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Let G be a finite group and let N be a normal subgroup of G. 
We attach to N two graphs ΓG(N) and Γ∗

G(N) related to the 
conjugacy classes of G contained in N and to the set of primes 
dividing the sizes of these classes, respectively. These graphs 
are subgraphs of the ordinary ones associated to the conjugacy 
classes of G, Γ(G) and Γ∗(G), which have been widely studied 
by several authors. We prove that the number of connected 
components of both graphs is at most 2, we determine the best 
upper bounds for the diameters and characterize the structure 
of N when these graphs are disconnected.
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1. Introduction

Let G be a finite group and let N be a normal subgroup of G. For each element 
x ∈ N , the G-conjugacy class is xG = {xg | g ∈ G}. We will denote by ConG(N) the 
set of conjugacy classes in G of elements of N . The elements in ConG(N) are unions of 
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conjugacy classes of N , and it turns out that every G-class size is a multiple of an N -class 
size. Recent results have showed that the G-class sizes still have a strong influence on 
the structure of N in spite of the fact that there may exist primes dividing the G-class 
sizes which, however, do not divide the order of N .

In 1990, E.A. Bertram, M. Herzog and A. Mann introduced in [3] the graph Γ(G)
associated to the sizes of the ordinary conjugacy classes of G, and later, in [4] the best 
bound of the diameter of this graph was attained. Our aim is to study the properties of 
the following subgraph of Γ(G) regarding the G-conjugacy classes contained in N and 
to obtain structural properties of N in the disconnected case.

Definition 1.1. Let G be a finite group and let N be a normal subgroup in G. We define 
the graph ΓG(N) in the following way: the set of vertices is the set of non-central elements 
of ConG(N), and two vertices xG and yG are joined by an edge if and only if |xG| and 
|yG| have a common prime divisor.

Notice that Γ(N) is not a subgraph of ΓG(N) because the set of vertices of Γ(N)
needs not be included within the set of vertices of ΓG(N). Moreover, we remark that 
although ΓG(N) is subgraph of Γ(G), the fact that the number of connected components 
and the diameter of Γ(G) are bounded does not directly imply that the corresponding 
for ΓG(N) have to be bounded too. However, we show that both numbers, denoted by 
n(ΓG(N)) and d(ΓG(N)), are actually bounded. It is easy to check that the bounds in 
Theorems A and B are the best possible bounds.

Theorem A. Let G be a finite group and let N be a normal subgroup of G. Then 
n(ΓG(N)) ≤ 2.

We want to remark that there is no relation between the connectivity of ΓG(N)
and Γ(N). For instance, Γ(N) can be disconnected while ΓG(N) is not. We can use 
the semilinear affine group Γ(pn) for appropriate p and n in order to see this. Recall 
that if GF(pn) is the finite field of pn elements, then the multiplicative group H =
GF(pn)∗ is cyclic of order pn − 1 and acts on the elementary abelian (additive) p-group 
of GF(pn), say K. This action is Frobenius, so the corresponding semidirect product 
KH is a Frobenius group with abelian kernel and complement. Moreover, α, defined 
by xα = xp for all x ∈ K, is an automorphism of K of order n in such a way that 
H〈α〉 ≤ Aut(K). Then Γ(pn) is defined as the semidirect product K(H〈α〉). Now, take 
n = 2 and let S be a cyclic subgroup of H of order s = 3 (so we are assuming that 3 
divides p2 − 1). We have that N := KS is normal in G and is also a Frobenius group 
with abelian kernel and complement. Hence Γ(N) is disconnected by Theorem 2 of [3]. 
However, there are exactly two non-trivial G-classes in N consisting in the p2−1 elements 
of K\{1}, and the (|S| −1)|K| = 2p2 elements of NS\K, respectively. Therefore, ΓG(N)
is connected.
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Theorem B. Let G be a finite group and let N be a normal subgroup of G.

1. If n(ΓG(N)) = 1, then d(ΓG(N)) ≤ 3.
2. If n(ΓG(N)) = 2, then each connected component is a complete graph.

We notice that the diameters of ΓG(N) and Γ(N) are not either related. For instance, 
let P be an extraspecial group of order p3 with p �= 2. If we take G = P × S3 and 
N = P ×A3, we have that Γ(N) is a complete graph (all nontrivial N -classes have size 
p) while ΓG(N) has diameter 2, since the nontrivial G-classes of N have size 2, p or 2p.

In 1995, S. Dolfi introduced in [5] the dual graph Γ∗(G) (it was also independently 
studied in [1]) associated to the primes that divide the sizes of the conjugacy classes 
of G. In a similar way, we define the following subgraph of Γ∗(G).

Definition 1.2. Let G be a finite group and let N be a normal subgroup in G. We define 
the “dual” graph of ΓG(N), denoted by Γ∗

G(N), as follows: the vertices are those primes 
which divide the size of some class in ConG(N), and two vertices p and q are joined by 
an edge if there exists C ∈ ConG(N) such that pq divides |C|.

We also provide the best bounds for the number of components of Γ∗
G(N) and for its 

diameter. We note again that these bounds cannot be obtained from the only fact that 
Γ∗
G(N) is a subgraph of Γ∗(G).

Theorem C. If G is a finite group and N � G, then n(Γ∗
G(N)) ≤ 2 and n(Γ∗

G(N)) =
n(ΓG(N)).

Theorem D. Let G be a finite group and N � G.

1. If n(Γ∗
G(N)) = 1, then d(Γ∗

G(N)) ≤ 3.
2. If n(Γ∗

G(N)) = 2, then each connected component is a complete graph.

We give a characterization of a normal subgroup N whose graph ΓG(N), or equiva-
lently Γ∗

G(N), is disconnected. We recall that a group G is said to be quasi-Frobenius 
if G/Z(G) is a Frobenius group. In this case, the inverse image in G of the kernel and 
complement of G/Z(G) are called the kernel and complement of G, respectively.

Theorem E. Let G be a finite group and N �G. If ΓG(N) has two connected components, 
then either N is quasi-Frobenius with abelian kernel and complement, or N = P × A

where P is a p-group and A � Z(G).

We point out that our proofs of Theorems B, D and E are different and independent of 
the proofs of the respective theorems concerning Γ(G) and Γ∗(G). In addition, Theorem E
extends Corollary B of [2], which analyzes (with a completely different approach) the 
particular case in which N has exactly two coprime G-class sizes bigger than 1.
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All groups considered will be finite and, if A is a group or a set, π(A) denotes the set 
of primes dividing |A|.

2. Number of connected components of ΓG(N) and Γ∗
G(N)

In this section we prove Theorems A and C in an easy way by using the following 
lemma, that is basic for our development. The distance in both graphs will be denoted 
by d.

Lemma 2.1. Let G be a finite group and N � G. Let B = bG and C = cG be non-central
elements in ConG(N). If (|B|, |C|) = 1. Then

1. CG(b)CG(c) = G.
2. BC = CB is a non-central element of ConG(N) and |BC| divides |B||C|.
3. Suppose that d(B, C) ≥ 3 and |B| < |C|. Then |BC| = |C| and CBB−1 = C. 

Furthermore, C〈BB−1〉 = C, 〈BB−1〉 ⊆ 〈CC−1〉 and |〈BB−1〉| divides |C|.

Proof. For 1, 2 and the first part of 3, it is enough to mimic the proofs of Lemmas 1 and 2 
of [3], by taking into account that the product of two classes of ConG(N) is contained 
in N again. The properties C〈BB−1〉 = C and 〈BB−1〉 ⊆ 〈CC−1〉 are elementary. The 
fact that |〈BB−1〉| divides |C| follows from the fact that C is a normal subset that can 
be written as the union of right coclasses of the normal subgroup 〈BB−1〉. �
Proof of Theorem A. Suppose that ΓG(N) has at least three connected components and 
take three non-central classes B = bG, C = cG and D = dG in ConG(N), each of which 
belongs to a different connected component. Certainly, any two of them have coprime size. 
Moreover, we can assume without loss of generality that |B| < |C| < |D|. By applying 
Lemma 2.1, we get that |〈BB−1〉| divides both |D| and |C|. Then, (|C|, |D|) > 1, which 
is a contradiction. �
Proof of Theorem C. Suppose that n(Γ∗

G(N)) ≥ 3. We take three primes r, s and l each 
of which belongs to a different connected component, and let B, C and D be elements 
of ConG(N) such that r divides |B|, s divides |C| and l divides |D|. Without loss of 
generality we suppose that |D| < |C| < |B|. We have d(B, D) ≥ 3 and d(B, C) ≥ 3 and 
by applying Lemma 2.1, we obtain that |〈DD−1〉| divides |B| and |C|, but this leads to 
a contradiction, because |B| and |C| would have a common prime divisor. This proves 
that n(Γ∗

G(N)) ≤ 2.
Suppose now that n(ΓG(N)) = 1 and n(Γ∗

G(N)) = 2. Let r and s be primes such 
that each of them belongs to a distinct connected component of Γ∗

G(N). Then there 
exist Br, Bs ∈ ΓG(N) such that r divides |Br| and s divides |Bs|. Let us consider the 
following path in ΓG(N) that joins Br and Bs, which exists because n(ΓG(N)) = 1:
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Br B1 B2 . . . Bs

p1 p2 p3 ps

where pi is a prime dividing |Bi|. This provides a contradiction, because r and s are 
connected in Γ∗

G(N) by the following path:

r p1 p2 . . . ps s
Br B1 B2 Bs−1 Bs

So, we have proved that n(ΓG(N)) = 1 implies that n(Γ∗
G(N)) = 1. Now, if n(ΓG(N)) = 2

and n(Γ∗
G(N)) = 1 we can get a contradiction by arguing in a similar way. This shows 

that n(ΓG(N)) = n(Γ∗
G(N)). �

3. Diameter of ΓG(N)

The following two lemmas, one for the disconnected case and the other for the 
connected case, summarize important structural properties of a normal subgroup N con-
cerning the graph ΓG(N), which will be used for determining the diameters of ΓG(N)
and Γ∗

G(N). We start with the disconnected case.

Lemma 3.1. Let G be a finite group and let N be a normal subgroup of G. Suppose that 
n(ΓG(N)) = 2 and let X1 and X2 be the connected components of ΓG(N). Let B0 be a 
non-central element of ConG(N) of maximal size and assume that B0 ∈ X2. We define

S = 〈C | C ∈ X1〉 and T = 〈CC−1 | C ∈ X1〉.

Then

1. S is a normal subgroup of G and every element in S, either is central, or its 
G-conjugacy class is in X1.

2. If C is a G-conjugacy class of N out of S, then |T | divides |C|.
3. T = [S, G] is normal in G and T ≤ Z(S).
4. Z(G) ∩N ⊆ S and π(S/(Z(G) ∩N)) ⊆ π(T ) ⊆ π(B0). Moreover, S is abelian.
5. Let bG = B ∈ X1. Then CG(b)/S is a q-group for some prime q ∈ π(B0).

Proof. 1. The fact that S is normal in G is elementary. Let C ∈ X2 and B ∈ X1. 
We know that BC is a G-conjugacy class of ConG(N) of maximal size between |B|
and |C| by Lemma 2.1. Assume that |BC| = |B|. By Lemma 2.1 again, it follows that 
|〈CC−1〉| divides |B| and that 〈CC−1〉 ⊆ 〈BB−1〉. On the other hand, |B0B| = |B0|
again by Lemma 2.1, and also |〈BB−1〉| divides |B0|. From these facts, we deduce that 
(|B|, |B0|) > 1, which is a contradiction. Thus, |BC| = |C| for all C ∈ X2 and B ∈ X1. 
Furthermore, we have proved that the size of every class in X1 is less than the size of 
any class in X2.
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Now, take C ∈ X2 and let A be the union of all G-conjugacy classes of size |C| in S
and assume that A �= ∅. By the above paragraph, we have that if B ∈ X1, then BA ⊆ A. 
Hence, SA = A, and consequently, since A is a normal subset, |S| divides |A|. This is not 
possible because A ⊆ S − {1}. This contradiction shows that A = ∅, that is, S does not 
contain any class of size |C|. Therefore, since S is normal in G, then S does not contain 
elements whose classes are in X2.

2. Let B ∈ X1. As we have proved in (1), |B| < |C| and then, by Lemma 2.1, we have 
C〈BB−1〉 = C, and as a consequence, CT = C. Therefore, |T | divides |C|, as wanted.

3. By definition, it is clear that T = [S, G] and so, it is a normal subgroup of G. 
Let us prove that T ≤ Z(S). In fact, if B = bG ∈ X1, then (|T |, |G : CG(b)|) =
(|T |, |B|) = 1, because |T | divides every class size in X2 by (2). Now, since |T : CT (b)|
divides (|T |, |B|) = 1, we deduce that T = CT (b). As the classes in X1 generate S, we 
conclude that T is central in S.

4. Let z ∈ Z(G) ∩N and let B = bG ∈ X1. Note that bGz = (bz)G. Moreover bz ∈ N , 
because both elements lie in N . As |(bz)G| = |Bz| = |B|, then bz ∈ S and so z ∈ S. This 
proves that Z(G) ∩N ⊆ S. Since T = [S, G], then [S/T, G/T ] = 1 and S/T ⊆ Z(G/T ). 
In particular, S/T is abelian and as T ≤ Z(S) by (3), then S is nilpotent. We can 
write S = R× Z where Z is the largest Hall subgroup of S which is contained in Z(G). 
Let p be a prime divisor of |R| and let P be a Sylow p-subgroup of R. It is clear that 
P � G and T = [S, G] = [R, G] � [P, G] > 1. Hence p divides |T | and by applying (1) 
and (2), |T | divides |B0|. Therefore, π(R) ⊆ π(T ) ⊆ π(B0). On the other hand, it is 
elementary that π(S/(Z(G) ∩N)) ⊆ π(R), and the first part of the step is proved. We 
show now that R ≤ Z(S). In fact, let bG = B ∈ X1. Since (|B|, |B0|) = 1, we obtain in 
particular, (|B|, |R|) = 1. Thus, |R : CR(b)| = 1 since this index trivially divides |R| and 
|B| because R�G. This means that R = CR(b) for every generating element b of S. So, 
R is contained in Z(S) as wanted, and S is abelian.

5. By considering the primary decomposition of b, it is clear that we can write b = bqbq′

where bq and bq′ are the q-part and the q′-part of b, where q is a prime such that bq /∈
Z(G) ∩N . Hence, q ∈ π(B0) by (4). Furthermore, it is elementary that CG(b) ⊆ CG(bq), 
and as a result, |(bq)G| divides |B|. We claim that any element xS ∈ CG(b)/S is a 
q-element. For any x ∈ CG(b), write x = xqxq′ (it is possible xq = 1). It is obvious 
that xq and xq′ belong to CG(b). We consider a = bqxq′ and observe that CG(a) =
CG(bq) ∩ CG(xq′) ⊆ CG(bq), so |(bq)G| divides |aG|. Since (bq)G ∈ X1, this forces that 
aG ∈ X1, and we conclude that xq′ ∈ S, that is, xS is a q-element, as wanted. This 
shows that CG(b)/S is a q-group. �
Lemma 3.2. Let G be a finite group and N � G with ΓG(N) connected. Let B0 be a 
G-conjugacy class of ConG(N) of maximal size. Let

M = 〈D | D ∈ ConG(N) and d(B0, D) ≥ 2〉,

K = 〈D−1D | D ∈ ConG(N) and d(B0, D) ≥ 2〉.
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Then

1. M and K are normal subgroups of G. Furthermore, K = [M, G] and K ≤ Z(M).
2. Z(G) ∩N ⊆ M and π(M/(Z(G) ∩N)) ⊆ π(K) ⊆ π(B0). Furthermore, M is abelian.

Proof. 1. By definition, we easily see that M and K are normal subgroups of G and K =
[M, G]. Let us prove that K ≤ Z(M). If C = cG ∈ ConG(N) satisfies that d(B0, C) ≥ 2, 
in particular we have (|B0|, |C|) = 1 and then, |B0| = |B0C|. Moreover, by Lemma 2.1, 
B0CC−1 = B0 and as a result |K| divides |B0|. Therefore, (|K|, |C|) = 1. However, 
we have that |K : CK(c)| divides (|K|, |C|) and thus, K = CK(c), which implies that 
K ≤ Z(M).

2. We prove that Z(G) ∩N ⊆ M . Let z ∈ Z(G) ∩N and let C = cG ∈ ConG(N) such 
that d(B0, C) = 2. Notice that cGz = (cz)G. As |(cz)G| = |cG|, then d(B0, (cz)G) = 2. 
Thus, cz ∈ M and Z(G) ∩N ⊆ M . Since K = [M, G], then M/K ≤ Z(G/K) and since 
K ≤ Z(M) by (1), we obtain that M is nilpotent. We can write M = R×Z where Z is the 
largest Hall subgroup of M that is contained in Z(G). Let q be a prime divisor of |R| and 
let Q be the Sylow q-subgroup of R. Then Q �G and K = [M, G] � [R, G] � [Q, G] > 1. 
So, q divides |K| and π(R) ⊆ π(K). In the proof of (1), we have seen that π(K) ⊆ π(B0). 
Then, π(R) ⊆ π(B0). Furthermore, it is elementary that π(M/(Z(G) ∩N)) ⊆ π(K) and 
so, the first part of the step is proved. On the other hand, given a generating class 
B = bG of M , we know that d(B, B0) ≥ 2. In particular, we have (|B|, |B0|) = 1
and hence (|Q|, |B|) = 1, where Q is the above Sylow q-subgroup. Since |Q : CQ(b)|
divides (|Q|, |B|) = 1, we have CG(b) = Q and Q ≤ Z(M). Thus, R ≤ Z(M) and M is 
abelian. �

The following consequence, which has interest on its own, is the key to bound the 
diameter of ΓG(N) in the connected case.

Theorem 3.3. Let G be a finite group and N a normal subgroup of G and suppose that 
ΓG(N) is connected. Let B0 be a non-central conjugacy class of ConG(N) with maximal 
size. Then d(B, B0) ≤ 2 for every non-central B ∈ ConG(N).

Proof. Suppose that the theorem is false. Let B = bG ∈ ConG(N) such that d(B0, B) = 3
and let

B0 B1 B2 B

be a shortest chain linking B and B0 of length 3. By considering the primary decompo-
sition of b, we write b = bqbq′ where bq and bq′ are the q-part and the q′-part of b, and 
q is a prime such that bq /∈ Z(G) ∩ N . Hence, q ∈ π(B0) by Lemma 3.2(2). Also, the 
fact that CG(b) ⊆ CG(bq) implies that |(bq)G| divides |B| and then any class which is 
connected to (bq)G must be connected to B. This means that d((bq)G, B0)) ≥ 3.
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Let M be a subgroup defined in Lemma 3.2. We claim that any element x ∈ CG(bq) \M
satisfies that xM is a q-element. Write x = xqxq′ and suppose that xq′ /∈ M . Set 
a = xq′bq and notice that a /∈ M . By the definition of M , we have d(aG, B0) ≤ 1 and 
since CG(a) = CG(xq′) ∩ CG(bq), it follows that |(bq)G| divides |aG|. These facts show 
that d((bq)G, B0)) ≤ 2, a contradiction. Therefore, xq′ ∈ M and xM is a q-element. In 
conclusion, CG(bq)/M is a q-group. Now, observe that |B2| divides

|G : Z(G) ∩N | = |G : CG(bq)||CG(bq) : M ||M : Z(G) ∩N |.

Also, we know by Lemma 3.2(2) that π(M/Z(G) ∩N) ⊆ π(B0) and we have seen in the 
above paragraph that CG(bq)/M is a q-group for some q ∈ π(B0). Consequently, |B2|
must divide |(bq)G| (which divides |B|), because (|B2|, |B0|) = 1. This is a contradiction, 
since B1 and B would be joined by an edge. �
Proof of Theorem B. 1. Suppose that D1 and D2 are classes of ConG(N) such that 
d(D1, D2) = 4. Let B0 be a class of maximal size in ConG(N). By Theorem 3.3 we 
know that d(B0, Di) ≤ 2 for i = 1, 2. We can suppose then that d(B0, Di) = 2 for 
i = 1, 2. Furthermore, without loss of generality, |D1| > |D2|. Then, by Lemma 2.1 it is 
true that |〈D2D

−1
2 〉| divides |D1|. In addition, B0D2 is a conjugacy class of ConG(N)

and |B0D2| = |B0| by Lemma 2.1(2) and by the maximality of B0. It follows that 
B0D2D

−1
2 = B0 and |〈D2D

−1
2 〉| divides |B0|. Therefore, B0 and D1 are joined by an 

edge, which is a contradiction. This proves that d(ΓG(N)) ≤ 3.
2. Let B1 = bG1 and B2 = bG2 in X1. Notice that b1, b2 ∈ S where S is the subgroup 

defined in Lemma 3.1. By applying the properties of that result, we know that |bG2 |
divides

|G : Z(G) ∩N | = |G : CG(b1)||CG(b1) : S||S : Z(G) ∩N |

where the primes dividing |CG(b1) : S| and |S : Z(G) ∩ N | are in π(B0). So, we have 
that |bG2 | divides |bG1 |. By arguing symmetrically we also get that |bG1 | divides |bG2 |, so 
we conclude that all classes in X1 have the same size. Hence, X1 is a complete graph. 
Now, we prove that X2 is also a complete graph. It is enough to consider again S and 
T defined in Lemma 3.1 and observe that every C ∈ X2 is out of S and that |T | divides 
|C| by Lemma 3.1(1) and (2). �
Remark 3.4. In the proof of Theorem B(2), we have seen that all G-classes of N lying 
in the connected component X1 (the component which does not contain the classes of 
maximal size) must have the same size. Moreover, in the proof of Lemma 3.1(1) we have 
seen that this size is less than the size of every class in X2.
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4. Diameter of Γ∗
G(N)

Proof of Theorem D. 1. Suppose that there exist two primes r and s in Γ∗
G(N) such 

that d(r, s) = 4 and we will get a contradiction. This means that the primes r and s are 
connected by a path of length 4, say

r p1 p2 p3 s
B1 B2 B3 B4

where Bi ∈ ConG(N) for i = 1, . . . , 4 and pi ∈ Γ∗
G(N) for i = 1, 2, 3. By Theorem 3.3 we 

know that d(Bi, B0) � 2 for i = 1, . . . , 4 where B0 is a non-central G-conjugacy class of 
maximal size. Notice that d(B1, B4) = 3 and we distinguish only two possibilities:

Case 1. d(B0, B1) = 2 = d(B0, B4). By symmetry, we can assume for instance that 
|B1| > |B4|. Since d(B1, B4) = 3, by Lemma 2.1 we have that |〈B4B

−1
4 〉| divides |B1|. 

Moreover, B0B4 is an element of ConG(N) such that |B0B4| = |B0| and by Lemma 2.1, 
|〈B4B

−1
4 〉| divides |B0|. Therefore, d(B0, B1) = 1, because their cardinalities have a 

prime common divisor. This is a contradiction.

Case 2. Either d(B0, B1) = 2 and d(B0, B4) = 1, or d(B0, B1) = 1 and d(B0, B4) = 2. 
Without loss we assume for instance the latter case. Let us consider the subgroup M
defined in Lemma 3.2 and let B4 = bG. Since d(B0, B4) = 2, then b ∈ M by definition. 
Moreover, |B1| divides

|G : Z(G) ∩N | = |G : CG(b)||CG(b) : M ||M : Z(G) ∩N |.

Now, notice that r /∈ π(B0), otherwise it yields d(r, s) ≤ 3, a contradiction, and trivially 
r /∈ π(B4). Also, π(M/Z(G) ∩N) ⊆ π(B0), so we have that r (which divides |B1|) must 
divide |CG(b) : M |. Therefore, there exists an r-element y ∈ CG(b) \ M . On the other 
hand, b ∈ M , and by Lemma 3.2(2), the r-part of b is central in G, that is, we can 
assume that b is an r′-element, by replacing b by its r′-part. As y and b have coprime 
orders, we have

CG(yb) = CG(y) ∩ CG(b) ⊆ CG(b).

Consequently, |B4| divides |(yb)G|. Furthermore, since yb /∈ M , by the definition of M we 
have d((yb)G, B0) ≤ 1. As d(B0, B1) = 1 by hypothesis, we deduce that d(B1, (yb)G) ≤ 2. 
Now, s divides |B1| and r divides |(yb)G|, and this forces that d(r, s) ≤ 3, which is a 
contradiction.

2. Let X1 and X2 be the connected components of ΓG(N) where X2 is the component 
that contains the G-conjugacy class with the largest size. Let us prove first that X∗

1 , 
X∗

2 are the connected components of Γ∗
G(N), where X∗

i = {p ∈ π(B) | B ∈ Xi}, and 
secondly, that X∗

1 and X∗
2 are complete graphs.
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Let X be a connected component of ΓG(N) and let r, s ∈ X∗. Then there exist Br, 
Bs such that r divides |Br| and s divides |Bs|. Let us consider one of the paths in ΓG(N)
that joins Br and Bs:

Br B1 B2 . . . Bs

p1 p2 p3 ps

where Bi ∈ ConG(N) for i = 1, . . . , s − 1 and pi ∈ Γ∗
G(N) for i = 1, . . . , s. So, r and s

are connected in Γ∗
G(N) in the following way:

r p1 p2 . . . ps s
Br B1 B2 Bs−1 Bs

Therefore, X∗ is contained in a connected component Y of Γ∗
G(N). Now, we take q ∈ Y , 

which is connected by an edge to some r ∈ X∗. Then there exists B ∈ ConG(N) such 
that qr divides |B|. It follows that B ∈ X and q ∈ X∗. Thus, X∗ = Y and X∗ is a 
connected component of Γ∗

G(N) as wanted.
By Remark 3.4, all classes in X1 have the same size, which trivially implies that X∗

1
is a complete graph. Let us show that X∗

2 is a complete graph too. Suppose that B0 is 
a conjugacy class with maximal size, which lies in X2, and let B1 = bG1 ∈ X1. Then, the 
subgroup S defined in Lemma 3.1 is abelian, and S ⊆ CG(b1). Now, if p ∈ X∗

2 , there 
exists D ∈ X2 such that p divides |D|. Notice that |D| divides

|G : Z(G) ∩N | = |B1||CG(b1) : S||S : Z(G) ∩N |,

and by Lemma 3.1(4) and (5), we know that |CG(b1) : S| is a q-power with q ∈ π(B0)
and π(S/(Z(G) ∩ N)) ⊆ π(B0). It follows that π(D) ⊆ π(B0). Therefore, all primes in 
X∗

2 are in π(B0) and so, X∗
2 trivially is a complete graph. �

5. Structure of N in the disconnected case

Proof of Theorem E. Suppose that X1 and X2 are the two connected components 
of ΓG(N), where X2 is the one containing the classes of maximal size. Let S be the
subgroup defined in Lemma 3.1.

Step 1: If S ≤ Z(N), then N = P ×A with A ≤ Z(G) ∩N and P a p-group.

We can choose a p-element x and a q-element y of N , for some primes p and q, such 
that xG ∈ X1 and yG ∈ X2. If p = q for every election of x and y, it is clear that 
N = P × A with A ≤ Z(G) ∩ N . Assume then that p �= q. Since x ∈ S ≤ Z(N), we 
obtain N/S = CN (x)/S and this group has prime power order by Lemma 3.1(5). As a 
consequence, N is nilpotent and [x, y] = 1. As x and y have coprime order, CG(xy) =
CG(x) ∩ CG(y) and so, |(xy)G| divides |xG| and |yG|, a contradiction. This proves the 
step.
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Notice that we can assume that SZ(N) < N , because if SZ(N) = N then N is 
abelian and S ≤ Z(N). For the rest of the proof, we assume Z(N) < SZ(N) < N and 
we will prove that N is quasi-Frobenius with abelian kernel and complement. We divide 
the proof into several steps. Let us denote π = {p prime | p divides |B| with B ∈ X1}.

Step 2: N has a normal π-complement and abelian Hall π-subgroups.

Let us prove that N is p-nilpotent and has abelian Sylow p-subgroups for every p ∈ π. 
Let a ∈ N \S, then obviously aG ∈ X2 and |aG| is a π′-number. If we take P ∈ Sylp(N), 
then there exists g ∈ N such that P g ⊆ CN (a), that is, a ∈ CN (P g) = CN (P )g. Thus, 
we can write

N = S ∪
⋃

g∈N

CN (P )g

and, by counting elements, it follows that

|N | ≤ (|S| − 1) + |N : NN (CN (P ))|(|CN (P )| − 1) + 1.

Hence

1 ≤ |S|
|N | + |CN (P )|

|NN (CN (P ))| −
1

|NN (CN (P ))| .

However, if CN (P ) < NN (CN (P )), as we are assuming that S < N , we have

1 ≤ 1
2 + 1

2 − 1
|NN (CN (P ))| ,

which is a contradiction. This implies that CN (P ) = NN (CN (P )), and in particular,

P ≤ NN (P ) ≤ NN (CN (P )) ≤ CN (P ),

so CN (P ) = NN (P ) and P is abelian. By Burnside’s p-nilpotency criterion (see for 
instance 17.9 of [7]), we get that N is p-nilpotent for every p ∈ π and so, N has normal 
π-complement. In particular, N is π-separable and there exists a Hall π-subgroup H
of N . By reasoning with H similarly as with P , we obtain CN (H) = NN (H) and so, 
H is abelian too. The step is finished.

Let K/Z(N) be the normal π-complement of N/Z(N). By applying Lemma 3.1(4), 
we get that SZ(N)/Z(N) is a normal π′-subgroup of N/Z(N), so S ≤ K.

Step 3: K = CN (x) for every x ∈ S \ Z(G) ∩N and S ≤ Z(K).

Let x ∈ S \ Z(G) ∩N . Then xG ∈ X1 by Lemma 3.1(1) and CG(x)/S is a π′-group 
by Lemma 3.1(5). Since |xN | is a π-number, we obtain that CN (x)/Z(N) is a Hall 
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π′-subgroup of N/Z(N). Thus, K = CN (x) for every x ∈ S\Z(G) ∩N and, in particular, 
S ≤ Z(K).

Step 4: K = S.

Let H be an abelian Hall π-subgroup of N . We have seen in the proof of Step 2 that

N = S ∪
⋃

g∈N

CN (H)g,

which trivially implies that

N =
⋃

g∈N

SCN (H)g.

This forces that N = CN (H)S and consequently, HS � N . Suppose that S < K and 
we will get a contradiction. Let a ∈ K \ S, then aG ∈ X2 by Lemma 3.1(1), so |aG|
is a π′-number and as a result, a ∈ CK(Hg) = CK(H)g for some g ∈ N . Moreover, 
S ≤ Z(K) by Step 3, so we have the following equalities

CK(Hg) = CK(HgS) = CK(HS) = CK(H).

Thus, a ∈ CK(H) for every a ∈ K \ S and we conclude that K = 〈K \ S〉 ⊆ CN (H). 
As H is abelian and N = HK, we have H ≤ Z(N) ≤ K. This implies that N = K and 
then, S ≤ Z(N) by Step 3, which contradicts the assumption made after Step 1.

Step 5: N is quasi-Frobenius with abelian kernel and complement.

Let N = N/Z(N) and let K = K/Z(N). If K = CN (x) for all x ∈ K \ {1}, this 
is equivalent to the fact that N is quasi-Frobenius with abelian kernel K and abelian 
complement H. Suppose then that K < CN (x) for some x ∈ K \ {1}. Also, we can 
suppose that o(x) is an r-number for some prime r ∈ π′. Now, let y ∈ CN (x) \ K

such that o(y) is a q-number for some q ∈ π. We can suppose without loss of general-
ity that o(y) is a q-number. Notice that [y, x] ∈ Z(N) because y ∈ CN (x) and, since 
(o(x), o(y)) = 1, it easily follows that [x, y] = 1. Then y ∈ CN (x) = K and y ∈ K, which 
is a contradiction. �
Example 5.1. We show that the converse of the above theorem is false. It is known 
that the special linear group H = SL(2, 5) acts Frobeniusly on K ∼= Z11 × Z11. As a 
consequence, the action of any subgroup of H on K is also Frobenius. We consider, in 
particular, a Sylow 5-subgroup P of H and NH(P ) acting Frobeniusly on K. We define 
the semidirect product N := KP , which is trivially a normal subgroup of G := KNH(P ). 
Thus, N is a Frobenius group with abelian kernel and complement. In fact, N decomposes 
into the following disjoint union
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N = {1} ∪ (K \ {1}) ∪ (
⋃

k∈K

P k \ {1}),

and K \ {1} is partitioned into N -classes of cardinality 5, whereas the elements 
of

⋃
k∈K(P k \ {1}) are decomposed into N -classes of cardinality 121. Therefore, the 

set of class sizes of N is {1, 5, 121}. Now, let us compute the G-class sizes of N . As G is a 
Frobenius group with kernel K and complement NH(P ), it follows that K is decomposed 
exactly into the trivial class and G-classes of size |NH(P )| = 20. That is, the N -classes 
contained in K \ {1} are grouped 4 by 4 to form G-classes. And on the other hand, the 
four N -conjugacy classes contained in 

⋃
k∈K P k \ {1} of size 121, are grouped in pairs 

and become two G-conjugacy classes of size 121 × 2. Then the set of G-class sizes of N
is {1, 20, 242} and ΓG(N) is a connected graph.

Example 5.2. The following example shows that the case in which N is a p-group in 
Theorem E actually occurs. Let G be the group of the library of the small groups of 
GAP [6] with number Id(324, 8) and with the presentation

〈x, y, z | x3 = y4 = z9 = 1, [x, y] = 1, zy = z−1, z2 = xzxzx = x−1zx−1zx−1〉.

By using GAP, one can check that G has an abelian normal subgroup N ∼= Z3 ×Z3 and 
the set of G-class sizes of N is {1, 2, 3}, so ΓG(N) is disconnected.

Open question. The referee proposed us the following question: whether it is possible to 
obtain any information on the structure of G from the graph ΓG(N) or not. We believe 
that in general ΓG(N) may provide few information of G, although possibly one could 
get further information on the action of G on N . In fact, G/CG(N) is always immerged 
in Aut(N). For giving an easy example, we consider the case in which ΓG(N) is just one 
vertex, as it happens with G = S3 and N = A3. Now, take N any p-elementary abelian 
group of order ps and let us consider the action of G = Hol(N) on N . As a result of 
the fact that Aut(N) acts transitively on N \ {1}, it follows that ΓG(N) consists only in 
one vertex, whilst Aut(N) ∼= GL(s, p) and so G might have a extremely more complex 
structure.
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