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We define a corestriction map for equivariant Brauer groups 
in the sense of Fröhlich and Wall, which contain as a 
special case the Brauer–Clifford groups introduced by Turull. 
We show that this corestriction map has similar properties 
as the corestriction map in group cohomology (especially 
Galois cohomology). In particular, composing corestriction 
and restriction associated to a subgroup H � G amounts to 
powering with the index |G : H|.
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1. Introduction

The Brauer–Clifford group was introduced by Turull [17,18] to find correspondences 
between certain families of irreducible characters of finite groups, such that fields of 
values and Schur indices of corresponding characters are equal [cf. 16]. The character 
families are usually characters lying over some fixed irreducible character of a normal 
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subgroup. This is the topic of Clifford theory. A classical result in this context is a theorem 
of Gallagher which states that an invariant irreducible character of a normal subgroup 
of a finite group extends to the whole group if and only if it extends to every Sylow 
subgroup [6, Theorem 21.4]. The proof uses the corestriction map of group cohomology. 
The aim of this paper is to provide a similar tool in the theory of the Brauer–Clifford 
group. This will be applied in forthcoming work in the Clifford theory over small fields 
[cf. 10].

Let R be a commutative ring on which a group G acts by ring automorphisms. As Her-
man and Mitra [5] have pointed out, the Brauer–Clifford group BrCliff(G, R) is a special 
case of the equivariant Brauer group introduced earlier by Fröhlich and Wall [cf. 3]. This 
group consists of certain equivalence classes of certain G-algebras over R. By a G-algebra 
over R we mean an algebra A over R on which G acts such that rg · 1A = (r · 1A)g for 
all r ∈ R and g ∈ G.

Let H � G be a subgroup. Then (by restriction) any G-algebra can be viewed as an 
H-algebra. This defines a map

Res = ResGH : BrCliff(G,R) → BrCliff(H,R)

called restriction. In this paper, we define a map

Cores = CoresGH : BrCliff(H,R) → BrCliff(G,R),

which has analogous properties to the transfer or corestriction map from group cohomol-
ogy. This map will only be defined when the index |G : H| is finite, and will be called 
corestriction or transfer map. The main result is that if [A] is an equivalence class of 
algebras in BrCliff(G, R), then we have

CoresGH(ResGH [A]) = [A]|G:H|.

We will first show how to construct a G-algebra A⊗G over R, given an arbitrary 
H-algebra A over R. To do this, we use the well known concept of tensor induction. 
We will review this concept, and give a simple conceptual definition of it that seems 
not as widely known as it should be. We will then show that tensor induction respects 
equivalence of G-algebras, and thus defines a group homomorphism of Brauer–Clifford 
groups. Finally, in the last section we prove the main result mentioned above.

2. On tensor induction

Let G be a group and R a commutative G-ring. By definition, a G-ring is a ring R
on which the group G acts by ring automorphisms. We use exponential notation r �→ rg

to denote this action.
An R-module V is called an R-module with compatible G-action, if G acts on the 

abelian group V such that (vr)g = vgrg for all v ∈ V , r ∈ R and g ∈ G. We often use 
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exponential notation, that is, we write vg instead of vg, in particular, when V happens 
to be an R-algebra.

For the moment, we continue to use right multiplicative notation. Every R-module 
with G-action can be viewed as a right RG-module, where RG denotes the crossed 
product of R with G (also called the skew group ring of G over R). This is the set of 
formal sums

∑
g∈G

grg, rg ∈ R,

with multiplication induced by (g1r1)(g2r2) = g1g2r
g2
1 r2, extended linearly. Conversely, 

any right module over RG can be viewed as an R-module with G-action.
Let H � G and let V be a right RH-module. Since RH ⊆ RG, we may form the 

induced module V G = IndG
H(V ) = V ⊗RH RG. Set Ω = {Hg | g ∈ G} and Vω = V ⊗ g ⊆

V G for ω = Hg ∈ Ω. Then Vω depends only on the coset ω = Hg, not on the specific 
representative g. Every Vω is an R-submodule of V G and

V G =
⊕
ω∈Ω

Vω, with Vωg = Vωg for all ω ∈ Ω.

The modules Vω and Vωg are isomorphic as abelian groups, but in general not as 
R-modules. Instead, the map �ω,g: Vω → Vωg given by v�ω,g = vg has the property 
(vr)�ω,g = v�ω,gr

g. Following Riehm [12], we call an R-module W a g-conjugate of 
the R-module V , if there is an isomorphism κ: V → W of abelian groups such that 
(vr)κ = vκrg for all v ∈ V . Thus V ⊗ g is a g-conjugate of V .

The tensor induced module is, by definition, the tensor product

V ⊗G :=
⊗
ω∈Ω

Vω (tensor product over R).

This is made into an RG-module by defining

(⊗
ω∈Ω

vω

)
g =

⊗
ωg∈Ω

vωg =
⊗
ω∈Ω

vωg−1g,

where vωg−1g ∈ Vω. Some readers may prefer to enumerate

Ω = {Hg1, Hg2, . . . , Hgn},

and then write

(v1 ⊗ · · · ⊗ vn)g = v1g−1g ⊗ · · · ⊗ vng−1g (vi ∈ VHgi).
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It is easy to see that this extends to a well defined action of G on the tensor induced 
module V ⊗G, and that this action makes V ⊗G a module over the skew group ring 
RG.

A word on notation: The isomorphism class of V ⊗G depends, of course, on the sub-
group H and the ring R. If we want to emphasize the dependence on the subgroup H, we 
write (VH)⊗G. If we want to emphasize the dependence on the ring R, we write V ⊗RG. 
Both notations can be combined.

We mention in passing that the definition of tensor induction given here is independent 
of the choice of a set of coset representatives. Such a definition was asked for by Kovács [9]
and Pacifici [11]. Our definition (for trivial action of G on R) appears in a paper of 
Knörr [7, Def. 10, attributed to the referee]. The usual definition [1, §13] yields an 
isomorphic module, as is not difficult to see.

The tensor induced module can be characterized by a universal property:

2.1. Theorem. Let H � G be groups and V an RH-module. Let τ : V G → V ⊗G be the 
canonical multilinear map. Let W be an RG-module and β: V G → W a map with the 
following properties:

(i) β is a map of G-sets.
(ii) β is R-multilinear, when V G is considered as direct product of the modules Vω (ω ∈

Ω = {Hg | g ∈ G}).

Then there is a unique RG-module homomorphism ϕ: V ⊗G → W making the diagram

V G τ

β

V ⊗G

ϕ

W

commutative. The pair (τ, V ⊗G) is determined uniquely up to unique isomorphism by the 
fact that this holds for all maps β: V G → W as above.

Proof. The uniqueness of (τ, V ⊗G) will follow from the usual abstract nonsense argu-
ment, once we have proved existence and uniqueness of ϕ.

By the universal property of the tensor product 
⊗

ω∈Ω Vω, there exists a unique 
R-module homomorphism ϕ: V ⊗G → W making the diagram commutative, and we need 
to show that ϕ commutes with the action of G. This is true on the pure tensors in V ⊗G, 
since it is true for τ (by definition) and β (by assumption). From this, the assertion 
follows. �

The next result shows that ( )⊗G is a functor from the category of RH-modules to 
the category of RG-modules.
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2.2. Proposition. Let ϕ: V → W be a homomorphism of RH-modules. Then there is a 
unique RG-module homomorphism ϕ⊗G: V ⊗G → W⊗G, such that the diagram

V G
ϕ⊗1

WG

V ⊗G
ϕ⊗G

W⊗G

is commutative. (Here V G = V ⊗RH RG.) If ψ: W → U is another RH-module homo-
morphism, then (ϕψ)⊗G = ϕ⊗Gψ⊗G.

Proof. The first assertion follows from Theorem 2.1, applied to the β in

V G
ϕ⊗1

β

WG W⊗G.

Of course, one can define ϕ⊗G directly: Let G = ·
⋃

t∈THt and vt ∈ V . Then define

(⊗
t∈T

(vt ⊗ t)
)
ϕ⊗G =

⊗
t∈T

(vtϕ⊗ t) ∈
⊗
t∈T

(W ⊗ t) = W⊗G.

The second assertion follows from the uniqueness of ϕ⊗G, ψ⊗G and (ϕψ)⊗G in

V G
ϕ⊗1

WG
ψ⊗1

UG

V ⊗G
ϕ⊗G

(ϕψ)⊗G

W⊗G
ψ⊗G

U⊗G.
�

2.3. Remark. While the involved categories are abelian categories, the functor ( )⊗G is 
not additive: In general (ϕ1 + ϕ2)⊗G �= ϕ⊗G

1 + ϕ⊗G
2 .

3. Corestriction of G-algebras

As before, let R be a commutative G-ring. A G-algebra over R is a G-ring A, which 
is at the same time an R-algebra and such that A is an R-module with compatible 
G-action. In other words, we have (ar)g = agrg for all a ∈ A, r ∈ R and g ∈ G. This 
can also be expressed by saying that the algebra unit R → Z(A) is a homomorphism 
of G-rings. Note that now we are using exponential notation for the action of G on A, 
although we can view A as RG-module.
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Let H � G. Given an H-algebra A over R, we may form the tensor induced module 
A⊗G. Let Ω = {Hg | g ∈ G}. Then A⊗G is a tensor product of modules Aω, where 
Aω = A ⊗ g ⊆ A ⊗RH RG for ω = Hg. Since we prefer to use exponential notation in 
the algebra situation, we write A⊗g instead of A ⊗ g and a⊗g instead of a ⊗ g from now 
on. Each Aω = A⊗g is in fact an algebra in its own right, via (a⊗g)(b⊗g) = (ab)⊗g.

For each g ∈ G and ω = Ht ∈ Ω, we have a ring isomorphism Aω → Aωg sending a⊗t

to (a⊗t)g = a⊗tg. This is not an R-algebra homomorphism, but we have (raω)g = rgagω. 
As R-algebra, A⊗g is a g-conjugate of A.

Since every Aω is an R-algebra, the tensor induced module A⊗G is an R-algebra. The 
action of G on A⊗G makes A⊗G a G-algebra over R.

3.1. Definition. Let A be an H-algebra over R. The corestriction of A in G is the 
G-algebra A⊗G. We also write Cores(A) or CoresGH(A) to denote this algebra.

3.2. Remark. This definition must not be confused with the algebra-theoretic definition 
of the corestriction map from the Brauer group of a field to the Brauer group of a 
subfield [12,2,15]. Of course, the two definitions are closely related. Let L/F be a finite 
separable field extension and let E ⊇ L be a field such that E/F is Galois. Let G =
Gal(E/F ) and H = Gal(E/L). Then |G : H| = |L : F | is finite. Let A be an algebra 
over the field L. Then A ⊗L E becomes an H-algebra over the H-field E by defining 
(a ⊗ λ)h = a ⊗ λh. Let B = (A ⊗L E)⊗G in the sense of Definition 3.1. To get the 
corestriction map that is used in the theory of the Brauer group, one has to take CB(G), 
the centralizer of G in B. This is an algebra over the field F . Its isomorphism class does 
not depend on the choice of the Galois extension E. In particular, if A is central simple 
over L, then CB(G) is central simple over F . This defines a map Br(L) → Br(F ), also 
called corestriction, and denoted by corL/F . However, in this paper we will only deal 
with the corestriction of Definition 3.1.

Let Ω = {Hg | g ∈ G}, and let μω: Aω → A⊗G be the canonical algebra homomor-
phism into A⊗G, so

aωμω = 1 ⊗ · · · ⊗ 1 ⊗ aω ⊗ 1 ⊗ · · · ⊗ 1,

where aω occurs at position ω, of course. The action of G on A⊗G is uniquely determined 
by the property (aωμω)g = agωμωg for all ω ∈ Ω, aω ∈ Aω, and g ∈ G. This, in turn, 
follows from (aμH)g = a⊗gμHg for all g ∈ G and a ∈ A and the G-action property: To 
see this, note that for ω = Ht and aω = a⊗t, we have

(aωμω)g = (a⊗tμHt)g =
(
(aμH)t

)g = (aμH)tg = a⊗tgμHtg = agωμωg.

We have thus proved the following theorem [cf. 12, Theorem 4]:



444 F. Ladisch / Journal of Algebra 439 (2015) 438–453
3.3. Theorem. Assume the notation introduced above. Then the action of G on A⊗G is 
uniquely determined by the fact that the diagram

A
()⊗g

μH

AHg

μHg

A⊗G
()g

A⊗G

is commutative for all g ∈ G.

Moreover, we have [12, Theorem 4]:

3.4. Theorem. The homomorphism μ = μH : A → A⊗G is a homomorphism of H-algebras, 
and has the following universal property: Whenever ψ: A → B is an H-algebra homo-
morphism of A into a G-algebra B such that Aψ and (Aψ)g commute for all g ∈ G \H, 
then there is a unique G-algebra homomorphism α: A⊗G → B making the diagram

A
μ

ψ

A⊗G

α

B

commutative.

Proof. That μ is a homomorphism of H-algebras follows from the commutativity of the 
diagram in Theorem 3.3 for g ∈ H.

Assume α: A⊗G → B as in the theorem exists. Let ω = Ht ∈ Ω and aω = a⊗t ∈ Aω. 
Then aωμω = (aμ)t. Thus we necessarily have aωμωα = ((aμ)t)α = (aμα)t = (aψ)t. Let 
G = ·

⋃
t∈THt and at ∈ A. Then α as in the theorem must send

⊗
t∈T

a⊗t
t =

∏
t∈T

(atμ)t to
∏
t∈T

(atψ)t.

Now check that this indeed defines an algebra homomorphism. �
Given a homomorphism α: A → B of H-algebras over R, the homomorphism 

α⊗G: A⊗G → B⊗G defined in Proposition 2.2 is a G-algebra homomorphism. We de-
note it also by Cores(α). In the algebra case, we can characterize α⊗G more elegantly 
by:

3.5. Proposition. Let α: A → B be a homomorphism of H-algebras over R. Then there 
is a unique homomorphism α⊗G: A⊗G → B⊗G of G-algebras over R making
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A

μ

α
B

μ

A⊗G α⊗G

B⊗G

commutative.

Proof. This follows immediately from Theorem 3.4. �
The next two results are of course also true for modules instead of algebras.

3.6. Proposition. Let A and B be H-algebras over R. Then

A⊗G ⊗R B⊗G ∼= (A⊗R B)⊗G

as G-algebras over R. This is a natural equivalence of functors.

Proof. The isomorphism is given by the map well-defined by

(⊗
ω∈Ω

aω

)
⊗
(⊗

ω∈Ω
bω

)
�→

⊗
ω∈Ω

(aω ⊗ bω). �

(This means that the functor (·)⊗G = Cores is actually a functor of monoidal cate-
gories.)

Let ϕ: R → S be a homomorphism of G-rings. If A is an H-algebra over R, then 
A ⊗R S is an H-algebra over S.

3.7. Proposition. Let ϕ: R → S be a homomorphism of G-rings. Then

(A⊗R S)⊗SG ∼= (A⊗RG) ⊗R S

naturally.

In other words: scalar extension and corestriction commute.

Proof. The map

(A⊗R S) ⊗SH SG → (A⊗RH RG) ⊗R S,

(a⊗ s)⊗g �→ (a⊗g) ⊗ sg,

is an isomorphism of SG-modules and sends the algebra (A ⊗R S)⊗g to the algebra 
A⊗g ⊗R S. Thus
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(A⊗R S)⊗SG ∼=
⊗

S
t

(A⊗t ⊗R S) ∼=
(⊗

R
t

A⊗t

)
⊗R S

as S-algebras. These isomorphisms respect the action of G, as is easily checked. �
4. Review of the Brauer–Clifford group

We recall the definition of the equivariant Brauer group by Fröhlich and Wall [3]. 
As Herman and Mitra [5] have pointed out, the Brauer–Clifford group as defined by 
Turull [17] is a special case.

Let G be a group. A G-algebra A over the commutative G-ring R is called an Azumaya 
G-algebra over R if it is Azumaya over R as an R-algebra.

If A and B are Azumaya G-algebras over the G-ring R, then A ⊗R B is an Azumaya 
G-algebra over R.

The Brauer–Clifford group BrCliff(G, R) is the set of equivalence classes of Azumaya 
G-algebras over R under an equivalence relation that will be defined below. The multi-
plication is induced by the tensor product ⊗R of algebras.

Let P be an RG-module, where RG denotes, as before, the skew group ring of G
over R. Then EndR P has a natural structure of a G-algebra over the G-ring R. The 
action of G on EndR P is given by pαg = ((pg−1)α)g for p ∈ P and α ∈ EndR P . If P is 
a progenerator over R, then EndR P is Azumaya over R. A trivial G-algebra over R is an 
algebra of the form EndR P , where P is an RG-module such that PR is a progenerator. 
Two G-algebras A and B over R are called equivalent if there are trivial G-algebras S
and T such that A ⊗R S ∼= A ⊗R T as G-algebras over R.

This definition yields the same equivalence classes as another definition using equiv-
ariant Morita equivalence [5, Proposition 9].

As mentioned before, the set of equivalence classes of Azumaya G-algebras over R

forms the equivariant Brauer group, or, as we call it here, the Brauer–Clifford group
BrCliff(G, R).

5. Corestriction of equivalent G-algebras

We continue to assume that G is a group, H � G is a subgroup of finite index and R
is a G-ring.

5.1. Lemma. Let P be a right RH-module which is finitely generated projective over R. 
Then

EndR(P⊗G) ∼= (EndR P )⊗G

as G-algebras over R.
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Proof. Write S = EndR P . Observe that S is an H-algebra over R. We have

P⊗G =
⊗
ω∈Ω

Pω and S⊗G =
⊗
ω∈Ω

Sω.

Let t ∈ ω and s ∈ S. We define an action of Sω on Pω by

(x⊗ t)s⊗t = (xs) ⊗ t.

This is independent of the choice of t ∈ ω since

(x⊗ (ht))s⊗ht = (xs) ⊗ (ht) = ((xs)h) ⊗ t

= (xhsh) ⊗ t =
(
(xh) ⊗ t

)
(sh)⊗t.

We can identify Sω with EndR Pω via this action. Since PR is finitely generated projective, 
we have

EndR(P⊗G) = EndR

(⊗
ω∈Ω

Pω

)
∼=

⊗
ω∈Ω

EndR Pω
∼=

⊗
ω∈Ω

Sω = S⊗G

as R-algebras, where S⊗G acts on P⊗G by(⊗
ω∈Ω

xω

)(⊗
ω∈Ω

sω

)
=

⊗
ω∈Ω

(xωsω).

The isomorphism above commutes with the action of G, as is easy to check. This finishes 
the proof. �
5.2. Proposition. Let R be a commutative G-ring and H � G. Let A and B be equivalent 
H-algebras over R. Then A⊗G and B⊗G are equivalent as G-algebras over R.

Proof. Let P and Q be RH-modules that are R-progenerators and such that A ⊗R

EndR P ∼= B ⊗R EndR Q as H-algebras over R. Then

(A⊗R EndR P )⊗G ∼= (B ⊗R EndR Q)⊗G

as G-algebras over R by Proposition 3.5. By Lemma 5.1 and Proposition 3.6,

A⊗G ⊗R EndR(P⊗G) ∼= A⊗G ⊗R (EndR P )⊗G ∼= (A⊗R EndR P )⊗G

and similarly for B and Q. Thus

A⊗G ⊗R EndR(P⊗G) ∼= B⊗G ⊗R EndR(Q⊗G),

which shows that A⊗G and B⊗G are equivalent. �
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5.3. Corollary. Corestriction defines a group homomorphism

Cores = CoresGH : BrCliff(H,R) → BrCliff(G,R).

Proof. As R-algebra, Cores(A) is a |G : H|-fold tensor product of A over R. Thus if A is 
Azumaya over R, then Cores(A) is, too. By Proposition 5.2, Cores as mapping of Brauer–
Clifford groups is well defined. By Proposition 3.6, it is a group homomorphism. �
6. Corestriction and restriction

In this section we prove that CoresGH(ResGH [A]) = [A]|G:H| when A is an Azumaya 
G-algebra over R. The proof follows Tignol’s proof of the same result for the Brauer 
group over a field [15].

Let A be an Azumaya algebra over the commutative ring R. We need a property of 
the reduced trace trd = trdA/R: A → R [8, IV.2] which is probably well known.

6.1. Lemma. Let A be an Azumaya algebra over the commutative ring R and g a ring 
automorphism of A (which restricts to a ring automorphism of R ∼= Z(A)). Then

trd(ag) = trd(a)g for all a ∈ A.

Proof. The reduced trace commutes with scalar extensions. This means: Let ϕ: R → S

be a ring homomorphism (with ϕ(1R) = 1S). The homomorphism ϕ makes S into an 
R-module. The algebra A ⊗R S is Azumaya over S and we have

trdA⊗RS/S(a⊗ 1) = trdA/R(a)ϕ.

(This follows from the proof that the characteristic polynomial and the reduced trace 
are well-defined [8, Proposition IV.2.1].) We will apply this fact to ϕ = g|R: R → R. 
We write A ⊗R,ϕ R for the corresponding tensor product, to emphasize the dependence 
on ϕ.

Second, if f : B → A is an isomorphism of Azumaya R-algebras, then

trdA/R(f(b)) = trdB/R(b)

[8, Lemme IV.2.2]. We apply this to the map f : B = A ⊗R,ϕR → A defined by f(a ⊗r) =
agr. Note that f is well-defined since ar ⊗ s = a ⊗ rϕs in A ⊗R,ϕ R and so f(ar ⊗ s) =
(ar)gs = agrϕs = f(a ⊗ rϕs). It is easy to check that f is an isomorphism of R-algebras, 
the inverse is given by a �→ ag

−1 ⊗ 1.
Now the composition

A −→ A⊗R,ϕ R
f−→ A
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yields the map a �→ ag. Applying the above statements, we get

trdA/R(ag) = trdA/R(f(a⊗ 1)) = trdB/R(a⊗ 1) = trdA/R(a)ϕ

= trdA/R(a)g

as claimed. �
We need another lemma. We write Sn to denote the symmetric group on n letters.

6.2. Lemma. Let A be an Azumaya G-algebra over the G-ring R and n ∈ N. Then there 
is a group homomorphism

σ: Sn → (A⊗R · · · ⊗R A︸ ︷︷ ︸
n

)∗

such that

σ(π)−1(a1 ⊗ · · · ⊗ an)σ(π) = a1π−1 ⊗ · · · ⊗ anπ−1

and σ(π)g = σ(π) for all π ∈ Sn and g ∈ G.

Proof. Consider first the case where n = 2. Since EndR(A) ∼= A ⊗RAop, there is a unique 
element t =

∑
i xi ⊗ yi ∈ A ⊗R A such that trd(a)1A =

∑
i xiayi for all a ∈ A. By a 

result of Goldman, this element has the properties t2 = 1 and (a ⊗ b)t = t(b ⊗ a) for all 
a, b ∈ A [8, Proposition IV.4.1]. To finish the case n = 2, it remains to show that tg = t

for g ∈ G. By Lemma 6.1, we have trd(ag) = trd(a)g for g ∈ G. This means that

∑
i

xia
gyi = trd(ag) = trd(a)g =

∑
i

xg
i a

gygi

for all a ∈ A. Thus

t =
∑
i

xi ⊗ yi =
∑
i

xg
i ⊗ ygi = tg,

as desired.
Now for the general case. By what we have done already, for every pair (i, j) there is 

an element tij ∈ (A⊗n) such that the inner automorphism induced by tij switches the 
positions i and j, and such that tij is centralized by G. We first define the homomorphism 
σ on the neighbor transpositions (i, i +1), setting σ((i, i +1)) = ti,i+1. To show that this 
extends to a homomorphism of the symmetric group Sn into (A⊗n)∗, we use the fact that 
Sn is a Coxeter group generated by the neighbor transpositions with relations 

(
(i, i +

1)(k, k + 1)
)m(i,k) = 1, where m(i, k) is the order of the corresponding element. Thus 

we have to check three types of relations. The first is t2i,i+1 = 1, which follows from the 
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result of Goldman cited before. The second type of relation to check is (ti,i+1tk,k+1)2 = 1
whenever {i, i + 1} ∩ {k, k + 1} = ∅. This relation is clear in view of t2i,i+1 = 1 and since 
ti,i+1 and tk,k+1 live in different components of A⊗n. Finally, we have to check that 
(ti,i+1ti+1,i+2)3 = 1. To do this, one can proceed as Knus and Ojanguren in their proof 
of t2 = 1 [8, Proposition IV.4.1] and reduce the problem to the case where A is a matrix 
ring over R. Then in terms of matrix units ers, we have t =

∑
r,s ers ⊗ esr. It suffices to 

compute in A ⊗A ⊗A, where we have to check that

((∑
r,s

ers ⊗ esr ⊗ 1
)(∑

u,v

1 ⊗ euv ⊗ evu

))3

= 1 ⊗ 1 ⊗ 1.

We leave this simple computation to the reader. �
The existence of a homomorphism σ: Sn → (A⊗n)∗ was also proved by Haile [4, 

Lemma 1.1] and Saltman [13, Theorem 2], but we need the additional property that 
σ(π) is centralized by the group G. Note that since G is completely arbitrary, the lemma 
says that all ring automorphisms of A centralize the image of σ.

6.3. Theorem. Let A be an Azumaya G-algebra over the G-ring R and H � G. Then 
(AH)⊗G and A⊗|G:H| are equivalent as G-algebras over R. In other words,

BrCliff(G,R) ResGH−−−−→ BrCliff(H,R) CoresGH−−−−−→ BrCliff(G,R)

sends [A] to [A]|G:H|.

Proof. Write C = (AH)⊗G and B = A⊗|G:H|. We have to show that B and C are 
equivalent G-algebras. First we show that C and B are isomorphic as R-algebras. As in 
the construction of the tensor induced algebra, let Ω = {Hg | g ∈ G} and Aω = A⊗g ⊆
A ⊗RH RG, when ω = Hg. Every element of Aω has the form a⊗g with a ∈ A. Note that 
a⊗g �→ ag yields an isomorphism ϕω: Aω → A of R-algebras which is independent of the 
choice of g ∈ ω. We can view B as a tensor product of copies of A indexed by Ω. Define 
ϕ: C → B by

ϕ

(⊗
ω

aω

)
=

⊗
ω

ϕωaω.

Then ϕ is a well-defined R-algebra isomorphism. The problem is that ϕ does not commute 
with the G-actions on C and B, respectively.

Let σ be the group homomorphism from SΩ, the group of permutations of the set Ω, 
into the centralizer of G in B∗ from Lemma 6.2. The action of G on Ω yields a group 
homomorphism from G into SΩ. Let π: G → SΩ → B∗ be the composition. Thus
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π(g)−1

(⊗
ω

bω

)
π(g) =

⊗
ω

bωg−1 ,

where bωg−1 ∈ A occurs at position ω in the last tensor. Thus

ϕ

(⊗
ω

aω

)π(g)g

=
(⊗

ω

ϕωaω

)π(g)g

=
⊗
ω

(
ϕωg−1(aωg−1)

)g

=
⊗
ω

ϕω

(
(aωg−1)g

)
= ϕ

(⊗
ω

(aωg−1)g
)

= ϕ

((⊗
ω

aω
)g)

.

Thus ϕ(cg) = ϕ(c)π(g)g for all c ∈ C.
For b ∈ B and g ∈ G, set b 
 g = bgπ(g). This defines a new action of G on B:

(b
g) 
h = (bgπ(g))hπ(h) = bghπ(g)hπ(h) = bghπ(gh) = b
(gh),

where we have used that π is a group homomorphism and that h ∈ G centralizes π(g). 
Furthermore, for r ∈ R we have (br) 
 g = (b 
 g)rg. Thus B is a right RG-module via 
the star action.

Since B is Azumaya over R, the natural homomorphism Bop ⊗R B → EndR B is an 
isomorphism. Thus the map

ε:Bop ⊗R C → EndR B, x(b⊗ c)ε = bxϕ(c) (x ∈ B, b ∈ Bop, c ∈ C),

is an isomorphism of R-algebras. We claim that ε is an isomorphism of G-algebras, where 
the G-algebra structure of EndR B is that induced by the RG-module structure of B
defined by the star action. Namely, we have

x(bg ⊗ cg)ε = bgxϕ(cg) = bgxϕ(c)π(g)g

and

x ((b⊗ c)ε)g =
(
(x 
 g−1)(b⊗ c)ε

)

 g =

(
bxg−1

π(g−1)ϕ(c)
)g
π(g)

= bgxϕ(c)π(g)g.

The claim follows. Thus Bop ⊗R C is isomorphic to the trivial G-algebra EndR B. It 
follows that B and C are equivalent, as was to be shown. �
6.4. Corollary. Let R be a commutative G-ring, G a finite group. Let p be a prime and P
a Sylow p-subgroup of G. Then the p-torsion part BrCliff(G, R)p of the Brauer–Clifford 
group is isomorphic to a subgroup of BrCliff(P, R).
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Proof. The map ResGP : BrCliff(G, R) → BrCliff(P, R) is injective when restricted to the 
p-torsion part, since Cores ◦ Res is, by Theorem 6.3. �
6.5. Corollary. Let A be an Azumaya G-algebra over the commutative G-ring R, where 
G is finite. Write [A] for the equivalence class of A in BrCliff(G, R). The following are 
equivalent:

(i) [A] = 1
(ii) [ResGP (A)] = 1 in BrCliff(P, R) for all Sylow subgroups P of G.
(iii) For every prime p there is a Sylow p-subgroup P such that [ResGP (A)] = 1 in 

BrCliff(P, R).

The next corollary is of course known, it also follows from the fact that the kernel 
of BrCliff(G, R) → Br(R) is isomorphic to a cohomology group H2(G, CR) for a certain 
abelian group CR [3, Theorem 4.1].

6.6. Corollary. Let G be a finite group and R a G-ring. Then the Brauer–Clifford group 
BrCliff(G, R) is torsion.

Proof. We have a natural homomorphism Res: BrCliff(G, R) → Br(R). The Brauer 
group Br(R) is torsion, as is well known [8,13]. So if [A]n = 1 in Br(R), then [A]n|G| = 1
in BrCliff(G, R). �
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