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1. Introduction

We consider quotient spaces Cn/G = Spec C[x1, . . . , xn]G, where G is a finite group 
acting linearly on Cn. By Noether’s theorem the ring of invariants of G is finitely gener-
ated, hence such quotients are (complex) algebraic varieties. They are usually singular 
and in such a case are called quotient singularities. In their construction, geometry meets 
finite group theory and there have been many attempts of extending this relation to res-
olutions of Cn/G. An example, probably the most important one, of describing the 
geometric structure of crepant (which in this case means that the canonical divisor is 
linearly trivial) resolutions of Cn/G in terms of algebraic properties of the group G is 
the McKay correspondence; for an introduction see, e.g., [24]. Though proved in several 
cases (see section 4.2), in general it reveals how much there is still to learn about this 
class of singularities and their resolutions.

In this paper, we study quotient singularities X0 := Cn/G and their resolutions in 
terms of the Cox ring

R (X0) =
⊕

Cl(X)

Γ (X0,O(D)) ,

see [1] for details on the construction. Cox rings have already been successfully used by 
various authors to study resolutions of quotient singularities, in particular for symplectic 
quotients in [12,10], described by a generating set in a simpler ring, and via an algorithmic 
approach based on toric ambient modifications in [15]. In this article we generalize the 
methods used in [15]. While finishing a draft of this paper, we also found out about 
Yamagishi’s work [28], which extends [12,10]. However, our approach is different from [28]
and our methods are not restricted to the class of crepant resolutions. In particular, as 
explained below, we do not try to construct the generators of the Cox ring directly from 
the group structure data, but we obtain it via toric ambient modifications, chosen in an 
intermediate step based on tropical geometry.

Our first contribution, presented in Section 2, is an algorithm to compute and verify a 
candidate for the Cox ring of a resolution X → X0 without requiring further knowledge 
of X0. More precisely, Algorithm 2.5 computes R(X0) and Algorithm 2.8 then computes 
a candidate for the Cox ring of a resolution X → X0 and verifies the result. Here, the 
main tool are toric ambient modifications as in [14,16]: we embed X0 into an affine toric 
variety Z0 and compute a resolution Z → Z0. The proper transform X → X0 then is 
the desired candidate for a resolution which we can verify algorithmically. Note that the 
choice of the toric resolution involves a tropical step; this is in the spirit of Tevelev and 
Teissier [25,26]. Algorithm 2.8 is a variant of the algorithm [22] given for Mori dream 
spaces, which, in turn, is based on [1,18] where the algorithm has been shown to work 
in the setting of complete rational complexity one T -varieties. See also [17] for the case 
of affine C∗-surfaces. Our algorithms are implemented in a library for the Open Source 
computer algebra system Singular [8]; we explain its use in Section 3 by examples.
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Our second contribution concerns resolutions of three-dimensional quotient singulari-
ties; it is presented in Section 4. We first classify in Proposition 4.2 the finite, non-abelian 
groups G ⊆ GL(3) with |G| ≤ 12 and without pseudo-reflections (see Remark 2.2). 
When G is abelian, the quotient singularity is toric; since the algorithm of construct-
ing a (toric) resolution and the structure of the Cox ring is known in this case, we do 
not consider it. Using our algorithms from Section 2, we first present the Cox rings of 
all singularities C3/G on the list, see Proposition 4.3 and then their resolutions, see 
Theorem 4.5. Then we discuss certain properties of the obtained resolutions in order to 
understand what can be expected from the output of the algorithm in general. In par-
ticular, we check whether the resolutions for subgroups of SL(3) on the list are crepant. 
In Subsection 4.3, we then give a modified algorithm to produce smaller resolutions. We 
apply it to obtain two more crepant resolutions.

Finally, in Section 5, we apply our methods to two four-dimensional examples. Note 
that in dimension 4 less is known about resolutions of quotient singularities, hence com-
putational experiments are even more valuable than in dimension 3. We provide the Cox 
rings of X0 = C4/G for chosen representations of G = S3 and G = D8 and compute 
the Cox rings of modifications X → X0. We are able to retrieve crepant resolutions that 
were also found in [10], see Proposition 5.3 and 5.4.

2. Algorithmic resolution

In this section, we describe the algorithm to compute the Cox ring of a resolution of a 
quotient singularity X0 := Cn/G where G is a finite group. It is divided into two parts: 
the first one, Algorithm 2.5, returns a presentation of the Cox ring of X0 and the second 
one, Algorithm 2.8, computes the Cox ring of a candidate for a resolution X → X0 and 
then verifies the choice of X. The latter algorithm is a variant of [1, Thm 3.4.4.9] and 
[22, Alg. 2.4.8]. It produces such a candidate X using a tropical step.

2.1. The setting and Cox rings

We work with representations of G, usually assuming that they are faithful. In this 
case we will often identify the representation with its image in GL(n), i.e., consider G

as a matrix group.

Definition 2.1. A matrix group G ⊆ GL(n) is small if it does not have pseudo-reflections; 
these are A ∈ G ⊆ GL(n) of finite order such that the subspace of fixed points (Cn)A is 
a hyperplane. We also say that a representation of an abstract group G is small, if its 
image in GL(n) is small.

Remark 2.2. Note that the assumption on the representation of G not having pseudo-
reflections is not restrictive: let H ⊆ G be the normal subgroup generated by all 
pseudo-reflections. Then
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Cn/G ∼= (Cn/H)
/
(G/H) ∼= Cn

/
(G/H)

since Cn/H is smooth by the Chevalley–Shephard–Todd theorem. In particular, the 
singularity for G is the same as the one for the smaller group G/H.

As outlined in the introduction, our central tool for the study of both X0 and its 
resolutions is the Cox ring. In this paper, we are particularly interested in the case where 
the Cox ring and the class group are finitely generated; one then calls the underlying 
variety a Mori dream space. Given such a Mori dream space X, the Cox ring R(X)
together with a choice of a collection of overlapping polyhedral cones in Cl(X) ⊗Z Q

determines X up to isomorphism. If X is a surface, R(X) even fully encodes X. The 
following construction summarizes this situation and shows how X can be retrieved as a 
quotient of an open subset of Spec(R(X)). We refer to the book [1, Sect. 3] for details.

To this end, recall that a variety X is an A2-variety if each two points admit a common 
affine open neighborhood. Examples include the class of quasiprojective varieties. We call 
X an A2-maximal variety if X is an A2-variety and there is no open embedding X � Y

into an A2-variety Y and codimY (Y \X) ≥ 2.

Construction 2.3. (See [1, Sect. 3I] and [14].) Let X be a normal, irreducible A2-maximal 
variety with Γ(X, O∗) = C∗ such that both K := Cl(X) and R := R(X) are finitely 
generated. Then X is the good quotient of an open subset X̂ of Spec(R)

X X̂ ⊆ X := Spec(R) ⊆ Cr

//H

by the action of the characteristic quasitorus H := Spec(C[K]), and X̂ can be described 
combinatorially by a set Φ of pairwise overlapping polyhedral cones in K ⊗Z Q. The 
triple (R, F, Φ), where F is a generating set of R, is called a bunched ring and already 
determines X up to isomorphism.

Moreover, each variety X as in Construction 2.3 comes with an embedding into the 
so-called canonical toric ambient variety; this is a toric variety Z ⊇ X with a fan Σ ⊂
N ⊗Z Q such that the embedded variety X inherits several nice properties from Z; we 
refer to [1, Subsect. 3.2.5] for details as well as its explicit computation from the Cox 
ring of X.

2.2. Cox ring of the quotient singularity

We start from explaining how to compute a presentation R(X0) = C[T1, . . . , Ts]/I0
of the Cox ring of X0 = Cn/G, which is suitable for being an input data for computing 
the Cox ring of a resolution of X0. The algorithm generalizes [15, Prop. 3.1]. First note 
that, by [2, Thm 3.1], R(X0) is isomorphic to the ring of invariants C[S1, . . . , Sn][G,G]

that comes with a grading by the (finite) group Cl(X0) = X(G′) of characters of the 
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abelianization G′ := G/[G, G]. On the geometric side, the situation becomes (cf. [15, 
Prop. 3.1]):

Cn/[G,G] ⊆

/G′

Cs

/G′

X0 ⊆ Cs/G′

To obtain a presentation suitable for further steps, we need to find a set of 
G′-homogeneous generators g1, . . . , gs of C[S1, . . . , Sn][G,G]. Thus we first compute any 
minimal set of generators and then turn it into a set of G′-homogeneous ones. This is 
done separately in the sets of polynomials of a fixed (standard) degree as follows.

Construction 2.4 (G′-homogeneous generators for C[S1, . . . , Sn][G,G]). Consider genera-
tors F = {f1, . . . , fs} for C[S1, ..., Sn][G,G]. Let d ∈ Z≥0 be such that there is fi ∈ F of de-
gree d. Let Vd denote the vector space of all polynomials of degree d in C[S1, . . . , Sn][G,G]. 
Denote by hd,1, . . . , hd,sd a basis of Vd chosen such that its elements either belong to F
or are products of elements of F of smaller degree.

Observe that we have an induced action of G′ on Vd. Thus, there is a homomorphism 
(often, but not always, an injection)

G′ → GL(sd), G′ � [m] �→ Md,m,

where Md,m ∈ GL(sd) of the automorphism of Vd given by m ∈ G ⊆ GL(n) in basis 
hd,1, . . . , hd,sd . We describe the image of G′ in GL(sd) by computing a generating set 
〈Md,1, . . . , Md,k〉 ⊆ GL(sd), which is an image of a generating set of G. Moreover, since 
G′ is abelian, we can find a basis hd,1, . . . , hd,sd of Vd in which all Md,i are simultaneously 
diagonalized.

Going through the possible values of d ∈ Z≥0, we collect the bases hd,1, . . . , hd,sd and 
remove redundant elements; the result is a set of G′-homogeneous polynomials g1, . . . , gs
which generate C[S1, . . . , Sn][G,G]. We will write χij for the eigenvalue of gi with respect 
to Mdi,j , where di = deg(gi).

Let g1, . . . , gs and χij be as in Construction 2.4. We then obtain the desired pre-
sentation R(X0) = C[T1, . . . , Ts]/I0 by computing the kernel I0 ⊆ C[T1, . . . , Ts] of the 
homomorphism

C[T1, . . . , Ts] → C[S1, . . . , Sn][G,G], Ti �→ gi.

This is a standard procedure, it requires eliminating variables S1, . . . , Sn from the ideal 
generated by all Ti − gi in the enlarged ring C[S1, . . . , Sn, T1, . . . , Tr], see for example 
[6, Thm. 3.2] or [9, Lem. 2.1]. Finally, to install the X(G′) = Cl(X0)-grading on R(X0), 
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it remains to define the degrees of the generators as deg(Ti) = (χi1, . . . , χik) ∈ X(G′); 
note that we give only values on a generating set of G′, which determine the character 
uniquely. The degree map of R(X0) = C[T1, . . . , Ts]/I0, i.e., the homomorphism

Zs → Cl(X0), ei �→ deg(Ti)

is defined by the degree matrix, the matrix with columns deg(T1), . . . , deg(Ts). We sum-
marize this as follows.

Algorithm 2.5 (Cox ring of X0). Input: a small group G ⊆ GL(n), given by a generating 
set.

• Compute generators f1, . . . , fs for the invariant ring C[S1, . . . , Sn][G,G].
• As in Construction 2.4, modify f1, . . . , fs to a set g1, . . . , gs of G′-homogeneous gen-

erators of C[S1, . . . , Sn][G,G] by computing eigenvectors of the induced action of G′

on subspaces of polynomials of fixed degree d, where d ∈ {deg(f1), . . . , deg(fs)}.
• In C[S1, . . . , Sn, T1, . . . , Ts], define the ideal J = 〈Ti − gi; 1 ≤ i ≤ s〉 and compute its 

elimination ideal I0 := J ∩ C[T1, . . . , Ts].
• Define the matrix Q0 with the i-th column (χi1, . . . , χik), where χij are eigenvalues 

of gi with respect to Mdi,j , as in Construction 2.4.

Output: I0 ⊆ C[T1, . . . , Ts] and Q0. Then C[T1, . . . , Ts]/I0 is a presentation of R(X0), 
where X0 = Cn/G, in terms of generators and relations with Q0 as degree matrix.

Example 2.6. We consider the faithful representation of the quaternion group G := Q8
with 8 elements whose image G ⊆ GL(2) is generated by( i 0

0 −i

)
,

( 0 −i
−i 0

)
,

where i ∈ C denotes the imaginary unit. There are no pseudo-reflections since no matrix 
in G has 1 as eigenvalue. We now apply the steps of Algorithm 2.5. Generators for the 
invariant ring C[S1, S2][G,G], where [G, G] = 〈−id〉, are

f1 = S1S2, f2 = S2
1 , f3 = S2

2 .

Moreover, the group G′ = G/[G, G] is isomorphic to (Z/2Z)2 and acts on the linear hull 
V2 := linC(f1, f2, f3); we work with the description

G′ ∼=
〈[ 1 0 0

0 −1 0
0 0 −1

]
,

[ −1 0 0
0 0 1
0 1 0

]〉
⊆ GL(3).

The vector space V2 then has the G′-invariant subspaces linC(f1) and linC(f2, f3). We 
have a basis (g1, g2, g3) for V2 consisting of the eigenvectors
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g1 := f1, g2 := f2 + f3, g3 := −f2 + f3 ∈ V

where the weights wi := (χi1, χi2) ∈ (Z/2Z)2 ∼= G′ are w1 = (0, 1), w2 = (1, 0) and 
w3 = (1, 1). The degree map is

Q0 : Z3 → (Z/2Z)2, ei �→
[

0 1 1
1 0 1

]
· ei

In the ring C[S1, S2, T1, T2, T3], we consider the ideal J := 〈T1 − g1, T2 − g2, T3 − g3〉 and 
compute its elimination ideal I0 := J ∩ C[T1, T2, T3]. We arrive at the G′-graded Cox 
ring with degree matrix Q0:

R(C2/G) ∼= C[T1, T2, T3]/I0, I0 = 〈4T 2
1 − T 2

2 + T 2
3 〉. �

2.3. Cox ring of the resolution

We now turn to the computation of the Cox ring of a resolution using the presentation 
R(X0) = C[T1, . . . , Ts]/I0 of the Cox ring obtained using Algorithm 2.5. There are two 
basic ingredients of the algorithm: the tropical variety Trop(X0) constructed from the 
presentation of R(X0) and the algorithm for computing the Cox ring of a toric ambient 
modification, [16, Alg. 3.6]. The idea is to embed X0 into its ambient affine toric variety 
Z0 = Cn/G′ and to use the tropical variety Trop(X0) to determine the centers for toric 
ambient modifications of X0. Then we perform a toric resolution Z → Z0, consider 
the proper transform X → X0, compute its Cox ring and check whether it actually 
corresponds to a resolution of X0. Let us explain the details.

Step 1: the toric ambient variety. Recall that Q0 is the degree matrix of R(X0). We 
fix a Gale dual matrix for Q0, i.e., a matrix P0 such that its transpose P ∗

0 fits into the 
exact sequence

0 Cl(X0) Zs
Q0 ker(Q0)

P∗
0 0 (1)

see, e.g., [22] for its computation. The defining fan Σ0 of the canonical toric ambient va-
riety Z0 of X0 (cf. the paragraph after Construction 2.3) can be written down explicitly:

Σ0 = faces (σ) , σ := P0(Qs
≥0) ⊆ Qn.

The corresponding (affine) toric ambient variety is Z0 = Cn/G′ with the abelianization 
G′ := G/[G, G].

Step 2: the tropical variety. The tropical variety Trop(X0) lies in the same linear space 
Qn as the fan Σ0. Consider the affine variety X0 := Spec(R(X0)) ⊆ Cs.
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Construction 2.7. Given a polynomial f ∈ C[T1, . . . , Ts], its tropical variety Trop(f) ⊆
Qs is the support of the codimension-one skeleton of the normal fan over the Newton 
polytope of f . In the previous setting, we then obtain tropical varieties

Trop
(
X0 ∩ (C∗)s

)
:=

⋂
f∈I0

Trop(f) ⊆ Qs,

Trop(X0) := P0
(
Trop

(
X0 ∩ (C∗)s

))
⊆ Qn.

It is possible to establish a fan structure on Trop(X0), see, e.g., [4,23]; we will denote 
this fan by Υ.

Note that in Construction 2.7, despite the infinite intersection, Trop
(
X0 ∩ (C∗)s

)
can 

be computed using finitely many Gröbner basis computations, see [4].

Step 3: determining the modification. From the previous steps, we obtain two poly-
hedral fans Σ0, Υ in Qn. We use the second one to determine a modification of the first 
one as follows; this is similar to a procedure proposed by Tevelev in a related context, 
see Remark 2.15. Firstly, we compute the fan

Σ′ := {σ ∩ τ | τ ∈ Υ}

with support |Σ′| = Trop(X0). Note that, by construction and [25, Lem. 2.2], the toric 
variety Z ′ corresponding to Σ′ is still a toric ambient variety of X0. Secondly, we resolve 
singular cones of Σ′ by inserting new rays, compare [7, 11.1] for the procedure. This yields 
a regular fan Σ and a toric resolution Z → Z ′, where Z is the toric variety corresponding 
to Σ. The following diagram summarizes the situation; the map π is the composition of 
the toric morphism defined by the map of fans Σ′ → Σ0 and the resolution, and X is 
the proper transform of X0 under π (see also the next step).

X

π

⊆ Z

π

resolve

X0 ⊆ Z ′

∩Υ

X0 ⊆ Z0

For the next step, we write the primitive generators v1, . . . , vm of the rays added to Σ0
in this process into the columns of the enlarged (s +m) ×n-matrix P := [P0, v1, . . . , vm], 
and we compute a Gale dual matrix Q of P .

Step 4: modifying the ideal of Spec(R(X0)). Finally, we apply [16, Alg. 3.6] to compute 
the Cox ring of the proper transform X → X0 under π; its main idea is as follows. 
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Extending the diagram from the previous step to the spectra Y := Spec(R(Y )) of the 
respective Cox rings, we obtain

X

⊆

π

X

π

⊆ Z

π

Cs+m

π

X0

⊆

X0 ⊆ Z0 Cs

where a dashed arrow from some Y to the corresponding Y means that Y is the quotient 
of an open subset of Y by a quasitorus as in Construction 2.3. The spectrum of the Cox 
ring of the proper transform is the closure

X = π−1(X0 ∩ (C∗)s) ⊆ Cs+m.

This gives a recipe to compute R(X) = O(X): using the presentation R(X0) =
C[T1, . . . , Ts]/I0, compute the pullback π∗(I0) ⊆ C[T±1

1 , . . . , T±1
s+m] and then the sat-

uration I := π∗(I0) : (T1 · · ·Ts+m)∞ in the ring C[T1, . . . , Ts+m]. By [16, Alg. 3.6], if all 
variables Ti define prime elements in R := C[T1, . . . , Ts+m]/I and dim(I) −dim(〈Ti, Tj〉 +
I) ≥ 2 for all i �= j, then R is the Cox ring of X.

It then remains to check whether X is smooth – if it is, then X is a resolution of X0, 
see the proof below. We also provide an algorithm for testing smoothness in the current 
setting, see Algorithm 2.11.

The following algorithm summarizes the process of computing and verifying a candi-
date for the Cox ring R(X) of a resolution X → X0. Note that it is close to [22, Alg. 2.4.8]
which in turn is based on [1, Thm 3.4.4.9] where the complete, complexity-one-case is 
treated. See also [18, Ch. 3] and check [17, Sect. 3] for the case of affine C∗-surfaces.

Algorithm 2.8 (Candidate for the Cox ring of a resolution X → X0 = Cn/G). Input:
a finite small group G ⊆ GL(n).

• Compute the Cox ring R(X0) = C[T1, . . . , Ts]/I0 of X0 and the matrix Q0 with 
Algorithm 2.5.

• Determine a matrix P0 that is Gale dual to Q0.
• Define the fan Σ0 := faces(σ) with the cone σ := P0(Qn

≥0) ⊆ Qn.
• Compute a fan Υ with support Trop(X0) to obtain Σ′ := {σ ∩ τ | τ ∈ Υ}.
• Stellarly subdivide Σ′ at primitive vectors v1, . . . , vm ∈ Zn until we obtain a regular 

fan Σ.
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• Compute a Gale dual Q of the enlarged matrix P := [P0, v1, . . . , vm].
• Compute a presentation R := C[T1, . . . , Tr]/I, where r := s + m, of the Cox ring of 

the proper transform X → X0 under π using [16, Alg. 3.6] with the ‘verify’-option, 
as explained above.

• Verify smoothness of the variety X determined by (R, Σ), e.g. with Algorithm 2.11.

Output: R and Q. If the verifications of the last two steps were successful, then R is the 
Cox ring of a resolution X → X0 and Q is the degree matrix of R.

Lemma 2.9. In the setting of Algorithm 2.8, if Spec(R) ∩(C∗)r is smooth and all variables 
T1, . . . , Tr are prime, then R is normal.

Proof. Write Xi for the localization of X := Spec(R) at the product T1 · · ·Ti. By 
assumption, X̂ := Spec(R) ∩(C∗)r is smooth and therefore also Xr is smooth and in par-
ticular normal. Since Tr is prime, this implies normality of Xr−1, see [1, Lem. IV.1.2.7]. 
Iterating this argument, X0 = Spec(R) is normal. �
Proof of Algorithm 2.8. By construction and [16, Alg. 3.6], X → X0 is a modification and 
R the Cox ring of X. Note that [16, Alg. 3.6] directly translates to the affine setting and 
the required normality test of R is provided by Lemma 2.9 if the smoothness requirement 
is ensured (e.g. by explicit computations). �
Remark 2.10. If the smoothness test in Algorithm 2.8 is left out, R is still the Cox ring 
of a modification of X0 provided that R is normal.

We can test smoothness of X using the following straight-forward test; compare 
also [15]. The idea is to first test the toric charts Zσ, where σ is a cone of the fan 
of the canonical toric ambient variety Z, for being smooth; it then suffices to check the 
smoothness of Xσ := Zσ ∩X if all Zσ are smooth.

X ⊆ Cr

Xσ ⊇

⊆

X Z ⊆ Zσ

For the latter, we use the following ad hoc algorithm which directly looks for singularities 
of X that lie in Zσ

∼= (C∗)l × Ck for suitable k, l ∈ Z≥0.

Algorithm 2.11 (Smoothness test). Input: a normal, irreducible A2-maximal variety X

with R(X) finitely generated.
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• Compute the fan Σ of the canonical toric ambient variety Z of X.
• Return false if Σ is not regular.
• Return true if and only if all Xσ where σ ∈ Σ are smooth.

Output: true if X is smooth, false otherwise.

Remark 2.12. In Algorithm 2.11, the smoothness of Xσ can be checked as follows. Ac-
cording to [1, Constr. 3.3.1.1], we can compute a pairwise disjoint decomposition

X = X1 � . . . �Xu

For each i, one then produces equations for Xi in O(Cm × (C∗)n−m) ∼= C[σ∨ ∩Zn]. The 
test then boils down to Xsing

i ∩ Cm × Tn−m being empty or not. This can be done by a 
saturation computation using Gröbner bases.

Remark 2.13. Using the torus action on X and the fact that the singular locus is closed 
one may often reduce the number of sets Xσ for which the computations have to be 
performed to check the smoothness.

Example 2.14. Consider the Cox ring R(X0) = C[T1, T2, T3]/I0 computed in Example 2.6
with its degree-map Q : Z3 → (Z/2Z)2. We apply the steps of Algorithm 2.8 to X0. The 
canonical toric ambient variety is the affine toric variety Z0 = Z0(σ) with σ ⊆ Q3 being 
the polyhedral cone spanned by (1, 0, 0), (1, 2, 0), (1, 0, 2). The following picture shows 
the steps for the toric resolution.

The two-dimensional fan Σ = {σ} ∩ Trop(X0) has already the additional ray Q≥0 · v1

where v1 := (3, 2, 2). The fan can be resolved by insertion of the further rays through

v2 := (2, 1, 2), v3 := (2, 2, 1), v4 := (2, 1, 1).

This yields a toric resolution Z → Z0 which then induces a resolution X → X0 as the 
proper transform of Z → Z0; its Z4-graded Cox ring R(X) and degree matrix are

R(X) = C[T1, . . . , T7]/〈4T 2
1 T7 − T6T

2
2 + T 2

3 T5〉,
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⎡⎣ −1 −1 −1 1 0 0 0
0 −1 0 1 −1 1 −1
0 0 −1 1 1 −1 −1
0 −1 −1 0 1 1 −1

⎤⎦ .

One verifies that X is smooth. As X is a surface, we can verify minimality of the resolu-
tion by inspecting the self-intersection numbers of divisors corresponding to V (X̂; Ti): 
they are −1, −1, −1, −2, −2, −2, −2. �

We will use Algorithms 2.5 and 2.8 in Section 4 to compute resolutions of quotient 
singularities. The next section explains an implementation of the algorithms of this 
section. We close this section with the following remark.

Remark 2.15. A result by Tevelev [25] indicates that the steps performed in Algorithm 2.8
should work, provided that we find the correct embedding X → Z and fan structure on 
Trop(X). Moreover, in [26], Tevelev shows that any embedded resolution of singularities 
is induced by an equivariant map of toric varieties in the following sense. Consider a 
birational morphism π : Y2 → Y1 of smooth projective varieties with exceptional locus 
D ⊆ Y2 such that the restriction of π to Y2 ⊇ X2 → X1 ⊆ Y1 is a resolution of 
singularities. Assume that D has simple normal crossings and intersects X2 transversally. 
Then there are embeddings Y1 ⊆ Pn and Y2 ⊆ Z2 with a smooth toric variety Z2 such 
that X2 and Y2 intersect the toric boundary of Z2 transversally and π is a restriction of 
a toric morphism π : Z2 → Z1.

X2

π

Y2

π

Z2

π

X1 Y1 Z1 = Pn

Hence the main task seems to be to find the correct embeddings Xi ⊆ Zi – it would be 
interesting to investigate this in further work.

3. Implementation

We have implemented Algorithms 2.5 and 2.8 in the library quotsingcox.lib for the 
Open Source computer algebra system Singular [8]. It will be made available at [11]. 
We currently make use of the interface to Normaliz [5]. We shortly explain its use in the 
following two examples.

Example 3.1 (Algorithm 2.5). We recompute Example 2.6 using the library
quotsingcox.lib [11]. In Singular, we first load the built-in library for convex ge-
ometry (implemented by Y. Ren) and our library with



558 M. Donten-Bury, S. Keicher / Journal of Algebra 472 (2017) 546–572
> LIB "gfanlib.so"; LIB "quotsingcox.lib";

Next, we enter generators for G ⊆ GL(2). We first have to define a ring where not only 
the generators of G are defined but also all eigenvalues of [G, G]; Q(i) will work here:

> ring R = (0,CplxUnit),T(1..2),dp; minpoly = CplxUnit^2 + 1;
> matrix M0[2][2] = CplxUnit,0, 0,-CplxUnit;
> matrix M1[2][2] = 0,-CplxUnit,-CplxUnit,0;
> list G = M0, M1; // the group G

Next, we have to enter generators for the derived subgroup. For integer entries, you can 
also use the command list GG = gapDerivedSubgroup(G); which writes a file and 
applies GAP [13].

> matrix M2[2][2] = -1,0,0,-1;
> list GG = M2; // derived subgroup of G

We can then compute the Cox ring R(X0) and investigate it using the following com-
mands:

> def R0 = coxquot(G, GG); setring R0; R0;
// characteristic : 0
// 1 parameter : CplxUnit
// minpoly : (CplxUnit^2+1)
// number of vars : 3
// block 1 : ordering dp
// : names T(1) T(2) T(3)
// block 2 : ordering C
> ideal I0 = Inew; I0; // Cox ring of X0 is R0/I0
I0[1]=T(1)^2-T(2)^2-4*T(3)^2

Generators for Cl(X0) as a matrix subgroup Gnew of GL(3) and the degrees deg(Ti) ∈
Cl(X0) of the generators of R(X0) can be displayed with print(Gnew[1]) and
print(Gnew[2]). This yields the matrices with columns −e1, −e2, e3 and −e2, −e1, −e3, 
respectively.

> Wnew; // degrees of the generators (eigenvalues)
[1]:
_[1,1]=-1
_[2,1]=-1
[2]:
_[1,1]=-1
_[2,1]=1
[3]:
_[1,1]=1
_[2,1]=-1 �
Example 3.2 (Algorithm 2.8). Building on Example 3.1, we recompute Example 2.14. 
The next step has to be prepared manually: one has to give the isomorphism type of
Gnew as a product 

∏
Z/niZ. Here, gapStructureDescription(Gnew); can be used to 
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see that n1 = n2 = 2. We store the integers ni, translate the degrees given in Wnew into 
the columns of a matrix Q0 and compute a Gale dual matrix P0 for Q0:

> list ClX0 = 2, 2; // ZZ/2ZZ x ZZ/2ZZ
> intmat Q0[2][3] = 1,1,0,1,0,1; // degree matrix
> intmat P0 = finiteGaleDual(Q0, ClX0); P0;
1,1,1
1,2,0
0,0,2

We can then compute, verify and print a candidate for the Cox ring of a resolution 
X → X0 using Algorithm 2.8 with the following commands. We present the Cox ring as 
C[T1, . . . , Ts]/I0; the algorithm returns the ideal I0.

> def R = resolveQuotSing(I0, P0, 1); setring R; R; // 1 means verify
1st part of Verification successful: please check primality of the variables (e.g. with
primeVars).
// characteristic : 0
// 1 parameter : CplxUnit
// minpoly : (CplxUnit^2+1)
// number of vars : 7
// block 1 : ordering dp
// : names T(1) T(2) T(3) T(4) T(5) T(6) T(7)
// block 2 : ordering C
> Inew; // Cox ring of X is R/Inew
Inew[1]=T(1)^2*T(5)-T(2)^2*T(6)-4*T(3)^2*T(7)

One can check the primality of the variables Ti using the command primeVars(Inew);. 
The Z4-grading is stored in the new degree matrix Q; it is obtained as a Gale dual matrix 
Q to the new matrix P :

> intmat P = L[2];
> intmat Q = gale(P); Q;
-1,-1,-1,1,0,0,0,
-2,-1,-1,0,2,0,0,
3,0,1,0,-4,2,0,
2,0,0,0,-3,1,1 �
4. Resolutions of 3-dimensional quotient singularities

4.1. Cox rings

In this section, we compute Cox rings of resolutions of quotient singularities C3/G

where G is a group of order at most 12 and discuss the results. As explained in 
Remark 2.2, we will consider only faithful representations of G without pseudo-
reflections.

Notation 4.1. In the following, we denote by S3 the permutation group of three elements, 
by D2n the dihedral group of 2n elements, by Q8 the quaternion group and by A4 the 
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alternating group of four elements. Moreover, we write BD3 for the binary dihedral group, 
i.e., the abstract group with 12 elements

BD3 =
〈
a, x; a6 = 1, x2 = a3, x−1ax = a−1〉 .

Proposition 4.2. Up to conjugacy in GL(3), the 3-dimensional faithful small representa-
tions of non-abelian groups up to order 12 are as follows.

No. G gen.s in GL(3)
1 S3

⎡⎣ 0 −1 0
1 −1 0
0 0 1

⎤⎦,

⎡⎣ −1 1 0
0 1 0
0 0 −1

⎤⎦.

2 D8
⎡⎣ 0 −1 0

1 0 0
0 0 1

⎤⎦,

⎡⎣ 1 0 0
0 −1 0
0 0 −1

⎤⎦.

3 Q8
⎡⎣ i 0 0

0 −i 0
0 0 1

⎤⎦,

⎡⎣ 0 −1 0
1 0 0
0 0 1

⎤⎦.

4 Q8
⎡⎣ i 0 0

0 −i 0
0 0 −1

⎤⎦,

⎡⎣ 0 −1 0
1 0 0
0 0 1

⎤⎦.

5 D10
⎡⎣ ζ5 0 0

0 ζ4
5 0

0 0 1

⎤⎦,

⎡⎣ 0 1 0
1 0 0
0 0 −1

⎤⎦.

No. G gen.s in GL(3)
6 D12

⎡⎣ −ζ2
3 0 0
0 −ζ3 0
0 0 1

⎤⎦,

⎡⎣ 0 1 0
1 0 0
0 0 −1

⎤⎦.

7 A4
⎡⎣ 0 0 1

1 0 0
0 1 0

⎤⎦,

⎡⎣ −1 0 0
0 −1 0
0 0 1

⎤⎦.

8 BD3
⎡⎣ −ζ2

3 0 0
0 −ζ3 0
0 0 1

⎤⎦,

⎡⎣ 0 −i 0
−i 0 0
0 0 1

⎤⎦.

9 BD3
⎡⎣ −ζ2

3 0 0
0 −ζ3 0
0 0 −1

⎤⎦,

⎡⎣ 0 −i 0
−i 0 0
0 0 i

⎤⎦.

10 BD3
⎡⎣ −ζ2

3 0 0
0 −ζ3 0
0 0 1

⎤⎦,

⎡⎣ 0 −i 0
−i 0 0
0 0 −1

⎤⎦.

In the table, i ∈ C denotes the imaginary unit, and ζk ∈ C is a primitive k-th root of 
unity. All listed representations are reducible except for the A4-case.

Proof. To classify these representations we use the library of groups of small order, which 
is a part of GAP [13]. We do the following steps:

(i) view the character tables to get dimensions of irreducible representations,
(ii) find all irreducible representations: for a group of small order and a given character 

one can either locate a representation in the literature or construct easily,
(iii) combine irreducible representations to get all faithful 3-dimensional representations 

of a given group (in particular, direct sums of 1-dimensional representations are not 
allowed since they are not faithful representations – the image is an abelian group),

(iv) eliminate representations with pseudo-reflections (see Remark 2.2),
(v) check whether obtained representations have different groups as images (if repre-

sentations differ just by a permutation of conjugacy classes in G, they give the same 
quotient); for any two representations of the same group on the list above the sets
of matrix traces are different, hence this condition is satisfied. �

Proposition 4.3. In the setting of Proposition 4.2, the Cox rings of X0 := C3/G are as 
listed in the following table.
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No. G Cl(X0) Degree matrix R(X0)
1 S3 Z/2Z

[
1 1 0 0

]
C[T1, . . . , T4]/I with I gen. by 
4T 3

3 − T 2
2 − 27T 2

4

2 D8 Z/2Z × Z/2Z
[

1 1 0 0
1 0 1 0

]
C[T1, . . . , T4]/I with I gen. by 
4T 2

1 + T 2
2 − T 2

4

3 Q8 Z/2Z × Z/2Z
[

1 1 0 0
1 0 1 0

]
C[T1, . . . , T4]/I with I gen. by 
T 2

1 − T 2
2 + 4T 2

3

4 Q8 Z/2Z × Z/2Z
[

1 1 1 0
1 0 0 1

]
C[T1, . . . , T4]/I with I gen. by 
T 2

1 − T 2
3 + 4T 2

4

5 D10 Z/2Z
[
1 1 0 0

]
C[T1, . . . , T4]/I with I gen. by 
4T 5

3 + T 2
2 − T 2

4

6 D12 Z/2Z × Z/2Z
[

1 1 0 0
1 0 1 0

]
C[T1, . . . , T4]/I with I gen. by 
4T 3

4 + T 2
1 − T 2

2

7 A4 Z/3Z
[
0 0 2 1

]
C[T1, . . . , T4]/I with I gen. by 
T 3

1 +T 3
3 −3T1T3T4+T 3

4 −27T 2
2

8 BD3 Z/4Z
[
3 1 2 0

]
C[T1, . . . , T4]/I with I gen. by 
4T 3

3 + T 2
1 − T 2

2

9 BD3 Z/4Z
[
3 1 1 2

]
C[T1, . . . , T4]/I with I gen. by 
4T 3

4 + T 2
1 − T 2

3

10 BD3 Z/4Z
[
3 1 2 2

]
C[T1, . . . , T4]/I with I gen. by 
4T 3

4 + T 2
1 − T 2

2

Proof. The listed Cox rings are obtained by applying Algorithm 2.5 to the list of repre-
sentations from Proposition 4.2 using our implementation 3. �
Remark 4.4. Note that several rings on the list (without grading considered) are isomor-
phic. This is because the ring structure of the Cox ring of Cn/G is just the invariant 
ring C[x1, . . . , xn][G,G] and derived subgroups in cases 2, 3, 4 (D8 and Q8 represen-
tations) and also 6, 8, 9, 10 (D12 and BD3 representations) are conjugate subgroups 
of GL(3).

Theorem 4.5. In the setting of Proposition 4.3, a resolution X → X0 of the quotient 
X0 = C3/G has the following Cox ring, respectively.

No. G Cl(X) Degree matrix R(X)
1 S3 Z

4 ⎡⎣ 0 −3 −2 −3 1 0 0 0
−1 −1 0 0 0 2 0 0

1 0 −1 −1 0 −2 1 0
1 0 −1 −2 0 −3 0 1

⎤⎦ C[T1, . . . , T8]/I with I gen. by 
4T 3

3 T7 − T 2
2 T6 − 27T 2

4 T8

2 D8 Z
4 ⎡⎣ −1 −1 0 −1 1 0 0 0

−1 0 −1 0 0 2 0 0
−1 −1 0 −2 0 0 2 0

1 0 0 1 0 −1 −1 1

⎤⎦ C[T1, . . . , T8]/I with I gen. by 
−4T 2

1 T6 + T 2
4 T7 − T 2

2 T8

3 Q8 Z
4 ⎡⎣ −1 −1 −1 0 1 0 0 0

−2 −1 −1 0 0 2 0 0
1 0 −1 0 0 −2 2 0
2 0 0 0 0 −3 1 1

⎤⎦ C[T1, . . . , T8]/I with I gen. by 
T 2

1 T6 + 4T 2
3 T7 − T 2

2 T8

4 Q8 Z
4 ⎡⎣ −1 0 −1 −1 1 0 0 0

−2 −1 −1 −1 0 2 0 0
1 0 0 −1 0 −2 2 0
2 1 0 0 0 −3 1 1

⎤⎦ C[T1, . . . , T8]/I with I gen. by 
−T 2

1 T6 − 4T 2
4 T7 + T 2

3 T8
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5 D10 Z
5 ⎡⎢⎢⎣

0 −5 −2 −5 1 0 0 0 0
−1 −1 0 0 0 2 0 0 0

1 0 −1 −1 0 −2 1 0 0
2 0 −1 −2 0 −4 0 1 0
2 0 −1 −3 0 −5 0 0 1

⎤⎥⎥⎦
C[T1, . . . , T9]/I with I gen. by 
4T 5

3 T
3
7 T8 + T 2

2 T6 − T 2
4 T9

6 D12 Z
5 ⎡⎢⎢⎣

−3 −3 0 −2 2 0 0 0 0
−1 0 −1 0 0 2 0 0 0

1 1 0 0 −1 0 1 0 0
2 1 0 1 −1 −1 0 1 0
2 2 0 1 −2 0 0 0 1

⎤⎥⎥⎦
C[T1, . . . , T9]/I with I gen. by 
4T 3

4 T
2
7 T9 + T 2

1 T6 − T 2
2 T8

7 A4 Z
3 [ 0 0 −1 −1 0 −1 −1 1 1 0

0 0 0 −1 0 0 −1 −1 2 0
−1 0 0 0 −1 −1 −1 0 0 1

]
C[T1, . . . , T10]/I with I gen. by 
T4T7T9 + T2T6 + T3T5, 
T 2

4 T9 − T2T3 − T6T10, 
T3T6T8 + T2T7 + T4T5, 
T 2

3 T8 − T2T4 − T7T10, 
27T 2

1 T4 − T 2
6 T8 + T5T7,

27T 2
1 T3 − T 2

7 T9 + T5T6, 
T6T7T8T9 + 27T 2

1 T2 − T 2
5 , 

T3T4T8T9 − T 2
2 + T5T10, 

T3T7T8T9 + T4T6T8T9 −
27T 2

1 T10 + T2T5

8 BD3 Z
5 ⎡⎢⎢⎣

−3 −3 −2 0 2 0 0 0 0
2 3 2 0 −3 2 0 0 0

−1 −2 −2 0 2 −2 1 0 0
−2 −5 −3 0 5 −5 0 1 0
−2 −4 −3 0 4 −4 0 0 1

⎤⎥⎥⎦
C[T1, . . . , T9]/I with I gen. by 
4T 3

3 T
2
7 T9 + T 2

1 T6 − T 2
2 T8

9 BD3 Z
8 ⎡⎢⎢⎢⎢⎢⎢⎣

−3 0 −3 −2 1 0 0 0 0 0 0 0
−1 −1 −1 −2 0 2 0 0 0 0 0 0
−1 0 0 2 0 −3 2 0 0 0 0 0

3 1 0 −3 0 5 −5 1 0 0 0 0
2 1 0 −3 0 4 −4 0 1 0 0 0
2 0 0 −3 0 4 −4 0 0 1 0 0
3 1 0 −4 0 6 −6 0 0 0 1 0
4 2 0 −6 0 9 −9 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

C[T1, . . . , T12]/I with I gen. by 
4T 3

4 T
2
6 T9T10 +T 2

1 T7T12 −T 2
3 T8

10 BD3 Z
5 ⎡⎢⎢⎣

−3 −3 0 −2 2 0 0 0 0
1 1 0 0 −1 1 0 0 0
2 3 −1 2 −3 0 2 0 0

−2 −5 2 −3 5 0 −5 1 0
−2 −4 2 −3 4 0 −4 0 1

⎤⎥⎥⎦
C[T1, . . . , T9]/I with I gen. by 
4T 3

4 T
2
6 T9 + T 2

1 T7 − T 2
2 T8

Proof. Cases where G �= A4: The Cox rings of the X0 = C3/G have been presented 
in Proposition 4.3. We then obtain the Cox ring of a resolution X → X0 using our 
implementation 3 of Algorithm 2.8. The verifications of the primality of the variables Ti

are done directly computationally, the smoothness tests are done with Algorithm 2.11
as implemented in MDSpackage [15].

Case G = A4: To obtain the Cox ring of a resolution of the quotient singularity for 
G = A4 one needs to change the presentation of the Cox ring of C3/G. The one shown 
in Proposition 4.3 comes from the generating set of C[x, y, z][G,G]

T1 = x2 + y2 + z2, T2 = xyz, T3 = x2 + εy2 + ε2z2, T4 = x2 + ε2y2 + εz2

composed of eigenvectors of G/[G, G] action (where ε is the 3rd root of unity). For the 
resolution algorithm to work (compare Example 4.6), we want the generating set to 
satisfy [10, Condition 3.6], developed in the more general context including the present 
case in [28]. Roughly speaking, it determines when a generating set of R(X0) is suitable 
for being extended to the Cox ring of its resolution. Thus we add to the generating set 
elements

T5 = T 2
1 − T3T4, T6 = T 2

3 − T1T4, T7 = T 2
4 − T1T3,
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which are obstructions for this condition for the original generating set. We obtain a 
presentation R(X0) = C[T1, . . . , T7]/I0 where generators for I0 and the Z/3Z-grading 
matrix are

T4T5 + T3T6 + T2T7, T3T5 + T2T6 + T4T7, T 2
3 − T2T4 − T7,

T2T3 − T 2
4 + T6, T 2

2 − T3T4 − T5, 27T 2
1 − T2T5 − T4T6 − T3T7,

[ 0 0 2 1 0 2 1 ] .

The ring in the table is obtained via toric ambient modification from the Cox ring of 
C3/G, presented as above. More precisely, we apply Algorithm 4.15 (to be explained in 
Subsection 4.3) with the choice of the three vectors

v1 := (0, 0, 2, 1, 0, 1, 1), v2 := (0, 0, 2, 1, 0, 1, 2) v3 := (1, 0, 3, 1, 1, 2, 3).

All the necessary verifications, in particular the smoothness test, are successful. �
Example 4.6 (Non-example). Note that for G = A4, if we apply Algorithm 2.8 directly 
to the presentation of R(X0) given in case 7 of Proposition 4.3, we only obtain the Cox 
ring of a modification X → X0 where X is not smooth. More precisely, it computes the 
Z8-graded Cox ring and degree matrix

C[T1, . . . , T12]/I with I gen. by
T 3

3 T
2
6 T7T

2
8 T11 + T 3

4 T6T
2
7 T

2
9 T12

− 3T1T3T4T6T7T8T9T11T12 + T 3
1 T8T9T

2
11T

2
12

− 27T 2
2 T10

⎡⎢⎢⎣
−2 −3 −2 −2 1 0 0 0 0 0 0 0

0 0 −2 −1 0 3 0 0 0 0 0 0
0 0 1 0 0 −2 1 0 0 0 0 0

−1 −1 0 0 0 −2 0 1 0 0 0 0
−1 −1 2 0 0 −4 0 0 1 0 0 0
−1 −2 1 0 0 −3 0 0 0 1 0 0
−2 −2 1 0 0 −4 0 0 0 0 1 0
−2 −2 2 0 0 −5 0 0 0 0 0 1

⎤⎥⎥⎦ .

�
Remark 4.7. Using these methods and its implementation, one can directly go to higher 
group orders |G|. Since the number of different representations to consider grows quickly 
for isomorphism types of G with higher order, we end the table at order 12.

4.2. Properties of quotients and their resolutions

We discuss certain geometric properties of the quotient singularities and their resolu-
tions corresponding to the Cox rings from Theorem 4.5. At first, we turn to torus actions 
on quotient spaces: we consider the relation between the form of the Cox ring and the 
existence of a torus action on Cn/G.

Proposition 4.8. Let V be an affine space which is a direct sum of n representations of a 
given group G. Then V admits an action of (C∗)n which commutes with the action of G.

Proof. Let (xi,1 . . . , xi,ni
) be the coordinates of the i-th representation (of dimension di). 

The following action commutes with the action of G.
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(C∗)n × V → V,
(t1, . . . , tn) · (x1,1 . . . , x1,d1 , . . . , xn,1 . . . , xn,dn

)

= (t1x1,1 . . . , t1x1,d1 , . . . , tnxn,1 . . . , tnxn,dn
)

�

Corollary 4.9. A quotient of C3 by a direct sum of a 2-dimensional and a 1-dimensional 
representation is a T -variety of complexity one.

Remark 4.10. All representations in the table in Proposition 4.2 except the case of A4
are direct sums of two irreducible representations, as it can be easily seen from the 
generating matrices. In particular, all varieties X0 in Proposition 4.3 except possibly for 
the A4 case are T -varieties of complexity one.

Thus, the only 3-dimensional quotient singularities which are possibly not T -varieties 
of complexity one correspond to irreducible representations. The representation of A4 in 
Proposition 4.2 is irreducible and we expect that there is no (C∗)2 action.

Note that although we do not give a proof that for 3-dimensional quotient singularities 
with the (C∗)2-action (as in Remark 4.10) Algorithm 2.8 will always compute the Cox 
ring of a resolution and that it will have just one trinomial relation, it seems natural 
to predict such behavior. This is because of similar results in slightly different settings. 
In [1, Thm 3.4.4.9] the authors construct the Cox ring for any complete T -variety of 
complexity one and determine its single relation. Recently, an analogous description of 
the Cox rings of affine C∗-surfaces was provided in [17, Sect. 3].

Remark 4.11. By the previous discussion, it would be interesting to continue the list 
of results in Theorem 4.5 with irreducible, 3-dimensional representations. However, the 
smallest cases of such representations (one of order 21, two of order 24 and two of 
order 27) are at the moment computationally out of reach on our machines.

We now turn to properties of the resolutions found in Theorem 4.5. Recall that a 
resolution of singularities π : X → X0 is called crepant if KX = π∗KX0 . For surface 
quotient singularities for G ⊆ SL(2), i.e. du Val singularities, crepant resolutions are 
the minimal ones: the special fiber is a tree of smooth rational curves dual to a Dynkin 
diagram An, Dn, E6, E7 or E8. The relation between the structure of G (its conjugacy 
classes or irreducible representations) and the shape of the diagram of the resolution of 
C/G was noticed by McKay. The postulated relation between the geometry of crepant 
resolutions of (Gorenstein) quotient singularities and the structure of the group is called 
the McKay correspondence. It has been studied in several special cases and in different 
formulations. In particular, it is proved in dimension 3, see e.g. [19], for symplectic 
singularities in dimension 4, see [20], and a weak version for any G ⊂ SL(n) (the equality 
of the dimension of cohomology space and the number of conjugacy classes of G) is due 
to Batyrev [3].

It is a natural question to ask how good the resolutions obtained using Algorithm 2.8
are and what properties to expect of them. In particular, we would like to know whether 
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they are crepant for G ⊂ SL(n). To test this property for the 3-dimensional results in 
Theorem 4.5 we can use the McKay correspondence.

Remark 4.12. Among groups listed in Proposition 4.2 the cases 1, 2, 3, 5, 6, 7 and 8 are 
in SL(3).

Proposition 4.13. In Theorem 4.5, the Cox rings of resolutions of singularities in cases 1 
(S3) and 5 (D10), are not the Cox rings of crepant resolutions. The resolutions in cases 2 
(D8), 3 (Q8), 6 (D12), 7 (A4) and 8 (BD3) are crepant.

Proof. By [12, Lem. 2.11], the class group Cl(X) of a resolution π : X → Cn/G of a 
quotient singularity is a free group and its rank m is equal to the number of irreducible 
components of the exceptional divisor. By the McKay correspondence in dimension n = 3
we know that m is the number of conjugacy classes of junior elements in G where an 
element g ∈ G is junior if

age(g) = 1 where age(g) := 1
r

n∑
k=1

ak

with ak coming from the exponents of eigenvalues e
2πiak

r of g, see e.g. [24]. Thus the 
conjugacy classes of junior elements can be determined with simple computations (e.g. 
using GAP [13]), and the results are as follows:

Case number 1 2 3 5 6 7 8
Junior classes 2 4 4 3 5 3 5

Comparing them with the rank of Cl(X) given in Theorem 4.5 we obtain that the 
resolutions in cases 1 and 5 have too many components of the exceptional divisor to be 
crepant.

In the remaining cases obtained resolutions are crepant: since any crepant divisor 
appears necessarily on any resolution (see e.g. [19, 2.3]), it is enough to show that the 
number of exceptional divisors is equal to the number of junior classes. �

Note that in dimension 3 there is one Cox ring corresponding to all crepant reso-
lutions, because they are all birationally equivalent and flops preserve smoothness in 
dimension 3.

Remark 4.14. We can describe the geometry of all crepant resolutions for groups 2, 3, 
6, 7 and 8 of Proposition 4.2 by computing GIT quotients of the spectrum of their 
Cox rings. To determine the GIT fan describing the variation of the quotients, we 
use [21].
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Case number 2 3 6 7 8
Max. GIT-cones within Mov(X) 9 1 16 5 1

Actually, the cases 3 and 8 are products of a representation of a finite group in SL(2)
and a 1-dimensional trivial representation, so the resolutions will be just products of 
minimal resolutions of du Val singularities by C. Hence, there is just one crepant res-
olution, i.e., just one chamber in the GIT fan restricted to the cone of movable divisor 
classes Mov(X).

4.3. Smaller resolutions

In Algorithm 2.8, we computed Cox rings of resolutions as proper transforms un-
der toric resolutions. The latter was obtained by intersection of the tropical variety 
with the affine toric ambient variety of X0. This may yield unnecessarily many new 
rays and therefore bigger resolutions. In this subsection, we shortly describe an imme-
diate alternative version that works with subsets of these rays in a brute force manner. 
A similar idea was used in [15, Sect. 3]. We can then improve two resolutions of Theo-
rem 4.5.

Algorithm 4.15. Input: as in the first steps of Algorithm 2.8: the Cox ring C[T1, . . . , Ts]/I0
of X0, σ = P0(Qs

≥0), a fan Υ with support Trop(X0), Σ = {σ} ∩ Υ.

• Resolve Σ, i.e., determine a set V ⊆ Qn of primitive vectors such that the stellar 
subdivision of Σ at V is regular.

• Insert into V primitive generators for the rays of Σ that are not rays of σ.
• For each k = 1, . . . , |V|, do:

– For each vi1 , . . . , vik ∈ V, do:
∗ Perform the steps of Algorithm 2.8 starting from line 6 with v1, . . . , vm replaced 

by vi1 , . . . , vik and Σ replaced by the stellar subdivision of σ at these vectors. 
Stop, if the verification is positive.

Output (if provided): the Cox ring R(X) = C[T1, . . . , Tr]/I of a resolution X → X0.

Proposition 4.16. In the setting of Theorem 4.5, the following are Cox rings of crepant 
resolutions.

No. G Cl(X) Degree matrix R(X)
1 S3 Z

2 [
1 1 0 0 −2 0
0 −1 −1 −1 0 1

]
C[T1, . . . , T6]/I with I gen. by 
4T 3

3 T6 − T 2
2 T5 − 27T 2

4

5 D10 Z
3 ⎡⎣ 1 1 0 0 −2 0 0

0 −1 −1 −1 0 1 0
0 −1 0 −1 0 −1 1

⎤⎦ C[T1, . . . , T7]/I with I gen. by 
4T 5

3 T
3
6 T7 + T 2

2 T5 − T 2
4
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Proof. In case 1, the fan Σ0 of the ambient affine toric variety has the maximal cone σ
generated by

(1, 0, 0, 0), (1, 2, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) ∈ Q4.

Algorithm 4.15 then stellarly subdivides Σ0 = fan(σ) at (1, 1, 0, 0) and (1, 2, 1, 1) ∈ Q4. 
The verifications succeed. Similarly, in case 5, the cone σ is generated by

(1, 0, 0, 0), (1, 2, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) ∈ Q4.

Again, Algorithm 4.15 stellarly subdivides Σ0 at the vectors (1, 1, 0, 0), (1, 2, 1, 1) and 
(2, 4, 1, 2) ∈ Q4.

Both resolutions are crepant, because the number of exceptional divisors is the same 
as the number of junior conjugacy classes in G, compare the end of the proof of Propo-
sition 4.13. �
Remark 4.17. As in Remark 4.14, we compute the variation of GIT-quotients for the two 
cases of Proposition 4.16:

Case number 1 5
Max. GIT-cones within Mov(X) 2 3

Remark 4.18. Applying Algorithm 4.15 to the other cases of Theorem 4.5 does not yield 
better resolutions in the sense of smaller Picard number or fewer generators. Note that 
these cases are precisely the ones which are not in SL(3).

5. Two 4-dimensional examples

In this section, we present two 4-dimensional examples. In dimension 4 much less is 
known about the resolutions of quotient singularities. In particular, crepant resolutions 
do not always exist, and the McKay correspondence has been proved just for the sym-
plectic case by Kaledin, see [20]. Hence it is a very appropriate setting for computational 
experiments with constructing resolutions via Cox rings. Moreover, it is interesting also 
from the point of view of the Cox ring theory: while in dimension 3 all our cases except 
for one can be defined with a single trinomial relation, here the ring structure will be 
more complicated.

The groups given below are complex symplectic, hence we work here with symplectic 
quotient singularities. Both examples have also been treated in [10] where the Cox rings 
of symplectic resolutions were constructed.

Proposition 5.1. Consider the 4-dimensional quotient singularities C4/G for the two 
small groups G ⊆ GL(4)
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G gen.s in GL(4)
S3

⎡⎢⎢⎣
0 −1 0 0
1 −1 0 0
0 0 0 −1
0 0 1 −1

⎤⎥⎥⎦,

⎡⎢⎢⎣
−1 1 0 0

0 1 0 0
0 0 −1 1
0 0 0 1

⎤⎥⎥⎦.

D8
⎡⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎤⎥⎥⎦,

⎡⎢⎢⎣
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎤⎥⎥⎦.

The Cox ring of the quotient space X0 := Cn/G, the degree matrix and the class group 
of X0 are given in the table on the next page.

Proof. This is again an application of Algorithm 2.5. �
We now compute the Cox rings of a resolution for the two cases X0 = C4/S3 and 

X0 = C4/D8 presented in the previous proposition. In Proposition 5.3, we present a 
resolution for the D8-case thereby retrieving a result of Grab and the first author [10, 
Prop. 5.15]; Proposition 5.4 treats the case of S3.

Remark 5.2. In the case of G = D8 in Proposition 5.1, applying Algorithm 2.8 to X0 =
C4/G without changes, we obtain a modification X → X0 with Cl(X) = Z16 and the Cox 
ring R(X) = C[T1, . . . , T26]/I with 28 generators for I. Due to this size, we could not 
verify smoothness on our machines. Similarly, the smoothness tests in the case G = S3
were computationally infeasible.

It turns out, that after some changes in Algorithm 4.15, we obtain the Cox rings of 
symplectic resolutions for S3 and D8. Note that for a symplectic quotient singularity a 
crepant resolution and a symplectic resolution are the same, see [27, Thm 2.5].

Proposition 5.3. In the case of G = D8 in Proposition 5.1, applying a variant of Algo-
rithm 2.8 to X0 = C4/G, we obtain a resolution X → X0 with Cl(X) = Z2 and the Cox 
ring is R(X) = C[T1, . . . , T12]/I where generators for I and the degree matrix are

T5T8 + T4T9 − 2T6T10, T3T8 + T1T9 − T2T10,

T2T5 − 2T3T6 + T7T9, 2T1T5 − T2T6 + T7T10,

2T3T4 − T2T6 − T7T10, T2T4 − 2T1T6 − T7T8,

T 2
7 T12 − T 2

2 + 4T1T3, T6T7T12 + 2T1T9 − T2T10,

T5T7T12 + T2T9 − 2T3T10, T4T7T12 − T2T8 + 2T1T10,

T4T5T12 − T 2
6 T12 + T8T9 − T 2

10, T 2
7 T11 + T4T5 − T 2

6 ,

2T3T7T11 − T6T9 + T5T10, T2T7T11 − T4T9 + T6T10,

2T1T7T11 + T6T8 − T4T10, 4T 2
3 T11 + T 2

5 T12 − T 2
9 ,

2T2T3T11 + T5T6T12 − T9T10, 4T1T3T11 + T4T5T12 + T8T9 − 2T 2
10,

2T T T + T T T − T T , 4T 2T + T 2T − T 2

1 2 11 4 6 12 8 10 1 11 4 12 8



M
.
D

onten-B
ury,

S.
K
eicher

/
Journal

of
A
lgebra

472
(2017)

546–572
569

3T5T10 − 2T4T11 + T3T12,
3T4T8 − T2T11 − 2T5T12,
T5T7 − 2T4T9 + T1T12,
T2T7 − 3T1T8 + 2T5T9,
2T4T6 − T3T7 + 3T1T10,
T1T5 + 6T9T11 − 3T7T12,
T2T4 + T 2

5 + 9T8T11 − 3T 2
12,

T2T3 + T4T5 + 27T8T10 − 3T11T12,
T1T2 + 9T7T8 − 6T9T12,
4T 3

9 − T 2
2 − 27T 2

8 ,
4T6T

2
9 − T 2

5 − 3T 2
12,

T 2
7 T9 − 4T6T

2
9 − 9T8T11 + 3T 2

12,
T1T7T9 − 3T2T11 − 3T5T12,
2T1T6T9 + 3T5T11 − 3T4T12,

, T6T
2
7 − 4T 2

6 T9 + 3T 2
11 − 9T10T12,

+ 6T4T12, 2T 2
6 T7 − T3T4 − 9T10T11,

4T 3
6 − T 2

3 − 27T 2
10,

3T8 + T1T9 − T2T10,

6T7 + 2T1T9 − T2T10,

4T7 − T2T8 + 2T1T10,

2T7 − T4T9 + T6T10,

4T5 − T 2
6 + T8T9 − T 2

10,
T1T5 − T2T6 + T7T10,

2T4 − 2T1T6 − T7T8,
T2T3 + T5T6 − T9T10,
2
2 + T 2

6 − T8T9,
T 2

1 + T 2
4 − T 2

8

G Cl(X0) Degree matrix R(X0)
S3 Z/2Z

[
1 1 1 1 1 0 0 0 0 0 0 0

]
C[T1, . . . , T12]/I with I gen. by
3T9T10 − T7T11 + T6T12,
3T6T8 + T9T11 − T7T12,
3T3T8 − 3T2T10 − T5T11 − T4T12,
T4T7 − 2T3T9 + T1T11,
T5T6 − T3T9 + T1T11,
T2T6 + T4T9 − T1T12,
T 2

4 − T3T5 − 3T 2
11 + 9T10T12,

T1T4 + 3T7T11 − 6T6T12,
T1T3 + 9T7T10 − 6T6T11,
T 2

1 + 3T 2
7 − 12T6T9,

2T7T
2
9 + T2T5 − 9T8T12,

2T1T
2
9 − 9T5T8 − 3T2T12,

2T6T7T9 − T4T5 − 3T11T12,
4T 2

6 T9 − T3T5 − 6T 2
11 + 9T10T12,

T 3
7 − 4T6T7T9 − 27T8T10 + 3T11T12

T1T
2
7 − 4T1T6T9 − 9T3T8 − 3T5T11

T1T6T7 + 3T4T11 − 3T3T12,
2T1T

2
6 + 9T4T10 − 3T3T11

D8 Z/2Z × Z/2Z
[

1 1 1 1 1 1 0 0 0 0
1 1 1 0 0 0 1 0 0 0

]
C[T1, . . . , T10]/I with I gen. by
T5T8 + T4T9 − 2T6T10, T
T 2

7 − T8T9 + T 2
10, T

T5T7 + T2T9 − 2T3T10, T
2T3T7 − T6T9 + T5T10, T
2T1T7 + T6T8 − T4T10, T
T2T5 − 2T3T6 + T7T9, 2
T3T4 − T1T5 − T7T10, T
4T 2

3 + T 2
5 − T 2

9 , 2
4T1T3 + T 2

6 − T 2
10, T

2T1T2 + T4T6 − T8T10, 4
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[
−1 −1 −1 0 0 0 −1 0 0 0 2 0

1 1 1 −1 −1 −1 0 0 0 0 −2 2

]
.

After a suitable linear change of coordinates one sees that this ring is isomorphic to 
the Cox ring of symplectic, i.e. crepant, resolutions of considered representation of D8
computed in [10, Sect. 5].

Proof. This is an application of Algorithm 4.15 with the following modifications (similar 
to [15, Sect. 3]): There are three minimal elements σ1, σ2, σ3 of the set consisting 
of all singular P0(γ∗

0) such that γ0 is an F-face. We form the cone-wise intersections 
Σi = {σi} ∩ Υ and resolve the fans: Σ′

i → Σi. Denoting by primit(Ξ(1)) the primitive 
generators of the rays of a fan or cone Ξ, we have

3⋃
i=1

primit
(
Σ′ (1)

i

)
\ primit

(
σ

(1)
i

)
=

{
(2, 2, 1, 0, 0, 0, 1, 0, 0, 0),
(2, 2, 2, 1, 1, 1, 1, 0, 0, 0)

}
=: {v1, v2}.

The remaining steps of the algorithm deliver the result. All needed verifications, in 
particular the smoothness test, succeed. �
Proposition 5.4. In the case of G = S3 in Proposition 5.1 we obtain a resolution X → X0
with Cl(X) = Z and the Cox ring is R(X) = C[T1, . . . , T13]/I where generators for I
and the degree matrix are

3T9T10 − T7T11 + T6T12, 3T5T10 − 2T4T11 + T3T12,

3T6T8 + T9T11 − T7T12, 3T4T8 − T2T11 − 2T5T12,

3T3T8 − 3T2T10 − T5T11 − T4T12, T5T7 − 2T4T9 + T1T12,

T4T7 − 2T3T9 + T1T11, T2T7 − 3T1T8 + 2T5T9,

T5T6 − T3T9 + T1T11, 2T4T6 − T3T7 + 3T1T10,

T2T6 + T4T9 − T1T12, T1T5T13 + 6T9T11 − 3T7T12,

T 2
4 T13 − T3T5T13 − 3T 2

11 + 9T10T12, T2T4T13 + T 2
5 T13 + 9T8T11 − 3T 2

12,

T1T4T13 + 3T7T11 − 6T6T12, T2T3T13 + T4T5T13 + 27T8T10 − 3T11T12,

T1T3T13 + 9T7T10 − 6T6T11, T1T2T13 + 9T7T8 − 6T9T12,

T 2
1 T13 + 3T 2

7 − 12T6T9, 4T 3
9 − T 2

2 T13 − 27T 2
8 ,

2T7T
2
9 + T2T5T13 − 9T8T12, 4T6T

2
9 − T 2

5 T13 − 3T 2
12,

2T1T
2
9 − 9T5T8 − 3T2T12, T 2

7 T9 − 4T6T
2
9 − 9T8T11 + 3T 2

12,

2T6T7T9 − T4T5T13 − 3T11T12, T1T7T9 − 3T2T11 − 3T5T12,

4T 2
6 T9 − T3T5T13 − 6T 2

11 + 9T10T12, 2T1T6T9 + 3T5T11 − 3T4T12,

T 2
1 T9 − 3T2T4 − 3T 2

5 , T 3
7 − 4T6T7T9 − 27T8T10 + 3T11T12,

T6T
2
7 − 4T 2

6 T9 + 3T 2
11 − 9T10T12, T1T

2
7 − 4T1T6T9 − 18T3T8 + 9T2T10 + 9T4T12,

2T 2
6 T7 − T3T4T13 − 9T10T11, T1T6T7 + 3T4T11 − 3T3T12,

T 2
1 T7 − 3T2T3 − 3T4T5, 4T 3

6 − T 2
3 T13 − 27T 2

10,

2T1T
2
6 + 9T4T10 − 3T3T11, T 2

1 T6 − 3T 2
4 + 3T3T5

[ −1 −1 −1 −1 −1 0 0 0 0 0 0 0 2 ] .
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After a suitable linear change of coordinates one sees that this ring is isomorphic to the 
Cox ring of symplectic resolution of considered representation of S3 computed in [10, 
Sect. 4].

Proof. This is an application of Algorithm 4.15; one new ray is added to the fan of the 
toric ambient variety corresponding to the Cox ring of X0. To show that the ring is 
isomorphic to the one given by a generating set in [10, Sect. 4] it is sufficient to compute 
the relations between these generators and perform the coordinate change to pass from 
one representation of S3 to the other. Having this, the smoothness tests are not needed: 
by [10, Prop. 4.4] we indeed obtain the Cox ring of the symplectic resolution of X0. �
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