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1. Introduction

Throughout this Introduction, let H be a subgroup of a finite solvable group G, and 
let π = {p1, p2, . . . , pm} be a set of prime numbers. We use the notation of Doerk 
and Hawkes [5], and as in [3], we define Zπ to be the class of finite solvable groups H
such that Socπ H ≤ Z(H), and as before write Zp = Z{p}. These classes are Fitting 
classes, so that any finite solvable group possesses a conjugacy class of injectors for any 
given such class. In [3], we described inductive methods for constructing Zπ-injectors. In 
this work, we prove that these injectors are permutable. This means that for any such 
injector H there exists a Sylow basis Σ in G such that H permutes with every element 
of Σ, where a Sylow basis is a set of Sylow subgroups of G, with |Σ ∩ Sylp G| = 1 for 
each prime number p, such that all pairs of members of Σ permute with each other [5, 
I(4.7)]. Doerk and Hawkes characterize the property of permutability as the one that 
separates manageable from unmanageable Fitting classes [5, p. 615], making the often 
difficult determination of permutability of a Fitting class the key to obtaining a thorough 
analysis of its properties. We prove:

Theorem. If π is a set of prime numbers, and G is a finite solvable group, then the 
Zπ-injectors of G are system permutable in G.

Corollary. Let G = HK be a solvable semidirect product, with K � G and H ∩K = 1, 
and suppose U is an FpG-module (where p is a prime number, and Fp is the field of 
order p). Choose a Sylow p-subgroup P of H, and assume that p � |K|. Let SocFpG U

be the socle of U (generated by the minimal submodules). If CG(SocFpG U) = 1 and 
CG(CU (P )) = H, then there is a Sylow basis Σ of K, such that H normalizes each 
subgroup in Σ.

Proof. We can deduce the Corollary from the Theorem, using some of the results quoted 
in Section 2, as follows. Form the natural semidirect products

G0 = GU, H0 = HU, K0 = KU, P0 = PU.

Then U = CG0(SocFpG0 U), so U is the Zp-radical of G0 by Lemma 2.7(c). Also P0
is a Sylow p-subgroup of G0 and H0 = CG0(CU (P0)), so H0 is a Zp-injector of G0 by 
Lemma 2.7(f) (or [5, IX(4.19)]). Hence H0 is system permutable in G0 by the Theo-
rem, and it follows from Lemma 2.4(d) that H ∼= H0/U normalizes a Sylow basis Σ in 
K ∼= K0/U . �

The lay-out of the paper is as follows: In Section 2 we state some known results 
and prove results on a variety of topics for later use, and in Section 3 we quote some 
results about extraspecial groups [4]. We begin a general study of counterexamples to per-
mutability claims for injectors in Section 4, introducing the specific case of permutability 
of Zπ-injectors in Section 5.
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By the end of Section 5, we have established that the falsity of our Theorem would 
imply the existence of a prime p ∈ π and an elementary abelian p-group U on which a 
finite solvable group G = HK acts faithfully, where among the conditions that apply is 
that K complements H and is normal in G, and K acts irreducibly on U , while K has a 
normal subgroup K∞ such that H acts irreducibly on the quotient K/K∞. In Section 6, 
we establish that this K∞ acts homogeneously on U , and in Section 7, we exploit this 
situation to obtain more precise information about a potential counterexample to our 
claim. In Section 8, we obtain the contradiction required to complete our proof.

2. Quoted results

Remark. Lemmas 2.1, 2.2, 2.3, 2.4 and 2.5 will be used in Section 4.

Notation. If r is a prime number, and G is a finite group, let Sylr G be the set of Sylow 
r-subgroups of G, and write H pr G to mean that H is a pronormal subgroup of G [5, 
I(6.1)].

Lemma 2.1. Let G = HK be a finite solvable group, with H ≤ G and K � G.

(a) [2, Lemma 3(c)] If K = [K,H]K ′, then K = [K,H].
(b) [1, Lemma 6, Remark (ii)] Suppose H ∩ K = 1, and let r be a prime number. 

Choose S ∈ Sylr H, and put H∞ = Or(H) and R = Or(K). If H pr G, then 
CR(H∞) ≤ CR(S).

Proof. (a) This is proved in the given reference.
(b) Take M = CR(H∞) and note that HM is a semidirect product, with M � HM . 

Also H pr G, so H pr HM [5, I(6.3.a)], and hence M = CM (H) · [M, H] by the 
given reference. Now H∞ centralizes M by definition, while H = SH∞, and therefore 
M = CM (S) · [M, S]. Thus [M, S] = [CM (S)[M, S], S] = [M, S, S]. But S[M, S] is an 
r-group, so if [M, S] �= 1, then [M, S, S] < [M, S] [5, A(8.3.f)]. Hence [M, S] = 1. �
Notation. Let Σ be a Sylow basis in a finite solvable group G [5, I(4.7)], and suppose 
H ≤ G and N � G. Define Σ ∩H = {P ∩H : P ∈ Σ} and ΣN/N = {PN/N : P ∈ Σ}. 
If Σ ∩H is a Sylow basis in H, then Σ is said to reduce into H, and we write Σ ↘ H. If 
HP = PH for all subgroups P ∈ Σ, then H is called Σ-permutable.

Lemma 2.2. Suppose N � G and N ≤ H ≤ G, where G is a finite solvable group, and 
let Σ be a Sylow basis in G.

(a) [5, I(6.3.c)] Then H pr G if and only if H/N pr G/N .
(b) [5, I(4.17)] Also Σ ↘ H if and only if ΣN/N ↘ H/N .
(c) Moreover H is Σ-permutable if and only if H/N is ΣN/N -permutable.
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Proof. The statements (a) and (b) are proved in the given references.
(c) Suppose P ∈ Σ. If H permutes with P , then clearly H/N permutes with PN/N . 

Conversely if H/N permutes with PN/N , then there is a subgroup HP/N ≤ G/N , so 
there is a subgroup HP ≤ G. �
Lemma 2.3. Let Σ be a Sylow basis in a finite solvable group G.

(a) [5, I(3.2.c)] If K � G, then Σ ↘ K.
(b) (Lockett [5, I(4.22.b)]) Suppose H, K ≤ G with HK = KH, and P ∈ Σ. If Σ ↘ H

and Σ ↘ K, then Σ ↘ HK and P ∩HK = (P ∩H)(P ∩K).
(c) [5, I(5.4.b), (5.4.c) and (5.6)] Suppose r is a prime number, and take G∞ = Or(G), 

{R∞} = (Σ ∩G∞) ∩ Sylr G∞ and S0 = Or(NG(Σ)). Then {S0R∞} = Σ ∩ Sylr G.

Proof. The statements (a) and (b) are proved in the given references.
(c) Note first that G = NG(Σ)G∞ by the third reference, and NG(Σ) =

S0 × Or′(NG(Σ)) by the second reference. Moreover Or′(NG(Σ)) ≤ G∞, and hence 
G = S0G∞. Finally Σ ↘ S0 by the first reference, so we get the result. �
Definition. A subgroup H of a finite solvable group G is said to be system permutable
in G if there is a Sylow basis Σ in G such that H is Σ-permutable.

Lemma 2.4. Let Σ be a Sylow basis in a finite solvable group G.

(a) (Mann [5, I(6.6)]) Suppose H ≤ G. Then H pr G if and only if H satisfies the 
following condition:
(P) if Σ ↘ H and Σg ↘ H with g ∈ G, then g ∈ NG(H).

(b) [5, I(6.7)] Suppose H pr G with Σ ↘ H. If H is system permutable in G, then H is 
Σ-permutable.

(c) (Lockett [5, I(6.8)]) Suppose H pr G with Σ ↘ H. If NG(H) ≤ L ≤ G, then Σ ↘ L.
(d) Suppose G = HK and N = H ∩K, with H ≤ G and K, N � G, where H pr G and 

Σ ↘ H. Then H is system permutable in G if and only if H normalizes the Sylow 
basis (Σ ∩K)N/N in K/N .

Proof. The statements (a) and (b) are proved in the given references.
(c) By extending Σ ∩H, we can find a Sylow basis Σ1 in G such that Σ1 ↘ H and 

Σ1 ↘ L [5, I(4.16) and (4.18)]. Then Σ1 = Σg with g ∈ G [5, I(4.12)], and (a) implies 
that g ∈ NG(H) ≤ L. Hence Σ ↘ Lg−1 = L.

(d) By (b), H is system permutable if and only if H permutes with the sub-
groups P ∈ Σ. Using Lemma 2.3(a) and (b) we get Σ ↘ K, and P = P0P1 with 
P0 = P ∩ H and P1 = P ∩ K. If HP = PH, then H normalizes HP ∩ K =
HP1 ∩ K = (H ∩ K)P1 = NP1. Conversely if H ≤ NG(NP1), then there is a sub-
group HNP1 = HP0P1 = HP . �
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Notation. Let F be a Fitting set in a finite solvable group G [5, VIII(2.1)]. Then G has 
an F-radical [5, VIII(2.3.b)], and F-injectors [5, VIII(2.5) and (2.9)]. If H ≤ G, we write 
FH = {S : S ∈ F , S ≤ H}.

Lemma 2.5. Let N be the F-radical of a finite solvable group G, and choose an 
F-injector H in G (where F is a Fitting set in G).

(a) [5, VIII(2.11)] Suppose G = HK, with K � G and H ∩K = N . If N ≤ H1 � H, 
then H1 is an FH1K-injector in H1K.

(b) [5, VIII(2.13)] If H ≤ G1 ≤ G, then H is an FG1-injector in G1.
(c) Also N =

⋂
g∈G Hg.

(d) ([1, Lemmas 9 and 10], [2, Lemma 16]) If N < H, then there are subgroups K and L, 
with N < K � G and NG(H) ≤ L < G, such that LK = G and H ∩K = N . Also 
K = [K, H]N .

Proof. (a) The hypotheses imply that N = H1 ∩K is the unique FK -injector of K, and 
that H1 ∈ F , so this follows from the given reference.

(b) This too is proved in the given reference.
(c) If N0 =

⋂
g∈G Hg is the core of H in G, then N0 � G and N0 ≤ H. Thus N0 is a 

normal F-subgroup of G, and hence N0 ≤ N . Conversely it follows from the definition 
of an injector that H ∩N = N , so N ≤ H, and hence N ≤ N0.

(d) Since H > N , we can choose a subgroup X which is minimal among the normal 
subgroups of G such that H ∩X > N . Then we take

S = H ∩X, K = X ′N, L = NG(SK ′).

Now Lemma 9 in the first reference shows that H satisfies the following condition:

(Γ) if X ≤ G with X � HX, then (H ∩X)X ′ � NG(X).
This implies that the following condition also holds:

(C) SK/N = (H ∩X)X ′/N � NG(X)/N = G/N .

Working in the quotient group G/N , and applying Lemma 10 in the first reference, we 
deduce that the subgroups K and L have the required properties. �
Remark. Lemmas 2.6, 2.7 and 2.8 will be used in Section 5.

Notation. If A is an F -algebra (where F is a field), let J(A) be the (Jacobson) radical
of A [7, V(2.1)]. If U is a (right) A-module, let SocA U be the socle of U (generated by 
the minimal A-submodules of U). If further B ⊆ A, let AnnU B = {u ∈ U : uB = 0} be 
the annihilator in U of B.
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Lemma 2.6. Let U be an FG-module, where F is a field and G is a finite group. Suppose 
F1 is a finite extension of F , and put U1 = F1 ⊗ FU .

(a) [5, B(5.2)] If U0 is an F -subspace of U , then CG(F1 ⊗ FU0) = CG(U0).
(b) [7, V(11.9)] Also CU1(G) = F1 ⊗ FCU (G).
(c) [8, VII(1.3.a), (1.5.a) and (1.6.b)] Moreover

SocFG U = AnnU J(FG), SocF1G U1 = AnnU1(F1 ⊗ FJ(FG)).

(d) Suppose F0 is a subfield of F , and note that U can be regarded as an F0G-module. 
Then SocF0G U = SocFG U .

(e) [8, VII(1.8)] Also SocF1G U1 = F1 ⊗ F (SocFG U).

Proof. (a) If ξ ∈ F1, u0 ∈ U0 and g ∈ CG(U0), then (ξ⊗u0)g = ξ⊗ (u0g) = ξ⊗u0. Thus 
g ∈ CG(F1 ⊗ FU0), so CG(U0) ≤ CG(F1 ⊗ FU0). Conversely U0 = 1 ⊗ FU0 ⊆ F1 ⊗ FU0, 
and hence CG(U0) ≥ CG(F1 ⊗ FU0).

(b) If ξ ∈ F1, u ∈ CU (G) and g ∈ G, then (ξ ⊗ u)g = ξ ⊗ (ug) = ξ ⊗ u. Thus 
ξ ⊗ u ∈ CU1(G), so F1 ⊗ FCU (G) ≤ CU1(G). Conversely let {λ1, λ2, . . . , λn} be an 
F -basis of F1, and suppose u ∈ CU1(G), with u =

∑n
i=1 λi ⊗ ui and ui ∈ U (1 ≤ i ≤ n). 

If g ∈ G, then 
∑n

i=1 λi ⊗ ui = u = ug =
∑n

i=1 λi ⊗ (uig), and hence ui = uig. Thus 
ui ∈ CU (G) (1 ≤ i ≤ n), so u ∈ F1 ⊗ FCU (G).

(c) The last reference shows that SocFG U = AnnU J(FG). Using the first two refer-
ences, we get

F1G = F1 ⊗ FFG, J(F1G) = J(F1 ⊗ FFG) = F1 ⊗ FJ(FG),
SocF1G U1 = AnnU1 J(F1G) = AnnU1(F1 ⊗ FJ(FG)).

(d) By (c), it suffices to show that AnnU J(F0G) = AnnU J(FG); this can be done 
by copying the proof of (a), as follows. If u ∈ AnnU J(F0G), ξ ∈ F and a ∈ J(F0G), 
then u(ξ ⊗ a) = ξ ⊗ ua = 0. Thus u ∈ AnnU (F ⊗ F0J(F0G)) = AnnU J(FG), so 
AnnU J(F0G) ≤ AnnU J(FG). Conversely (c) implies that J(FG) = F ⊗F0 J(F0G), so 
J(F0G) = 1 ⊗ J(F0G) ⊆ J(FG), and hence AnnU J(F0G) ≥ AnnU J(FG).

(e) By (c), it suffices to show that AnnU1(F1 ⊗ FJ(FG)) = F1 ⊗ F AnnU J(FG); this 
can be done by copying the proof of (b), as follows. If ξ, η ∈ F1, u ∈ AnnU J(FG) and 
a ∈ J(FG), then (ξ ⊗ u)(η ⊗ a) = (ξη) ⊗ (ua) = 0. Thus ξ ⊗ u ∈ AnnU1(F1 ⊗ FJ(FG)), 
so F1 ⊗ F (AnnU J(FG)) ≤ AnnU1(F1 ⊗ FJ(FG)). Conversely let {λ1, λ2, . . . , λn} be 
an F -basis of F1, and suppose u =

∑n
i=1 λi ⊗ ui ∈ AnnU1(F1 ⊗ FJ(FG)), with ui ∈ U

(1 ≤ i ≤ n). If a ∈ J(FG), then 0 = u(1 ⊗ a) =
∑n

i=1(λi ⊗ ui)(1 ⊗ a) =
∑n

i=1 λi ⊗ (uia), 
and hence uia = 0 (1 ≤ i ≤ n). Thus ui ∈ AnnU J(FG), so u ∈ F1 ⊗ F AnnU J(FG). �
Notation. Let π = {p1, p2, . . . , pm} be a set of prime numbers, and consider a group 
U = U1 × U2 × . . . × Um. If each direct factor Ui is an elementary abelian pi-group, 
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then U will be called an elementary abelian π-group. If further U � G and H ≤ G, then 
each subgroup Ui can be regarded as an Fpi

H-module, and we define

SocπH U = SocFp1H
U1 × SocFp2H

U2 × . . . × SocFpmH Um.

Finally let Socπ G be the π-socle of G (generated by the minimal normal π-subgroups 
of G), and let Zπ be the class of finite solvable groups H such that Socπ H ≤ Z(H). If 
G is finite and solvable, then {H : H ∈ Zπ, H ≤ G} is a Fitting set in G [5, IX(2.9.a)].

Lemma 2.7. Let N be the Zπ-radical of a finite solvable group G (where π is a set of 
prime numbers). Put U = Socπ N , and suppose p ∈ π.

(a) [3, Lemma 1(a) and (d)] If N ≤ H ≤ G, then Socπ H = SocπH U .
(b) [5, IX(2.9.a.2)] Hence N = CG(Socπ G) = CG(SocπG U) = CG(U).
(c) Suppose U0 � G, where U0 is an elementary abelian π-group. If U0 = CG(SocπG U0), 

then U0 = U = N .
(d) [3, Lemma 2(a)] Suppose N ≤ H ≤ G with H ∈ Zπ. Choose P ∈ Sylp H, and put 

Up = Socp N . Then H ≤ CG(CUp
(P )).

(e) [3, Corollary 1] Assume that U is a p-group. Then N is the Zp-radical of G with 
U = Socp N . Moreover the Zπ-injectors of G are the same as the Zp-injectors of G.

(f) ([3, Lemmas 5(b) and 6(a), and Theorem 1], [5, IX(4.19)]) Assume that U is a 
p-group. Let Σ be a Sylow basis in G, take {P} = Σ ∩ Sylp G, and suppose H ≤ G. 
Then H is a Zπ-injector in G with Σ ↘ H if and only if H = CG(CU (P )).

(g) [3, Lemmas 8(b) and 9(b), and Theorem 3] Suppose H ≤ G. Then H is a Zπ-injector 
in G if and only if the following two conditions hold:
(i) H = CG(SocπH U);
(ii) p � |CG(Op′(SocπH U)) : H| (p ∈ π).

Proof. (a) The given references imply that Socπ H ≤ U , from which the result follows.
(b) From the given reference, together with (a), we get N = CG(Socπ G) =

CG(SocπG U) ≥ CG(U) ≥ N , because N ∈ Zπ.
(c) Clearly SocπG U0 ≤ Socπ G = SocπG U , so SocπG U ≤ CG(SocπG U0) = U0. 

It follows that SocπG U = SocπG U0, and using (b) we get N = CG(SocπG U) =
CG(SocπG U0) = U0.

(d) Note that H ∈ Zπ ⊆ Zp, so it follows from the given reference that CUp
(P ) =

Socp H ≤ Z(H).
(e) Using (a), we get Socπ G ≤ U , and hence Socπ G = Socp G. Then (b) implies that 

N = CG(Socπ G) = CG(Socp G) is the Zp-radical of G, with U = Socp N . To prove 
the last statement, let Hπ be a Zπ-injector in G. Then Hπ ∈ Zπ ⊆ Zp, and the given 
reference shows that G has a Zp-injector Hp such that Hπ ≤ Hp. As before it follows 
from (a) that Socπ Hp ≤ U , so Socπ Hp = Socp Hp ≤ Z(Hp). Thus Hp ∈ Zπ, while Hπ

is maximal Zπ-subgroup of G, and therefore Hπ = Hp.
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(f) First suppose H = CG(CU (P )). Then (e) shows that U = Socp N where N is the 
Zp-radical of G, and it follows from the first reference that H is a Zp-injector in G with 
Σ ↘ H. Finally (e) implies that H is also a Zπ-injector in G.

Conversely suppose H is a Zπ-injector in G with Σ ↘ H. Then (e) shows that H is 
also a Zp-injector in G, and Theorem 1 in the first reference implies that H contains a 
Sylow p-subgroup of G. Since Σ ↘ H, we get P ≤ H, and it follows from Lemma 5 in the 
first reference that H = 〈H, P 〉 ≤ CG(CU (P )) ∈ Zp. But H is a maximal Zp-subgroup 
of G, and therefore H = CG(CU (P )).

(g) As in the given reference put

KG
π (H) = CG(Socπ H),

and when N ≤ H ∈ Zπ define MG
π (H) as follows: for each prime number p ∈ π choose 

a subgroup S∗
p ∈ Sylp Kπ−p(H) such that S∗

p ∩H ∈ Sylp H, and take

H∗ = 〈H,S∗
p : p ∈ π〉, MG

π (H) = KG
π (H∗).

First suppose H is a Zπ-injector. Theorem 3 and Lemma 8(b) in the given reference 
imply that N ≤ H = MG

π (H), and that H satisfies the following conditions:

(K0) H = KG
π (H);

(Kp) p � |KG
π−p(H) : H| (p ∈ π).

But it follows from (a) that KG
π (H) = CG(SocπH U) and moreover KG

π−p(H) =
CG(Op′(SocπH U)), so (K0) and (Kp) are equivalent to (i) and (ii) respectively.

Conversely, suppose H satisfies (i) and (ii). It follows from (i) and (b) that H =
CG(SocπH U) ≥ CG(U) = N , and as before (i) and (ii) imply that (K0) and (Kp) both 
hold. Also H ∈ Zπ by (i) and (a), so Lemmas 8(b) and 9(b) in the given reference show 
that H = MG

π (H), and that H is a Zπ-injector. �
Notation. Write Cn for the cyclic group of order n (where n is a natural number), and 
Q8 for the quaternion group of order 8.

Example. Using the notation of Lemma 2.7 with π = {3}, there is a group G such that 
CU (P ) > CSoc3 G(P ) < Soc3 G < U .

Proof. Take 〈α, β0〉 = SL2(3), with

α =
(

1
−1 −1

)
, β0 =

(
1

−1

)
, βi = βαi

0 ,

〈α〉 ∼ C , 〈β , β , β 〉 ∼ Q .
= 3 0 1 2 = 8
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Next let ι be the 2 × 2 identity matrix, and take H = 〈a, b0〉 ≤ SL6(3), with

a =

⎛
⎝ ι

ι 0
0 ι

⎞
⎠ , b0 =

⎛
⎝β0

β1
β2

⎞
⎠ , bi = ba

i

0 ,

〈a〉 ∼= C3, 〈b0, b1, b2〉 ∼= Q8, H ∼= SL2(3).

Let U0 be the 2-dimensional vector space over F3 on which SL2(3) acts, so that H acts 
on the space U = U0 ⊕U0 ⊕U0. Form the natural semidirect product G = HU and take 
P = 〈a〉U ∈ Syl3 G. Then Soc3 G = {(u, uα, uα2) : u ∈ U0}, and U = CG(Soc3 G) is the 
Z3-radical of G. Moreover CU (P ) = {(u, u, u) : u ∈ U0}, and CSoc3 G(P ) = {(u, u, u) :
u ∈ F3(1, −1)}. �
Lemma 2.8. [8, VII(9.19)] Let U be an irreducible FG-module, where G is a finite group, 
and F is a finite field of characteristic p (and p is a prime number). If K = Op(G) and 
U is FK-homogeneous [5, B(3.4)], then U is FK-irreducible. �
Remark. In Sections 6 and 7 we consider a minimal counterexample, which involves an 
FG-module U , where G is a finite group with a normal subgroup K∞, and F is a splitting 
field for all the subgroups of G. Using a well known strategy [10, Theorems 3.5, 4.4, 7.3 
and 8.4], we first (in Section 6) obtain a contradiction when U is FK∞-inhomogeneous; 
the proof uses Lemma 2.9. We can then (in Section 7) apply Lemmas 2.11 and 2.12 to 
find a normal extraspecial subgroup R � G; the proof also uses Lemmas 2.9 and 2.10. 
Finally (in Section 8) we will use the information about extraspecial groups in Section 3
to complete the proof of the Theorem.

Lemma 2.9. (Glauberman [9, (13.8)]) Let H = SP be a finite semidirect product, with 
P � H, where |S| and |P | are coprime, and suppose H permutes a finite set Ω. If P
permutes Ω transitively, then S fixes at least one element of Ω. �
Lemma 2.10. [6, (3.7.1)] Let U be an irreducible FG-module, where G is a finite group, 
and F is a splitting field for all the subgroups of G. If G = G1×G2 is a direct product, then 
U = U1 ⊗ FU2 is a tensor product, where Ui is an irreducible FGi-module (i = 1, 2). �
Lemma 2.11. Let U be a module which is G-faithful and FG-irreducible, where F is a 
field and G is a finite group. Suppose A is an abelian subgroup of G, and assume that U
is FA-homogeneous.

(a) [5, B(9.3.b)] Then A is cyclic.
(b) [5, B(9.2.ii)] If F is a splitting field for A, then A ≤ Z(G).
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Proof. (a) This follows from the given reference.
(b) The given reference implies that A is represented by scalar matrices, from which 

the result follows. �
Lemma 2.12. Let P be a finite p-group (where p is a prime number).

(a) [7, III(7.6), I(14.9) and Aufgabe 56, page 94] Assume that every normal abelian 
subgroup A ≤ P is cyclic. Then P satisfies one of the following conclusions:

(i) P ∼= Cpn , with |AutP | = (p − 1)pn−1;
(ii) p = 2 and P ∼= Q8, with |AutP | = 233;
(iii) p = 2 and |P | = 2n with n ≥ 4, where P is a generalized quaternion or dihedral 

or quasidihedral group, and

|AutP | =
{

22n−3 when P is a generalized quaternion or dihedral group,
22n−4 when P is a quasidihedral group.

(b) (P. Hall [7, III(13.10)]) Assume that every characteristic abelian subgroup A ≤ P is 
cyclic with A ≤ Z(P ). Then P = P0◦P1 is a central product, where P0 is extraspecial 
(or P0 ∼= Cp), and P1 is cyclic.

Proof. (a) Note that if n ≥ 3 and P = 〈a, b〉, with defining relations a2 = b2
n−1 = 1

and ba = b2
n−2+1, then 〈a, b2〉 is a noncyclic normal abelian subgroup of P . Hence 

the references imply that if P is neither cyclic nor isomorphic to Q8, then p = 2 and 
P = 〈a, b〉 is a generalized quaternion or dihedral or quasidihedral group, where 〈b〉 is a 
characteristic subgroup of index 2 in P . Then the elements φ ∈ AutP are obtained by 
choosing bφ ∈ 〈b〉 and aφ ∈ P − 〈b〉 such that 〈bφ〉 = 〈b〉 and 〈aφ〉 ∼= 〈a〉.

(b) The given reference shows that if P1 is not cyclic, then p = 2 and |P1| = 2n with 
n ≥ 4, where P1 is a generalized quaternion or dihedral or quasidihedral group. Then 
P ′ = P ′

1
∼= C2n−2 and Z(P ) = Z(P1) ∼= C2, so P ′ is a characteristic abelian subgroup 

of P with P ′ � Z(P ). �
3. Extraspecially irreducible groups

Remark. In this Section, we quote without proof some results about extraspecial 
groups [4], which will be used in Section 8.

Notation. If n is a natural number, let Zn = Z/nZ be the additive group of integers 
modulo n. If also r is a prime number, let Frn be the Galois field of order rn, and write 
F+

rn and F×
rn for the additive and multiplicative groups of Frn respectively. Then F+

rn is 
elementary abelian of order rn, and F×

rn
∼= Crn−1.
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Lemma 3.1. [4, Lemma 1.1]

(a) [5, B(9.3.b) and (9.8.c)] Let W be a module which is C-faithful and FrC-irreducible, 
where C is a finite abelian group (and r is a prime number). Then C = 〈c〉 ∼= Cn is 
cyclic with r � n, and dimFr

W = k where k is the order of r modulo n.
(b) [5, B(9.8.b)] More explicitly, assuming the hypotheses and conclusions of (a), there 

exist an Fr-isomorphism θ : W → F+
rk

, and an element γ which is a primitive n-th 
root of 1 in F×

rk
, such that (ξc)θ = γξθ (ξ ∈ W ). Thus C permutes the set W − 0

semiregularly. �
Definition.

(a) Let X be a (right) FG-module, where F is a field and G is a group. Then the dual 
FG-module is the vector space X∗ = HomF (X, F ), with ξ(λg) = (ξg−1)λ (ξ ∈ X, 
λ ∈ X∗, g ∈ G).

(b) Let Q be a finite group which acts on an extraspecial r-group R (where r is a prime 
number), and take Z = Z(R) = R′ ∼= Cr. Then R will be called extraspecially 
Q-irreducible if it satisfies the following conditions:
(i) [R, Q] = R;
(ii) [Z, Q] = 1;
(iii) there is no extraspecial subgroup R0 such that Z < R0 < R and R0 � QR.

Lemma 3.2. ([1, Lemma 14], [4, Lemma 1.3]) Let Q be a finite r′-group which acts on an 
extraspecial r-group R (where r is a prime number). Take Z = 〈z〉 = Z(R) = R′ ∼= Cr, 
and form the FrQ-module W = R/Z. Suppose [R, Q] = R and [Z, Q] = 1.

(a) Then R can be written as a central product R = R1 ◦R2 ◦ . . . ◦Rn of extraspecially 
Q-irreducible groups Ri, with R′

i = Ri ∩Rj = Z and [Ri, Rj ] = 1 when i �= j.
(b) If R is extraspecially Q-irreducible, then W satisfies one of the following conclusions:

(i) W is FrQ-irreducible, and if r �= 2 then Rr = 1;
(ii) W = X1 ⊕ X2 where X1 and X2 are FrQ-irreducible, with X1 = X∗

2 , and 
if Di/Z = Xi then D′

i = Dr
i = 1 (i = 1, 2). Moreover if di ∈ Di, with 

Zd1 = λ ∈ X∗
2 and Zd2 = ξ ∈ X2, then the notation can be chosen so that 

[d2, d1] = zξλ. �
Definition.

(a) Suppose n is an even number, and consider the group C∞ = 〈c0, c1〉 with defining 
relations c40 = cn1 = 1, c20 = c

n/2
1 and cc01 = c−1

1 . Then C∞ will be called a quasi-
quaternion group. Put C1 = 〈c1〉, and note that 〈c0〉 ∼= C4, C1 ∼= Cn, C1 � C∞ and 
|C∞| = 2n. If further n = n0n1 where n0 is a power of 2 and 2 � n1, then 〈c0〉Cn1

1 is 
a (generalized) quaternion group of order 2n0 (or cyclic of order 4 when n0 = 2) and 
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Cn0
1

∼= Cn1 , with 〈c0〉Cn1
1 ·Cn0

1 = C∞ and 〈c0〉Cn1
1 ∩Cn0

1 = 1. Moreover the element 
y = c20 = c

n/2
1 is the unique involution in C∞ [7, III(8.2.b)].

(b) Suppose r is an odd prime number, and k is an even number, and consider the 

group B∞ = 〈b0, c1〉 with defining relations b2k0 = cr
k/2+1

1 = 1, bk0 = c
(rk/2+1)/2
1 and 

cb01 = cr1. Then B∞ will be called a hyperquaternion group. Put B = 〈b0〉 ∼= C2k

and C1 = 〈c1〉 ∼= Crk/2+1, and note that cb
k/2
0

1 = cr
k/2

1 = c−1
1 , so C∞ = 〈bk/20 , c1〉

is a quasiquaternion group. If 2 � k/2 then B = B4 × Bk/2, so B∞ = B4C∞ with 
B4∩C∞ = 1. On the other hand, if 2 | k/2 then rk/2 ≡ 1 modulo 4, so 2 � (rk/2+1)/2
and C1 = C

(rk/2+1)/2
1 × C2

1 , and therefore B∞ = BC2
1 with B ∩ C2

1 = 1. In both 

cases, the element y = bk0 = c
(rk/2+1)/2
1 is the unique involution in B∞.

Lemma 3.3. [4, Lemma 2.1] Suppose r is an odd prime number, and k is a natural 
number. Then there is a group BC∞R with C∞ � BC∞, R � BC∞R, and B ∩ C∞ =
BC∞ ∩R = 1, where C∞ = 〈c0, c1〉 is a quasiquaternion group of order 2(rk − 1), and

B = 〈b〉 ∼= Ck, 〈c0〉 ∼= C4, C1 = 〈c1〉 ∼= Crk−1,

c20 = c
(rk−1)/2
1 , cb0 = c0, cb1 = cr1, cc01 = c−1

1 .

Also R = D1D2 is an extraspecial r-group with Z = Z(R) = R′ = D1 ∩ D2 ∼= Cr, 
Rr = D′

i = 1 and |Di| = rk+1 (i = 1, 2). Moreover if W = R/Z and Xi = Di/Z are 
regarded as additive abelian groups, then X1 and X2 are modules which are BC∞-faithful 
and FrC1-irreducible, and

Xib = Xic1 = Xi, Xic0 = X3−i(i = 1, 2), Z = Z(BC∞R). �
Lemma 3.4. [4, Lemma 2.2] Suppose k is a natural number. Then there is a group BC∞R

with C∞ � BC∞, R � BC∞R, and B ∩ C∞ = BC∞ ∩R = 1, where C∞ = 〈c0, c1〉 is a 
dihedral group of order 2(2k − 1), and

B = 〈b〉 ∼= Ck, 〈c0〉 ∼= C2, C1 = 〈c1〉 ∼= C2k−1,

cb0 = c0, cb1 = c21, cc01 = c−1
1 .

Also R = D1D2 is an extraspecial 2-group with Z = Z(R) = R′ = D1 ∩ D2 ∼= C2, 
D2

i = D′
i = 1, |Di| = 2k+1 (i = 1, 2). Moreover if W = R/Z and Xi = Di/Z are regarded 

as additive abelian groups, then X1 and X2 are BC∞-faithful and FrC1-irreducible, and

Xib = Xic1 = Xi, Xic0 = X3−i (i = 1, 2), Z = Z(BC∞R). �
Lemma 3.5. [4, Lemma 2.3] Suppose r is an odd prime number, and k is an even number. 
Then there is a group B∞R with R � B∞R and B∞ ∩R = 1, where B∞ = 〈b0, c1〉 is a
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hyperquaternion group of order k(rk/2 + 1), with

B = 〈b0〉 ∼= C2k, C1 = 〈c1〉 ∼= Crk/2+1, bk0 = c
(rk/2+1)/2
1 , cb01 = cr1.

Also R is an extraspecial r-group with Z = Z(R) = R′ ∼= Cr, Rr = 1 and |R| = rk+1. 
Moreover if W = R/Z is regarded as an additive abelian group, then W is a module 
which is B∞-faithful and FrC1-irreducible, and

Z = Z(B∞R). �
Lemma 3.6. [4, Lemma 2.4] Let k be an even number. Then there is a group BC1R with 
C1 � BC1, R � BC1R and B ∩ C1 = BC1 ∩R = 1, with |BC1| = k(2k/2 + 1), where

B = 〈b〉 ∼= Ck, C1 = 〈c1〉 ∼= C2k/2+1, cb1 = c21.

Also R is an extraspecial 2-group with Z = Z(R) = R′ ∼= C2 and |R| = 2k+1. Moreover 
if W = R/Z is regarded as an additive abelian group, then W is a module which is 
BC1-faithful and F2C1-irreducible, and

Z = Z(BC1R). �
Lemma 3.7. [4, Lemma 3.2] Suppose q and r are distinct prime numbers, and let k be the 
order of r modulo q. Suppose CR is a group with R � CR and C∩R = 1, where C ∼= Cq

and R is a C-faithful extraspecial r-group. Put Z = Z(R) = R′ ∼= Cr, and assume that 
R is extraspecially C-irreducible, with [R, C] = R and [Z, C] = 1. Put Γ = Aut(CR), 
Θ = CΓ(Z), Ψ = NΘ(C), and suppose 2 � k.

(a) The group CR is unique (up to isomorphism), and R is of type (ii) in Lemma 3.2(b) 
with |R| = r2k+1.

(b) If r �= 2, then BC∞ ≤ Ψ, where BC∞R is the group constructed in Lemma 3.3.
(c) If r = 2, then BC∞ ≤ Ψ, where BC∞R is the group constructed in Lemma 3.4. �
Lemma 3.8. [4, Lemma 3.4] Suppose q and r are distinct prime numbers, and let k be the 
order of r modulo q. Suppose CR is a group with R � CR and C∩R = 1, where C ∼= Cq, 
and R is a C-faithful extraspecial r-group. Put Z = Z(R) = R′ ∼= Cr, and assume that 
R is extraspecially C-irreducible, with [R, C] = R and [Z, C] = 1. Put Γ = Aut(CR), 
Θ = CΓ(Z), Ψ = NΘ(C), and suppose 2 | k.

(a) The group CR is unique (up to isomorphism), and R is of type (i) in Lemma 3.2(b) 
with |R| = rk+1.

(b) If r �= 2, then B∞ ≤ Ψ, where B∞R is the group constructed in Lemma 3.5.
(c) If r = 2, then BC1 ≤ Ψ, where BC1R is the group constructed in Lemma 3.6. �
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Remark. With the hypotheses of Lemmas 3.7 and 3.8, first suppose r �= 2. If 2 � k, then 
it follows from Lemmas 3.7(a) and 3.2(b,ii) that Rr = 1, so R is a central product of 
k nonabelian groups of order r3 and exponent r. Similarly if 2 | k, then Lemmas 3.8(a) 
and 3.2(b.i) show that Rr = 1, so R is a central product of k/2 nonabelian groups of 
order r3 and exponent r.

Next suppose r = 2. If 2 � k, then it follows from Lemmas 3.7(b) and 3.2(b.ii) that 
R is a central product of k dihedral groups of order 8. Finally suppose 2 | k, and put 
Z = Z(R) = R′, W = R/Z and Δ = AutR, Λ = CΔ(Z), Ω = CΛ(W ). Then q � 2k/2 − 1
but q | 2k−1 = (2k/2−1)(2k/2+1), so q | 2k/2+1, and as in the proof of [4, Lemma 3.4(c)]
we get

|Λ| = 2k2(k/2)2−(k/2)+1(22 − 1)(24 − 1) . . . (2k−2 − 1)(2k/2 + 1),

so Λ/Ω = O−
k (2). This implies that R is a central product of (k/2) − 1 dihedral groups 

of order 8 with a single quaternion group [11, Theorem 1(c)].

Hypothesis A. Suppose q and r are distinct prime numbers, and let k be the order of r
modulo q. Take CR as in Lemma 3.7 if 2 � k, and as in Lemma 3.8 if 2 | k, and put

Z = Z(CR) = R′ ∼= Cr, W = R/Z,

Γ = Aut(CR), Θ = CΓ(Z), Ψ = NΘ(C).

Lemma 3.9. [4, Lemma 4.2] Assume Hypothesis A, and suppose q = 2. Then k = 1, 
|R| = r3 and W = X1 ⊕X2, where the modules X1 and X2 are FrC-isomorphic to each 
other. Moreover Ψ = SL2(r). �
Lemma 3.10. [4, Lemma 4.3] Assume Hypothesis A, and suppose 2 � k.

(a) If q �= 2 and r �= 2, then Ψ = BC∞ as in Lemma 3.3.
(b) If r = 2, then Ψ = BC∞ as in Lemma 3.4. �
Lemma 3.11. [4, Lemma 4.4] Assume Hypothesis A, and suppose 2 | k.

(a) If r �= 2, then Ψ = B∞ as in Lemma 3.5.
(b) If r = 2, then Ψ = BC1 as in Lemma 3.6. �
Lemma 3.12. [4, Lemma 5.2] Suppose r is an odd prime number, and k is a natural 
number, and let BC∞R be the group described in Lemma 3.3, with R = D1D2 and 
Xi = Di/R

′ (i = 1, 2).

(a) If L ≤ BC∞ and CX1(L) �= 0, then there is an element c ∈ C1 such that L ≤ Bc.
(b) There are elements d0, d1, . . . , dk−1 ∈ D1 and e0, e1, . . . , ek−1 ∈ D2 such that R

can be written as a central product R = E0 ◦E1 ◦ . . . ◦Ek−1, with |Ei| = r3, Er
i = 1, 
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E′
i = Z and [Ei, Ej ] = 1 when i �= j, where Ei = 〈di, ei〉 and dbi = di+1, ebi = ei+1

(i ∈ Zk). �
Lemma 3.13. [4, Lemma 5.3] Suppose k is a natural number, and let BC∞R be the group 
described in Lemma 3.4, with R = D1D2 and Xi = Di/R

′ (i = 1, 2).

(a) If L ≤ BC∞ and CX1(L) �= 0, then there is an element c ∈ C1 such that L ≤ Bc.
(b) There are elements d0, d1, . . . , dk−1 ∈ D1 and e0, e1, . . . , ek−1 ∈ D2 such that R

can be written as a central product R = E0◦E1◦ . . . ◦Ek−1, with Ei = 〈di, ei〉 ∼= D8, 
[Ei, Ej ] = 1 when i �= j, and dbi = di+1, ebi = ei+1 (i ∈ Zk). �

Lemma 3.14. [4, Lemma 5.4] Suppose r is an odd prime number, and k = k0k1 is an 
even number, where k0 is a power of 2 and 2 � k1. Let B∞R be the group described in 
Lemma 3.5.

(a) There are subgroups D1, D2 ≤ R with D1D2 = R, D1 ∩ D2 = Z, D′
i = Dr

i = 1
and |Di| = r(k/2)+1. Moreover if W = R/Z and Xi = Di/Z are regarded as additive 
abelian groups, then W = X1 ⊕X2 and Xib

2k0 = Xi (i = 1, 2).
(b) If L ≤ B∞ and CW (L) �= 0, then there is an element c ∈ C1 such that L ≤ (B2k0)c.
(c) There are elements d0, d1, . . . , d(k/2)−1 ∈ D1 and e0, e1, . . . , e(k/2)−1 ∈ D2 such 

that R can be written as a central product R = E0◦E1◦ . . . ◦E(k/2)−1, with |Ei| = r3, 
Er

i = 1, E′
i = Z and [Ei, Ej ] = 1 when i �= j, where Ei = 〈di, ei〉 and db

2k0
i = di+2k0 , 

eb
2k0

i = ei+2k0 (i ∈ Zk/2). �
Lemma 3.15. [4, Lemma 5.5] Suppose k = k0k1 is an even number, where k0 is a power 
of 2 and 2 � k1. Let BC1R be the group described in Lemma 3.6.

(a) There are subgroups D1, D2 ≤ R with D1D2 = R, D1 ∩ D2 = Z, D′
i = 1 and 

|Di| = 2(k/2)+1. Moreover if W = R/Z and Xi = Di/Z are regarded as additive 
abelian groups, then W = X1 ⊕X2 and Xib

k0 = Xi (i = 1, 2).
(b) If P ≤ L ≤ BC1 with 2 � |P | and CW (P ) = CW (L) �= 0, then there is an element 

c ∈ C1 such that L ≤ (Bk0)c.
(c) There are elements d0, d1, . . . , d(k/2)−1 ∈ D1 and e0, e1, . . . , e(k/2)−1 ∈ D2 such 

that R can be written as a central product R = E0◦E1◦ . . . ◦E(k/2)−1, with |Ei| = 23, 
E2

i ≤ E′
i = Z and [Ei, Ej ] = 1 when i �= j, where Ei = 〈di, ei〉 and db

k0
i = di+k0 , 

eb
k0

i = ei+k0 (i ∈ Zk/2). �
4. Minimal groups with an injector which is not system permutable

Remark. In this section, we use Lemmas 2.1, 2.2, 2.3, 2.4 and 2.5, and we assume the 
following hypothesis.
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Hypothesis B. Let N be the F-radical of a finite solvable group G0, and suppose H0 is 
an F-injector in G0 (where F is a Fitting set in G0) [5, VIII(2.1), (2.3.b) and (2.5)]. 
Assume that H0 is not system permutable in G0, but that whenever N ≤ G1 < G0, the 
FG1 -injectors of G1 are system permutable in G1. Applying Lemma 2.5(d), take sub-
groups K0 and L0, with N < K0 � G0 and NG0(H0) ≤ L0 < G0, such that L0K0 = G0
and H0 ∩ K0 = N . Finally choose a Sylow basis Σ0 in G0 such that Σ0 ↘ H0 and 
Σ0 ↘ L0 [5, I(4.16) and (4.18)].

Lemma 4.1. Take G0, H0, K0, N and Σ0 as in Hypothesis B.

(a) Then G0 = H0K0, with K0 = [K0, H0]N and H0 � NG0((Σ0 ∩K0)N/N).
(b) If N ≤ H1 < H0 with H1 � H0, then H1 ≤ NG0((Σ0 ∩K0)N/N).
(c) If N ≤ K1 < K0 with K1 � H0K1 and Σ0 ↘ K1, then

H0 ≤ NG0((Σ0 ∩K1)N/N).

Proof. (a) Suppose H0K0 < G0; we must show that this is impossible, and it suffices 
to prove that H0 is Σ0-permutable. Note that Σ0 ↘ K0 by Lemma 2.3(a), and hence 
Σ0 ↘ H0K0 by Lemma 2.3(b). Consider a subgroup P ∈ Σ0 ∩ SylG0; we must show 
that H0 permutes with P . If P0 = P ∩ L0 and P1 = P ∩ H0K0, then it follows from 
Lemma 2.4(b) that H0 permutes with P0 and P1, so H0 also permutes with P0P1. But 
L0 · H0K0 = G0, so P0P1 = P by Lemma 2.3(b), which completes the proof that 
G0 = H0K0. Finally K0 = [K0, H0]N by Lemma 2.5(d), and H0 � NG0((Σ0 ∩K0)N/N)
by Lemma 2.4(d).

(b) Note that H1 is an FH1K0-injector of H1K0 by Lemma 2.5(a), so H1 is system 
permutable in H1K0 by Hypothesis B. Moreover Σ1 = Σ0 ∩ H1K0 is a Sylow basis in 
H1K0 with Σ1 ↘ H1, so the result follows from Lemma 2.4(d).

(c) Note that H0 is an FH0K1 -injector of H0K1 by Lemma 2.5(b), so H0 is system 
permutable in H0K1 by Hypothesis B. Moreover Σ1 = Σ0 ∩ H0K1 is a Sylow basis in 
H0K1 with Σ1 ↘ H0, so again the result follows from Lemma 2.4(d). �
Lemma 4.2.

(a) There is a prime number r such that H0 = SH∞ and H∞ � H0, where S is a 
cyclic r-group with Σ0 ↘ S, and N ≤ H∞ < H0. Also H∞ = [H∞, S]N , and 
H∞ ≤ NG0((Σ0 ∩K0)N/N).

(b) There is a prime number q such that K0 = QK ′
0N , where Q is a q-group with 

{Q} = (Σ0 ∩K0) ∩ Sylq K0, and the module K0/K
′
0N is ZH0-indecomposable.

(c) Hence the module V = K0/K
q
0K

′
0N is FqH0-indecomposable. Moreover K0 = QK∞

with K∞ � G0, where Kq
0K

′
0N ≤ K∞ < K0 and the module K0/K∞ is 

FqH0-irreducible. Also H0 ≤ NG0((Σ0 ∩K∞)N/N).
(d) If N ≤ K1 ≤ K0 and K1 � K∞, with K1 � H0K1 and Σ0 ↘ K1, then K1 = K0.
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Proof. (a) Suppose H1/N and H2/N are distinct maximal normal subgroups of H0/N . 
Then Lemma 4.1(b) shows that H1 and H2 both normalize (Σ0 ∩ K0)N/N , and 
hence H0 = H1H2 ≤ NG0((Σ0 ∩ K0)N/N). Because of Lemma 2.4(d), this contra-
dicts Hypothesis B, and implies that H0/N has a unique maximal normal subgroup. 
Put H∞ = γ∞(H0)N , where γ∞(H0) is the nilpotent residual of H0 [5, II(2.3)], and 
note that N ≤ H∞ < H0 with H∞ � G0, and that H0/H∞ is nilpotent. Hence 
H0/H∞ is cyclic of prime power order. Since Σ0 ↘ H0, it follows that there is a 
prime number r and a cyclic r-group S such that Σ0 ↘ S and H0 = SH∞. Moreover 
H∞ = [H∞, H0]N = [H∞, SH∞]N = [H∞, S]H ′

∞N , and therefore H∞ = [H∞, S]N by 
Lemma 2.1(a). Finally H∞ ≤ NG0((Σ0 ∩K0)N/N) by Lemma 4.1(b).

(b) Suppose K1 and K2 are distinct maximal members of the set

Λ = {L : N ≤ L < K0, L � G0}.

Then Lemma 4.1(c) shows that H0 ≤ NG0((Σ0 ∩ Ki)N/N) (i = 1, 2), and hence H0

also normalizes (Σ0 ∩ K1K2)N/N = (Σ0 ∩ K0)N/N by Lemma 2.3(b). This contra-
dicts Lemma 4.1(a), and proves that Λ has a unique maximal member, say K∞. Now 
K ′

0N ∈ Λ and K0/K
′
0N is abelian, so there is a prime number q such that K0/K

′
0N is 

a ZH0-indecomposable q-group, which gives the result.
(c) The first two sentences follow from (b), while the last containment is a consequence 

of Lemma 4.1(c).
(d) Suppose K1 < K0; we must show that this is impossible. Lemma 4.1(c) implies 

that H0 ≤ NG0((Σ0 ∩K1)N/N), while H0 ≤ NG0((Σ0 ∩K∞)N/N) by (c). As before it 
follows that H0 also normalizes (Σ0 ∩K1K∞)N/N = (Σ0 ∩K0)N/N , which contradicts 
Lemma 4.1(a). �
Lemma 4.3. Choose S, H∞ and Q, K∞ as in Lemma 4.2, and take Q∞ = Q ∩K∞ and 
{R} = (Σ0 ∩K0) ∩ Sylr K0.

(a) Then K0 = QRN , so K0/N is a {q, r}-group. Hence q �= r, and N < RN < K0.
(b) Also K∞/N = (Q∞N/N) × (RN/N), so Q∞N � G0 and RN � G0. Hence 

H0 � NG0(QN) and Kq
0K

′
0N = QqQ′RN .

(c) Moreover 〈H0, Q〉 = G0.
(d) Hence CH0(K0/RN) = N .
(e) Also [R, Q]N = RN .

Proof. (a) Take {Q0} = Σ0 ∩ Sylq G0 and {R0} = Σ0 ∩ Sylr G0, and put K1 = QRN . 
Then Q0R0 is a Hall {q, r}-subgroup of G0 with QR = Q0R0 ∩ K0. Since S ≤ R0, it 
follows that S ≤ NG0(QR) ≤ NG0(QRN). Moreover Lemma 4.2(a) shows that H∞ ≤
NG0((Σ0 ∩K0)N/N) ≤ NG0(QRN), and hence H0 = SH∞ ≤ NG0(QRN) = NG0(K1), 
so K1 � H0K1. It is also clear that K1 � K∞ and Σ0 ↘ K1, so K0 = K1 = QRN by 
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Lemma 4.2(d). Finally the fact that H0 � NG0((Σ0 ∩K0)N/N) implies that q �= r and 
N < RN < K0.

(b) Suppose T = Q∞ or R, so T ∈ Σ0 ∩ K∞, and put K1 = NK0(TN). Then 
K0 = K1K∞ by Frattini’s argument [7, I(7.8)], so K1 � K∞. Using Lemma 4.2(c) 
we get H0 ≤ NG0((Σ0 ∩ K∞)N/N) ≤ NG0(TN), and hence K1 � H0K1. Moreover 
T pr K0 and Σ0 ↘ T , with NK0(T ) ≤ K1, so Σ0 ↘ K1 by Lemma 2.4(c). It now 
follows from Lemma 4.2(d) that K1 = K0, so TN � K0. Thus K0 normalizes Q∞N

and RN , which proves that K∞/N = (Q∞N/N) × (RN/N). Therefore H0 ≤ NG0(RN), 
whereas H0 � NG0((Σ0 ∩ K0)N/N) by Lemma 4.1(a), and hence H0 � NG0(QN). 
Finally RN � G0, so Kq

0K
′
0N = QqQ′RN .

(c) Put G1 = 〈H0, Q〉 and K1 = G1 ∩ K0, and note that K1 � G1 = H0K1. Also 
K1 = K1 ∩ QRN = QN(K1 ∩ R), which implies that K1 � K∞ and Σ0 ↘ K1. Thus 
K1 = K0 by Lemma 4.2(d), so G1 = H0K0 = G0.

(d) Put H1 = CH0(K0/RN) and G1 = NG0(H1), and note that H0 ≤ G1. Also 
K0 = [K0, H0]N by Lemma 4.1(a), so H1 < H0, and it follows from Lemma 4.1(b) that 
H1 ≤ NG0((Σ0∩K0)N/N) ≤ NG0(QN). Hence [H1, Q] ≤ QN ∩ [H1, K0] ≤ QN ∩RN =
N ≤ H1, so Q ≤ G1. Thus G1 ≥ 〈H0, Q〉 = G0 by (c), so H1 � G0. Finally N ≤ H1 ≤⋂

g∈G0
Hg

0 = N by Lemma 2.5(c).
(e) Put K1 = Q[R, Q]N = 〈QK0〉N , and note that K1/N = Oq′(K0/N), so K1 � G0. 

Now H0Q[R, Q]N ≥ 〈H0, Q〉 = G0 by (d), and hence [R, Q]N/N ∈ Sylr(K0/N), so 
[R, Q]N = RN . �
Lemma 4.4. Take S, H∞ and R as in Lemma 4.3.

(a) Then CRN/N (H∞) ≤ CRN/N (S).
(b) Also S = 〈a〉 can be chosen so that a = a0d, where a0 ∈ Or(NG0(Σ0)) and d ∈ R.

Proof. (a) Note that H0 ∩ K0 = N , H∞/N = Or(H0/N) and RN/N = Or(K0/N). 
Also H0 pr G0 (because H0 is an injector), so H0/N pr G0/N by Lemma 2.2(c). Taking 
{S1} = (Σ0 ∩H0) ∩ Sylr H0, and applying Lemma 2.1(b) in the group G0/N , we deduce 
that CRN/N (H∞) ≤ CRN/N (S1) ≤ CRN/N (S).

(b) Take {S∞} = (Σ0 ∩ H∞) ∩ Sylr H∞, R∞ = S∞R and S0 = Or(NG0(Σ0)). 
Then {R∞} = (Σ0 ∩H∞K0) ∩ Sylr(H∞K0) and H∞K0 = Or(G0), and it follows from 
Lemma 2.3(c) that {S0R∞} = Σ0∩Sylr G0. Hence S ≤ S0R∞ = S0RS∞, so a = a0da∞, 
where a0 ∈ S0, d ∈ R and a∞ ∈ S∞. Thus aa−1

∞ = a0d, and H0 = 〈aa−1
∞ 〉H∞, so we get 

the result by replacing S by 〈aa−1
∞ 〉. �

5. Minimal groups with a Zπ-injector which is not system permutable

Remark. In this section we use Lemmas 2.6, 2.7 and 2.8.
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Lemma 5.1. Let U be an irreducible FG-module, where F is a finite field, and G is a 
finite group. Suppose G = HK with K � G and H ∩K = 1, and H = SP with P � H

and S∩P = 1, where P is a p-group and S is an r-group (and p and r are distinct prime 
numbers). Assume that CU (P ) ≤ CU (S).

(a) If F is a field of characteristic p, then U is F (PK)-irreducible.
(b) Suppose U is F (PK)-irreducible, and let U1, U2, . . . , Un be the FK-homogeneous 

components of U , and put P1 = NP (U1). Then the notation can be chosen so that 
NH(U1) = SP1 and CU1(P1) ≤ CU1(S).

Proof. (a) Since PK � G, it follows from Clifford’s theorem that U = X1⊕X2⊕ . . . ⊕Xm

is a direct sum of F (PK)-irreducible modules Xi [7, V(17.3.a)]. Put

Y = X2 ⊕X3 ⊕ . . . ⊕Xm,

and let Ω be the set of F (PK)-submodules X such that U = X ⊕Y . Suppose a ∈ S and 
X ∈ Ω with Xa /∈ Ω. Then the conjugates Xa and Xa

i are irreducible F (PK)-modules 
with U = Xa ⊕Xa

2 ⊕Xa
3 ⊕ . . . ⊕Xa

m, and it follows from the theorem of Krull, Remak 
and Schmidt that there is an index i �= 1 such that Xa

i ∈ Ω [7, I(12.3)]. Thus Xi ≤ Y but 
Xa

i � Y , and hence CXi
(P ) �= CXi

(P )a. This contradicts the fact that CU (P ) ≤ CU (S), 
and proves that Xa ∈ Ω, so S permutes the set Ω.

Note that U = X1 ⊕ Y , and let φ : U → X1 and ψ : U → Y be the projection 
maps. If X ∈ Ω, then the restricted map φX : X → X1 is an F (PK)-isomorphism, 
and hence there is an F (PK)-homomorphism θ = φ−1

X ψ : X1 → Y . This shows that 
the members of Ω are the submodules {ξ ⊕ ξθ : ξ ∈ X1} with θ ∈ HomF (PK)(X1, Y ), 
so |Ω| =

∣∣HomF (PK)(X1, Y )
∣∣. Now HomF (PK)(X1, X) is a vector space over F , and 

therefore |Ω| is a power of p. But S is an r-group, and it follows that there is an element 
X ∈ Ω which is stabilized by S, so X is an F (HK)-submodule. Then the irreducibility 
of U implies that U = X ∼= X1, so U is F (PK)-irreducible.

(b) Since K � G, Clifford’s theorem shows that U = U1 ⊕ U2 ⊕ . . . ⊕ Un is the 
direct sum of the FK-homogeneous components Ui, which are permuted by H, and 
permuted transitively by P [7, V(17.3.d)]. Hence n = ps for some exponent s, and 
there is a transversal {b1, b2, . . . , bps} to P1 in P , such that b1 = 1 and U1bi = Ui

(1 ≤ i ≤ ps). Moreover S is an r-group, so S normalizes at least one of the submodules Ui. 
Then the notation can be chosen so that S ≤ NH(U1), and hence NH(U1) = SP1. If 
u ∈ CU1(P1) and g ∈ P , then g = g1bi, with g1 ∈ P1 and i ∈ {1, 2, . . . , ps}, so 
ug = ug1bi = ubi. Thus {u, ub2, ub3, . . . , ubps} is a P -orbit, and 

∑ps

i=1 ubi ∈ CU (P ). 
Conversely if 

∑ps

i=1 ui ∈ CU (P ) with ui ∈ Ui (1 ≤ i ≤ ps), then the set {u1, u2, . . . , ups}
is permuted by P . Hence u1 ∈ CU1(P1), and the argument above shows that ui = u1bi
(1 ≤ i ≤ ps). This proves that CU (P ) = {

∑ps

i=1 ubi : u ∈ CU1(P1)}. Finally if 
u ∈ CU1(P1), then S permutes the set {u, ub2, ub3, . . . , ubps}, and hence S fixes u, 
which shows that CU1(P1) ≤ CU1(S). �
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Definition. Let π = {p1, p2, . . . , pm} be a set of prime numbers, and consider an 
elementary abelian π-group U = U1⊕U2⊕ . . . ⊕Um, such that each direct summand Ui

is an FiG-module, where Fi is a field of characteristic pi (1 ≤ i ≤ m), and G is a group. 
If each field Fi is a splitting field for G, then U will be said to be πG-split.

Lemma 5.2. Suppose G0 is a finite solvable group, with a Zπ-injector which is not system 
permutable in G0 (where π is a set of prime numbers). Then there exist an elementary 
abelian π-group U , and a finite solvable group G which acts on U , with a subgroup H ≤ G, 
such that the following three conditions hold.

(i) The group U is πG1-split for all subgroups G1 ≤ G, and CG(SocπG U) = 1.
(ii) Also H = CG(SocπH U), and p � |CG(Op′(SocπH U)) : H| (p ∈ π).
(iii) Moreover H is not system permutable in G.

Proof. Let N be the Zπ-radical of G0, and choose a Zπ-injector H0 of G0, and take

G = G0/N, H = H0/N.

Suppose π = {p1, p2, . . . , pm}, and for each index i, choose a finite field Fi of char-
acteristic pi, such that Fi is a splitting field for all the subgroups of G [5, B(5.21)]. 
Take

U◦
i = Socpi

N,

Ui = Fi ⊗Fpi
U◦
i ,

U0 = U◦
1 ⊕ U◦

2 ⊕ . . . ⊕ U◦
m = Socπ N,

U = U1 ⊕ U2 ⊕ . . . ⊕ Um.

Then Lemma 2.6(a), (d) and (e) imply that

CG(SocFpi
G Ui) = CG(SocFiG(Fi ⊗Fpi

U◦
i ))

= CG(Fi ⊗Fpi
SocFpi

G U◦
i ) = CG(SocFpi

G U◦
i ),

and similarly CG(SocFpi
H Ui) = CG(SocFpi

H U◦
i ). Hence

CG(SocπG U) =
⋂m

i=1 CG(SocFpi
G Ui) =

⋂m
i=1 CG(SocFpi

G U◦
i )

= CG(SocπG U0) = CG0/N (SocπG0 U0)
= CG0(SocπG0 U0)/N.

But CG0(SocπG0 U0) = N by Lemma 2.7(b), so CG(SocπG U) = N/N = 1, which shows 
that the condition (i) holds. Similarly

CG(SocπH U) =
⋂m

i=1 CG(SocFpi
H Ui) =

⋂m
i=1 CG(SocFpi

H U◦
i )

= CG(SocπH U0) = CG0/N (SocπH0 U0)
= C (Soc U )/N.
G0 πH0 0
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But CG0(SocπH0 U0) = H0 by Lemma 2.7(g.i), so CG(SocπH U) = H0/N = H, as in (ii). 
Moreover

CG(Op′
i
(SocπH U)) =

⋂
j �=i CG(SocFpj

H Uj) =
⋂

j �=i CG(SocFpj
H U◦

j )

= CG(Op′
i
(SocπH U0)) = CG0/N (Op′

i
(SocπH0 U0))

= CG0(Op′
i
(SocπH0 U0))/N,

|CG(Op′
i
(SocπH U)) : H| = |CG0(Op′

i
(SocπH0 U0))/N : H0/N |

= |CG0(Op′
i
(SocπH0 U0)) : H0|.

But pi � |CG0(Op′
i
(SocπH0 U0)) : H0| by Lemma 2.7(g.ii), so this completes the proof 

that the condition (ii) holds.
To prove (iii), consider a Sylow basis Σ in G, and choose a Sylow basis Σ0 in G0 such 

that Σ = Σ0N/N [5, I(4.13.a)]. Then H0 is not Σ0-permutable by hypothesis, so H is 
not Σ-permutable by Lemma 2.2(c). �
Hypothesis C1. For the rest of this section, and in the next two sections, let G be a 
finite solvable group which acts on an elementary abelian π-group U (where π is a set of 
prime numbers). Suppose H ≤ G, and that the three conditions in Lemma 5.2 hold. On 
the other hand, assume that if G1 is a finite solvable group which acts on an elementary 
abelian π-group U1, with a subgroup H1 ≤ G1, such that U1, G1 and H1 satisfy the 
conditions (i) and (ii) in Lemma 5.2, and if |G1| · |U1| < |G| · |U |, then H1 is system 
permutable in G1.

Lemma 5.3. Assuming Hypothesis C1, form the natural semidirect products G0 = GU

and H0 = HU .

(a) Then U is the Zπ-radical of G0, and H0 is a Zπ-injector of G0.
(b) Hence the Zπ-injectors of G0 are not system permutable in G0, but if U ≤ G1 < G0

then the Zπ-injectors of G1 are system permutable in G1.

Proof. (a) The condition (i) in Lemma 5.2 implies that U = CG0(SocπG0 U), so U is 
the Zπ-radical of G0 by Lemma 2.7(c). Moreover (ii) implies that H0 = CG0(SocπH0 U), 
and p � |CG0(Op′(SocπH0 U)) : H0| (p ∈ π), so H0 is a Zπ-injector by Lemma 2.7(g).

(b) Let Σ0 be a Sylow basis in G0. Since G0/U ∼= G, the quotient Σ0U/U corresponds 
to a Sylow basis Σ in G. It follows from Hypothesis C1 that H is not Σ-permutable, so 
H0/U is not Σ0U/U -permutable, and hence H0 is not Σ0-permutable by Lemma 2.2(c). 
Because of (a), this means that the Zπ-injectors of G0 are not system permutable in G0.

Now let N1 be the Zπ-radical of G1, choose a Zπ-injector H1 of G1, and take

G2 = G1/N1, H2 = H1/N1, U2 = Socπ N1.
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Then N1 = CG1(U2) by Lemma 2.7(b), so G2 acts on U2. Also U ≤ N1 ≤ G1 ≤ G, and 
using Lemma 2.7(a) we get

Socπ G1 = SocπG1 U2 = SocπG2 U2

≤ U2 = Socπ N1 = SocπN1 U

≤ U.

Since G and U satisfy the condition (i) in Lemma 5.2, if p ∈ π then Op(U) is a vec-
tor space over a finite field F , which is a splitting field for all the subgroups of G. 
Then Op(U2) = Op(SocπN1 U) = SocFpN1 Op(U) = SocFN1 Op(U) by Lemma 2.6(d), so 
Op(U2) is an F -subspace of Op(U). This holds for all prime numbers p ∈ π, so U2 is 
πG3-split for all subgroups G3 ≤ G2. Moreover CG2(SocπG2 U2) = CG1(Socπ G1)/N1 =
N1/N1 = 1 by Lemma 2.7(b), so G2 and U2 satisfy (i). Using Lemma 2.7(g) we also 
deduce that H1 = CG1(SocπH1 U2) and p � |CG1(Op′(SocπH1 U2)) : H1| (p ∈ π). Hence

H2 = CG1(SocπH1 U2)/N1 = CG2(SocπH2 U2),
p � |CG1(Op′(SocπH1 U2))/N1 : H1/N1|

= |CG2(Op′(SocπH2 U2)) : H2| (p ∈ π),

so H2 and U2 satisfy the condition (ii) in Lemma 5.2.
Since |G2| = |G1/N1| < |G|, it follows from Hypothesis C1 that H2 is system per-

mutable in G2. Let Σ1 be a Sylow basis in G1 with Σ1 ↘ H1, and consider the basis 
Σ2 = Σ1N1/N1 in G2. Note that H1 pr G1 (because H1 is an injector), so H2 pr G2
by Lemma 2.2(a). Also Σ2 ↘ H2 by Lemma 2.2(b), and hence H2 is Σ2-permutable by 
Lemma 2.4(b). Finally H1 is Σ1-permutable by Lemma 2.2(b). �
Lemma 5.4. Assume Hypothesis C1, and choose a Sylow basis Σ in G with Σ ↘ H.

(a) There is a normal complement K for H in G, with HK = G, H ∩ K = 1 and 
K = [K, H] � G.

(b) There is a prime number r such that H = SH∞, where S is a cyclic r-group and 1 <
H∞ < H, with Σ ↘ S and H∞ � H. Also H∞ = [H∞, S] and H∞ ≤ NG(Σ ∩K).

(c) There is a prime number q such that K = QR, where Q is a q-group and R is an 
r-group, with {Q} = (Σ ∩K) ∩ Sylq K and {R} = (Σ ∩K) ∩ Sylr K. Also q �= r and 
1 < R < K.

(d) The module V = K/KqK ′ is FqH-indecomposable, and there is a subgroup K∞ with 
KqK ′ ≤ K∞ < K and K∞ � G, such that K/K∞ is FqH-irreducible.

(e) If Q∞ = Q ∩K∞, then K∞ = Q∞ ×R. Hence Q∞, R � G but H � NG(Q).
(f) Also 〈H, Q〉 = G, CH(K/R) = 1 and R = [R, Q].
(g) Moreover CR(H∞) ≤ CR(S), and S = 〈a〉 can be chosen so that a = a0d, with 

a0 ∈ Or(NG(Σ)) and d ∈ R.

Proof. Form the natural semidirect products G0 = GU and H0 = HU , and suppose 
π = {p1, p2, . . . , pm}. Take {Pi} = Σ ∩ Sylp G and Ui = Opi

(U) (1 ≤ i ≤ m), and 

i
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define the Sylow basis Σ0 in G0 by taking

Σ0 ∩ Syls G0 =
{

{PiUi} when s = pi,
Σ ∩ Syls G when s /∈ π.

Then Lemma 5.3 implies that Hypothesis B in Section 4 is satisfied (where F is the set 
of Zπ-subgroups of G0). Now the results follow from Lemmas 4.1, 4.2, 4.3 and 4.4. �
Hypothesis C2. For the rest of this section, and the next two sections, take a Sylow 
basis Σ, and subgroups H, K, Q, R, S, K∞, Q∞, and elements a, a0, d as in Lemma 5.4. 
Put S◦ = 〈a0〉 and D = 〈d〉, and note that

G = HK,

K = QR,

K∞ < K,

S = 〈a〉 ≤ H,

H ∩K = 1,
Q ∩R = 1,

Q∞ = Q ∩K∞ � G,

S◦ = 〈a0〉 ≤ NG(Σ),
a = a0d.

K = [K,H] � G,

R = [R,Q] � G,

K∞ = Q∞ ×R � G,

D = 〈d〉 ≤ R,

Also Q is a q-group and R is an r-group, where q and r are distinct prime numbers, and 
Σ ∩K = {1, Q, R}.

Lemma 5.5. Assume Hypotheses C1 and C2, and suppose p ∈ π. Take {P} = Σ ∩Sylp G, 
and put Up = Op(U). Suppose Up is an FG-module, where F is a finite field of character-
istic p, and F is a splitting field for all the subgroups of G. Let U0 be an FG-irreducible 
submodule of Up, and put H0 = CG(CU0(P )). Assume that 0 < U0 < U .

(a) Then H ≤ H0.
(b) Also H0Q = QH0.
(c) Moreover G = H0Q.
(d) Hence R ≤ CG(U0).

Proof. (a) Lemma 5.3(a) shows that U is the Zπ-radical of GU and that HU ∈ Zπ. 
Also (P ∩H)Up ∈ Sylp(HU), and CUp

((P ∩H)Up) ≥ CU0(P ). Applying Lemma 2.7(d) 
we deduce that HU ≤ CGU (CUp

((P ∩ H)Up)) ≤ CGU (CU0(P )) = H0U , and hence 
H = G ∩HU ≤ G ∩H0U = H0.

(b) Put N = CG(U0), and note that U0 ≥ CU0(P ), so N ≤ H0. Take

G1 = G/N, H1 = H0/N, P1 = PN/N, Σ1 = ΣN/N,

with P1 ∈ Σ1. Form the natural semidirect products

G2 = G1U0, H2 = H1U0,

and define the Sylow basis Σ2 in G2 by taking
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Σ2 ∩ Syls G2 =
{

{P1U0} when s = p,
Σ1 ∩ Syls G1 when s �= p.

Then U0 = Socπ G2 by Lemma 2.7(c), so Lemma 2.7(f) shows that H2 is a Zπ-injector 
in G2 and Σ2 ↘ H2. But H2/U0 and Σ2U0/U0 correspond to H1 and Σ1 under the 
isomorphism G2/U0 ∼= G1, so

H1 pr G1, Σ1 ↘ H1, H0 pr G, Σ ↘ H0,

using Lemma 2.2(a) and (b).
Now U0 is FG-irreducible, so CG1(SocπG1 U0) = CG(U0)/N = N/N = 1, and hence 

G1 and U0 satisfy the condition (i) in Lemma 5.2. Applying Lemma 2.7(g) we also 
deduce that H2 = CG2(SocπH2 U0) and that s � |CG2(Os′(SocπH2 U0)) : H2| (s ∈ π). 
But SocπH2 U0 = SocπH1 U0, so H1 = H2 ∩G1 = CG1(SocπH1 U0) and

|CG2(Os′(SocπH2 U0)) : H2| = |CG1(Os′(SocπH1 U0))U0 : H1U0|
= |CG1(Os′(SocπH1 U0)) : H1|,

and hence H1 and U0 satisfy the condition (ii) in Lemma 5.2. Since |U0| < |U |, Hy-
pothesis C1 implies that H1 is system permutable in G1, and as before, it follows from 
Lemma 2.4(b) that H1 is Σ1-permutable. Then H0 is Σ-permutable by Lemma 2.2(c), 
so H0Q = QH0.

(c) Using (a) and (b), together with Lemma 5.4(f), we get H0Q ≥ 〈H, Q〉 = G.
(d) It follows from (c) that |G : H0| = |H0Q : H0| is a power of q, while |H0R : H0|

is a power of r. This implies that R ≤ H0 = CG(CU0(P )), so CU0(R) ≥ CU0(P ) �= 0. 
Since U0 is FG-irreducible, we deduce that CU0(R) = U0. �
Lemma 5.6. Take H∞ and V as in Lemma 5.4, and put H◦ = S◦H∞, R∞ = RrR′ and 
V ◦ = Q/QqQ′, W = R/RrR′.

(a) There is a prime number p ∈ π such that U is an irreducible FG-module, where F is 
a finite field of characteristic p, and F is a splitting field for all the subgroups of G.

(b) If {P} = Σ ∩ Sylp G, then H = CG(CU (P )).
(c) If P ≤ H1 < H with Σ ↘ H1, then H1 ≤ NH(Q).
(d) Hence P � H, with H = SP and P = [P, S] ≤ NH(Q). Also p, q and r are distinct, 

and Σ = {1, P, Q, RS} with 1 < P < H.
(e) Also Q∞ = QqQ′, and the module V is FqH-irreducible, with CH(V ) = 1.
(f) Moreover CR(P ) ≤ CR(S), so CW (P ) ≤ CW (S).
(g) Hence V ◦ is FqH

◦-irreducible, CH◦(V ◦) = 1 and CW (H◦) = CW (P ).

Proof. (a) If π = {p1, p2, . . . , pm}, then it follows from Hypothesis C1 and the condi-
tion (i) in Lemma 5.2 that U = U1 ⊕U2 ⊕ . . . ⊕Um is a direct sum of FiG-modules Ui, 
where Fi is a finite field of characteristic pi, and Fi is a splitting field for all the subgroups 
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of G; we must therefore prove that U = Ui is FiG-irreducible for some index i. If this is 
not the case, then Lemma 5.5(d) implies that R ≤ CG(SocπG U). But CG(SocπG U) = 1
by the condition (i) in Lemma 5.2, so this contradicts Lemma 5.4(c).

(b) It follows from Lemmas 5.3(a) and 2.7(f) that HU = CGU (CU (PU)) =
CG(CU (P ))U , which gives the result.

(c) If G1 = H1K, then H1 = CG1(CU (P )), and as in Lemma 2.7(f) it follows that 
H1U is a Zπ-injector of G1U . Moreover G1U and H1U satisfy the conditions (i) and 
(ii) in Lemma 2.7(g), which implies that G1 and H1 satisfy the conditions (i) and 
(ii) in Lemma 5.2. Hence H1 is system permutable in G1 by Hypothesis C1, so H1

is (Σ ∩G1)-permutable by Lemma 2.4(b), and H1 ≤ NH(Q) by Lemma 2.4(d).
(d) Put H1 = NH(P ), and note that H = H1H∞ by Frattini’s argument [7, I(7.8)], 

and Σ ↘ H1 by Lemma 2.4(c). If H1 < H, then H1 ≤ NH(Q) by (c), while H∞ ≤ NH(Q)
by Lemma 5.4(b), so H = H1H∞ ≤ NH(Q). This contradicts Lemma 5.4(e), which 
proves that H1 = H, so P � H.

We now get a subgroup H2 = SP . If H2 < H, then (c) implies that H2 ≤ NH(Q), 
and hence H = H2H∞ ≤ NH(Q). As before this contradicts Lemma 5.4(e), and proves 
that H = H2 = SP . Since H∞ = [H∞, S], it is also clear that H∞ = Or(H) = P , so 
P = [P, S] ≤ NH(Q), and 1 < P < H by Lemma 5.4(b). Finally P ∈ Sylp G, and K is a 
{q, r}-group, so p /∈ {q, r}, while q �= r by Lemma 5.4(c). Hence Σ = {1, P, Q, RS}.

(e) Now H is a {p, r}-group by (d), so V is completely FqH-reducible by Maschke’s 
theorem [5, A(11.5)]. Then Lemma 5.4(d) implies that V is FqH-irreducible, so 
K∞ = KqK ′. Since R � G, it also follows that K∞ = QqQ′R and Q∞ = QqQ′. Fi-
nally K/R ∼= Q and V ∼= (K/R)/Φ(K/R), and hence CH(V ) = CH(K/R) [7, III(3.18)]. 
Now Lemma 5.4(f) shows that CH(V ) = 1.

(f) Since P = H∞, Lemma 5.4(g) shows that CR(P ) ≤ CR(S). To prove the last 
equation, suppose ξ ∈ CW (P ). By the theory of coprime actions, there is an element 
x ∈ CR(P ) such that ξ = R∞x [7, I(18.6)]. Then x ∈ CR(P ) ≤ CR(S), and hence 
ξ = R∞x ∈ CW (S).

(g) Note that V ◦ = Q/Q∞ ∼= K/K∞ = V , and that d centralizes both V and W , so 
the action of a0 on V and W is the same as the action of a0d = a. The results therefore 
follow from (e) and (f). �
Hypothesis C3. For the rest of this section, and the next two sections, take the prime 
number p, the field F , the subgroups H◦, P , R∞ and the vector spaces U , V , V ◦, W as 
in Lemma 5.6. Note that

H = SP,

K∞ = KqK ′,

V = K/K∞,

C (P ) ≤ C (S),

H◦ = S◦P ≤ NG(Q),
S ∩ P = 1,
Q∞ = QqQ′,

V ◦ = Q/Q∞,

C (P ) ≤ C (S),

P = [P, S] � H,

R∞ = RrR′,

W = R/R∞,

C (P ) ≤ C (S).
U U R R W W
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Also P is a p-group, Q is a q-group and RS is an r-group, where p, q and r are distinct 
prime numbers, and Σ = {1, P, Q, RS}.

Lemma 5.7. Assume Hypotheses C1, C2 and C3.

(a) Then D ≤ CR(H◦).
(b) Also R = [D, Q].
(c) Hence R ≤ 〈Q, S〉.
(d) Moreover CW (H◦) �= 0.

Proof. (a) Note that d = a−1
0 a ∈ NG(P ), so [P, D] ≤ P ∩ R = 1. Hence D ≤

CR(P ) ≤ CR(S) by Lemma 5.6(f), and therefore [D, H◦] = [D, S◦P ] ≤ [D, SDP ] = 1.
(b) Put R1 = [D, Q], and note that D ≤ NG(QR1). Also H◦ ≤ NG(Q), and it follows 

from (a) that H◦ ≤ NG(R1). Hence H ≤ DH◦ ≤ NG(QR1), and using Lemma 5.4(f) 
we get G = 〈H, Q〉 ≤ HQR1. Thus R1 ∈ Sylr K, so R1 = R.

(c) Suppose k ∈ Z and c ∈ Q. Using (a) we get [dk, c] = [a−k
0 ak, c] =

(c−a−k
0 )ak

c ∈ 〈Q, S〉, so the result follows from (b).
(d) Finally d /∈ R∞ by (b), so (a) implies that the coset R∞d is a nonzero vector 

in CW (H◦). �
Lemma 5.8. The module U is FK-irreducible.

Proof. Note that U is FG-irreducible by Lemma 5.6(a), so it follows from Lemma 5.1(a) 
that U is F (PK)-irreducible. Applying Lemma 5.1(b), let U1, U2, . . . , Un be the 
FK-homogeneous components of U , and choose the notation so that

G1 = NG(U1), N = CG1(U1), P1 = NP (U1), H1 = CG1(CU1(P1))
U = U1 ⊕ U2 ⊕ . . . ⊕ Un, NH(U1) = SP1, CU1(S) ≤ CU1(P1).

Then U1 is F (P1K)-irreducible by Clifford’s theorem [7, V(17.3.e)], so U1 is also 
FK-irreducible by Lemma 2.8. Suppose U1 < U ; we must show that this is impos-
sible. Now G1 = NH(U1)K = SP1K = SRP1Q, which implies that Σ ↘ G1. Also 
S ≤ CG1(CU1(P1)) = H1. Moreover U1 ≥ CU1(P1), so N ≤ H1, and we put

G2 = G1/N, H2 = H1/N, P2 = P1N/N,

Σ1 = Σ ∩G1, Σ2 = Σ1N/N,

with P2 ∈ Σ2. Then H2 = CG2(CU1(P2)), and U1 is a module which is G2-faithful and 
FG2-irreducible. As before Lemma 2.7(f) and (g) can be used to show that G2, H2 and 
U1 satisfy the conditions (i) and (ii) in Lemma 5.2. Since |U1| < |U | it follows from 
Hypothesis C1 that H2 is Σ2-permutable. Then H1 is Σ1-permutable by Lemma 2.2(c), 
so there is a subgroup H1Q ≥ 〈Q, S〉 ≥ R by Lemma 5.7(c). But r � |H1Q : H1|, and 



74 R. Dark et al. / Journal of Algebra 476 (2017) 48–84
therefore R ≤ H1 = CG1(CU1(P1)). Hence CU (R) ≥ CU1(R) ≥ CU1(P1) �= 0, and so R
centralizes U (because U is FG-irreducible). Finally CG(U) = 1 by the condition (i) in 
Lemma 5.2, so this contradicts Lemma 5.4(c). �
6. Groups in which U is FK∞-inhomogeneous

Remark. In this section, we follow a well known strategy [10, Theorems 3.5, 4.4, 7.3 
and 8.4], and consider the case when U is FK∞-inhomogeneous. We use Lemma 2.9, 
and throughout the section, we assume Hypotheses C1, C2 and C3 in Section 5.

Lemma 6.1. Suppose U is FK∞-inhomogeneous, and let {c1, c2, . . . , cqt} be a transversal 
to Q∞ in Q, with c1 = 1.

(a) Then {c1, c2, . . . , cqt} is a transversal to K∞ in K, and {c1, c2, . . . , cqt} is also 
a transversal to HK∞ in G. Hence V = {v1, v2, . . . , vqt}, with vi = K∞ci (1 ≤
i < qt).

(b) Also U = Y1 ⊕ Y2 ⊕ . . . ⊕ Yqt , where each subspace Yi is stabilized by K∞, 
and NG(Y1) = HK∞. Moreover H permutes the set Ω = {Y1, Y2, . . . , Yqt}, and 
Yi = Y1ci (1 ≤ i ≤ qt). Hence the permutation action of H on V is equivalent to the 
action of H on Ω.

(c) Finally the P -orbits in V are stabilized by S.

Proof. (a) This follows from the definitions.
(b) Clifford’s theorem gives U = Y1 ⊕ Y2 ⊕ . . . ⊕ Ym, where the submodules Yi are 

the FK∞-homogeneous components of U , and the set

Ω = {Y1, Y2, . . . , Ym}

is permuted by G [7, V(17,3)]. Lemma 5.8 implies that K/K∞ ∼= QK∞/K∞ per-
mutes Ω transitively, while q � |H|, so it follows from Lemma 2.9 that H normalizes 
at least one of the submodules Yi. Choose the notation so that H ≤ NG(Y1), and 
hence HK∞ ≤ NG(Y1). Now |G : NG(Y1)| = m �= 1 by hypothesis, so NG(Y1) < G. 
But Lemma 5.6(e) shows that HK∞ is a maximal subgroup of G, and therefore 
HK∞ = NG(Y1). This proves that m = |G : HK∞| = qt, and that {c1, c2, . . . , cqt} is a 
transversal to NG(Y1) in G, so the notation can be chosen so that Yi = Y1ci (1 ≤ i ≤ qt). 
Moreover if g ∈ H, then Y1cig = Y1gc

g
i = Y1c

g
i , while (K∞ci)g = K∞cgi , which gives the 

required permutation equivalence.
(c) Let Ω0, Ω1 . . . , Ωn be the P -orbits in Ω, and suppose

Ωj = {Yj1, Yj2, . . . , Yjmj
} (1 ≤ j ≤ n).

Then S permutes the set {Ω0, Ω1, . . . , Ωn}, and because of (b), it suffices to show 
that S stabilizes each orbit Ωj . Take Uj = Yj1 ⊕ Yj2 ⊕ . . . ⊕ Yjmj

, and note that 
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U = U0 ⊕ U1 ⊕ . . . ⊕ Un. If Ωa
j = Ωk, then Ua

j = Uk, so CUj
(P )a = CUk

(P ) �= 0. But 
CUj

(P )a = CUj
(P ) by Lemma 5.6(b), and hence j = k so a stabilizes Ωj . �

Remark. In the next two lemmas we obtain properties of H by exploiting the condition 
in Lemma 6.1(c), ignoring the subgroup R and the module U .

Lemma 6.2. Assume that the P -orbits in V are stabilized by S.

(a) Then V is FqP -irreducible.
(b) Also V is FqP -primitive.

Proof. (a) Note that V is FqH-irreducible by Lemma 5.6(e). If V0 is an FqP -submodule 
of V , then the hypothesis implies that S stabilizes V0, so V0 = V .

(b) Suppose V = Z1⊕Z2⊕ . . . ⊕Zps , where the subspaces Zi are permuted transitively 
by P , and put P1 = NP (Z1); we must deduce that s = 0. If s > 0, then |P : P1| = ps �= 1, 
so there is a subgroup P∞ with P1 ≤ P∞ � P and P/P∞ ∼= Cp. Choose transversals 
{b′1, b′2, . . . , b′ps−1} to P1 in P∞, and {1, b, b2, . . . , bp−1} to P∞ in P , and take

Vi = (Z1b
′
1 ⊕ Z1b

′
2 ⊕ . . . ⊕ Z1b

′
ps−1)bi = V0b

i (i ∈ Zp)

Then V = V0 ⊕ V1 ⊕ . . . ⊕ Vp−1, and the subspaces Vi are stabilized by P∞, and are 
permuted regularly by P/P∞. Now the subset

Υ1 = V0 ∪ V1 ∪ . . . ∪ Vp−1 ⊆ V

is stabilized by P , and is therefore also stabilized by S. Suppose u, v ∈ Vi−0 with ua ∈ Vj

and va ∈ Vk. Then u + v ∈ Vi, so ua + va = (u + v)a ∈ Υ1, and therefore j = k. This 
proves that S permutes the set {Vi : i ∈ Zp}, and we can choose the notation so that S
stabilizes V0 (because r �= p). It follows that S normalizes the subgroup P∞ = NP (V0), 
so S acts on P/P∞. Hence there exist an integer h ∈ Zp and elements gi ∈ P∞, such 
that P∞ba = P∞bh and bia = gib

ih. Then

Via = V0b
ia = V0ab

ia = V0gib
ih = V0b

ih = Vih (i ∈ Zp).

Now [P, S] = P by Lemma 5.6(d), and hence h �= 1. Suppose h �= −1, and put

Υ2 = {u + v : u ∈ Vi, v ∈ Vi+1, i ∈ Zp} ⊆ V.

Note that P stabilizes Υ2, and choose vectors u ∈ V0−0 and v ∈ V1−0. Then u +v ∈ Υ2, 
while ua ∈ V0 and va ∈ Vh. Hence (u + v)a /∈ Υ2 (because h �= ±1), which contradicts 
the hypothesis. This proves that h = −1.
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It follows that r = 2, so p �= 2 and q �= 2. Then P∞ must act intransitively on V0 − 0, 
so there are disjoint nonempty sets Γ0, Δ0 ⊆ V0 − 0, both stabilized by P∞, and we take

Γi = Γ0b
i, Δi = Δ0b

i, Υ3 = {u + v : u ∈ Γi, v ∈ Δi+1, i ∈ Zp} ⊆ V.

Then P/P∞ permutes the sets {Γi : i ∈ Zp} and {Δi : i ∈ Zp} regularly, so P/P∞
stabilizes Υ3. As above, choose vectors u ∈ Γ0 and v ∈ Δ1. Then u + v ∈ Υ3, and 
ua ∈ Γ0, but va ∈ Δp−1, so (u + v)a /∈ Υ3. This contradiction completes the proof. �
Lemma 6.3. Assume that the P -orbits in V are stabilized by S.

(a) Then P is cyclic.
(b) Also V = {0} ∪Γ1 ∪Γ2 ∪ . . . ∪Γn, where for each index j, P permutes Γj regularly, 

and there is a vector v′j ∈ Γj such that S fixes v′j.

Proof. (a) Suppose P is not cyclic; we must show that this is impossible. Note that 
V is a module which is P -faithful and FqP -irreducible by Lemmas 5.6(e) and 6.2(a), 
and let A be an abelian normal subgroup of P . It follows from Clifford’s theorem that 
V = V1⊕V2⊕ . . . ⊕Vm, where the submodules Vi are the FqA-homogeneous components 
of V , and are permuted by P [7, V(17.3)]. But Lemma 6.2(b) shows that m = 1, so V
is FqA-homogeneous. Since CA(V ) = 1, Lemma 2.11(a) implies that A is cyclic. Thus 
every normal abelian subgroup of P is cyclic, so Lemma 2.12(a) shows that p = 2 and 
either P ∼= Q8 or else AutP is a 2-group. But if AutP is a 2-group then [P, S] = 1, 
which contradicts Lemma 5.6(d).

We may now suppose that P ∼= Q8, and take 〈z〉 = Z(P ) = P ′ ∼= C2. Then 
|AutP | = 233, so it follows from Lemma 5.6(d) that r = 3 (and that H/CS(P ) =
H/O3(H) ∼= SL2(3)). Take Vi = {v ∈ V : vz = (−1)iv} (i = 0, 1), and note that V0 and 
V1 are both stabilized by P , and V = V0 ⊕ V1. Since V is a module which is P -faithful 
and FqP -irreducible, it follows that V = V1, and CP (v) = 1 for all vectors v ∈ V − 0. 
This implies that

V = {0} ∪ Γ1 ∪ Γ2 ∪ . . . ∪ Γn,

where each subset Γj is permuted regularly by P . Thus |Γj | = 8, and S stabilizes Γj by 
hypothesis, and hence the action of H on Γj is equivalent to the action on the cosets 
of S (and H ∼= SL2(3)). This implies that Γj contains two elements fixed by S (and 
two S-orbits of size 3). Now put s = dimFq

CV (S) and t = dimFq
V , and note that 

0 < s < t. Hence qs = |CV (S)| = 1 + 2n and qt = |V | = 1 + 8n = 1 + 4(qs − 1), and so 
qt−4qs+3 = 0. Therefore q | 4qs−qt = 3, so q = 3 = r, which contradicts Lemma 5.4(c).

(b) As in (a), note that V is a module which is P -faithful and FqP -irreducible by 
Lemmas 5.6(e) and 6.2(a), and let {0}, Γ1, Γ2, . . . , Γn be the P -orbits in V . Then P
permutes each set Γj regularly by Lemma 3.1(b), and hence r � |Γj |. Also S stabilizes Γj

by hypothesis, so S fixes a vector v′j ∈ Γj . �
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Lemma 6.4. Suppose U is FK∞-inhomogeneous, and choose the subspace Y1 as in 
Lemma 6.1(b). Take the subsets Γ1, Γ2, . . . , Γn and the elements v′1, v′2, . . . , v′n as 
in Lemma 6.3(b), and put M = CHK∞(Y1).

(a) For each index j, there is an element gj ∈ CQ(a0) such that K∞gj = v′j.
(b) Then Sg−1

j ≤ M .
(c) Also H ≤ M .
(d) Hence R ≤ M .

Proof. (a) Using Lemma 6.1(a), take v′j = K∞c′j with c′j ∈ Q (1 ≤ j ≤ n), and note 
that (K∞c′j)a = K∞c′j . Now d ∈ K∞ so (K∞c′j)d = K∞c′j , and therefore (K∞c′j)a0 =
(K∞c′j)ad

−1 = K∞c′j . Also a0 ∈ NG(Q), so this implies that [a0, c′j ] ∈ Q ∩K∞ = Q∞, 
and hence (Q∞c′j)a0 = Q∞c′j . But a0 is an r-element, while |Q∞c′j | is a power of q, so 
a0 fixes an element gj ∈ Q∞c′j = Q∞gj .

(b) Consider a vector y1 ∈ Y1; we must show that y1a
g−1
j = y1. Suppose P = 〈b〉 ∼= Cps

as in Lemma 6.3(a), and note that Γj = {v′jbi : i ∈ Zps} by Lemma 6.3(b). Now 
v′j = K∞gj by (a), and we put Yj = Y1gj and yj = y1gj . Applying Lemma 6.1(b), we 
get Uj =

⊕
i∈Zps

Yjb
i ≤ U , so uj =

∑
i∈Zps

yjb
i ∈ CUj

(P ) ≤ CUj
(S). Moreover S

stabilizes Γj by Lemma 6.1(c), so S permutes the set {Yjb
i : i ∈ Zps}, and hence S also 

permutes the set {yjbi : i ∈ Zps}. Finally S fixes v′j , so S stabilizes Yj , and therefore S

centralizes yj = y1gj . Thus y1gja = y1gj , so y1a
g−1
j = y1.

(c) Note that Q �= 1 by Lemma 5.4(c), so V �= 0 and n > 0. From (b) we get 
Sg−1

1 R ≤ MR � HK∞. Now Sg−1
1 R = (SR)g−1

1 ∈ Sylr G, and hence Sg−1
1 R is con-

jugate to SR in HK∞. Therefore S ≤ SR ≤ MR, and Lemma 5.6(d) implies that 
P = [P, S] ≤ MR. Since MR/M is an r-group, it follows that P ≤ M = CHK∞(Y1). 
Thus Y1 ≤ CU (P ) ≤ CU (S), so H ≤ CHK∞(Y1) = M .

(d) Put D = 〈d〉, and note that R = [D, Q] by Lemma 5.7(b). It therefore suffices to 
show that if k ∈ Z and c ∈ Q, then [dk, c] ∈ M . Moreover [D, Q∞] = 1 by Lemma 5.4(e), 
so we may assume that c /∈ Q∞. It follows from (a) and Lemma 6.3(b) that the set 
{1} ∪ {gbij : i ∈ Zps , 1 ≤ j ≤ n} is a transversal to Q∞ in Q, and hence the set 
{1} ∪ {g−bi

j : i ∈ Zps , 1 ≤ j ≤ n} is also a transversal to Q∞ in Q. Thus c = zg−bi

j with 
z ∈ Q∞, i ∈ Zps and j ∈ {1, 2, . . . , n}. Now [D, Q∞] = [D, P ] = 1 by Lemmas 5.4(e) 
and 5.6(a), while gj ∈ CQ(a0) by (a). Using these facts, we get

[dk, c] = [dk, zg−bi

j ] = [dk, g−bi

j ] = [dk, g−1
j ]bi

= [a−k
0 ak, g−1

j ]bi = [ak, g−1
j ]bi = (a−kakg

−1
j )bi

∈ M bi = M,

using (b) and (c). �
Lemma 6.5. The FG-module U is FK∞-homogeneous.



78 R. Dark et al. / Journal of Algebra 476 (2017) 48–84
Proof. If U is FK∞-inhomogeneous, then Lemma 6.4(d) implies that

R ≤
⋂
g∈G

Mg = CG(U).

But CG(U) = 1 by the condition (i) in Lemma 5.2, so this contradicts Lemma 5.4(c). �
7. Groups in which U is FK∞-homogeneous

Remark. In this section we continue our basic strategy [10, Theorems 3.5, 4.4, 7.3 
and 8.4], and show that R is extraspecial, using Lemmas 2.10, 2.11 and 2.12.

Lemma 7.1. Let W be a module which is C-faithful and FrC-homogeneous, where C =
〈c〉 ∼= Cn and r � n (and r is a prime number). If ω ∈ W , then the submodule ω(FrC)
generated by ω is FrC-irreducible.

Proof. Suppose W = X1 ⊕X2 ⊕ . . . ⊕Xm, where the FrC-modules Xi are irreducible, 
and isomorphic to each other, and let k be the order of r modulo n. As in Lemma 3.1(b), 
there exist Fr-isomorphisms θi : Xi → F+

rk
, and an element γ which is a primitive n-th 

root of 1 in Frk , such that

(ωcj)θi = γjωθi (ω ∈ Xi, 1 ≤ i ≤ m, j ∈ Zn).

Let W1 be an m-dimensional vector space over Frk , and let {x1, x2, . . . , xm} be an 
Frk -basis of W1. Consider an element ω =

∑m
i=1 ωi ∈ W with ωi ∈ Xi (1 ≤ i ≤ m), and 

define an Fr-isomorphism θ : W → W1 by taking ωθ =
∑m

i=1 ω
θi
i xi. Suppose also that 

λ =
∑

j∈Zn
αjc

j ∈ FrC, with αj ∈ Fr (j ∈ Zn). Then

(ωcj)θ =
(∑m

i=1 ωic
j
)θ =

∑m
i=1(ωic

j)θixi

=
∑m

i=1 γ
jωθi

i xi = γjωθ (j ∈ Zn),
(ωλ)θ =

∑
j∈Zn

αj(ωcj)θ =
∑

j∈Zn
αjγ

jωθ = μωθ,

where μ =
∑

j∈Zn
αjγ

j ∈ Frk . Thus (ω(FrC))θ is the 1-dimensional Frk -subspace 
spanned by ωθ, and ω(FrC) is FrC-isomorphic to X1. �
Remark. For the rest of this section, we assume Hypotheses C1, C2 and C3 in Section 5.

Lemma 7.2. Let Ω be the set of FrQ-homogeneous components of W , and let Ω1, Ω2,

. . . , Ωm be the P -orbits in Ω, with Ωi = {Xi1, Xi2, . . . , Xini
} (1 ≤ i ≤ m).

(a) Each component Xij is FrQ-irreducible (1 ≤ i ≤ m, 1 ≤ j ≤ ni).
(b) Each P -orbit Ωi is stabilized by H◦ (1 ≤ i ≤ m).
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(c) Put Li = NH◦(Xi1) and Pi = NP (Xi1). Then the notation can be chosen so that 
Li = S◦Pi and CXi1(Pi) = CXi1(Li) �= 0 (1 ≤ i ≤ m).

Proof. Consider the vector ω = R∞d ∈ W , and put Zi = Xi1 ⊕ Xi2 ⊕ . . . ⊕ Xini

(1 ≤ i ≤ m). Then W = Z1 ⊕ Z2 ⊕ . . . ⊕ Zm, and we take

ω = ζ1 + ζ2 + . . . + ζm with ζi ∈ Zi (1 ≤ i ≤ m),
ζi = ξi1 + ξi2 + . . . + ξini

with ξij ∈ Xij (1 ≤ j ≤ ni).

(a) Lemma 5.7(b) implies that the FrQ-submodule ω(FrQ) generated by ω is equal 
to W , and hence ξij(FrQ) = Xij (1 ≤ i ≤ m, 1 ≤ j ≤ ni). But [Q∞, R] = 1 by 
Lemma 5.4(e), so Q∞ centralizes W . Thus Xij can be regarded as a homogeneous 
Fr(Q/Q∞)-module, where Q/Q∞ is an elementary abelian q-group. Then Q/CQ(Xij)
is cyclic by Lemma 3.1(a), and the result follows from Lemma 7.1.

(b) Note that ω ∈ CW (P ) by Lemma 5.7(a), so ζi ∈ CW (P ) = CW (H◦) by 
Lemma 5.6(g). Also S◦ permutes the set {Ω1, Ω2, . . . , Ωm}, and if Ωa0

i = Ωj , then 
ζi = ζa0

i ∈ Za0
i = Zj . But ζi(FrQ) = Zi as in (a), so ζi �= 0, and hence i = j.

(c) Applying Lemma 5.1(b) with K = Q, we can choose the notation so that Li = S◦Pi

and CXi1(Pi) ≤ CXi1(S◦), and therefore CXi1(Pi) = CXi1(Li). Moreover Pi = NP (Xi1)
permutes the set {ξi1, ξi2, . . . , ξini

}, and hence ξi1 is a nonzero vector in CXi1(Pi). �
Lemma 7.3. Suppose U is FK∞-homogeneous.

(a) If R1 ≤ R with R1 � G, then U is FR1-homogeneous.
(b) Hence R is extraspecial and R′ ≤ Z(G).

Proof. (a) Suppose the restriction of U to K∞ is UK∞ = X1 ⊕X2 ⊕ . . . ⊕Xm, where 
the modules Xi are FK∞-irreducible, and there are FK∞-isomorphisms θi : X1 → Xi

(1 ≤ i ≤ m). Put K1 = Q∞R1, and note that K1 � G. It follows from Clifford’s theorem 
that X1 = X11⊕X12⊕ . . . ⊕X1n, where the submodules X1j are the FK1-homogeneous 
components of X1, and are permuted transitively by R [7, V(17.3)]. For each index j, 
put Uj = X1j ⊕Xθ2

1j ⊕Xθ3
1j ⊕ . . . ⊕Xθm

1j , and note that U = U1 ⊕U2 ⊕ . . . ⊕Un, where 
the submodules Uj are the FK1-homogeneous components of U , and are permuted by G, 
and permuted transitively by R.

Since r � |PQ|, it follows from Lemma 2.9 that PQ normalizes at least one of the 
submodules Uj . Choose the notation so that PQ ≤ NG(U1), and note that if Ua

1 = Uj , 
then CU1(P )a ≤ Uj . Since S centralizes CU1(P ), it follows that j = 1, so S ≤ NG(U1). 
Using Lemma 5.4(f), we get G = 〈H, Q〉 ≤ NG(U1), so U1 is an FG-submodule. But 
U is FG-irreducible by Lemma 5.6(a), so U = U1 is FK1-homogeneous. Finally let Y
be an FK1-irreducible submodule of U ; it suffices to show that Y is FR1-homogeneous. 
Now K1 = Q∞ × R1 by Lemma 5.4(e), so Lemma 2.10 implies that Y = Y1 ⊗ FY2, 
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where Y1 is FQ∞-irreducible and Y2 is FR1-irreducible. Restricting to R1, we deduce 
that YR1 = (dimF Y1) · Y2 is FR1-homogeneous.

(b) If A is a characteristic abelian subgroup of R, then U is FA-homogeneous by (a), 
and F is a splitting field for A by hypothesis, so A is cyclic and A ≤ Z(G) by Lemma 2.11. 
It now follows from Lemma 2.12(b) that R = R0 ◦ R1 is a central product, where R0 is 
extraspecial (or R0 ∼= Cr) and R1 is cyclic. Now G′ ≥ [K, H] = K ≥ Q by Lemma 5.4(a), 
and [R, Q] = R �= 1 by Lemma 5.4(c) and (f), and therefore (AutR)′ ≥ G′/CG′(R) ≥
Q/CQ(R) �= 1. Hence R is not cyclic, so R0 is extraspecial, and R′ = R′

0
∼= Cr. Finally 

R1 = Z(R) is a characteristic abelian subgroup of R, so R1 ≤ Z(G) as above. Thus 
R1/R

′ ≤ CR/R′(Q) = R′/R′ by Lemma 5.4(f), so R′ = R1 ≤ Z(G), and R = R0 is 
extraspecial. �
Remark. With a similar argument, using a result of Hobby [7, III(7.8.c)], it can be shown 
that if U is FK∞-homogeneous, then Q is either elementary abelian or extraspecial, but 
we shall not need this fact.

8. Proof of the Theorem

Remark. In this section we complete the proof of the Theorem by applying the results 
in Section 3 to the extraspecial group R, ignoring the module U .

Hypothesis D. In the next two lemmas, let G = HQ0R be a finite group, such that 
Q0 � HQ0, R � HQ0R and H ∩ Q0 = HQ0 ∩ R = 1. Suppose Q0 is an elementary 
abelian q-group, and R is an extraspecial r-group (where q and r are distinct prime 
numbers), and let k be the order of r modulo q. Put Z = R′ = Z(R) ∼= Cr, and assume 
that [R, Q0] = R and [Z, G] = 1. Applying Lemma 3.2(a), write R = T1 ◦ T2 ◦ . . . ◦ Tm

as a central product of extraspecially Q0-irreducible r-groups Ti. Put

Ω = {T1, T2, . . . , Tm}, L = NH(T1), Yi = Ti/Z (1 ≤ i ≤ m),

and assume that H permutes Ω transitively.

Lemma 8.1. Assume Hypothesis D, and suppose 2 � k. Lemma 3.7(a) implies that the 
groups Ti are all of type (ii) in Lemma 3.2(b), with Yi = X∗

i ⊕Xi, and we assume that 
CX1(L) �= 0. Then R = E1 ◦ E2 ◦ . . . ◦ En, where |Ej | = r3, Er

j ≤ E′
j = Z and 

Ej = 〈dj , ej〉 (1 ≤ j ≤ n). Moreover the set Δ = {1, 2, . . . , n} is permuted by H, with 
dgj = djg and egj = ejg (j ∈ Δ, g ∈ H).

Proof. Note that CQ0(Xi) = CQ0(X∗
i ) = CQ0(Yi) = CQ0(Ti) by the theory of coprime 

actions [5, A(12.3)], and Q0/CQ0(Yi) ∼= Cq by Lemma 3.1(a). Put

Q1 = Q0/CQ0(T1) ∼= Cq, L1 = L/CL(T1).
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If r �= 2, then q �= 2 by Lemmas 3.9 and 7.2(a). Then Lemma 3.7(b) implies that 
Q1T1 can be identified with a subgroup of the group C1R in Lemma 3.3, and hence 
L1 ≤ BC∞ by Lemma 3.10(a). Now Lemma 3.12 shows that T1 = E11 ◦E12 ◦ . . . ◦E1k, 
with |E1j | = r3, Er

1j = 1 and E′
1j = Z, E1j = 〈d1j , e1j〉 (1 ≤ j ≤ k). Also the 

set Γ1 = {(11), (12), . . . , (1k)} is permuted semiregularly by L1, and dg1j = d(1j)g, 
eg1j = e(1j)g (1 ≤ j ≤ k, g ∈ L).

Similarly if r = 2, then Lemma 3.7(c) shows that Q1T1 can be identified with a 
subgroup of the group C1R in Lemma 3.4, and hence L1 ≤ BC∞ by Lemma 3.10(b). 
Now Lemma 3.13 shows that T1 = E11 ◦ E12 ◦ . . . ◦ E1k with E1j = 〈d1j , e1j〉 ∼= D8
(1 ≤ j ≤ k). Also the set Γ1 = {(11), (12), . . . , (1k)} is permuted semiregularly by L1, 
and dg1j = d(1j)g, eg1j = e(1j)g (1 ≤ j ≤ k, g ∈ L).

To complete the proof, let {g1, g2, . . . , gm} be a transversal to L in H, with g1 = 1
and Ti = T gi

1 , and put dij = dgi1j , eij = egi1j , Eij = Egi
1j and Γi = {(i1), (i2), . . . , (ik)}, 

Δ = Γ1 ∪ Γ2 ∪ . . . ∪ Γm. Then Ti = Ei1 ◦ Ei2 ◦ . . . ◦ Eik, and H permutes Δ, with 
dgij = d(ij)g and egij = e(ij)g (1 ≤ i ≤ m, 1 ≤ j ≤ k, g ∈ H). We get the result by 
replacing the suffices (ij) in Δ by the numbers 1, 2, . . . , n (where n = mk). �
Lemma 8.2. Assume Hypothesis D, and suppose CY1(L) �= 0 and 2 | k. If r = 2 suppose 
also that P ≤ H, with 2 � |P | and P1 = NP (T1), and assume that CY1(P1) = CY1(L) �= 0. 
Then R = E1 ◦ E2 ◦ . . . ◦ En, where |Ej | = r3, Er

j ≤ E′
j = Z and Ej = 〈dj , ej〉

(1 ≤ j ≤ n). Moreover the set Δ = {1, 2, . . . , n} is permuted by H, with dgj = djg and 
egj = ejg (j ∈ Δ, g ∈ H).

Proof. We can copy the proof of Lemma 8.1 as follows. Lemma 3.8(a) implies that the 
groups Ti are all of type (i) in Lemma 3.2(b). Moreover CQ0(Yi) = CQ0(Ti) by the 
theory of coprime actions [5, A(12.3)], and Q0/CQ0(Yi) ∼= Cq by Lemma 3.1(a). Put

Q1 = Q0/CQ0(T1) ∼= Cq, L1 = L/CL(T1).

If r �= 2, then Lemma 3.8(b) shows that Q1T1 can be identified with a subgroup of the 
group C1R in Lemma 3.5, and hence L1 ≤ B∞ by Lemma 3.11(a). Since CY1(L) �= 0, 
Lemma 3.14(b) and (c) show that T1 = E11 ◦E12 ◦ . . . ◦E1,k/2, with |E1j | = r3, Er

1j = 1
and E′

1j = Z, E1j = 〈d1j , e1j〉 (1 ≤ j ≤ k/2). Also the set Γ1 = {(11), (12), . . . , (1, k/2)}
is permuted semiregularly by L1, and dg1j = d(1j)g, eg1j = e(1j)g (1 ≤ j ≤ k/2, g ∈ L).

Similarly if r = 2, then Lemma 3.8(c) shows that Q1T1 can be identified with a 
subgroup of the group C1R in Lemma 3.6, and hence L1 ≤ BC1 by Lemma 3.11(b). Since 
CY1(P1) = CY1(L) �= 0, Lemma 3.15(b) and (c) show that T1 = E11 ◦E12 ◦ . . . ◦E1,k/2
with |E1j | = 23, E2

1j ≤ E′
1j = Z and E1j = 〈d1j , e1j〉 (1 ≤ j ≤ k/2). Also the set 

Γ1 = {(11), (12), . . . , (1, k/2)} is permuted semiregularly by L1, and dg1j = d(1j)g, 
eg1j = e(1j)g (1 ≤ j ≤ k/2, g ∈ L).

To complete the proof, let {g1, g2, . . . , gm} be a transversal to L in H, with g1 = 1
and Ti = T gi

1 , and put dij = dgi1j , eij = egi1j , Eij = Egi
1j and Γi = {(i1), (i2), . . . , (i, k/2)}, 
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Δ = Γ1 ∪ Γ2 ∪ . . . ∪ Γm. Then Ti = Ei1 ◦ Ei2 ◦ . . . ◦ Ei,k/2, and H permutes Δ, with 
dgij = d(ij)g and egij = e(ij)g (1 ≤ i ≤ m, 1 ≤ j ≤ k/2, g ∈ H). We get the result by 
replacing the suffices (ij) in Δ by the numbers 1, 2, . . . , n (where n = mk/2). �
Proof of the Theorem. Suppose there is a finite solvable group whose Zπ-injectors are not 
system permutable. By Lemmas 5.2, 5.4 and 5.6, there exist a prime number p ∈ π and an 
FG-module U , where G is a finite solvable group, and F is a finite field of characteristic p, 
such that F is a splitting field for all the subgroups of G, and Hypotheses C1, C2 and C3
in Section 5 are all satisfied. Then U is FK∞-homogeneous by Lemma 6.5, and R is 
extraspecial with Z = R′ ≤ Z(G) by Lemma 7.3(b). Also Q∞ � G by Lemma 5.4(e), and 
hence H◦Q/Q∞ acts on R, where Q/Q∞ is an elementary abelian q-group. Applying 
Lemma 3.2(a), write R = T1 ◦ T2 ◦ . . . ◦ Tm as a central product of extraspecially 
Q-irreducible r-groups Ti. Let k be the order of r modulo q, and put

Ω = {T1, T2, . . . , Tm}, Q0 = Q/Q∞,

W = R/Z, Yi = Ti/Z(1 ≤ i ≤ m).

First suppose 2 � k. Then Lemma 3.7(a) implies that the groups Ti are all of type (ii) in 
Lemma 3.2(b), with Yi = X∗

i ⊕Xi, where the submodules X∗
i and Xi are FrQ-irreducible. 

It follows from Lemma 7.2(a) that X∗
1 , X

∗
2 , . . . , X∗

m and X1, X2, . . . , Xm are the 
FrQ-homogeneous components of W , so they are permuted by H◦, and hence H◦ also 
permutes Ω (because H◦ preserves the duality). Let Ω1, Ω2, . . . , Ωl be the H◦-orbits 
in Ω, and write

Ωi = {Ti1, Ti2, . . . , Timi
}, Ri = Ti1 ◦ Ti2 ◦ . . . ◦ Timi

,

Wi = Ri/Z, Li = NH◦(Ti1),
Yij = Tij/Z = X∗

ij ⊕Xij(1 ≤ i ≤ l, 1 ≤ j ≤ mi).

Then H◦Q0Ri, Ωi and Li satisfy Hypothesis D. Moreover Lemma 7.2(c) shows 
that CXi1(Li) �= 0, so the hypotheses of Lemma 8.1 also hold. We therefore get 
Ri = Ei1 ◦ Ei2 ◦ . . . ◦ Eini

, where |Eij | = r3, Er
ij ≤ E′

ij = Z and Eij = 〈dij , eij〉
(1 ≤ j ≤ ni). Moreover the set Δi = {(i1), (i2), . . . , (ini)} is permuted by H◦, with 
dgij = d(ij)g, egij = e(ij)g ((ij) ∈ Δi, g ∈ H◦).

Next suppose 2 | k. Then Lemma 3.8(a) implies that the groups Ti are all of type (i) in 
Lemma 3.2(b), so the submodules Yi are FrQ-irreducible. It follows from Lemma 7.2(a) 
that Y1, Y2, . . . , Ym are the FrQ-homogeneous components of W , so they are permuted 
by H◦, and hence H◦ also permutes Ω. Let Ω1, Ω2, . . . , Ωl be the H◦-orbits in Ω, and 
write

Ωi = {Ti1, Ti2, . . . , Timi
}, Ri = Ti1 ◦ Ti2 ◦ . . . ◦ Timi

,

Wi = Ri/Z, Li = NH◦(Ti1), Pi = NP (Ti1),
Y = T /Z(1 ≤ i ≤ l, 1 ≤ j ≤ m ).
ij ij i
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Then H◦Q0Ri, Ωi and Li satisfy Hypothesis D. Moreover if r = 2 then p �= 2, and 
Lemma 7.2(c) shows that CYi1(Pi) = CYi1(Li) �= 0, so the hypotheses of Lemma 8.2 also 
hold. As before we get Ri = Ei1 ◦Ei2 ◦ . . . ◦Eini

, where |Eij | = r3, Er
ij ≤ E′

ij = Z and 
Eij = 〈dij , eij〉 (1 ≤ j ≤ ni). Moreover the set Δi = {(i1), (i2), . . . , (ini)} is permuted 
by H◦, with dgij = d(ij)g, egij = e(ij)g ((ij) ∈ Δi, g ∈ H◦).

In both cases take Δ = Δ1 ∪ Δ2 ∪ . . . ∪ Δl, and replace the suffices (ij) by the 
numbers 1, 2, . . . , n (where n = n1 + n2 + . . . + nl). Then

R = R1 ◦R2 ◦ . . . ◦Rl, W = W1 ⊕W2 ⊕ . . . ⊕Wl,

R = E1 ◦ E2 ◦ . . . ◦ En, |Ei| = r3, Er
i ≤ E′

i = Z,

Ei = 〈di, ei〉, dgi = dig, egi = eig (1 ≤ i ≤ n, g ∈ H◦).

Take d as in Lemma 5.7, and put ω = Zd. Then Lemma 5.7(b) implies that the 
FrQ-module ω(FrQ) generated by ω is equal to W , and hence ω �= 0.

We can complete the proof by considering the action of H on R, ignoring the sub-
group Q, as well as the module U . Suppose ω = ω1 + ω2 + . . . + ωl with ωi ∈ Wi, 
and note that ωi ∈ CW (P ) (1 ≤ i ≤ l). At least one of the summands ωi must be 
nonzero, and we choose the notation so that ω1 �= 0 and R1 = E1 ◦ E2 ◦ . . . ◦ En1 . Put 
Λ = {1, 2, . . . , n1} and let Λ1, Λ2, . . . , Λt be the P -orbits in Λ. Take Ji =

∏
j∈Λi

Ej

and Mi = Ji/Z, and note that H◦ stabilizes Λi by Lemma 7.2(b). Then

R1 = J1 ◦ J2 ◦ . . . ◦ Jt, W1 = M1 ⊕M2 ⊕ . . . ⊕Mt.

Continue by taking ω1 = μ1 + μ2 + . . . + μt with μj ∈ Mj , and note that μj ∈ CW (P )
(1 ≤ j ≤ t). At least one of the summands μj must be nonzero, and we choose the 
notation so that μ1 �= 0 and Λ1 = {1, 2, . . . , s}. Then μ1 ∈ J1/Z, so μ1 = Zd′ with 
d′ ∈ J1 − Z and d′ ∈ CR(P ). Take

d∞ = d1d2 . . . ds, e∞ = e1e2 . . . es, E∞ = 〈d∞, e∞〉Z,

and note that E∞ = CJ1(P ), so d′ ∈ E∞−Z. Suppose [d1, e1] = z, and choose elements 
bj ∈ P so that 1bj = j in the action on Λ1. Then z �= 1 and [dj , ej ] = [d1, e1]bj = zbj = z

(1 ≤ j ≤ s). Also P permutes Λ1 transitively, so r � s. Hence

[d∞, e∞] = [d1, e1][d2, e2] . . . [ds, es] = zs �= 1,

and therefore E∞ is a nonabelian group of order r3, with E′
∞ = Z(E∞) = Z. Now 

da0
i = dia0 and ea0

i = eia0 (1 ≤ i ≤ s), so a0 centralizes E∞. Also d′ is the ‘component’ 
of d in J1, so the action of d on J1 is the same as the action of d′, and therefore

CE∞(S) = CE∞(a) = CE∞(a0d) = CE∞(d) = CE∞(d′) = 〈d′〉Z < E∞.

On the other hand P centralizes E∞, so this contradicts Lemma 5.6(f). �
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