras:

Corollary. Up to isomorphism, there is a one-to-one correspondence between modular 
geometric right l-groups and non-degenerate discrete L-algebras.

Proof. Let X be a non-degenerate discrete L-algebra. Then Theorem 4 yields a modular 
geometric right l-group G with X̃(G−) = X. Conversely, let G be a modular geometric 
right l-group. By Proposition 5, this implies that X := X̃(G−) is closed with respect to →
and �. Hence (X, →) is a discrete L-algebra which is non-degenerate by Proposition 4. 
This completes the correspondence. �

For finite discrete L-algebras, the three conditions of non-degeneracy (Definition 11) 
reduce to a single one:

Theorem 5. Up to isomorphism, there exists a one-to-one correspondence between mod-
ular Garside groups and finite discrete L-algebras X satisfying

∀x, y ∈ S1(X):x → y = y → x =⇒ x = y. (48)

Proof. Let X be a finite discrete L-algebra satisfying (48). We show first that the im-
plication

ax = ay =⇒ x = y (49)

holds for all a ∈ S(X) and x, y ∈ S1(X). We proceed by induction over the length 
of a. Suppose that x �= y. Then ax = ay � x ∧ y implies that ax = ay = c(x ∧ y) for 
some c ∈ S(X). Hence a = c(x → y) = c(y → x), and the inductive hypothesis yields 
x → y = y → x, contrary to (48). As in the proof of Proposition 15, Δx � Δ holds for 
all x ∈ S1(X), where Δ :=

∧
X. Thus Δx = x′Δ for some x′ ∈ S1(X), which gives a 

map x �→ x′ that is injective by (49). Thus x �→ x′ is a bijection S1(X) → S1(X). In 
particular, this implies that for a suitable positive integer n, the element Δn commutes 
with any x ∈ S1(X), hence with every a ∈ S(X).
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Assume that a, b ∈ S(X) and z ∈ S1(X) satisfy za = zb. Then Δa = Δb. Hence 
aΔn = Δna = Δnb = bΔn, which yields a = b. Thus S(X) is left cancellative. So S(X)
embeds into its group G of left fractions. For any positive integer m, it follows that 
the labels of the upper neighbors of Δm are pairwise distinct. So the Basterfield–Kelly 
theorem [2] implies that the interval [Δm, 1] is modular for all m. Thus S(X) is modular. 
Consequently, for any pair of distinct x, y ∈ S1(X), there exist a, b ∈ S(X) with Δ =
xa = yb. Hence u := (a ∨ b) → a and v := (a ∨ b) → b are in S1(X), and u → v =

(
a →

(a ∨b)
)
→ (a → b) = a → b = a → (a ∧b) = a → xa = x, and similarly, v → u = y. Thus 

Theorem 4 and Proposition 16 imply that G is a modular Garside group. The converse 
follows by the corollary of Theorem 4. �
Example 4. There exist finite geometric lattices which admit no block labelling, for 
example, the dual of the following lattice, a truncated 4-cube:
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Here x → y, x → z, and x → t are pairwise distinct, and the same holds if x, y, z, t are 
permuted. But any labelling u, v, w of x− satisfies u → v = u → w.

Example 5. Our final example shows the lattice of the Fano plane with a non-degenerate 
block labelling:

�

� � � � � � �

� � � � � � �

�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�
�
�
�
�

���������������

�
�
�
�
�
�

���������������

�
�
�
�
�
�

�
�

�
�

�
�

�
�
�
�
�
�

�
�

�
�

�
�

�
�
�
�
�
�

�
�

�
�

�
�

�
�
�
�
�
�

�
�

�
�

�
�

������������������

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

1
2 3 4 5 6 7

1
2

6

3

4

1

2
1

6
3
4 5

7

1
7

5 6
5
2

4
3

7

2 3 6 5 7 4



W. Rump / Journal of Algebra 439 (2015) 470–510 507
Open problems. The question arises which geometric lattices admit a block labelling, 
and which of them admit a non-degenerate block labelling. At the moment, we have 
no method to construct non-degenerate block labellings systematically. It is not clear 
whether an infinite geometric lattice with a non-degenerate block labelling has to be 
modular. Neither do we know whether modularity in Definition 11 can be dropped. It 
would be nice to have a geometric interpretation of block labellings, especially in the 
case of projective geometries over a skew-field.

9. The quasi-centre of an archimedean right l-group

In the context of spherical Artin–Tits groups, the relationship between the subgroup 
of normal elements and the components of the Coxeter system was observed by Brieskorn 
and Saito [10] and Deligne [26], some years after Garside’s successful treatment of the 
braid group case [36]. For an irreducible Coxeter matrix, they found that the subgroup of 
normal elements is cyclic and almost the centre of the Artin–Tits group, up to a possible 
involution. Picantin [57] extended the correspondence to Garside groups.

In this final section, we exhibit a large class of right l-groups G for which the normal 
elements form an l-subgroup of G. Since every normal element u ∈ G satisfies a � b ⇐⇒
ua � ub for all a, b ∈ G, the set N(G) of normal elements is a partially ordered group. 
Following Brieskorn and Saito [10], we call N(G) the quasi-centre of G.

Definition 12. We call a right l-group G archimedean if a, b ∈ G+ with an � b for all 
n ∈ N implies that a = 1.

For l-groups, this concept coincides with the definition of Darnel [17] which is for-
mally weaker than that in [3]. Let us call a right l-group G complete if every non-empty 
bounded subset has a meet and join in G. Thus every noetherian right l-group is com-
plete, and every complete right l-group is archimedean. In contrast to l-groups (see [17], 
Theorem 53.3), of course, an archimedean right l-group need not be commutative.

Proposition 20. The quasi-centre N(G) of an archimedean right l-group G is an 
l-subgroup of G.

Proof. Let g ∈ N(G) be given. For any a, b ∈ G, we have a = bg ⇐⇒ a = g · g−1bg, 
where b ∈ G− ⇐⇒ g−1bg ∈ G−. Hence a � g ⇐⇒ a � g for all a ∈ G. Passing to 
inverses, this gives g−1 � a−1 ⇐⇒ g−1 � a−1. Since N(G) is a subgroup, this implies 
that g � c ⇐⇒ g � c for all c ∈ G.

For g, h ∈ N(G), we infer that g�h � g, h. Hence g�h � g∧h. Similarly, g∧h � g, h, 
which gives g ∧ h � g � h. So there are elements a, b ∈ G− with g � h = a(g ∧ h) and 
g∧h = (g�h)b. Hence g∧h = a(g∧h)b, and thus g∧h = an(g∧h)bn for all n ∈ N. Assume 
first that g ∧ h ∈ G−. Then a−n = (g ∧ h)bn(g ∧ h)−1 � (g ∧ h)−1 for all n ∈ N. Since G
is archimedean, this yields a−1 = 1. So we obtain g�h = g∧h. For any c ∈ G−, we have 
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(g∧h)c = gc ∧hc = gcg−1g∧hch−1h � g∧h. Hence (g∧h)c(g∧h)−1 ∈ G− for all c ∈ G−. 
Similarly, c(g � h) � g � h, which yields (g ∧ h)−1c(g ∧ h) = (g � h)−1c(g � h) ∈ G−. 
Thus g ∧ h ∈ N(G). Now let g, h ∈ G be arbitrary. Then gh−1 ∧ 1 ∈ N(G), which yields 
g ∧ h = (gh−1 ∧ 1)h ∈ N(G). Furthermore, g � h = g(1 � g−1h) = g(1 ∧ g−1h) ∈ N(G). 
Whence g ∨ h = (g−1 � h−1)−1 ∈ N(G). Thus N(G) is an l-subgroup of G. �
Corollary. Let G be a noetherian right l-group. Then the quasi-centre N(G) is a cardinal 
sum of infinite cyclic l-groups.

Proof. If G is noetherian, the quasi-centre is noetherian, too. Therefore, Birkhoff’s the-
orem ([4], Theorem 37) implies that N(G) is a free abelian group with the canonical 
lattice structure. �
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