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1. Introduction

Throughout this Introduction, let H be a subgroup of a finite solvable group G, and
let 7 = {p1,p2, ... ,pm} be a set of prime numbers. We use the notation of Doerk
and Hawkes [5], and as in [3], we define Z7 to be the class of finite solvable groups H
such that Soc, H < Z(H), and as before write 2P = Z{P} These classes are Fitting
classes, so that any finite solvable group possesses a conjugacy class of injectors for any
given such class. In [3], we described inductive methods for constructing Z™-injectors. In
this work, we prove that these injectors are permutable. This means that for any such
injector H there exists a Sylow basis ¥ in G such that H permutes with every element
of ¥, where a Sylow basis is a set of Sylow subgroups of G, with |¥ N Syl, G| = 1 for
each prime number p, such that all pairs of members of ¥ permute with each other [5,
1(4.7)]. Doerk and Hawkes characterize the property of permutability as the one that
separates manageable from unmanageable Fitting classes [5, p. 615], making the often
difficult determination of permutability of a Fitting class the key to obtaining a thorough
analysis of its properties. We prove:

Theorem. If 7w is a set of prime numbers, and G is a finite solvable group, then the
ZT-injectors of G are system permutable in G.

Corollary. Let G = HK be a solvable semidirect product, with K << G and HN K =1,
and suppose U is an F,G-module (where p is a prime number, and ¥, is the field of
order p). Choose a Sylow p-subgroup P of H, and assume that p { |K|. Let Socp,c U
be the socle of U (generated by the minimal submodules). If Cg(Socp,cU) = 1 and
Cg(Cy(P)) = H, then there is a Sylow basis ¥ of K, such that H normalizes each
subgroup in 3.

Proof. We can deduce the Corollary from the Theorem, using some of the results quoted
in Section 2, as follows. Form the natural semidirect products

Go=GU, Hy=HU, K,=KU, P,=PU.

Then U = Cg,(Socr,g, U), so U is the ZP-radical of Gy by Lemma 2.7(c). Also Py
is a Sylow p-subgroup of Gy and Hy = Cg,(Cy(FP)), so Hy is a ZP-injector of Go by
Lemma 2.7(f) (or [5, IX(4.19)]). Hence Hj is system permutable in Go by the Theo-
rem, and it follows from Lemma 2.4(d) that H = Hy/U normalizes a Sylow basis ¥ in
K=Ky/U. O

The lay-out of the paper is as follows: In Section 2 we state some known results
and prove results on a variety of topics for later use, and in Section 3 we quote some
results about extraspecial groups [4]. We begin a general study of counterexamples to per-
mutability claims for injectors in Section 4, introducing the specific case of permutability
of Z™-injectors in Section 5.
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By the end of Section 5, we have established that the falsity of our Theorem would
imply the existence of a prime p € m and an elementary abelian p-group U on which a
finite solvable group G = HK acts faithfully, where among the conditions that apply is
that K complements H and is normal in G, and K acts irreducibly on U, while K has a
normal subgroup K, such that H acts irreducibly on the quotient K /K. In Section 6,
we establish that this K, acts homogeneously on U, and in Section 7, we exploit this
situation to obtain more precise information about a potential counterexample to our
claim. In Section 8, we obtain the contradiction required to complete our proof.

2. Quoted results

Remark. Lemmas 2.1, 2.2, 2.3, 2.4 and 2.5 will be used in Section 4.

Notation. If r is a prime number, and G is a finite group, let Syl,. G be the set of Sylow
r-subgroups of G, and write H pr G to mean that H is a pronormal subgroup of G [5,
1(6.1)].

Lemma 2.1. Let G = HK be a finite solvable group, with H < G and K < G.

(a) [2, Lemma 3(c)| If K = [K, H|K', then K = [K, H].

(b) [1, Lemma 6, Remark (ii)] Suppose H N K = 1, and let v be a prime number.
Choose S € Syl, H, and put Hyw = O"(H) and R = O.(K). If H pr G, then
Cr(Hw) < Cgr(9).

Proof. (a) This is proved in the given reference.

(b) Take M = Cr(Hs) and note that HM is a semidirect product, with M < HM.
Also H pr G, so H pr HM [5, 1(6.3.a)], and hence M = Cy(H) - [M, H] by the
given reference. Now H,, centralizes M by definition, while H = SH,, and therefore
M = Cp(S) - [M,S]. Thus [M,S] = [Cap(S)[M, S],S] = [M,S,S]. But S[M,S] is an
r-group, so if [M, S] # 1, then [M, S, S] < [M, S] [5, A(8.3.f)]. Hence [M,S]=1. O

Notation. Let ¥ be a Sylow basis in a finite solvable group G [5, 1(4.7)], and suppose
H<Gand N <G.Define XN H ={PNH:PecXx}and SN/N = {PN/N: P € ¥}.
If ¥ N H is a Sylow basis in H, then X is said to reduce into H, and we write X\, H. If
HP = PH for all subgroups P € %, then H is called X-permutable.

Lemma 2.2. Suppose N <« G and N < H < G, where G is a finite solvable group, and
let 3 be a Sylow basis in G.

(a) [5, 1(6.3.c)] Then H pr G if and only if H/N pr G/N.
(b) [5, 1(4.17)] Also ¥\, H if and only if *N/N \ H/N.
(¢c) Moreover H is X-permutable if and only if H/N is ¥ N/N -permutable.
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Proof. The statements (a) and (b) are proved in the given references.

(c) Suppose P € 3. If H permutes with P, then clearly H/N permutes with PN/N.
Conversely if H/N permutes with PN/N, then there is a subgroup HP/N < G/N, so
there is a subgroup HP < G. 0O

Lemma 2.3. Let X be a Sylow basis in a finite solvable group G.

(a) [5,1(3.2.c)] If K < G, then ¥\ K.

(b) (Lockett [5, 1(4.22.b)]) Suppose H, K < G with HK = KH, and P € X. If ¥ \( H
and B\, K, then ¥\, HK and PN HK = (PN H)(P N K).

(c) [5, I(5.4.b), (5.4.c) and (5.6)] Suppose r is a prime number, and take Goo = O"(G),
{Ro} = (ENGx)NSyl, G and Sy = O, (Ng(X2)). Then {SoRse} = XN Syl,. G.

Proof. The statements (a) and (b) are proved in the given references.

(¢) Note first that G = Ng(X)Go by the third reference, and Ng(X) =
So X 0,/(Ng(X)) by the second reference. Moreover O,/ (Ng(X)) < G, and hence
G = 590G . Finally 3\ Sy by the first reference, so we get the result. 0O

Definition. A subgroup H of a finite solvable group G is said to be system permutable
in G if there is a Sylow basis ¥ in G such that H is X-permutable.

Lemma 2.4. Let X be a Sylow basis in a finite solvable group G.

(a) (Mann [5, 1(6.6)]) Suppose H < G. Then H pr G if and only if H satisfies the
following condition:
(P) if ¥\  H and £9 N\, H with g € G, then g € Ng(H).

(b) [5, 1(6.7)] Suppose H pr G with ¥\, H. If H is system permutable in G, then H is
Y-permutable.

(c¢) (Lockett [5, 1(6.8)]) Suppose H pr G with ¥\, H. If Ng(H) < L < G, then ¥\, L.

(d) Suppose G=HK and N=HNK, with H<G and K,N < G, where H pr G and
X\ H. Then H is system permutable in G if and only if H normalizes the Sylow
basis (XN K)N/N in K/N.

Proof. The statements (a) and (b) are proved in the given references.

(¢) By extending X N H, we can find a Sylow basis ¥; in G such that ¥; \, H and
Y1 N\ L [5, 1(4.16) and (4.18)]. Then Xy = X9 with g € G [5, I(4.12)], and (a) implies
that g € Ng(H) < L. Hence © \, LY = L.

(d) By (b), H is system permutable if and only if H permutes with the sub-
groups P € ¥. Using Lemma 2.3(a) and (b) we get ¥ \, K, and P = PyP; with
Py = PNHand P, = PN K. If HP = PH, then H normalizes HP N K =
HPNK = (HNK)P;, = NP;. Conversely if H < Ng(NPy), then there is a sub-
group HNP, = HFP,Pi=HP. O
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Notation. Let F be a Fitting set in a finite solvable group G [5, VIII(2.1)]. Then G has
an F-radical [5, VIII(2.3.b)], and F-injectors [5, VIII(2.5) and (2.9)]. If H < G, we write
Fu={S:5e¢F, S<H}

Lemma 2.5. Let N be the F-radical of a finite solvable group G, and choose an
F-injector H in G (where F is a Fitting set in G).

(a) [5, VIII(2.11)] Suppose G = HK, with K < G and HNK = N. If N < H; < H,
then Hy is an Fpu, x-injector in H1 K.

(b) [5, VIII(2.13)] If H < G1 < G, then H is an Fg,-injector in Gy.

(c) Also N =(,cqHY.

(d) ([1, Lemmas 9 and 10], [2, Lemma 16]) If N < H, then there are subgroups K and L,
with N < K < G and Ng(H) < L < G, such that LK = G and HN K = N. Also
K = [K, H]N.

Proof. (a) The hypotheses imply that N = H; N K is the unique Fk-injector of K, and
that Hy € F, so this follows from the given reference.

(b) This too is proved in the given reference.

(c) If Ng = ﬂgeG HY is the core of H in G, then Ny <« G and Ny < H. Thus Ny is a
normal F-subgroup of G, and hence Ny < N. Conversely it follows from the definition
of an injector that H "N = N, so N < H, and hence N < Nj.

(d) Since H > N, we can choose a subgroup X which is minimal among the normal
subgroups of G such that H N X > N. Then we take

S=HnNX, K=X'N, L=Ng(SK").
Now Lemma 9 in the first reference shows that H satisfies the following condition:
(T) if X <G with X <« HX, then (HN X)X’ < Ng(X).
This implies that the following condition also holds:

(C) SK/N = (HN X)X'/N <« Ng(X)/N = G/N.

Working in the quotient group G/N, and applying Lemma 10 in the first reference, we
deduce that the subgroups K and L have the required properties. 0O

Remark. Lemmas 2.6, 2.7 and 2.8 will be used in Section 5.

Notation. If A is an F-algebra (where F is a field), let J(A) be the (Jacobson) radical
of A[7, V(2.1)]. If U is a (right) A-module, let Soc4 U be the socle of U (generated by
the minimal A-submodules of U). If further B C A, let Anny B = {u € U : uB = 0} be
the annihilator in U of B.



R. Dark et al. / Journal of Algebra 476 (2017) 48-84 53

Lemma 2.6. Let U be an FG-module, where F is a field and G is a finite group. Suppose
Fy is a finite extension of F', and put Uy = F1; ® pU.

(a) [5, B(5.2)] If Uy is an F-subspace of U, then Cq(F) ® pUy) = Cg(Up).
(b) [7, V(llgﬂ Also CU1 (G) =F® FCU(G)
(c) [8, VII(1.3.a), (1.5.a) and (1.6.b)] Moreover

Socpg U = Anny J(FG), Socp,¢ Ui = Anng, (F1 ® pJ(FQG)).

(d) Suppose Fy is a subfield of F, and note that U can be regarded as an FyG-module.
Then Socp,c U = Socrg U.
(e) [8, VII(1.8)] Also Socp,cUs = F1 ® p(SocpaU).

Proof. (a) If £ € Fy, ug € Uy and g € Cg(Uy), then (£Rugp)g = £® (ugg) = £ Rug. Thus
g€ Cg(Fl ® FU()), SO Cg(Uo) < Cg(Fl ® FUO). Conversely Uy = 1® pUy C F; ® pUy,
and hence Cg(Up) > Ca(F1 ® rUp).

(b) If £ € Fi, u € Cy(G) and g € G, then (( ® u)g = £ ® (ug) = £ ® u. Thus
E®u e Cy,(G), so F1 ® pCy(G) < Cyp,(G). Conversely let {A1, A2, ... , A} be an
F-basis of Fy, and suppose u € Cy, (G), withu =" | \;®u; and u; € U (1 <i < n).
If ge G, then Y} A\ ®u; =u=mug = . ,\® (ug), and hence u; = u;g. Thus
u; € Cy(Q) (1 <i<n),soueF ®pCy(Q).

(¢) The last reference shows that Socpqg U = Anny J(F'G). Using the first two refer-
ences, we get

G=FQ®pFG, JFG) =JF®pFG)=F QpJ(FG),
Socp, ¢ Ur = Anng, J(F1G) = Anny, (Fy ® pJ(FQ)).

(d) By (c), it suffices to show that Anny J(FyG) = Anny J(FG); this can be done
by copying the proof of (a), as follows. If u € Anny J(FoG), € € F and a € J(FoQG),
then u(§ ® a) = £ ® ua = 0. Thus v € Auny(F ® r,J(FoG)) = Anny J(FG), so
Anny J(FyG) < Anny J(FG). Conversely (c) implies that J(FG) = F ®p, J(FoG), so
J(FyG) =10 J(FoG) C J(F@G), and hence Anny J(FoG) > Anng J(FG).

(e) By (c), it suffices to show that Anng, (F1 ® pJ(FG)) = F1 ® p Anny J(FQG); this
can be done by copying the proof of (b), as follows. If £, € Fy, u € Anny J(FG) and
a € J(FG), then ((®@u)(n®a) = (&n) ® (ua) = 0. Thus £ ® u € Anny, (F ® pJ(FQ)),
so F1 ® p(Anny J(FG)) < Anng, (Fy ® pJ(FG)). Conversely let {1, A2, ... ,A\n} be
an F-basis of Fi, and suppose u = Z?:l Ai @ u; € Anny, (Fy ® pJ(FQ)), with u; € U
(1<i<n).IfacJ(FG), then0=u(l®a)=> 1" (\®u)(l®a)=Y 1" \®(wa),
and hence u;a =0 (1 <4 <n). Thus u; € Anny J(FG), so v € F1 @ p Annyg J(FG). O

Notation. Let m = {p1,p2, ... ,pm} be a set of prime numbers, and consider a group
U=U; xUyx ... xUp. If each direct factor U; is an elementary abelian p;-group,
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then U will be called an elementary abelian w-group. If further U <« G and H < G, then
each subgroup U; can be regarded as an F,, H-module, and we define

Soc,g U = SochlH U; x SocFmH Ugx ... X SOCF,,mH Up,.

Finally let Soc, G be the m-socle of G (generated by the minimal normal m-subgroups
of G), and let Z™ be the class of finite solvable groups H such that Soc, H < Z(H). If
G is finite and solvable, then {H : H € Z™, H < G} is a Fitting set in G [5, 1X(2.9.a)].

Lemma 2.7. Let N be the Z™-radical of a finite solvable group G (where m is a set of
prime numbers). Put U = Soc, N, and suppose p € .

(a) [3, Lemma 1(a) and (d)] If N < H < G, then Socx H = Soc,z U.

(b) [5, IX(2.9.a.2)] Hence N = Cg(Soc; G) = Cg(Soc,cU) = Cg(U).

(¢) Suppose Uy <1 G, where Uy is an elementary abelian mw-group. If Uy = Cg(Socrq Up),
then Uy =U = N.

(d) [3, Lemma 2(a)] Suppose N < H < G with H € Z™. Choose P € Syl, H, and put
Up = Soc, N. Then H < Cg(Cy,(P)).

(e) [3, Corollary 1] Assume that U is a p-group. Then N is the ZP-radical of G with
U = Soc, N. Moreover the Z™-injectors of G are the same as the ZP-injectors of G.

(f) ([3, Lemmas 5(b) and 6(a), and Theorem 1], [5, IX(4.19)]) Assume that U is a
p-group. Let ¥ be a Sylow basis in G, take {P} = ¥ N Syl, G, and suppose H < G.
Then H is a Z7-injector in G with ¥\, H if and only if H = Cg(Cy(P)).

(g) [3, Lemmas 8(b) and 9(b), and Theorem 3] Suppose H < G. Then H is a Z™ -injector
in G if and only if the following two conditions hold:
(i) H=Cg(Soc,ugU);
(ii) pt|Cq(Op (Soc g U)): H| (p € ).

Proof. (a) The given references imply that Soc, H < U, from which the result follows.

(b) From the given reference, together with (a), we get N = Cg(Soc, G) =
Ca(SocrgU) > Cu(U) > N, because N € Z7.

(c) Clearly Socr¢ Uy < Socy G = Socryg U, so SocgU < Cg(Socrg Uy) = Up.
It follows that Soc,qU = Socrg Uy, and using (b) we get N = Cg(Soc,qU) =
Cg(SOCWG Uo) = Uo.

(d) Note that H € Z™ C 2P, so it follows from the given reference that Cy (P) =
Soc, H < Z(H).

(e) Using (a), we get Soc, G < U, and hence Soc, G = Soc, G. Then (b) implies that
N = Cg(Socr G) = Cg(Soc, G) is the ZP-radical of G, with U = Soc, N. To prove
the last statement, let H, be a Z™-injector in G. Then H, € Z™ C ZP, and the given
reference shows that G has a ZP-injector H), such that H, < H,. As before it follows
from (a) that Soc, H, < U, so Soc, H, = Soc, H, < Z(H,). Thus H, € Z7, while H,
is maximal Z™-subgroup of G, and therefore H, = H).
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(f) First suppose H = C¢(Cy(P)). Then (e) shows that U = Soc, N where N is the
ZP-radical of G, and it follows from the first reference that H is a ZP-injector in G with
Y.\ H. Finally (e) implies that H is also a Z7-injector in G.

Conversely suppose H is a Z7-injector in G with ¥\, H. Then (e) shows that H is
also a ZP-injector in G, and Theorem 1 in the first reference implies that H contains a
Sylow p-subgroup of G. Since ¥ \, H, we get P < H, and it follows from Lemma 5 in the
first reference that H = (H, P) < C(Cy(P)) € ZP. But H is a maximal ZP-subgroup
of G, and therefore H = C(Cy (P)).

(g) As in the given reference put

K¢ (H) = Cg(Soc, H),

and when N < H € Z™ define M$ (H) as follows: for each prime number p € m choose
a subgroup S;; € Syl, K, (H) such that S; N H € Syl, H, and take

H*=(H,S;:pem), M{(H)=KS(H").

First suppose H is a Z™-injector. Theorem 3 and Lemma 8(b) in the given reference
imply that N < H = M%(H), and that H satisfies the following conditions:

(Ko) H=KS(H);
(Kp) pt|KS ,(H): H| (pemn).

But it follows from (a) that K$(H) = Cg(Socry U) and moreover K§  (H) =
Cc(Op (Socru U)), so (Kp) and (K,) are equivalent to (i) and (ii) respectively.

Conversely, suppose H satisfies (i) and (ii). It follows from (i) and (b) that H =
Cg(Socyp U) > Ce(U) = N, and as before (i) and (ii) imply that (Ko) and (K,) both
hold. Also H € Z™ by (i) and (a), so Lemmas 8(b) and 9(b) in the given reference show
that H = M%(H), and that H is a Z™-injector. O

Notation. Write C,, for the cyclic group of order n (where n is a natural number), and
Qs for the quaternion group of order 8.

Example. Using the notation of Lemma 2.7 with m = {3}, there is a group G such that
CU(P) > CSOC3G(P) < Socs G < U.

Proof. Take (a, o) = SL2(3), with

a=(_y L) m=( ) mms

(a) = Cs, (Bo,P1,P2) = Qs.
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Next let ¢ be the 2 x 2 identity matrix, and take H = {a,by) < SLg(3), with

L Bo .
0 , bo = B , bi=10g,
2 B2
(a) = C3, <b0,b1,b2> = Qg, H= SLQ(S)

Let Uy be the 2-dimensional vector space over F3 on which SL2(3) acts, so that H acts
on the space U = Uy & Uy @ Uy. Form the natural semidirect product G = HU and take
P = {a)U € Syl; G. Then Socz G = {(u, ua,uc®) : u € Up}, and U = Cg(Socz G) is the
Z3-radical of G. Moreover Cy(P) = {(u,u,u) : u € Up}, and Csocy ¢(P) = {(u,u,u) :
uveFs;(1,-1)}. O

Lemma 2.8. [8, VII(9.19)] Let U be an irreducible FG-module, where G is a finite group,
and F is a finite field of characteristic p (and p is a prime number). If K = OP(G) and
U is FK-homogeneous [5, B(3.4)], then U is FK-irreducible. 0O

Remark. In Sections 6 and 7 we consider a minimal counterexample, which involves an
FG-module U, where G is a finite group with a normal subgroup K., and F is a splitting
field for all the subgroups of G. Using a well known strategy [10, Theorems 3.5, 4.4, 7.3
and 8.4], we first (in Section 6) obtain a contradiction when U is F K -inhomogeneous;
the proof uses Lemma 2.9. We can then (in Section 7) apply Lemmas 2.11 and 2.12 to
find a normal extraspecial subgroup R < Gj; the proof also uses Lemmas 2.9 and 2.10.
Finally (in Section 8) we will use the information about extraspecial groups in Section 3
to complete the proof of the Theorem.

Lemma 2.9. (Glauberman [9, (13.8)]) Let H = SP be a finite semidirect product, with

P < H, where |S| and |P| are coprime, and suppose H permutes a finite set Q. If P
permutes ) transitively, then S fixes at least one element of Q. O

Lemma 2.10. [6, (3.7.1)] Let U be an irreducible FG-module, where G is a finite group,

and F' is a splitting field for all the subgroups of G. If G = G1x G5 is a direct product, then
U =U; ® pUs is a tensor product, where U; is an irreducible FG;-module (i =1,2). O

Lemma 2.11. Let U be a module which is G-faithful and FG-irreducible, where F is a
field and G is a finite group. Suppose A is an abelian subgroup of G, and assume that U
is F'A-homogeneous.

(a) [5, B(9.3.b)] Then A is cyclic.
(b) [5, B(9.2.ii)] If F is a splitting field for A, then A < Z(G).
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Proof. (a) This follows from the given reference.
(b) The given reference implies that A is represented by scalar matrices, from which
the result follows. O

Lemma 2.12. Let P be a finite p-group (where p is a prime number).

(a) [7, TII(7.6), 1(14.9) and Aufgabe 56, page 94] Assume that every normal abelian
subgroup A < P is cyclic. Then P satisfies one of the following conclusions:
(i) P Cyn, with [Aut P = (p—1)p"~;
(i) p =2 and P = Qg, with |Aut P| = 233;
(iii) p = 2 and |P| = 2™ with n > 4, where P is a generalized quaternion or dihedral
or quasidihedral group, and

22n—4

|Aut P| = 22n=3  when P is a generalized quaternion or dihedral group,
a when P is a quasidihedral group.

(b) (P. Hall [7, TII(13.10)]) Assume that every characteristic abelian subgroup A < P is
cyclic with A < Z(P). Then P = Pyo Py is a central product, where Py is extraspecial
(or Py = C,), and Py is cyclic.

Proof. (a) Note that if n > 3 and P = (a,b), with defining relations a? = =1
and b* = 62%2“, then (a,b?) is a noncyclic normal abelian subgroup of P. Hence
the references imply that if P is neither cyclic nor isomorphic to Qg, then p = 2 and
P = {a,b) is a generalized quaternion or dihedral or quasidihedral group, where (b) is a
characteristic subgroup of index 2 in P. Then the elements ¢ € Aut P are obtained by
choosing b? € (b) and a® € P — (b) such that (b%) = (b) and (a®) = (a).

(b) The given reference shows that if P; is not cyclic, then p = 2 and |P;| = 2" with
n > 4, where P; is a generalized quaternion or dihedral or quasidihedral group. Then
P’ = P| 2 Cyn-2 and Z(P) = Z(P;) = Cs, so P’ is a characteristic abelian subgroup
of P with P’ £ Z(P). O

3. Extraspecially irreducible groups

Remark. In this Section, we quote without proof some results about extraspecial
groups [4], which will be used in Section 8.

Notation. If n is a natural number, let Z,, = Z/nZ be the additive group of integers

modulo n. If also r is a prime number, let F,» be the Galois field of order r", and write
+

F,\. and FJ. for the additive and multiplicative groups of F,» respectively. Then F}%, is

rn

elementary abelian of order r", and F5 = Cyn_1.
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Lemma 3.1. [4, Lemma 1.1]

(a) [5, B(9.3.b) and (9.8.c)] Let W be a module which is C-faithful and F,.C-irreducible,
where C is a finite abelian group (and r is a prime number). Then C = (¢) = C,, is
cyclic with r 4 n, and dimp, W = k where k is the order of r modulo n.

(b) [5, B(9.8.b)] More explicitly, assuming the hypotheses and conclusions of (a), there
exist an F.-isomorphism 6 : W — F:'k, and an element v which is a primitive n-th
root of 1 in ¥, such that (€c)? = ~¢9 (¢ € W). Thus C permutes the set W — 0
semireqularly. O

Definition.

(a) Let X be a (right) FFG-module, where F' is a field and G is a group. Then the dual
FG-module is the vector space X* = Homp (X, F), with £(A\g) = (£g7 1)\ (€ € X,
AEX* ge@G).

(b) Let @ be a finite group which acts on an extraspecial r-group R (where r is a prime
number), and take Z = Z(R) = R’ = C,. Then R will be called extraspecially
Q-irreducible if it satisfies the following conditions:

() [R,Q] =R
(ii) [Z2,Q] =1
(iii) there is no extraspecial subgroup Ry such that Z < Ry < R and Ry < QR.

Lemma 3.2. ([1, Lemma 14], [4, Lemma 1.3]) Let Q be a finite r'-group which acts on an
extraspecial r-group R (where r is a prime number). Take Z = (z) = Z(R) = R' =2 C,,,
and form the F,.Q-module W = R/Z. Suppose [R,Q] = R and [Z,Q)] = 1.

(a) Then R can be written as a central product R = Ry o Rgo ... o R, of extraspecially
Q-irreducible groups R;, with R, = R; N\ R; = Z and [R;, R;] =1 when i # j.
(b) If R is extraspecially Q-irreducible, then W satisfies one of the following conclusions:
(i) W is F,.Q-irreducible, and if r # 2 then R" = 1;
(ii)) W = X; ® X2 where X7 and X5 are F,Q-irreducible, with X1 = X5, and
if D;/Z = X; then D; = DI =1 (i = 1,2). Moreover if d; € D;, with
Zdy = XA € X5 and Zdy = £ € X, then the notation can be chosen so that
[do,di] = 2%*. O

Definition.

(a) Suppose n is an even number, and consider the group Co, = {(cp,¢1) with defining
relations ¢ = ¢ = 1, 2 = ¢!? and ¢° = ¢;'. Then Cy will be called a quasi-
quaternion group. Put C1 = (¢1), and note that (co) = Cy4, C; 2 C,,, C; < C and
|Coo| = 2n. If further n = ngny where ng is a power of 2 and 2 { ny, then (co)CT* is

a (generalized) quaternion group of order 2ng (or cyclic of order 4 when ny = 2) and
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C° = C,,, with {(co)CT"* - C7° = Coo and (o) CT* NCY® = 1. Moreover the element
y=ct= 611/2 is the unique involution in Cy [7, ITI(8.2.b)].
(b) Suppose r is an odd prime number, and k is an even number, and consider the

k)2
group Boo = (bo, ¢1) with defining relations b2* = ¢/ 1 = 1, o = " FV/2 and

cl{‘) = ¢}. Then B, will be called a hyperquaternion group. Put B = (by) = Cay
k/2
and Cp = (c1) = C,x/2,1, and note that c?“ = c{k/z =t 50 Oy = (blg/Q,cl)

is a quasiquaternion group. If 2 t k/2 then B = B* x B*? so B,, = B*C,, with

B*NC4 = 1. On the other hand, if 2 | k/2 then r*/2 = 1 modulo 4, so 2 { (r*/2+1)/2
k/2

and C = C’l(r /2 C%, and therefore Bo, = BC} with BN C? = 1. In both

k/2
cases, the element y = bf = CY /2

is the unique involution in By.

Lemma 3.3. [4, Lemma 2.1] Suppose r is an odd prime number, and k is a natural
number. Then there is a group BCsx R with Coy < BCs, R <« BCyxR, and BN Cy =
BCy NR =1, where Cs = (co,c1) is a quasiquaternion group of order 2(r* — 1), and

B = <b> = Ck, <C()> = C4, Cl = <Cl> = Cr’“flv
2= cgrk_l)/g, d=co, E=cf &o=ct

Also R = DDy is an extraspecial r-group with Z = Z(R) = R' = Dy N Dy = C,,
R" = D! =1 and |D;| = v**1 (i = 1,2). Moreover if W = R/Z and X; = D;/Z are
regarded as additive abelian groups, then Xy and Xy are modules which are BCy -faithful
and F,.C1-irreducible, and

X;b=X,c1 = Xz', Xico = Xg_l'(i =1, 2), Z = Z(BCOOR) O

Lemma 3.4. [4, Lemma 2.2] Suppose k is a natural number. Then there is a group BCoo R
with Co < BCs, R <t BCxR, and BN Cysx = BCox N R =1, where Co = (co,c1) 1S @
dihedral group of order 2(2F — 1), and

B = <b> = Ck, <Co> = CQ, Cl = <Cl> = CQk,l,

b _ b _ 2 co _ —1
g =co, C€]=c1, C°=¢c".

Also R = D1Ds is an extraspecial 2-group with Z = Z(R) = R’ = D1 N Dy = Cs,

D? = D! =1, |D;| = 2¥*1 (i = 1,2). Moreover if W = R/Z and X; = D;/Z are regarded
as additive abelian groups, then X1 and X5 are BC-faithful and F,.C1-irreducible, and

X;b= X,e1 = XZ‘, XiCO = X37i (’L = ]., 2), Z = Z(BCOOR) O

Lemma 3.5. [4, Lemma 2.3] Suppose r is an odd prime number, and k is an even number.
Then there is a group BooR with R < BooR and Boo N R =1, where Boo = (by,c1) s a
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hyperquaternion group of order k(rk/2 + 1), with

k/2
B = (bg) = Co, Ci1={(c1) = Crr/2y, b = Cy +1)/27 o = ¢

Also R is an extraspecial r-group with Z = Z(R) = R' =2 C,, R" = 1 and |R| = r**1.
Moreover if W = R/Z is regarded as an additive abelian group, then W is a module
which is Boo-faithful and F,.Cy-irreducible, and

Z=7(BLR). O

Lemma 3.6. [4, Lemma 2.4] Let k be an even number. Then there is a group BC1R with
C, < BCy, R < BCiR and BN Cy = BC, N R = 1, with |BCy| = k(2¥/? 4 1), where

B={)=2Cy, C)=(c1)=Coyy, @ =ci

Also R is an extraspecial 2-group with Z = Z(R) = R' = Cy and |R| = 2**1. Moreover
if W = R/Z is regarded as an additive abelian group, then W is a module which is
BC1 -faithful and FoC1-irreducible, and

Z=17(BC,R). O

Lemma 3.7. [4, Lemma 3.2] Suppose q and r are distinct prime numbers, and let k be the
order of r modulo q. Suppose CR is a group with R << CR and CNR =1, where C = C,
and R is a C-faithful extraspecial r-group. Put Z = Z(R) = R’ = C,., and assume that
R is extraspecially C-irreducible, with [R,C] = R and [Z,C] = 1. Put I = Aut(CR),
0 =Cr(Z2), ¥ =Ng(C), and suppose 21 k.

(a) The group CR is unique (up to isomorphism), and R is of type (ii) in Lemma 3.2(b)
with |R| = r2k+1,

(b) If r # 2, then BCo < W, where BCR is the group constructed in Lemma 3.3.

(¢) If r =2, then BCy, < U, where BCx R is the group constructed in Lemma 3.4. O

Lemma 3.8. [4, Lemma 3.4] Suppose q and r are distinct prime numbers, and let k be the
order of r modulo q. Suppose CR is a group with R < CR and CNR = 1, where C = Cy,
and R is a C-faithful extraspecial r-group. Put Z = Z(R) = R' = C,., and assume that
R is extraspecially C-irreducible, with [R,C] = R and [Z,C] = 1. Put T' = Aut(CR),
O =Cr(Z), ¥ =Ng(C), and suppose 2 | k.

(a) The group CR is unique (up to isomorphism), and R is of type (i) in Lemma 5.2(b)
with |R| = r*+1.

(b) Ifr # 2, then Boo < ¥, where B R is the group constructed in Lemma 3.5.

(¢) If r =2, then BCy; < VU, where BC1R is the group constructed in Lemma 3.6. O
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Remark. With the hypotheses of Lemmas 3.7 and 3.8, first suppose r # 2. If 2t k, then
it follows from Lemmas 3.7(a) and 3.2(b,ii) that R" = 1, so R is a central product of
k nonabelian groups of order 73 and exponent r. Similarly if 2 | k, then Lemmas 3.8(a)
and 3.2(b.i) show that R" = 1, so R is a central product of k/2 nonabelian groups of
order 73 and exponent 7.

Next suppose r = 2. If 2 t k, then it follows from Lemmas 3.7(b) and 3.2(b.ii) that
R is a central product of k dihedral groups of order 8. Finally suppose 2 | k, and put
Z=7Z(R)=R,W =R/Z and A = Aut R, A = CA(Z), Q = Cx(W). Then ¢ 2*/2 — 1
but q | 2F—1 = (2¥/2-1)(2%/2+1), s0 q | 2¥/24-1, and as in the proof of [4, Lemma 3.4(c)]
we get

|A‘ = 2k2(k3/2)2—(k/2)+1(22 _ 1)(24 _ 1) . (2k—2 _ 1)(2k‘/2 + 1)7

so A/Q = O, (2). This implies that R is a central product of (k/2) — 1 dihedral groups
of order 8 with a single quaternion group [11, Theorem 1(c)].

Hypothesis A. Suppose g and r are distinct prime numbers, and let £ be the order of r
modulo ¢g. Take CR as in Lemma 3.7 if 24 k, and as in Lemma 3.8 if 2 | k, and put

Z=7Z(CR)=R =C,, W=R/Z,
I' = Aut(CR), © =Cr(Z), ¥ =DNeg(C).

Lemma 3.9. [4, Lemma 4.2] Assume Hypothesis A, and suppose ¢ = 2. Then k = 1,
|R| =13 and W = X1 ® Xa, where the modules X1 and Xo are F,.C-isomorphic to each
other. Moreover ¥ = SLy(r). O

Lemma 3.10. [4, Lemma 4.3] Assume Hypothesis A, and suppose 21 k.

(a) If g #2 and r # 2, then ¥ = BCy as in Lemma 5.5.
(b) If r =2, then ¥ = BCw as in Lemma 3.4. O

Lemma 3.11. [4, Lemma 4.4] Assume Hypothesis A, and suppose 2 | k.

(a) Ifr #2, then ¥ = By as in Lemma 3.5.
(b) If r =2, then ¥ = BC; as in Lemma 3.6. O

Lemma 3.12. [4, Lemma 5.2] Suppose r is an odd prime number, and k is a natural
number, and let BCo R be the group described in Lemma 3.3, with R = D1Dy and
X;=D;/R (i=1,2).

(a) If L < BCw and Cx, (L) # 0, then there is an element ¢ € Cy such that L < B°.
(b) There are elements dy,dy, ... ,dx—1 € D1 and eg,e1, ... ,ex—1 € Dy such that R
can be written as a central product R = EgoE1o ... oEy_1, with |E;| =73, Ef =1,
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E! = Z and [E;, E;] = 1 when i # j, where E; = (d;,e;) and d? = diy1, e = e
(’i € Zk). O

Lemma 3.13. [4, Lemma 5.3] Suppose k is a natural number, and let BCoo R be the group
described in Lemma 3.4, with R = D1 Do and X; = D;/R' (i =1,2).

(a) If L < BCx and Cx, (L) # 0, then there is an element ¢ € Cy such that L < B€.

(b) There are elements do,dy, ... ,dx—1 € D1 and eg,e1, ... ,ex—1 € Do such that R
can be written as a central product R = EqgoEq0 ... o E,_1, with E; = (d;, e;) = D,
[Ei,Ej] =1 wheni # j, and d? = diy1, €2 = eip1 (i € Zy). O

Lemma 3.14. [4, Lemma 5.4] Suppose r is an odd prime number, and k = koky is an
even number, where ko is a power of 2 and 2 { ky. Let B R be the group described in

Lemma 3.5.

(a) There are subgroups Di,Ds < R with D1Dy = R, D1N Dy = Z, D; = DI =1
and |D;| = r*/D+1 Moreover if W = R/Z and X; = D;/Z are regarded as additive
abelian groups, then W = X1 @ X and X;b**0 = X; (i=1,2).

(b) If L < By and Cy (L) # 0, then there is an element ¢ € Cy such that L < (B%0)e.

(c) There are elements do,dy, ... ,dg2—1 € D1 and eg,e1, ... ,eq 21 € Do such
that R can be written as a central product R = EgoE1o ... 0B 91, with |E;| = r3,
El =1, El =Z and [E;, E;] = 1 when i # j, where E; = (d;, e;) and dﬁ-’%o = ditok,,

p2ko

€; = €42k, (Z S Zk/2) O

Lemma 3.15. [4, Lemma 5.5] Suppose k = kok1 is an even number, where kg is a power
of 2 and 2t k1. Let BC1R be the group described in Lemma 3.0.

(a) There are subgroups D1,Ds < R with D1Dy = R, D1 N Dy = Z, D} = 1 and
|D;| = 2-/2+1 Moreover if W = R/Z and X; = D;/Z are regarded as additive
abelian groups, then W = X1 ® Xo and X;b*o = X; (i=1,2).

(b) If P < L < BCy with 21 |P| and Cw (P) = Cw (L) # 0, then there is an element
c € Cy such that L < (Bko)e,

(c) There are elements do,dy, ... ,d/2—1 € D1 and eg,e1, ... ,em/2y—1 € Do such
that R can be written as a central product R = EgoE1o ... 0E(/9)_1, with |E;| = 23,
E? < E! = Z and [E;,E;j] = 1 when i # j, where E; = (d;,e;) and dfko = ditk,

K .
eV =eiiny (i € Zy). O

4. Minimal groups with an injector which is not system permutable

Remark. In this section, we use Lemmas 2.1, 2.2, 2.3, 2.4 and 2.5, and we assume the
following hypothesis.



R. Dark et al. / Journal of Algebra 476 (2017) 48-84 63

Hypothesis B. Let NV be the F-radical of a finite solvable group Gy, and suppose Hy is
an F-injector in Go (where F is a Fitting set in Go) [5, VIII(2.1), (2.3.b) and (2.5)].
Assume that Hj is not system permutable in Gy, but that whenever N < G; < G, the
Fa,-injectors of Gy are system permutable in G;. Applying Lemma 2.5(d), take sub-
groups Ky and Lo, with N < Ky < Gg and N¢,(Hy) < Ly < Gy, such that LoKy = Gy
and Hy N Ky = N. Finally choose a Sylow basis ¥y in Gy such that 3¢ \, Hy and
Yo\« Lo [5, 1(4.16) and (4.18)].

Lemma 4.1. Toke Gy, Hy, Ko, N and Xg as in Hypothesis B.

(a) Then GO = HQK(), with Ko = [K(), H()]N and HO f NGQ((EO N Ko)N/N)
(b) IfN < Hi < Hy with Hy < Hy, then Hy < NGO((EO ﬂKQ)N/N)
(c) If N < Ky < Ko with K1 < HyK; and £o \, K1, then

Hy < Ng,((20 N K1)N/N).

Proof. (a) Suppose HoKy < Gp; we must show that this is impossible, and it suffices
to prove that Hy is Yp-permutable. Note that ¥ N\, Ko by Lemma 2.3(a), and hence
Yo \¢ HoKy by Lemma 2.3(b). Consider a subgroup P € Xy N Syl Go; we must show
that Hy permutes with P. If Pp = PN Ly and P, = P N HyKy, then it follows from
Lemma 2.4(b) that Hy permutes with Py and P;, so Hy also permutes with PyP;. But
Ly - HiKy = Gy, so PpPi = P by Lemma 2.3(b), which completes the proof that
Go = HoKy. Finally Ky = [Ko, Ho)N by Lemma 2.5(d), and Hy £ N¢, (o N Ko)N/N)
by Lemma 2.4(d).

(b) Note that H; is an Fp, i,-injector of H1 Ky by Lemma 2.5(a), so H; is system
permutable in H; Ky by Hypothesis B. Moreover ¥ = ¥y N H1 K| is a Sylow basis in
H, K, with 31 N\, Hy, so the result follows from Lemma 2.4(d).

(¢) Note that Hp is an Fp, k,-injector of HoK; by Lemma 2.5(b), so Hy is system
permutable in HyK; by Hypothesis B. Moreover ¥ = ¥y N HyoK; is a Sylow basis in
HyK, with 31 N\, Hy, so again the result follows from Lemma 2.4(d). O

Lemma 4.2.

(a) There is a prime number r such that Hy = SHe and Ho < Hy, where S is a
cyclic r-group with X9 N\ S, and N < Ho < Hy. Also Hoo = [Hoo, S|N, and
Ha < Ng, ((Z0 N Ko)N/N).

(b) There is a prime number q such that Ko = QK)N, where Q is a q-group with
{Q} = (X0 N Ko) NSyl, Ko, and the module Ko/ KN is ZHg-indecomposable.

(c) Hence the module V = Ko/K{K{N is ¥ Hy-indecomposable. Moreover Ko = QK
with Koo <9 Go, where K{K{N < Ko < Ko and the module Ko/Ko s
F,Hy-irreducible. Also Hy < Ng,((Zo N K )N/N).

(d) If N < Ky < Ky and K, ﬁ Ko, with K1 <« HyKy and X \( K1, then K1 = K.
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Proof. (a) Suppose Hy1/N and Hs/N are distinct maximal normal subgroups of Hy/N.
Then Lemma 4.1(b) shows that H; and Hy both normalize (X9 N Ky)N/N, and
hence Hy = H1Hs < Ng,((2¢ N Ko)N/N). Because of Lemma 2.4(d), this contra-
dicts Hypothesis B, and implies that Hy/N has a unique maximal normal subgroup.
Put Hoo = Yoo (Ho)N, where v (Hp) is the nilpotent residual of Hy [5, 11(2.3)], and
note that N < H, < Hy with Hy < Go, and that Hy/H,, is nilpotent. Hence
Hy/H is cyclic of prime power order. Since Yo \, Hp, it follows that there is a
prime number r and a cyclic r-group S such that ¥y N\, S and Hy = SH,,. Moreover
Hoo = [Hooy Ho]N = [Hoo, SHoo|N = [Hoo, S|H. N, and therefore Ho, = [Hoo, S|N by
Lemma 2.1(a). Finally Hoo < Ng, (20 N Kp)N/N) by Lemma 4.1(b).
(b) Suppose K; and K are distinct maximal members of the set

A={L:N<L< Ky LGy}

Then Lemma 4.1(c) shows that Hy < Ng,((Xo N K;)N/N) (i = 1,2), and hence H
also normalizes (3¢ N K1K3)N/N = (X9 N Ko)N/N by Lemma 2.3(b). This contra-
dicts Lemma 4.1(a), and proves that A has a unique maximal member, say K,,. Now
K{N € A and Ky/K|N is abelian, so there is a prime number ¢ such that K,/K)N is
a Z Hy-indecomposable ¢-group, which gives the result.

(¢) The first two sentences follow from (b), while the last containment is a consequence
of Lemma 4.1(c).

(d) Suppose K7 < Kp; we must show that this is impossible. Lemma 4.1(c) implies
that Hy < Ng,((30 N K1)N/N), while Hy < Ng,((20 N Ko )N/N) by (c). As before it
follows that Hy also normalizes (Xg N K1 Ky )N/N = (3¢ N Ko)N/N, which contradicts
Lemma 4.1(a). O

Lemma 4.3. Choose S, Hy, and Q, Koo as in Lemma 4.2, and take Qoo = Q N Koo and
{R} = (ZO N Ko) N Sylr Ko.

(a) Then Ko = QRN, so Ko/N is a {q,r}-group. Hence ¢ # r, and N < RN < K.

(b) Also Koo/N = (QxN/N) x (RN/N), so QN < Gy and RN < Go. Hence
Ho £ Ng,(QN) and KIK)N = Q1Q'RN.

(¢) Moreover (Hy, Q) = Go.

(d) Hence Cp,(Ko/RN)=N.

(e) Also [R,Q]N = RN.

Proof. (a) Take {Qo} = X0 N Syl, Go and {Ro} = ¥ N Syl,. Gy, and put K; = QRN.
Then QoRo is a Hall {q,r}-subgroup of Gy with QR = QoRo N Kp. Since S < Ry, it
follows that S < N¢g,(QR) < Ng,(QRN). Moreover Lemma 4.2(a) shows that Ho, <
Ng, (0N Kp)N/N) < Ng,(QRN), and hence Hy = SHy, < Ng,(QRN) = Ng, (K1),
so K1 < HoK;. It is also clear that K7 £ Ko and o N\, K1, so Ko = K1 = QRN by
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Lemma 4.2(d). Finally the fact that Hy £ Ng,((Zo N Ko)N/N) implies that ¢ # r and
N < RN < K,.

(b) Suppose T' = Qo or R, so T € ¥y N Ko, and put K1 = Ng,(T'N). Then
Ky = KiK. by Frattini’s argument [7, I(7.8)], so K1 £ K. Using Lemma 4.2(c)
we get Hy < Ng, (29 N Koo)N/N) < Ng,(TN), and hence K; < HyK;. Moreover
T pr Ko and Xy \, T, with Nk (T) < Kj, so ¥g \; K7 by Lemma 2.4(c). It now
follows from Lemma 4.2(d) that K; = Koy, so TN < Kj. Thus K normalizes Qoo NV
and RN, which proves that Koo /N = (QucN/N) x (RN/N). Therefore Hy < Ng,(RN),
whereas Hy £ Ng,((Xo N Ko)N/N) by Lemma 4.1(a), and hence Hy ¢ Ng,(QN).
Finally RN < Go, so K{K{N = QQ'RN.

(¢) Put Gy = (Hp,Q) and Ky = G1 N Ky, and note that Ky << G; = HoK;. Also
K; = K1 NQRN = QN(K; N R), which implies that K7 £ K and o N\, K;. Thus
K, = K by Lemma 4.2(d), so G1 = HoK( = Gy.

(d) Put H; = Cp,(Ko/RN) and G; = Ng,(H;), and note that Hy < G;. Also
Ko = [Ko, Ho|N by Lemma 4.1(a), so H; < Hy, and it follows from Lemma 4.1(b) that
Hy < Ng,((S0nKo)N/N) < Ng, (QN). Hence [Hy, Q] < QN N[Hy, Ko] < QNNRN =
N < Hy, s0 Q < Gy. Thus Gy > (Hyp, Q) = Gg by (¢), so H; < Gy. Finally N < H; <
Nyea, Hi = N by Lemma 2.5(c).

(e) Put K, = Q[R, QN = (Q*°)N, and note that K, /N = 0% (Ky/N), so K; <1 G.
Now HoQ[R,QIN > (Hy,Q) = Go by (d), and hence [R,Q]N/N € Syl .(Ky/N), so
[R,QIN=RN. O

Lemma 4.4. Take S, Hy, and R as in Lemma /.5.

(a) Then CRN/N(HOO) < CRN/N(S)-
(b) Also S = (a) can be chosen so that a = apd, where ag € O,(Ng,(Xo)) and d € R.

Proof. (a) Note that HyN Ky = N, Hy,/N = O"(Hy/N) and RN/N = O,(Ky/N).
Also Hy pr Gy (because Hy is an injector), so Hy/N pr Go/N by Lemma 2.2(c). Taking
{81} = (X9 N Hy) N Syl,. Hy, and applying Lemma 2.1(b) in the group Go/N, we deduce
that Cry/n(Heo) < Cryn(S1) < Criyn(S)-

(b) Take {Sw} = (X0 N Hao) N Syl, Heoy, Roo = SooR and Sy = O,(Ng,(Z0)).
Then {Ro} = (X0 N HooKop) N Syl,.(Hoo Ko) and Hoo Ko = O"(Gy), and it follows from
Lemma 2.3(c) that {SoRs} = 3o NSyl,. Go. Hence S < SyRoo = SgR S0, 80 a = apda,
where ag € Sy, d € R and as € Soo. Thus aa
the result by replacing S by (aal}l). O

L= apd, and Hy = (aa})Hs, so we get

5. Minimal groups with a Z™-injector which is not system permutable

Remark. In this section we use Lemmas 2.6, 2.7 and 2.8.
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Lemma 5.1. Let U be an irreducible F'G-module, where F is a finite field, and G is a
finite group. Suppose G = HK with K <G and HNK =1, and H = SP with P <1 H
and SNP =1, where P is a p-group and S is an r-group (and p and r are distinct prime
numbers). Assume that Cy(P) < Cy(S).

(a) If F is a field of characteristic p, then U is F(PK)-irreducible.

(b) Suppose U is F(PK)-irreducible, and let Uy,Us, ... ,U, be the FK-homogeneous
components of U, and put P, = Np(Uy). Then the notation can be chosen so that
Ny (Uy) = SP; and Cy, (Py) < Cy, (95).

Proof. (a) Since PK < G, it follows from Clifford’s theorem that U = X1 ®Xo® ... X,,
is a direct sum of F(PK)-irreducible modules X; [7, V(17.3.a)]. Put

YV =Xo @ X3® ... & Xon,

and let Q be the set of F(PK)-submodules X such that U = X @Y. Suppose a € S and
X € Q with X ¢ €. Then the conjugates X* and X are irreducible F'(PK)-modules
withU =X*@ X5 X$d ... & X7, and it follows from the theorem of Krull, Remak
and Schmidt that there is an index 7 # 1 such that X¢ € Q [7, 1(12.3)]. Thus X; <Y but
X £Y, and hence Cyx, (P) # Cx, (P)®. This contradicts the fact that Cy (P) < Cy(S),
and proves that X* € ), so S permutes the set 2.

Note that U = X; @Y, and let ¢ : U — X; and ¢ : U — Y be the projection
maps. If X € , then the restricted map ¢x : X — X; is an F(PK)-isomorphism,
and hence there is an F(PK)-homomorphism 6 = <;S)_<1¢ : X7 — Y. This shows that
the members of Q are the submodules {£ © &0 : £ € X1} with 6 € Homppg)(X1,Y),
so |Q = [Homp(pk)(X1,Y)|. Now Homppk)(X1,X) is a vector space over F, and
therefore || is a power of p. But S is an r-group, and it follows that there is an element
X € Q which is stabilized by S, so X is an F(HK)-submodule. Then the irreducibility
of U implies that U = X = X3, so U is F(PK)-irreducible.

(b) Since K <« G, Clifford’s theorem shows that U = Uy @ Us @ ... @ U, is the
direct sum of the F'K-homogeneous components U;, which are permuted by H, and
permuted transitively by P [7, V(17.3.d)]. Hence n = p® for some exponent s, and
there is a transversal {b1,ba, ... ,bp=} to P; in P, such that by = 1 and Uib; = U;
(1 < < p®). Moreover S is an r-group, so S normalizes at least one of the submodules Us.
Then the notation can be chosen so that S < Ny (Uy), and hence Ny (Uy) = SPy. If

u € Cy,(P1) and g € P, then g = ¢1b;, with g3 € P, and i € {1,2, ... ,p}, so
ug = ugib; = ub;. Thus {u, ubs,ubs, ... ,ubps} is a P-orbit, and Zf;l ub; € Cy(P).
Conversely if Y- u; € Cy(P) with u; € U; (1 < i < p®), then the set {uy, ua, ... ,ups}

is permuted by P. Hence u; € Cy, (1), and the argument above shows that u; = u1b;
(I <4 < p°). This proves that Cy(P) = {Zle ub; : u € Cy,(P1)}. Finally if
u € Cy,(P1), then S permutes the set {u,uby,ubs, ... ,uby:}, and hence S fixes u,
which shows that Cy, (P;) < Cy, (S). O
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Definition. Let @ = {p1,p2, ... ,pm} be a set of prime numbers, and consider an
elementary abelian w-group U = U; @ Us @ ... ®U,,, such that each direct summand U,
is an F;G-module, where F; is a field of characteristic p; (1 < i <m), and G is a group.
If each field F; is a splitting field for G, then U will be said to be wG-split.

Lemma 5.2. Suppose Gy is a finite solvable group, with a Z™-injector which is not system
permutable in Go (where 7 is a set of prime numbers). Then there exist an elementary
abelian m-group U, and a finite solvable group G which acts on U, with a subgroup H < G,
such that the following three conditions hold.

(i) The group U is wGy-split for all subgroups G; < G, and Cg(Soc,qU) = 1.
(if) Also H =C¢(Socug U), and p1|Cq(Op (Socxu U)) : H| (p € 7).
(iii) Moreover H is not system permutable in G.

Proof. Let N be the Z™-radical of G, and choose a Z™-injector Hy of Gy, and take
G =Gy/N, H = Hy/N.

Suppose © = {p1,p2, ... ,Pm}, and for each index 7, choose a finite field F; of char-
acteristic p;, such that F; is a splitting field for all the subgroups of G [5, B(5.21)].
Take

U? = Soc,, N, Up= U @US®D ... ®US, =Socy N,
Ui:Fi®FmU'07 U=U;0U0, ... ®U,,.

K2

Then Lemma 2.6(a), (d) and (e) imply that

Cc(Socr,, ¢ Ui) = Ca(Socp,a(F; @F,, UY))

(3

= Cg(Fi ®FP7‘, SOCFMG Ul-o) = Cg(SOCFpiG Uio),

and similarly Cg(SocFmH U;) = Cg(SochiH U?). Hence

Cg(SOCWG U) = ﬂ;’;l Cg(SOCFMG Ui) = n;’il Cg(SOCFmG UZO)
= Cg(SOCﬂG Uo) = CGO/N(SOCﬂGO Uo)
= CGO (SOCﬂ'GO Uo)/N

But Cg, (Socrg, Up) = N by Lemma 2.7(b), so Cg(SocrqU) = N/N = 1, which shows
that the condition (i) holds. Similarly

C(;'(SOC”H U) = ﬂ:’;l C(;(SOCFMH Ui) = ﬂzzl CG(SOCFMH Ul-o)
= Cq(Socry U) = Cay/n(Socru, Uo)
= CJGO(SOCT‘—H0 U())/N



68 R. Dark et al. / Journal of Algebra 476 (2017) 48-84

But Cg, (Socru, Up) = Hp by Lemma 2.7(g.i), so Cg(Soc,g U) = Hy/N = H, as in (ii).
Moreover

Cc(0y;(Socrr U)) = ;4 Ca(Sock, 1 Uj) =4 CalSocr, u Uy)
= Cg(0y;(Socrn Up)) = Cg,/n(Oyp; (Socrm, Uo))
= Cg, (O (Socrm, Up))/N,

|Cc(Oy; (Socrn U)) : H| = |Ccy(Oyp; (Socrm, Uo))/N : Ho/N|
= |Cq, (0 (Socrm, U)) : Hol.

But p; 1 [Cg, (O (Socrm, Uo)) : Ho| by Lemma 2.7(g.ii), so this completes the proof
that the condition (ii) holds.

To prove (iii), consider a Sylow basis ¥ in G, and choose a Sylow basis ¥ in Gy such
that ¥ = YoN/N [5, 1(4.13.a)]. Then Hy is not Xg-permutable by hypothesis, so H is
not ¥-permutable by Lemma 2.2(c). O

Hypothesis C1. For the rest of this section, and in the next two sections, let G be a
finite solvable group which acts on an elementary abelian 7w-group U (where 7 is a set of
prime numbers). Suppose H < G, and that the three conditions in Lemma 5.2 hold. On
the other hand, assume that if G is a finite solvable group which acts on an elementary
abelian m-group Uj, with a subgroup H; < Gy, such that Uy, G; and H; satisfy the
conditions (i) and (ii) in Lemma 5.2, and if |G1| - |U1] < |G| - |U|, then Hj is system
permutable in G;.

Lemma 5.3. Assuming Hypothesis C1, form the natural semidirect products Gy = GU
and Hy = HU.

(a) Then U is the Z™-radical of Gy, and Hy is a Z™-injector of Gy.
(b) Hence the Z™-injectors of Gy are not system permutable in Gy, but if U < Gy < Gy
then the Z™ -injectors of G1 are system permutable in G.

Proof. (a) The condition (i) in Lemma 5.2 implies that U = Cg,(Socrg, U), so U is

the Z7-radical of Gy by Lemma 2.7(c). Moreover (ii) implies that Hy = Cg,(Socm, U),

and p{|Cq,(Op (Socrm, U)) : Ho| (p € m), so Hy is a Z™-injector by Lemma 2.7(g).
(b) Let X be a Sylow basis in Gy. Since Go/U = G, the quotient XoU/U corresponds

to a Sylow basis ¥ in G. It follows from Hypothesis C1 that H is not X-permutable, so

Hy /U is not 3oU/U-permutable, and hence Hy is not Xg-permutable by Lemma 2.2(c).

Because of (a), this means that the Z7-injectors of G are not system permutable in G.
Now let N7 be the Z™-radical of GGy, choose a Z™-injector Hy of G1, and take

GQZGl/Nl, H2:H1/N1, UQZSOCﬂNl.
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Then N; = Cg, (Uz) by Lemma 2.7(b), so Gy acts on Us. Also U < N7 < G; < G, and
using Lemma 2.7(a) we get

SOCﬂ— G1

SOCWG1 UQ = SOC,TG2 U2
Uy = Socx N1 = Socxn, U
U.

IN A

Since G and U satisfy the condition (i) in Lemma 5.2, if p € 7 then O,(U) is a vec-
tor space over a finite field F', which is a splitting field for all the subgroups of G.
Then O, (Uz) = Op(Socrn, U) = Socr,n, Op(U) = Socpn, Op(U) by Lemma 2.6(d), so
0,(Us) is an F-subspace of O,(U). This holds for all prime numbers p € 7, so Us is
wG3-split for all subgroups Gs < Ga. Moreover Cg,(Socra, U2) = Cg, (Socy G1)/N1 =
N;/N; = 1 by Lemma 2.7(b), so G2 and U, satisfy (i). Using Lemma 2.7(g) we also
deduce that Hy = Cg, (Socr g, Uz) and pt|Cg, (Op (Socr g, Uz)) : H1| (p € ). Hence

H2 = CG1 (SOCWH1 UQ)/Nl = CG2 (SOCTFH2 Uz),
p 1 |Cg,(Op(Socru, Us2))/Ny : Hy/Ni|
= |Cq,(0Op (Socrm, Uz)) : Ha| (p € ),

so Hy and Uy satisfy the condition (ii) in Lemma 5.2.

Since |G2| = |G1/N1| < |G|, it follows from Hypothesis C1 that Hs is system per-
mutable in Gs. Let X1 be a Sylow basis in Gy with X1 \, Hy, and consider the basis
¥y = ¥1N1 /Ny in Gs. Note that Hy pr Gy (because Hj is an injector), so Hy pr Go
by Lemma 2.2(a). Also X9 N\ Hy by Lemma 2.2(b), and hence Hj is Yo-permutable by
Lemma 2.4(b). Finally H; is ¥;1-permutable by Lemma 2.2(b). O

Lemma 5.4. Assume Hypothesis C1, and choose a Sylow basis ¥ in G with ¥\, H.

(a) There is a normal complement K for H in G, with HK = G, HNK =1 and
K =[K,H] < G.

(b) There is a prime number r such that H = SHo,, where S is a cyclic r-group and 1 <
Ho < H, with ¥\ S and Ho, < H. Also Hoo = [Hxo, S] and Hyy < Ng(X N K).

(¢) There is a prime number q such that K = QR, where Q is a q-group and R is an
r-group, with {Q} = (XN K)NSyl, K and {R} = (XN K)NSyl, K. Also q # r and
1<R<K.

(d) The module V = K/KK' is FqH-indecomposable, and there is a subgroup Ko, with

KiK' < Ko < K and Ko, < G, such that K/K is F,H-irreducible.

If Qoo = QN K, then Koo = Qoo X R. Hence Qoo, R <1 G but H < Ng(Q).

Also (H,Q) =G, Cy(K/R)=1 and R =[R,Q)].

(g) Moreover Cr(Hy) < Cgr(S), and S = (a) can be chosen so that a = agd, with
ag € 0,(Ng(X)) and d € R.

—_
— @
~—

Proof. Form the natural semidirect products Go = GU and Hy = HU, and suppose
= {p1,p2, -+ ;pm}- Take {P;} = ¥ N Syl, G and U; = O,,(U) (1 <i < m), and
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define the Sylow basis ¥y in Gg by taking

{PU;} when s = p;,
3o NSyl, Gy =
011EY%s &0 {EﬂSylSG when s ¢ 7.
Then Lemma 5.3 implies that Hypothesis B in Section 4 is satisfied (where F is the set
of Z7-subgroups of Gy). Now the results follow from Lemmas 4.1, 4.2, 4.3 and 4.4. O

Hypothesis C2. For the rest of this section, and the next two sections, take a Sylow
basis ¥, and subgroups H, K, Q, R, S, K, Q, and elements a, ag, d as in Lemma 5.4.
Put S° = (ap) and D = (d), and note that

G = HE, Ié?f; - i K =K, H] < G,

K=QR ik 0 R=[RQ] <G,

Ko < K, > So:<a°‘;<N’ =) Koo = Qo x R < G,

S = (a) < H, 0/ = TRal=h D =(d) <R,
a = apd.

Also @ is a g-group and R is an r-group, where ¢ and r are distinct prime numbers, and
YNK={1,Q, R}

Lemma 5.5. Assume Hypotheses C'1 and C2, and suppose p € w. Take {P} =%XN Syl, G,
and put U, = O,(U). Suppose U, is an FG-module, where F is a finite field of character-
istic p, and F is a splitting field for all the subgroups of G. Let Uy be an FG-irreducible
submodule of U, and put Hy = Cg(Cuy,(P)). Assume that 0 < Uy < U.

(a) Then H < Hy.

(b) Also H()Q = QHO
(¢) Moreover G = HyQ.
(d) Hence R < Cg(Up).

Proof. (a) Lemma 5.3(a) shows that U is the Z7-radical of GU and that HU € Z™.
Also (PN H)U, € Syl,,(HU), and Cy, ((P N H)U,) > Cy,(P). Applying Lemma 2.7(d)
we deduce that HU < Cgy(Cy,((P N H)U,)) < Cqu(Cy,(P)) = HoU, and hence
H=GNHU <GNHYU = Hy.
(b) Put N = C¢(Uy), and note that Uy > Cy, (P), so N < Hy. Take
G, =G/N, H,=Hy/N, P, =PN/N, % =3%N/N,
with P; € ;. Form the natural semidirect products

Gy = G Uy, Hy= H Uy,

and define the Sylow basis 39 in G by taking
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P h =
ZQQSylS Gy = { lUO} Waen s =,
31 NSyl, Gy when s # p.
Then Uy = Soc; G2 by Lemma 2.7(c), so Lemma 2.7(f) shows that Hs is a Z™-injector
in Gy and Yo N\ Hs. But Hy/Uy and 35Uy /Uy correspond to Hy and ¥; under the
isomorphism G /Uy = G, so

HyprG;, ¥\ Hi, HyprG, X\ Hy,

using Lemma 2.2(a) and (b).

Now Uy is F'G-irreducible, so Cg, (Socrg, Uy) = Cg(Up)/N = N/N =1, and hence
G and U satisfy the condition (i) in Lemma 5.2. Applying Lemma 2.7(g) we also
deduce that Hy = Cg,(Socrm, Up) and that s { |Cg, (O (Socrm, Up)) : Ha| (s € 7).
But Socyr, Uy = Socqm, Uy, so Hy = Hy NGy = Cg, (Socm, Up) and

‘(jc;z(()s/(SOCﬂ—H2 Uo)) . H2| = |CG1(OS/(SOC7TH1 Uo))Uo . Hon‘
= |CG1(OS/(SOC7TH1 UO)) : H1|7

and hence H; and Uy satisfy the condition (ii) in Lemma 5.2. Since |Uy| < |U|, Hy-
pothesis C1 implies that H; is system permutable in G1, and as before, it follows from
Lemma 2.4(b) that H; is Xj-permutable. Then Hj is X-permutable by Lemma 2.2(c),
so HoQ = QHy.

(c) Using (a) and (b), together with Lemma 5.4(f), we get HoQ > (H,Q) = G.

(d) It follows from (c) that |G : Ho| = |HoQ : Ho| is a power of ¢, while |HoR : Hy|
is a power of r. This implies that R < Hy = C¢g(Cy,(P)), so Cy,(R) > Cy,(P) # 0.
Since Uy is F'G-irreducible, we deduce that Cy,(R) = Uy. O

Lemma 5.6. Take Hy, and V as in Lemma 5./, and put H® = S°Hy,, Roo = R"R' and
Ve=Q/Q'Q', W =R/R"R.

(a) There is a prime number p € w such that U is an irreducible FG-module, where F' is
a finite field of characteristic p, and F is a splitting field for all the subgroups of G.

(b) If{P} =%nNSyl,G, then H= Cg(Cy(P)).

(d) Hence P < H, with H= SP and P = [P,S] < Ng(Q). Also p, q and r are distinct,
and X ={1, P, Q, RS} with 1 < P < H.

(e) Also Que = Q1Q’, and the module V' is FyH -irreducible, with Cg (V) = 1.

f) Moreover Cr(P) < Cgr(S5), so Cw(P) < Cw (S).

(g) Hence V° is FgHC-irreducible, Cgo(V°) =1 and Cw (H®) = Cw (P).

[}

—~

Proof. (a) If # = {p1,p2, ... ,Pm}, then it follows from Hypothesis C1 and the condi-
tion (i) in Lemma 5.2 that U = U; @ Us @ ... ® U, is a direct sum of F;G-modules U,
where Fj; is a finite field of characteristic p;, and F; is a splitting field for all the subgroups
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of G; we must therefore prove that U = U; is F;G-irreducible for some index 4. If this is
not the case, then Lemma 5.5(d) implies that R < Cg(Soc,q U). But Cg(Soc,¢U) =1
by the condition (i) in Lemma 5.2, so this contradicts Lemma 5.4(c).

(b) It follows from Lemmas 5.3(a) and 2.7(f) that HU = Cgu(Cy(PU)) =
Ca(Cy(P))U, which gives the result.

(¢) If Gy = H1 K, then Hy = Cg,(Cy(P)), and as in Lemma 2.7(f) it follows that
H, U is a Z7-injector of G1U. Moreover G1U and H,U satisfy the conditions (i) and
(ii) in Lemma 2.7(g), which implies that G; and H; satisfy the conditions (i) and
(ii) in Lemma 5.2. Hence H; is system permutable in G; by Hypothesis C1, so H;
is (X N Gp)-permutable by Lemma 2.4(b), and Hy < Ny (Q) by Lemma 2.4(d).

(d) Put H; = Ny (P), and note that H = Hy H, by Frattini’s argument [7, I(7.8)],
and ¥ N\, H; by Lemma 2.4(c). If H; < H, then H; < Ng(Q) by (c), while Hoo < Ny (Q)
by Lemma 5.4(b), so H = HiHy < Npy(Q). This contradicts Lemma 5.4(e), which
proves that Hy = H, so P <1 H.

We now get a subgroup Ho = SP. If Hy < H, then (c¢) implies that Hy < Ny (Q),
and hence H = HyH,, < Ny (Q). As before this contradicts Lemma 5.4(e), and proves
that H = Hy = SP. Since Hy, = [Hoo, 5], it is also clear that Ho, = O"(H) = P, so
P=[P,S]<Ng(Q),and 1 < P < H by Lemma 5.4(b). Finally P € Syl, G, and K is a
{q,r}-group, so p ¢ {q,r}, while ¢ # r by Lemma 5.4(c). Hence ¥ = {1, P, Q, RS}.

(e) Now H is a {p,r}-group by (d), so V is completely F,H-reducible by Maschke’s
theorem [5, A(11.5)]. Then Lemma 5.4(d) implies that V is F,H-irreducible, so
K. = KIK'. Since R < G, it also follows that Ko, = QIQ'R and Q. = QQ’. Fi-
nally K/R= Q and V = (K/R)/®(K/R), and hence Cy (V) = Cy(K/R) [7, TTI(3.18)].
Now Lemma 5.4(f) shows that Cg (V) = 1.

(f) Since P = H,, Lemma 5.4(g) shows that Cr(P) < Cg(S). To prove the last
equation, suppose £ € Cy (P). By the theory of coprime actions, there is an element
x € Cgr(P) such that £ = Rz [7, 1(18.6)]. Then 2 € Cr(P) < Cgr(S5), and hence
& = Rz € Cy (9).

(g) Note that V° = Q/Qx = K/K. =V, and that d centralizes both V' and W, so
the action of ag on V and W is the same as the action of agd = a. The results therefore
follow from (e) and (f). O

Hypothesis C3. For the rest of this section, and the next two sections, take the prime
number p, the field F'| the subgroups H°, P, R, and the vector spaces U, V, V° W as
in Lemma 5.6. Note that

H° = S°P < Ng(Q),

H = SP, SAP =1, P =[P,S|<H,
Ko = KUK, Qw = Q1Q/, Re = R'R,
V = K/Ks, Vo = Q/Quo, W = R/R.,
Cy(P) < Cy(9), Cr(P) < Cgr(S), Cw(P) < Cw(S).
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Also P is a p-group, @ is a g-group and RS is an r-group, where p, ¢ and r are distinct
prime numbers, and X = {1, P,Q, RS}.

Lemma 5.7. Assume Hypotheses C1, C2 and C3.

(a) Then D < Cgr(H®).
(b) Also R =[D, Q).
(c) Hence R <(Q,S).
(d) Moreover Cy (H®) # 0.
Proof. (a) Note that d = ay'a € Ng(P), so [P,D] < PN R = 1. Hence D <
Cgr(P) < Cg(S) by Lemma 5.6(f), and therefore [D, H°] = [D,S°P] < [D,SDP] = 1.
(b) Put Ry = [D, @], and note that D < Ng(QR;). Also H° < N¢(Q), and it follows
from (a) that H® < Ng(R1). Hence H < DH® < Ng(QR1), and using Lemma 5.4(f)
we get G = (H,Q) < HQR;. Thus Ry € Syl K, so Ry = R.
(c) Suppose k € Z and ¢ € Q. Using (a) we get [d*,c] = [ag"a¥, ] =
(=" )" ¢ € (Q, S), so the result follows from (b).
(d) Finally d ¢ R by (b), so (a) implies that the coset Ro.d is a nonzero vector
in Cw(HO) O

Lemma 5.8. The module U is F K -irreducible.

Proof. Note that U is FG-irreducible by Lemma 5.6(a), so it follows from Lemma 5.1(a)
that U is F(PK)-irreducible. Applying Lemma 5.1(b), let Uy,Us, ... ,U, be the
F K-homogeneous components of U, and choose the notation so that

Gl = NG(U1)7 N = CG1 (Ul)a Pl = NP(Ul)a Hl = CGl(CUl (Pl))
U=U,0U® ... ®U,, NH(Ul):SPl, CUl(S) SCUl(Pl)-

Then U; is F(PK)-irreducible by Clifford’s theorem [7, V(17.3.¢)], so U; is also
F K-irreducible by Lemma 2.8. Suppose U; < U; we must show that this is impos-
sible. Now Gy = Ny (U)K = SPIK = SRP,Q, which implies that ¥ \, G;. Also
S < Cg, (Cy, (P1)) = Hy. Moreover Uy > Cy, (P1), so N < Hy, and we put

Gy =G1/N, Hy=H,/N, P,=PN/N,
S, =YNGy, ¥ =3N/N,

with Py € ¥5. Then Hy = Cq,(Cyp, (P,)), and U; is a module which is Ga-faithful and
FGa-irreducible. As before Lemma 2.7(f) and (g) can be used to show that G2, Hs and
U, satisfy the conditions (i) and (ii) in Lemma 5.2. Since |U;| < |U] it follows from
Hypothesis C1 that Hs is ¥g-permutable. Then H; is Xj-permutable by Lemma 2.2(c),
so there is a subgroup H1Q > (Q,S) > R by Lemma 5.7(c). But r t |H1Q : Hy|, and
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therefore R < H; = Cg, (Cy, (P1)). Hence Cy(R) > Cy,(R) > Cy, (P1) #0, and so R
centralizes U (because U is FG-irreducible). Finally C(U) = 1 by the condition (i) in
Lemma 5.2, so this contradicts Lemma 5.4(c). O

6. Groups in which U is F K -inhomogeneous

Remark. In this section, we follow a well known strategy [10, Theorems 3.5, 4.4, 7.3
and 8.4], and consider the case when U is FK-inhomogeneous. We use Lemma 2.9,
and throughout the section, we assume Hypotheses C1, C2 and C3 in Section 5.

Lemma 6.1. Suppose U is F K -inhomogeneous, and let {cy,ca, ... ,cq} be a transversal
to Qs in Q, with c; = 1.

(a) Then {c1,c2, ... ,cqt} s a transversal to Koo in K, and {ci,ca, ... ,cqt} is also
a transversal to HK, in G. Hence V. = {v1,va, ... ,up}, with v; = Kyc; (1 <
i<q').

(b) Also U = Y1 @Yo @ ... @ Yy, where each subspace Y; is stabilized by Koo,
and Ng(Y1) = HK. Moreover H permutes the set Q = {Y1,Ya, ... , Y}, and

Y; = Yic; (1 <i<q'). Hence the permutation action of H on 'V is equivalent to the
action of H on .
(¢) Finally the P-orbits in 'V are stabilized by S.

Proof. (a) This follows from the definitions.
(b) Clifford’s theorem gives U = Y1 @ Y2 @ ... & Y,,, where the submodules Y; are
the F'K,,-homogeneous components of U, and the set

Q:{Y17Y27 7Ym}

is permuted by G [7, V(17,3)]. Lemma 5.8 implies that K/Ko = QKy/Ks per-
mutes ) transitively, while ¢ 1 |H|, so it follows from Lemma 2.9 that H normalizes
at least one of the submodules Y;. Choose the notation so that H < Ng(Y7), and
hence HK, < Ng(Y7). Now |G : Ng(Y1)] = m # 1 by hypothesis, so Ng(Y1) < G.
But Lemma 5.6(e) shows that HK. is a maximal subgroup of G, and therefore
HK. = Ng(Y7). This proves that m = |G : HK«| = ¢*, and that {c1,c2, ... ,cpe}isa
transversal to Ng(Y7) in G, so the notation can be chosen so that Y; = Yi¢; (1 <i < ¢).
Moreover if g € H, then Yic;g = Yige! = Yic!, while (Kooc;)9 = Kooc!, which gives the
required permutation equivalence.
(c) Let Q0,91 ... ,Q, be the P-orbits in €, and suppose

Qj:{}/}lay}27 7}/}'mj} (1§]§n)

Then S permutes the set {Qg,Q1, ... ,Q,}, and because of (b), it suffices to show
that S stabilizes each orbit €2;. Take U; = Y;1 @ Yj2 & ... @ Yjy,,, and note that
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U=UyaeU; o ... &U,. IfQ? = Qy, then Uja = Uy, so CU].(P)a = CUk(P) # 0. But
Cy,(P)* = Cy,(P) by Lemma 5.6(b), and hence j = k so a stabilizes ;. O

Remark. In the next two lemmas we obtain properties of H by exploiting the condition
in Lemma 6.1(c), ignoring the subgroup R and the module U.

Lemma 6.2. Assume that the P-orbits in V are stabilized by S.

(a) ThenV is FyP-irreducible.
so V' is -primitive.
(b) Also V is F,P-primiti

Proof. (a) Note that V is F,H-irreducible by Lemma 5.6(e). If 1} is an F ;P-submodule
of V, then the hypothesis implies that S stabilizes Vj, so Vo = V.

(b) Suppose V = Z1®Z>@ ... ®Zps, where the subspaces Z; are permuted transitively
by P, and put P; = Np(Z7); we must deduce that s = 0. If s > 0, then |P : P;| = p® # 1,
so there is a subgroup P, with P; < Py, < P and P/P,, = C,. Choose transversals
{b], 05, ... ,b/ps_l} to Py in P, and {1,b,b%, ... ,b?71} to P, in P, and take

Vi=(Z10y & Ziby @ ... & Zybl )b =Vob' (i € Zy)

Then V =V ® Vi @ ... ®V,_1, and the subspaces V; are stabilized by P, and are
permuted regularly by P/P... Now the subset

Ti=VWWuWiu... UVp—1 CV

is stabilized by P, and is therefore also stabilized by S. Suppose u,v € V; —0 with ua € V;
and va € V.. Then u+v € Vj, so ua + va = (u+ v)a € Yy, and therefore j = k. This
proves that S permutes the set {V; : i € Z,}, and we can choose the notation so that S
stabilizes V (because r # p). It follows that S normalizes the subgroup P, = Np(Vp),
so S acts on P/P,,. Hence there exist an integer h € Z, and elements g; € P, such
that Py b® = P b™ and b = gibih. Then

Via = Vobla = Voab™ = Vogib'" = Vob'" = Vi, (i € Zy).
Now [P, S] = P by Lemma 5.6(d), and hence h # 1. Suppose h # —1, and put
To={u+v:ueV,veVi,1€Z,} CV.
Note that P stabilizes Y5, and choose vectors u € Vy—0and v € V7, —0. Then u+v € 1o,

while ua € Vy and va € V4. Hence (u + v)a ¢ Ty (because h # 1), which contradicts
the hypothesis. This proves that h = —1.
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It follows that r = 2, so p # 2 and ¢ # 2. Then P, must act intransitively on Vi — 0,
so there are disjoint nonempty sets I'g, Ay C Vi — 0, both stabilized by P, and we take

[y =Tgb, A;j=A', YTs={utv:uecl;,veA 1,i€Z,}CV.

Then P/P,, permutes the sets {I'; : i € Z,} and {A; : i € Z,} regularly, so P/Py
stabilizes Y3. As above, choose vectors u € I'g and v € A;. Then u +v € Y3, and
ua € Ty, but va € A,_1, so (u+v)a ¢ Ts. This contradiction completes the proof. O

Lemma 6.3. Assume that the P-orbits in V are stabilized by S.

(a) Then P is cyclic.
(b) Also V. ={0}UT1UT2U ... UL, where for each index j, P permutes I'; reqularly,
and there is a vector v € T'; such that S fizes v}.
Proof. (a) Suppose P is not cyclic; we must show that this is impossible. Note that
V' is a module which is P-faithful and F,P-irreducible by Lemmas 5.6(e) and 6.2(a),
and let A be an abelian normal subgroup of P. It follows from Clifford’s theorem that
V=VieVe® ... ®V,,, where the submodules V; are the F,A-homogeneous components
of V, and are permuted by P [7, V(17.3)]. But Lemma 6.2(b) shows that m =1, so V
is FyA-homogeneous. Since C4(V) = 1, Lemma 2.11(a) implies that A is cyclic. Thus
every normal abelian subgroup of P is cyclic, so Lemma 2.12(a) shows that p = 2 and
either P = Qg or else Aut P is a 2-group. But if Aut P is a 2-group then [P, S] = 1,
which contradicts Lemma 5.6(d).

We may now suppose that P = Qg, and take (z) = Z(P) = P’ = C,. Then
|Aut P| = 233, so it follows from Lemma 5.6(d) that » = 3 (and that H/Cg(P) =
H/O3(H) = SLy(3)). Take V; = {v € V : vz = (—1)} (i = 0,1), and note that V and
V1 are both stabilized by P, and V = Vi & V;. Since V is a module which is P-faithful
and F,P-irreducible, it follows that V' = V3, and Cp(v) = 1 for all vectors v € V — 0.
This implies that

V={0}ulyUTyU ... UT,,

where each subset I'; is permuted regularly by P. Thus |I';| = 8, and S stabilizes I'; by
hypothesis, and hence the action of H on I'; is equivalent to the action on the cosets
of S (and H = SLy(3)). This implies that I'; contains two elements fixed by S (and
two S-orbits of size 3). Now put s = dimg, Cy(S) and ¢ = dimg, V, and note that
0 < s <t Hence ¢° =|Cy(S)|=1+2nand ¢' =|V|=1+8n=1+4(¢° — 1), and so
q' —4¢*+3 = 0. Therefore q | 4¢° —q' = 3, so ¢ = 3 = r, which contradicts Lemma 5.4(c).

(b) As in (a), note that V' is a module which is P-faithful and F,P-irreducible by
Lemmas 5.6(e) and 6.2(a), and let {0},I'1,T3, ... ,T;, be the P-orbits in V. Then P
permutes each set I'; regularly by Lemma 3.1(b), and hence 7 { |I';|. Also S stabilizes I';
by hypothesis, so S fixes a vector v; € I';. O
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Lemma 6.4. Suppose U is F K, -inhomogeneous, and choose the subspace Y1 as in
Lemma 6.1(b). Take the subsets I'1,Ta, ... ,T'y and the elements vi,vh, ... ,vl as
in Lemma 6.3(b), and put M = Cyg__(Y1).

(a) For each index j, there is an element g; € Cgq(ag) such that Koog; = v’
(b) Then S% < M.

(c) Also H< M.

(d) Hence R< M.

Proof. (a) Using Lemma 6.1(a), take vj = K. .c; with ¢; € Q (1 < j < n), and note
that (Kooc 3)“ = Koodj. Now d € Ky 50 (Koolj)? = Koo, and therefore (Kooc)® =
(KOOCJ) = Koo} Also ap € Ng(Q), so this implies that [ag, c}] € QN Koo = Qoo,
and hence (Qooc )“0 = Qooc But ag is an r-element, while \Qooc | is a power of ¢, so
ap fixes an element g; € QOOCJ = Qbj-

(b) Consider a vector y; € Y7; we must show that ylaga‘_l = y1. Suppose P = (b) = C,s
as in Lemma 6.3(a), and note that I'; = {v}bi : 4 € Zps} by Lemma 6.3(b). Now
v}- = Kyg; by (a), and we put Y; = Y1g; and y; = y19;. Applying Lemma 6.1(b), we
get U; = ®iezps Y;b' < U, so u; = Ziezps y;b' € Cy,(P) < Cy,(S). Moreover S
stabilizes I'; by Lemma 6.1(c), so S permutes the set {Y;b’ : i € Z,:}, and hence S also
permutes the set {y;b’ : i € Z,:}. Finally S fixes v , so S stabilizes Y}, and therefore S
centralizes y; = y1g;. Thus y19;a = y19;, so ylaga = 1.

(¢) Note that @ # 1 by Lemma 5.4(c), so V # 0 and n > 0. From (b) we get
$9'R < MR < HK. Now S9 R = (Sl’%)gf1 € Syl,. G, and hence S91' R is con-
jugate to SR in HK,. Therefore S < SR < MR, and Lemma 5.6(d) implies that
P =[P, S] < MR. Since MR/M is an r-group, it follows that P < M = Cgk_ (Y7).
Thus Y1 S CU(P) S CU(S), so H S CHKOO(YI) =M.

(d) Put D = (d), and note that R = [D, Q] by Lemma 5.7(b). It therefore suffices to
show that if k € Z and ¢ € Q, then [d*,¢] € M. Moreover [D, Q] = 1 by Lemma 5.4(e),
so we may assume that ¢ ¢ Q. It follows from (a) and Lemma 6.3(b) that the set
{1} U {g?i 24 € Zps, 1 < j < n}is a transversal to Qo in @, and hence the set
{1} u {g;bl 11 € Zps, 1 < j<n}isalso a transversal to Qo in ). Thus ¢ = zg;bl with
2 € Qoo, 1 € Zp- and j € {1,2, ... ,n}. Now [D,Qx] = [D, P] = 1 by Lemmas 5.4(e)
and 5.6(a), while g; € Cg(ag) by (a). Using these facts, we get

[d*,¢] = [d¥, 2g;"] = [d*, 7] = [d¥, g7 )"
= lag ’“ak,gj Y = [a* ,gj_l]b' = (a”

e M¥ = M,

kakggl)b'i

using (b) and (¢). O

Lemma 6.5. The FG-module U is F K ,-homogeneous.
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Proof. If U is F K -inhomogeneous, then Lemma 6.4(d) implies that

R< (] M9 =Cq(U).
geG

But C¢(U) = 1 by the condition (i) in Lemma 5.2, so this contradicts Lemma 5.4(c). O
7. Groups in which U is F K ,,-homogeneous

Remark. In this section we continue our basic strategy [10, Theorems 3.5, 4.4, 7.3
and 8.4], and show that R is extraspecial, using Lemmas 2.10, 2.11 and 2.12.

Lemma 7.1. Let W be a module which is C-faithful and F,.C-homogeneous, where C =
(¢) 2 C,, and r {n (and r is a prime number). If w € W, then the submodule w(F,.C)
generated by w is F,.C-irreducible.

Proof. Suppose W = X; 6 Xo® ... & X,,, where the F,.C-modules X; are irreducible,
and isomorphic to each other, and let k be the order of » modulo n. As in Lemma 3.1(b),
there exist F,-isomorphisms 6; : X; — F:Sc, and an element  which is a primitive n-th
root of 1 in F ., such that

(weh)li =~3u%  (we X;, 1<i<m, jeZ,.

Let Wy be an m-dimensional vector space over F,, and let {x1,22, ... ,2,} be an
F,x-basis of Wi. Consider an element w =Y/ w; € W with w; € X; (1 <4< m), and
define an F,-isomorphism 6 : W — W, by taking w? = Oy wfiaci. Suppose also that
A= ez, ajcd € F,C, with a; € F,. (j € Z,,). Then

. N N
(wcj)g = (2211 wicj) = Z;‘Zl(wic )szi
=Sl Ywlis =y’ (j € Zy),

(WA)Q = Zjezn aj(wcj)9 = Zjezn O‘j’YjWO = pw?,

where p = > .7 a;7’ € Fox. Thus (w(F,C))? is the 1-dimensional F,«-subspace
spanned by w’, and w(F,C) is F,.C-isomorphic to X;. O

Remark. For the rest of this section, we assume Hypotheses C1, C2 and C3 in Section 5.

Lemma 7.2. Let Q be the set of F,.Q-homogeneous components of W, and let Q1,Qs,
ooy Qy be the P-orbits in Q, with Q; = { X1, Xz, -« , Xin, } (1 <i<m).

(a) Each component X;; is F,.Q-irreducible (1 <i<m, 1<j<mny).
(b) Each P-orbit Q; is stabilized by H° (1 <i < m).
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(¢) Put Ly = Npo(X;1) and P; = Np(X;1). Then the notation can be chosen so that
Li = Sopi and CX“(Pi) = CXbl(Ll) 7é 0 (1 < ) < m)

Proof. Consider the vector w = Rood € W, and put Z; = X;1 @ Xio @ ... @ Xip,
(1<i<m). Then W=27,82Z26 ... & Z,, and we take

w=0+C+ ... +(n with (; € Z; (1 <i<m),
G=%&1+& 2+ ... +&n, with & € X5 (1 <7 <ny).

(a) Lemma 5.7(b) implies that the F,Q-submodule w(F,Q) generated by w is equal
to W, and hence &;(F,Q) = X;; (1 < i <m, 1 < j < n;). But [Qw,R] =1 by
Lemma 5.4(e), so Qx centralizes W. Thus X;; can be regarded as a homogeneous
F,(Q/Qc)-module, where QQ/Qo is an elementary abelian g-group. Then Q/Cqg(Xi;)
is cyclic by Lemma 3.1(a), and the result follows from Lemma 7.1.

(b) Note that w € Cy (P) by Lemma 5.7(a), so (; € Cw(P) = Cw(H®) by
Lemma 5.6(g). Also S° permutes the set {Q4,Q9, ... ,Qy}, and if Qf° = Q;, then
G=¢" ez =72 But (;(F,Q)=Z; as in (a), so (; # 0, and hence i = j.

(c) Applying Lemma 5.1(b) with K = @, we can choose the notation so that L; = S°F;
and Cx,, (P;) < Cx,, (S°), and therefore Cx,, (P;) = Cx,, (L;). Moreover P; = Np(X;1)
permutes the set {&1,&q2, ... ,&n, |, and hence &;; is a nonzero vector in Cx,, (P;). O

Lemma 7.3. Suppose U is F K,-homogeneous.

(a) If Ri < R with Ry < G, then U is F Ry-homogeneous.
(b) Hence R is extraspecial and R' < Z(QG).

Proof. (a) Suppose the restriction of U to Ko is Ux, = X1 ® Xo ® ... @ X,, where
the modules X; are F'K.-irreducible, and there are F'K.-isomorphisms 6; : X1 — X;
(1 <i<m).Put K1 = Qo Ry, and note that K; <1 G. It follows from Clifford’s theorem
that X1 = X11©X12® ... @ X1, where the submodules X ; are the F'K;-homogeneous
components of X7, and are permuted transitively by R [7, V(17.3)]. For each index j,
put U; = Xy @ij- @Xf; b ... @Xf;", and note that U = U1 ®@Us @ ... ® U, where
the submodules U; are the F'K;-homogeneous components of U, and are permuted by G,
and permuted transitively by R.

Since r 1 |PQ), it follows from Lemma 2.9 that PQ normalizes at least one of the
submodules U;. Choose the notation so that PQ) < N¢(U1), and note that if U = Uj
then Cy, (P)* < Uj;. Since S centralizes Cy, (P), it follows that j =1, so S < N¢g(Uy).
Using Lemma 5.4(f), we get G = (H,Q) < Ng(Uy), so Uy is an FG-submodule. But
U is FG-irreducible by Lemma 5.6(a), so U = Uy is F Kj-homogeneous. Finally let Y
be an F'K-irreducible submodule of U; it suffices to show that Y is F'R;-homogeneous.
Now K; = Qo X Ry by Lemma 5.4(e), so Lemma 2.10 implies that ¥ = Y7 ® pYa,
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where Y7 is FQu-irreducible and Y5 is F'R;-irreducible. Restricting to R, we deduce
that Yr, = (dimp Y7) - Y2 is F'R;-homogeneous.

(b) If A is a characteristic abelian subgroup of R, then U is F'A-homogeneous by (a),
and F is a splitting field for A by hypothesis, so A is cyclic and A < Z(G) by Lemma 2.11.
It now follows from Lemma 2.12(b) that R = Ry o Ry is a central product, where Ry is
extraspecial (or Ry = C,.) and R; is cyclic. Now G’ > [K, H] = K > @ by Lemma 5.4(a),
and [R,Q] = R # 1 by Lemma 5.4(c) and (f), and therefore (Aut R) > G'/Cg/ (R) >
Q/Cq(R) # 1. Hence R is not cyclic, so Ry is extraspecial, and R’ = R}, = C,. Finally
Ry = Z(R) is a characteristic abelian subgroup of R, so R; < Z(G) as above. Thus
Ri/R" < Cpr/p(Q) = R'/R' by Lemma 5.4(f), so R = Ry < Z(G), and R = Ry is
extraspecial. O

Remark. With a similar argument, using a result of Hobby [7, III(7.8.¢)], it can be shown
that if U is F'K.,-homogeneous, then @ is either elementary abelian or extraspecial, but
we shall not need this fact.

8. Proof of the Theorem

Remark. In this section we complete the proof of the Theorem by applying the results
in Section 3 to the extraspecial group R, ignoring the module U.

Hypothesis D. In the next two lemmas, let G = HQoR be a finite group, such that
Qo < HQy, R < HQuR and HN Qo = HQy N R = 1. Suppose Qg is an elementary
abelian g-group, and R is an extraspecial r-group (where ¢ and r are distinct prime
numbers), and let k be the order of » modulo ¢. Put Z = R’ = Z(R) = C,,, and assume
that [R, Qo] = R and [Z,G] = 1. Applying Lemma 3.2(a), write R=T;0Tyo0 ... o T},
as a central product of extraspecially Qo-irreducible r-groups 7;. Put

Q:{T17T27 7Tm}7 L:NH(Tl)a }/;:T’L/Z (1§Z§m)7
and assume that H permutes () transitively.
Lemma 8.1. Assume Hypothesis D, and suppose 2 {1 k. Lemma 3.7(a) implies that the
groups T; are all of type (ii) in Lemma 3.2(b), with Y; = X} & X;, and we assume that
Cx,(L) # 0. Then R = Ey 0 Eyo ... o E,, where |E;| = 1°, Ef < E} = Z and
E; =(d;,e;) (1 <j<mn). Moreover the set A ={1,2, ... ,n} is permuted by H, with
d} =djg and ef =ej, (€A, g€ H).

Proof. Note that Co,(X;) = Cau(X7) = Cay(¥i) = Cq,(T) by the theory of coprime
actions [5, A(12.3)], and Qo/Cqg,(Y;) =2 C, by Lemma 3.1(a). Put

Q1 =Qo/Cq,(T1)=C,y, Ly=L/Cr(Th).
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If r # 2, then ¢ # 2 by Lemmas 3.9 and 7.2(a). Then Lemma 3.7(b) implies that
@171 can be identified with a subgroup of the group C1R in Lemma 3.3, and hence
Ly < BCy by Lemma 3.10(a). Now Lemma 3.12 shows that Ty = Ej; 0 Ejp0 ... o Eqy,
with |Eyj| = 73, Ef; = 1 and Ej; = Z, Eyj = (dij,e1;) (1 < j < k). Also the
set Ty = {(11),(12), ... ,(1k)} is permuted semiregularly by L, and di; = d(15),
el; = ey (1<j<k gel).

Similarly if » = 2, then Lemma 3.7(c) shows that @177 can be identified with a
subgroup of the group CiR in Lemma 3.4, and hence Ly < BCy by Lemma 3.10(b).
Now Lemma 3.13 shows that Ty = Eij 0 E1g0 ... o By, with Eyj = (dij,e15) = Dg
(1 <j <k). Also the set I’y = {(11),(12), ... ,(1k)} is permuted semiregularly by Ly,
and df; = d(15)g, €1; = ey (1 <j <k, g€ L)

To complete the proof, let {g1,92, ... ,gm} be a transversal to L in H, with ¢y = 1
and T; = T{", and put d;; = df}, e;; = e}, Eij = Efj and T'; = {(i1), (i2), ... , (ik)},
A=T,UI'U ... UT,,. Then T; = E;; o Ejp0 ... o E;;, and H permutes A, with
dj; = dgjyg and ef; = egjy (1 < i <m, 1 < j <k, g€ H). We get the result by
replacing the suffices (ij) in A by the numbers 1,2, ... ,n (where n = mk). 0O

Lemma 8.2. Assume Hypothesis D, and suppose Cy, (L) #0 and 2 | k. If r = 2 suppose
also that P < H, with 2t |P| and P = Np(T1), and assume that Cy, (P1) = Cy, (L) # 0.
Then R = Ey 0o Eyo ... o E,, where |Ej| = r3, E7 < E; =7 and E; = (dj,e;)
(1 < j <n). Moreover the set A = {1,2, ... ,n} is permuted by H, with d? =djq and
ef =ejy (jEA g€ H)

Proof. We can copy the proof of Lemma 8.1 as follows. Lemma 3.8(a) implies that the
groups T; are all of type (i) in Lemma 3.2(b). Moreover Cq,(Y;) = Cq,(T;) by the
theory of coprime actions [5, A(12.3)], and Qo/Cq,(Y;) = C, by Lemma 3.1(a). Put

Q1 =Qo/Cq,(T1) =C,, Li=L/Cr(Th).

If r # 2, then Lemma 3.8(b) shows that Q173 can be identified with a subgroup of the
group C1 R in Lemma 3.5, and hence Ly < By by Lemma 3.11(a). Since Cy, (L) # 0,
Lemma 3.14(b) and (c) show that Ty = E1y0 Eijg0 ... 0 By j s, with |Eyj| = r®, Ef; =1
and BY; = Z, Eyj = (dij,e1;) (1 <j < k/2). Also theset I'y = {(11),(12), ... ,(1,k/2)}
is permuted semiregularly by Ly, and d{; = d(15),, €1; = €(1j)g (1 <j <k/2, g€ L).

Similarly if » = 2, then Lemma 3.8(c) shows that Q171 can be identified with a
subgroup of the group C; R in Lemma 3.6, and hence Ly < BCy by Lemma 3.11(b). Since
Cy, (P1) = Cy,(L) # 0, Lemma 3.15(b) and (c) show that 71 = Ejy0 Ejg0 ... 0 Ey /9
with |Ey;| = 2%, EY; < Ef; = Z and Eyj; = (dyj,e1;) (1 < j < k/2). Also the set

Iy = {(11),(12), ... ,(1,k/2)} is permuted semiregularly by Li, and df; = d(1,,
To complete the proof, let {g1, g2, ... ,gm} be a transversal to L in H, with g; =1
and T; = T}, and put d;; = df}, e;; = efy, Eyj = BEYj and T; = {(il), (2), ... , (i,k/2)},
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A=T1uUlU ... UTy,. Then T; = Ejy o Ejs0 ... o B}/, and H permutes A, with
dj; = diij)g and ef; = ez, (1 < i <m, 1 <j < k/2, g € H). We get the result by
replacing the suffices (ij) in A by the numbers 1,2, ... ;n (where n = mk/2). O

Proof of the Theorem. Suppose there is a finite solvable group whose Z™-injectors are not
system permutable. By Lemmas 5.2, 5.4 and 5.6, there exist a prime number p € m and an
FG-module U, where G is a finite solvable group, and F' is a finite field of characteristic p,
such that F is a splitting field for all the subgroups of G, and Hypotheses C1, C2 and C3
in Section 5 are all satisfied. Then U is F'K-homogeneous by Lemma 6.5, and R is
extraspecial with Z = R’ < Z(G) by Lemma 7.3(b). Also Qo < G by Lemma 5.4(e), and
hence H°Q/Q acts on R, where QQ/Q is an elementary abelian g-group. Applying
Lemma 3.2(a), write R = Ty oTa o ... oT,, as a central product of extraspecially
Q-irreducible r-groups T;. Let k be the order of » modulo ¢, and put

Q:{TDTQ, 7TM}3 QO:Q/QOO,
W=R/Z Yi=T/Z(1<i<m).

First suppose 2 t k. Then Lemma 3.7(a) implies that the groups T; are all of type (ii) in
Lemma 3.2(b), with Y; = X*® X, where the submodules X and X; are F, Q-irreducible.
It follows from Lemma 7.2(a) that X7, X5, ... , X} and Xi,Xs, ... ,X,, are the
F,.Q-homogeneous components of W, so they are permuted by H°, and hence H° also
permutes ) (because H° preserves the duality). Let Qq,Q9, ... ,Q; be the H°-orbits
in €, and write

Qi:{Ti13ﬂ27 7Timi}a Ri:TiloEQO Oﬂm“
Wi =R;/Z, L;=Npgo(T;1),
Yij=T;/Z=X;0X;;(1<i<1, 1<j<my).

Then H°QoR;, Q; and L; satisfy Hypothesis D. Moreover Lemma 7.2(c) shows
that Cx,,(L;) # 0, so the hypotheses of Lemma 8.1 also hold. We therefore get
R; = EnoEpo ... oE,, where |E;;| = r3, Bl < Ezfj = Z and E;; = (dij,ei;)
(1 < j < mny). Moreover the set A; = {(i1), (i2), ... ,(in;)} is permuted by H°, with
dj; = dijgr €55 = ey (i) € Diy g € H?).

Next suppose 2 | k. Then Lemma 3.8(a) implies that the groups 7; are all of type (i) in
Lemma 3.2(b), so the submodules Y; are F,.Q-irreducible. It follows from Lemma 7.2(a)

that Y7,Y5, ... ,Y,, are the F,.QQ-homogeneous components of W, so they are permuted
by H°, and hence H° also permutes Q). Let 1,Qs, ... ,€; be the H°-orbits in 2, and
write

O ={Ti1,Ti2, ... \Tim,}, Ri=TinoTipo ... oTyy,,

Wi=R;/Z, L;=Npgo(Ty), P;=Np(Th),
Yij =T;/Z(1 <i <1, 1 <j5<my).
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Then H°QoR;, ; and L; satisfy Hypothesis D. Moreover if » = 2 then p # 2, and
Lemma 7.2(c) shows that Cy,, (P;) = Cy,, (L;) # 0, so the hypotheses of Lemma 8.2 also
hold. As before we get R; = Ejj o Ego ... o Ey,, where |Ejj| =r®, Ej; < Ej; = Z and

E;; = (dij,ei;) (1 <j <mn;). Moreover the set A; = {(i1), (42), ... , (in;)} is permuted
by H°, with d?j = d(ij)g7 6% = €(ij)g ((ij) € Ay, g € H).

In both cases take A = A; UA; U ... UA;, and replace the suffices (ij) by the
numbers 1,2, ... ;n (where n =ny +na+ ... +ny). Then

R=RioRy0 ... 0R;, W=WeWye® ... W,
R=FEio0Eyo ... oE,, |E|=1r% EI<E/ =2,
E; = (di,e;), d} =dig, el =eiq (1<i<n, geH®).

Take d as in Lemma 5.7, and put w = Zd. Then Lemma 5.7(b) implies that the
F,Q-module w(F,Q) generated by w is equal to W, and hence w # 0.

We can complete the proof by considering the action of H on R, ignoring the sub-
group @, as well as the module U. Suppose w = wy + w2 + ... + w; with w; € W,
and note that w; € Cyw(P) (1 < i < I). At least one of the summands w; must be
nonzero, and we choose the notation so that w; # 0 and Ry = Ey o Eso ... o £, . Put
A={1,2, ... ,n1} and let Ay, Ao, ... ,A; be the P-orbits in A. Take J; = HjEAi E;
and M; = J;/Z, and note that H® stabilizes A; by Lemma 7.2(b). Then

filzt]lc}gjgo...o(]t7 leMl@Mg@@Mt

Continue by taking wi = p1 + p2 + ... + py with p; € M;, and note that u; € Cy (P)
(1 < j < t). At least one of the summands p; must be nonzero, and we choose the
notation so that uy # 0 and Ay = {1,2, ... ,s}. Then uy € J1/Z, so u; = Zd with
d € J —Z and d' € Cr(P). Take

doo = d1d2 PN ds, €oo = €1€2 ... €Eg, Eoo = <doo;eoo>Z7

and note that Eo, = Cy, (P), so d' € Ex — Z. Suppose [d1, e1] = 2z, and choose elements
bj € P so that 1b; = j in the action on A;. Then z # 1 and [dj, ¢j] = [dy1,e1]% = 2% =2
(1 <j<s). Also P permutes A; transitively, so r 1 s. Hence

[doo,eoo] = [dl,el][dg,eg] N [ds,es} =2° 7é 1,

and therefore E,, is a nonabelian group of order 73, with E’ = Z(Es) = Z. Now
di® = diq, and €° = €4, (1 <17 < s), 50 ag centralizes Eo,. Also d’ is the ‘component’
of d in Ji, so the action of d on J; is the same as the action of d’, and therefore

CEOO(S) = CEOO((I) = CEm(aod) = CEoo(d> = CEDO(CZ/) = <d,>Z < Fy.

On the other hand P centralizes Fw,, so this contradicts Lemma 5.6(f). O
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