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1. Introduction

Let p be an odd prime number, and let p,» denote the group of p™-th roots of unity for
a positive integer n and we set ppoo = Up>1pn. We let koo 1= Q(upe ) and k the maximal
pro-p extension of ko, which is unramified outside p. We let '), := Gal(kso/Q) and F), :=
Gal(k/ks), the Galois groups of the extensions koo /Q and k/keo, respectively. Classical
Iwasawa theory then deals with the action of I'), on the Abelianization Hi(F),,Z,) of F),
([12]). A basic problem of non-Abelian Iwasawa theory, with which we are concerned in
this paper, is to study the conjugate action of I', on F}, itself. In terms of schemes, one
has the tower of étale pro-finite covers

X, = Spec(Oy[1/p]) = X5 = Spec(Os_[1/p]) = X, = Spec(Z[L/p]),  (1.1)

where O_ and Oy, denote the rings of integers of k., and k, respectively, and the Galois
groups

I, = Gal(X°/X,), F,=Gal(X,/X°)=nt"""P(X>2), (1.2)

where 77" 7P

stands for the maximal pro-p quotient of the étale fundamental group. So
the problem is to study the monodromy action of I',, on the arithmetic pro-p fundamental
group Fj,.

Now let us recall the analogy between a prime and a knot

prime knot

Spec(F,) = K(Z,1) < Spec(Z) | S* = K(Z,1) — 3 (1.3)

Here K (x*,1) stands for the Eilenberg-MacLane space and Spec(Z) := Spec(Z) U {c0},
oo being the infinite prime of Q which may be seen as an analogue of the end of R?
([5]). This analogy (1.3) opens a research area, called arithmetic topology, which stud-
ies systematically further analogies between number theory and 3-dimensional topology
([23]). In particular, there are known intimate analogies between Iwasawa theory and
Alexander-Fox theory ([19], [23, Chap. 9 ~ 12]).

Arithmetic topology suggests that topological counterparts of (1.1) and (1.2) may be
the tower of covers

Xk — X2 — Xx =S\ K,

for a knot K in $3, where X and X denote the infinite cyclic cover and the universal
cover of the knot complement Xy, respectively, and the Galois groups

Tk := Gal(X¥/Xx), Fx :=Gal(Xx/XZ)=m (X)),

and we have the conjugate action of I'xc on Fic.
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To push our idea further, suppose that KC is a fibered knot so that X is a mapping
torus of the monodromy ¢ : S — S, S being the Seifert surface of K. Then Fx = m1(5)
and the conjugate action of ' on Fi is nothing but the monodromy action induced by
¢ on F)C

(15* : F]C — Aut(FK). (14)

Note here that the monodromy ¢ may be regarded as a mapping class of the surface S.
Thus the action (1.4) can be studied by means of the Johnson homomorphisms/maps,
associated to the lower central series of Fi, defined on a certain filtration of the mapping
class group for the surface S ([15], [17], [24]) or, more generally, on the automorphism
group Aut(Fx) ([16], [26]).

In this paper, we regard the action of I', on Fj, as an arithmetic analogue of the
monodromy action (1.4) and propose an approach to study non-Abelian Iwasawa theory
by introducing arithmetic analogues of the Johnson homomorphisms/maps, called the
p-Johnson homomorphisms/maps, associated to the Zassenhaus filtration of F,, defined
on a certain filtration of the automorphism group Aut(F},). For this, we lay a foundation
of a general theory of p-Johnson homomorphisms/maps in the context of pro-p group.

We note that our viewpoint and approach differs from what is called “non-
commutative Iwasawa theory” (cf. [3], [14, 3]). The works by M. Ozaki ([25]) and
R. Sharifi ([28]) are related to ours (see Remark 3.2.7), however, our approach is different
from theirs and closer to geometric topology.

Here is the content of this paper. In Section 2, we give a general theory of p-Johnson
homomorphisms in the context of pro-p groups. We use the Zassenhaus filtration of a
finitely generated pro-p group G in order to introduce the p-Johnson homomorphisms,
defined on a certain filtration of the automorphism group of G. In Section 3, we give
a framework to study non-Abelian Iwasawa theory by means of the p-Johnson homo-
morphisms. In Section 4, we give a theory of Johnson maps for a free pro-p group F
by extending the p-Johnson homomorphisms in Section 2 to maps, called the p-Johnson
maps, defined on the automorphism group Aut(F') itself. In Section 5, we give a coho-
mological interpretation of the p-Johnson homomorphisms in terms of Massey products
in Galois cohomology.

Notation. For subgroup A, B of a group G, [A, B] stands for the subgroup of G generated
by [a,b] := aba~'b~! for all a € A,b € B.

2. Zassenhaus filtration and p-Johnson homomorphisms for a pro-p group

In this section, we give a general theory of p-Johnson homomorphisms for pro-p groups.
We associate to the Zassenhaus filtration of a finitely generated pro-p group G a cer-
tain filtration on the automorphism group Aut(G) of G, and introduce the p-Johnson
homomorphisms defined on each term of the filtration of Aut(G).



M. Morishita, Y. Terashima / Journal of Algebra 479 (2017) 102—-136 105

Throughout this section, let p be a fixed prime number and G a finitely generated
pro-p group. For general properties of pro-p groups, we consult [18] and [6].

2.1. Zassenhaus filtration and the associated Lie algebra

Let F, [[G]] be the complete group algebra of G over F,, = Z/pZ with the augmentation
ideal I := Ker(ep,[jg))), where ex (g : Fp[[G]] — F, is the augmentation homomor-
phism ([18, 7.1]). For each positive integer n, we define the normal subgroup G, of G
by

Gn,:={geG|g—1€cli}. (2.1.1)

The descending series {Gy, }n>1 is called the Zassenhaus filtration of G ([18, 7.4]). The
family {G}, }n>1 forms a full system of neighborhoods of the identity 1 in G and satisfies
the following properties

(Gl)p C Gpi (Z > 1). (2.1.2)
[G“Gj] C GiJrj (Z,] > 1) (213)

We recall the fact that the abstract commutator subgroup of a finitely generated pro-p
group is closed ([6, 1.19]).

The Zassenhaus filtration is in fact the fastest descending series of G having the
properties (2.1.2) and (2.1.3). Namely, it is shown by Jennings’ theorem and an inverse
limit argument that we have the following inductive description of G,,:

G = (G [] GGyl (n>2), (2.1.4)

i+j=n

where [n/p] stands for the least integer m such that mp > n ([6, 12.9]).

We note by (2.1.3) that elements of G;/G;y; and G;/Gi4; commute, in particular,
G /Gp41 is central in G/Gpy1. The 2nd term Gy is the Frattini subgroup GP[G, G] of
G and we denote by H the Frattini quotient

H:=G/Gy, =G/GP|G,G] = Hi(G,Fp). (2.1.5)
For g € G, we write [g] for the image of g in H: [g] := ¢ mod G2. We note that each G,

is a finitely generated pro-p group ([6, 1.7, 1.14]).
For each n > 1, we let

grn(G) = Gn/Gn+17

which is a finite dimensional Fj,-vector space. The graded IF,-vector space



106 M. Morishita, Y. Terashima / Journal of Algebra 479 (2017) 102—-136

gr(G) = @grn(G) (2.1.6)

n>1

has a natural structure of a graded Lie algebra over F, by (2.1.3). Here, for a =
g mod Gi11,b=h mod Gj1+1 (g € Gi, h € G;), the Lie bracket is defined by

[a,blgr(c) := [9,h] mod Gy ji1.

Further, by (2.1.2) again, gr(G) has the operation [p] defined by, for a = g mod G, 11 €
gra (@),

[pl(a) := g mod Gpn 1,
which makes gr(G) a restricted Lie algebra over F, ([6, 12.1]).

The restricted universal enveloping algebra (abbreviated to wuniversal envelope)
U(gr(G)) of gr(Q) is given as follows. For each m > 0, we let

gt (F,[[G]]) = 18 /15,

and consider the graded associative algebra over Fy:

gr(F,([GT) = D gr, (F,[[G]))-

m>0

For each m > 1, we have an injective F,-linear map
Om : gr,,(G) — gr,, (Fp[[G]])
defined by
01 (g mod Gppy1) :== g — 1 mod Ig?“ for g € Gp,.

Putting all 6,,, together over m > 1, we have an injective graded Lie algebra homomor-
phism over [,

gr(0) == @D Om : ar(G) — ex(F,[(G).

m>1

Then (gr(F,[[G]]), gr(f)) is the universal envelope of gr(G) ([6, 12.8]):

Ugr(G) = gr(F,[[G))- (2.1.7)



M. Morishita, Y. Terashima / Journal of Algebra 479 (2017) 102—-136 107

2.2. The automorphism group and p-Johnson homomorphisms

Let Aut(G) denote the group of continuous automorphisms of a finitely generated
pro-p group G. We note that any abstract group homomorphism between finitely gener-
ated pro-p groups is always continuous and so Aut(G) is same as the group of automor-
phisms of G (as an abstract group) ([6, 1.21]). We also note that every term G,, of the
Zassenhaus filtration of G is a characteristic subgroup of GG, namely, invariant under the
action of Aut(G).

Since any automorphism ¢ of G induces an automorphism [¢],, of G/G,,+1 for each
integer m > 0, we have the group homomorphism

[ Jm @ Aut(G) — Aut(G/Gpt1)- (2.2.1)
We then define the normal subgroup Ag(m) of Aut(G) by
Ac(m) = Ker([ |m)
(2.2.2)
= {¢ € Aut(G) |¢(9)g™" € Gy} (m=0).

We call the resulting descending series {Ag(m)}m>0 the Andreadakis—Johnson filtration
of Aut(G) associated to the Zassenhaus filtration of G (cf. [1,26]). In particular, we
set simply [¢] := [¢]1 for ¢ € Aut(G) and the 1st term Ag(1) is called the induced
automorphism group of G and denoted by IA(G):

TA(G) :=Ker([ ]: Auwt(G) — GL(H)), (2.2.3)

where GL(H) denotes the group of Fy-linear automorphisms of H = G/Gs.

The family {Ag(m)}m>o forms a full system of neighborhood of the identity idg in
Aut(G) and it can be shown that Aut(G) is a pro-finite group and IA(G) is a pro-p group
([6, 5.3, 5.5]). So Aut(G) is virtually a pro-p group.

The next Lemma will play a basic role to introduce the p-Johnson homomorphisms.

Lemma 2.2.4. For ¢ € Ag(m) (m >0) and g € G,, (n > 1), we have

?(9)g" € Grgn.

Proof. We fix m and prove the assertion by induction on n. For n = 1, the assertion
#(g)g~! € Gyuyq is true by definition (2.2.2) of Ag(m). Assume that

#(9)g ' € Gryiifg€ Giand 1 <i < n. (2.2.4.1)

By (2.1.4), we have

Gni1 = (Gint1ym)? H (Gi, Gy].
itj=n+1
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Since Grt1/([1;4 j=ns1[Gi, Gjl) is Abelian, we have

Gnir ={d"|a € Gy}t [ GGy
i+j=n-+1

and so any element g of G,,4+1 can be written in the form
9= ap[blv 61]61 T [bq’CQ]eq’

where a € G, 41)/p) and for each s (1 < s < g) there are 4,5 (i + j = n + 1) such that
bs € Gy, cs € Gj. Since we have

QS(g)gil = ¢(a)p¢([bla Cl])81 e ¢([bZI7 Cq])eq [blb Cq]ieq e [bla Cl}ielaipa
it suffices to show that

(b, )b, c] ™ € Grgns1 if b€ Giye € Gjand i+ j =n+ 1, (2.2.4.2)
P(a)Pa™ € Gpint ifa € G[(n+1)/p]. (2.2.4.3)
(2.2.4.2). For simplicity, we shall use the notation: [1,z] = ¥(z)z~! and [z,v] =

x(z)~! for z € G and ¥ € Aut(G). By the “three subgroup lemma” and the induction
hypothesis (2.2.4.1), we have

(b, c)[b, ] = [@, b, c]]
€ [¢,1G:, Gjl]
C llo, Gil, GilllG5, 9], Gil
C [Gim+ti, Gil[Gmaj; Gil

= Gm+i+j = Gm+n+1-

(2.2.4.3). Let t := [(n+1)/p] so that pt > n+ 1. By (2.1.1) and the induction hypothesis
(2.2.4.1), we have

#(a) —a=(p(a)a' —1)a € I5™.
Therefore we have

B(a)'a ~ 1= (@(a)” ~ aP)a”"
= (6(@) e

€ [pitm) ¢ pmintl

Hence ¢(a)Pa™® € Gpqint1 by (2.1.1). O
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Lemma 2.2.4 yields the following properties of the Andreadakis—Johnson filtration
{Ac(m)}m>o.

Proposition 2.2.5. We have

(1) [Ac(i), Ac(j)] C Ag(i+j) ford,j > 0.
(2) Ag(m)? c Ag(m+1) if m > 1.

Proof. (1) We use the same notation as in the proof of (2.2.4.2). By Lemma 2.2.4, we
have

[[Ac(4): Gl Ag(i)] C [Gj+1,Ac(i)] C Giyjtr,
HG»AG(Z)LAG(J)] C [GiJrlvAG(j)] - Gi+j+1'

By the three subgroup lemma, we have

[[Ac(i), Ac(i)], G] C [Ac(h), Gl Ac(]([G, Ac(i)], Ac(§)] C Gitjtr-
By definition (2.2.2), we obtain
[Ac(i), Ac(j)] € Ag(i+ 7).
(2) Let g € G and ¢ € Ag(m). We shall show that for any integer d > 1,

" (9)97" = (6(9)g™")" mod Gapy1, (2.2.5.1)

from which the assertion follows. In fact, let d = p in (2.2.5.1). Then (¢(g)g~!)? €
Gpmt1) by (2.1.2), and Gapy1 C Gyo because m > 1. So #”(9)g~" € Gypyo and hence
o € Ag(m +1).

We prove (2.2.5.1) by induction on d. For d = 1, it is obviously true. Suppose

#4(9)g7 = (¢(9)g~1)% mod Gayyyi. Note that ¢(g)g~! € Gpui1, since (¢(g9)g~1)? €
Gpm41- Then we have

o (9)g7 ((9)g™ )Y = ¢4 (g)d(9) " b(9)gH (B(g)g ) Y
D0 (9)g ") (d(g)g™ )¢
?(6M(9)g~ ) (0% (9)g™") " mod Gap1.

Since ¢(¢4(9)g™ ) (04 (9)g™")~" € Gamyr by Lemma 2.2.4, ¢ (g)g~! = (4(g)g )"
mod Ga,,+1 and hence the induction holds. O

Now we are going to introduce the p-Johnson homomorphisms. Let ¢ € Ag(m)
(m > 0). For ¢ € G, we have ¢(9)g~' € G,y1. Then we see that ¢(g)g~! mod
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Gm+2 € 8,41 (G) depends only on the class [g] € H. In fact, for ¢' = ggo with g2 € Go,
we have

o(9)g' " = d(9)p(92)g5 19" = d(9)g™" mod Gy,
since ¢(g2)g5 1 € Gnya by Lemma 2.2.4. Thus we have a map
Tm(¢) + H — gr,,11(G)
defined by
Tm(9)(h) = ¢(g)g~" mod Gy (b = [g)). (2.2.6)
Lemma 2.2.7. For ¢ € Ag(m) (m > 0), the map T, (@) is Fp-linear.

Proof. Let h = [g], b’ = [¢] and ¢ € F,,. Using the property that Gy,41/G 2 is central
in G/G 42, we have

= (6(9)g™ ) (d(g")g' ™) mod Gy
Tm((b)(h) + Tm(¢)(h/)7

and

Tm(9)(ch) = T (¢)([9°])

g ¢ mod Gi2

)
= (¢(9)g™")° mod Gtz

Let Homp, (H,gr,, ,(G)) denote the group of F-linear maps H — gr,,,,(G). By
Lemma 2.2.7, we have the map

Tm : Ag(m) — Homp, (H,gr,, . (G)).
For m = 0, we easily see by (2.2.6) that 79(¢) = [¢] — idy for ¢ € Aut(G).

Theorem 2.2.8. For m > 1, the map T, is a group homomorphism and its kernel is
Ag(m + 1)
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Proof. Let ¢1, ¢ € Ag(m). For any g € G, we have
T (0162)([9]) = ¢1(¢2(9))g™" mod Gy
= ¢1(62(9)9™") - $1(9)g™ ! mod Grypa-

Since ¢2(9)g™! € Gmi1, d1(h2(9)g71) = ¢2(g)g~! mod Gapi1 by Lemma 2.2.4. Since
Gom+1 C Gy by m > 1, we have

T ($102)([9]) = ¢1(9)9™" - #2(9)g™" mod Groya
= (Tim(¢1) + Tm(92))([9])

for any g € G. Hence the former assertion is proved. The latter assertion on Ker(7,,) is
obvious by definition (2.2.6). O

The homomorphism 7,,, : Ag(m) — Homg, (H,gr,,;(G)) (m > 1) or the induced injec-
tive homomorphism

Tm : 8p(Ag) == Ag(m)/Ac(m + 1) — Homg, (H, gr,, 1(G)) (m>1)

is called the m-th p-Johnson homomorphism.

We give some properties of the p-Johnson homomorphisms. Firstly, we note that the
group Aut(G) acts on both Ag(m) and Homg, (H,gr,, ;(G)) by the following rules,
respectively:

{ b.pi=1ogo! (¢ € Aut(G), ¢ € Ag(m)),
() (h) =[]~ (h)) (¥ € Aut(G),n € Homg, (H, gr,,,,(G)), h € H).

Then we have the following

Proposition 2.2.9. The p-Johnson homomorphism 7., (resp. Tpm) is Aut(G)-equivariant
(resp. Aut(G) /TA(G)-equivariant).

Proof. Let ¢ € Aut(G) and ¢ € Ag(m). Then we have, for any g € G,

T (¥-¢)([9]) = T (¥ 0 po ™ 1)([g])
=(poporp™")(g)g” " mod Gpia.

On the other hand, we have, for any g € G,

(V7m(9))([9]) = ¥
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Hence 7,, is Aut(G)-equivariant. As for 7, it suffices to note that IA(G) acts trivially
on gr,, (Ag) = Ag(m)/Ag(m+1) by Proposition 2.2.5 (1) and on Homy, (H, gr,,,1(G))
by (2.2.3) and Lemma 2.2.4. 0O

Next we compute the p-Johnson homomorphism on inner automorphisms. Let Inn : G —
Aut(G) be the homomorphism defined by

Inn(z)(g) == zgz~ ' (z,9 € G).

The image Inn(G) is a normal subgroup of Aut(G) and called the group of inner auto-
morphisms of G.

Proposition 2.2.10. Let m > 1 and x € G,,. Then we have
Inn(z) € Ag(m)
and

7 (I (2))([9]) = [z, 9] mod Gy (9 € G).

Proof. For x € G,,, and g € G, we have

-1

Inn(z)(9)g™" = [z, 9] € Gm+1,

from which the assertions follow. O
Finally we compute the p-Johnson homomorphisms on commutators of automorphisms.

Lemma 2.2.11. For ¢ € Ag(i), ¢ € Ag(j) (k,m > 0) and g € G, we have, in gy ir1(G),
Tivg (¢, 0)([9])
=p(d(9)g ) e(9)g™ ) = d((9)g™ ) (W¥(9)g™ ")~ mod Giyjia.

Proof. By a straightforward computation, we obtain

[, ¢)(9)g~"
= [, ¢l ((3(9)g™ ") ") - (™M) (((g)g™") 1) - w(plg)g™") - v(g)g ™"

Since [¢, ¢] € Ag(i + j) by Proposition 2.2.5 (1) and ¢(g)g~" € Gj11 by Lemma 2.2.4,
we have

[, 0l((¢(9)g~ ")) = (6(9)g™")~" mod Giyajsa.
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Similarly, we have

(W™ ) ((W(9)g™") ") = ¢((¥(g)g™ ")) mod Gaipjta.

By these three equations together, we have

[, ¢)(9)g ™"
= (6(g)g ") o(W(9) (g™ - (d(9)g™") - ¥(g)g™" mod Gipjpo.
Since ¥(9)g™" € Git1,0(9)g™ " € Gj41 and [Giy1,Gj41] C Giyjta, we have

[, ¢l(9)g~"
= (o(9)g ") w(o(g)g™") - d(((9)g™ ")) - ¥(g)g™" mod Gipjto.

Since we easily see that

{ (P(9)g™ ") p(o(g)g™") = w(d(g)g™ ") (d(g9)g™") ™! mod Giyjya,
o((Y(9)g™) ) - (g)g™! = (d((9)g™") - (Y(g)g™") 1)~ mod Gipjya,

we obtain the assertion. O

By Proposition 2.2.5, we can form the graded Lie algebra over F, associated to the
Andreadakis—Johnson filtration:

gr(Ag) = P er(Ac), gr.(Ag) = Ag(m)/Ag(m+1),

m>0

where the Lie bracket is given by the commutator on the group Aut(G).

Then by Lemma 2.2.11, the direct sum of Johnson homomorphisms 7, over all m > 1
defines a Lie algebra homomorphism from gr(A¢) to the derivation algebra of gr(G) as
follows. Recall that an Fp-linear endomorphism of gr(G) is called a derivation on gr(G)
if it satisfies

6([z,y]) = [0(x), y] + [z,6(y)] (2,y € gr(G)).

Let Der(gr(G)) denote the associative Fp-algebra of all derivations on gr(G) which has
a Lie algebra structure over F,, with the Lie bracket defined by [, '] := d 06’ — 6’ 04 for
9,¢" € Der(gr(G)). For m > 0, we define the subspace Der,, (gr(G)) of Der(gr(G)), the
degree m part, by

Dery, (gr(G)) := {6 € Der(gr(G)) | 0(gr,(G)) C gr,,1n(G) for n > 1}

so that we have
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Der(gr(G)) = @ Dery, (gr(G)).
m>0

Since a derivation on gr(G) is determined by its restriction on H = gr;(G), we have a

natural inclusion
Der,, (gr(G)) € Homy, (H, gr,,,1(G)); 6+ 6|l

for each m > 1 and hence we have the inclusion

Der, (gr(G)) C @ Homp, (H, gr,,11(G)),

m>1

where Dery (gr(G)) is the Lie subalgebra of Der(gr(G)) consisting of positive degree
parts.

Proposition 2.2.12. The direct sum of T, over m > 1 defines the Lie algebra homomor-
phism

gr(r) := EB Tm @ gr(Ag) — Dery (gr(G)).

m>1

Proof. (cf. [4, Proposition 3.18]) By Lemma 2.2.11, it suffices to show that for ¢ €
Ag(m), the map g — ¢(g)g~! is indeed a derivation on gr(G). Let ¢ € Ag(m) (m > 1)
and g € Gy, h € G. By using the commutator formulas

[ab,c] = a[b,cla™* - [a,c], [a,bc] = [a,b] - bla,c]b™* (a,b,c € G),
we obtain

o(lg, h])[g, h] ™!

= [6(9), ¢(h)][g, h] "

=997 ¢(g), p(h)h~"h][g, h]

=9(lg7"¢(9), o()h ] - (p(M)h™ ) g™ 6(g), hl(p(M)h™1) " H)g ™"
(g, d(R)R(G(R)R ™) [g, hl(¢(R)h ") " g, h]

=9([g7"¢(9), p(h)h '] - (p(h)h ") [g™ " ¢(g), hl(¢(R)h~ ")~ )g ™!
-9, ()R~ Y[p(R)h™, [g, hl].

Since g7¢(g) € Gitm,d(h)h ™' € Gj4m by Lemma 2.2.4, we have

[97 ¢(9), d(h)h™"] € Gigjrom.



M. Morishita, Y. Terashima / Journal of Algebra 479 (2017) 102-136 115

Similarly, we have

[(b(h)hil? [gv h]] S Gi+2j+7n-

By these three claims together, we have

o(lg,h))lg, h] ™"
= go(h)h g~ ¢(9), h](gp(h)h ") [g, ¢(h)h "] mod Gitjtmi1.

Noting z[g7'é(g),hlz=' = [g7'¢(9),h] mod Giyjyms1 for z € G, our claim is
proved. O

3. Non-Abelian Iwasawa theory

In this section, we propose an approach to study non-Abelian Iwasawa theory by
means of the Johnson homomorphisms. In the course, we introduce some invariants
from a dynamical viewpoint.

Throughout this section, a fixed prime number p is assumed to be odd.

3.1. Classical Iwasawa theory

Let k be a number field of finite degree over Q and let ko be a Zj-extension of k,
namely, ko /k is a Galois extension whose Galois group is isomorphic to the additive
group of p-adic integers Z,. We call ko, the cyclotomic Z,-extension of k if ko, is the
unique Z,-extension of k contained in k(up ). Let S, denote the set of primes of k lying
over p and S a finite set of primes of k£ containing S,. Note that the extension ko /k is
unramified outside .S,,. Let ks be the maximal pro-p extension of k which is unramified
outside S, and let M be a subextension of ks/k such that M/k is a Galois extension.
We set

I := Gal(kw/k), G := Gal(M/k) and G := Gal(M/kw) (3.1.1)
so that we have the exact sequence
l1—G—§G—T —1 (3.1.2)
We assume that G is a finitely generated pro-p group, in other words, the p-invariant is
Zero.
We fix a topological generator « of I" and its lift 4 € G. We then define the automor-

phism ¢ of G by Inn(%)

¢5(9) =997 (g9 € G). (3.1.3)
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We note that if we choose a different lift 4’ of ~, ¢5/ differs from ¢5 by an inner auto-
morphism of G:

¢5 =Inn(x) o p5 (z:=7471 € Q). (3.1.4)

Let H be the Frattini quotient of G, H = G/GP?|G,G], as in (2.1.5). The F,-linear
automorphism [¢5] of H induced by ¢5 is independent of the choice of a lift 4 and so is
denoted by [¢-]. Similarly, we let Hy, be the Abelianization of G, Ho, = G/[G, G], and
[#+]oo the Zy-module automorphism of Hy, induced by ¢, which is independent of the
choice of a lift 4 of 7. The reason that we use the Zassenhaus filtration instead of the
lower central series throughout this paper is that any p-power of ¢5 acts non-trivially on
G/|G,G] in general.

By the Magnus correspondence v — 1 + X, we identify the complete group algebra
F,[[T']] (resp. Zp[[[']]) with the power series algebra F,[[X]] (resp. Zp[[X]]). We set simply
A = Z,[[X]] (Iwasawa algebra) and A := F,[[X]]. Classical Iwasawa theory studies the
A-module structure of Ho,, in other words, the p-power iterated action of [¢,]cc on Heo.
A fundamental theorem of Iwasawa ([12]), under our assumption on G, tells us that there
is a A-module homomorphism, called a pseudo-isomorphism,

Hoo — DA/ (f:(X)) (3.15)

i=1

with finite kernel and cokernel, where f;(X) is a power of an irreducible distinguished
polynomial. Recall that a nonconstant polynomial f(X) € Z,[X] is called distinguished
if f(X) has the form X¢ 4+ a; X! 4 ... 4 a4 with all a; = 0 mod p. The Iwasawa
polynomial (p-adic zeta function) associated to H., is defined by [];_, f;(X). The set
of degrees of f;, {deg(f1),...,deg(fs)}, is also an invariant of the A-module H,,. The
Iwasawa A-invariant A\(Hs) is defined by their sum >0, deg(f;).

In some cases, the pseudo-isomorphism in (3.1.5) turns out to be an isomorphism.
Then we can describe the p-power iterated action of [¢,] on H in terms of deg(f;)’s.
Since H is finite, there is an integer d > 0 such that [gb,y]pd = [d)’ypd] = idy, namely,

[¢7]pd € IA(G). We call such smallest integer d the p-period of [¢,] on H.

Proposition 3.1.6. Suppose that we have a A-module isomorphism

Heo 2 @A/ (Fi(X)),

where f; is a distinguished polynomial of degree deg(f;). Let d(H,) denote the mazimum
of deg(f1),...,deg(fs). Then we have

[fbw]pd = [, pa] =idn, namely, [%]pd e IA(G)
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if and only if
p? > d(Hy).
Hence the p-period of [¢,] is given by the smallest integer > log, d(H).

Proof. By the assumption, we have a A-module isomorphism

H ~ @K/(Xdeg(fi))_

i=1

Since the action of [gb,y]pd —idy on H corresponds the multiplication by (1 + X )pd —-1=
X7, [qﬁv]pd = idy if and only if X?" € (Xdee(f)) for all 4. From this the assertion
follows. O

Example 3.1.7. ! Let k := Q(up), koo := Q(pp=) and M the maximal unramified pro-p
extension of k.. The assumption of Proposition 3.1.6 is then satisfied if the Vandiver
conjecture is true, namely, p does not divide the class number of the maximal real
subfield of & ([29, Theorem 10.16]). The Vandiver conjecture is known to be true for p <
163577856 ([2]). For instance, we have Hoo = A/(f) for p = 37 and Hoo = A/(f1)DA/(f2)
for p = 157, where f, f1 and f; are all distinguished polynomials of degree one ([11]). So,
the p-period of [¢,] is zero, namely, [¢,] acts trivially on H. Mizusawa made a program
to compute the Iwasawa polynomial when k is an imaginary quadratic field Q(v/—D), koo
is the cyclotomic Z,-extension and M is the maximal unramified pro-p extension of k.
For example, when p = 3 and D = 186,211, 231,249, H,, = A/(f) with deg(f) = 2 and
so the 3-period of [¢,] is one, and when p = 3 and D = 214,274, H,, = A/(f) with
deg(f) = 4 and so the 3-period of [¢,] is two.

3.2. Non-Abelian Twasawa theory via Johnson homomorphisms

A basic problem in non-Abelian Iwasawa theory is to understand the p-power iterated
action of ¢5 on G, while classical Iwasawa theory deals with that of [¢,] on Hy as shown
in 3.1. Let {G,, }n>1 be the Zassenhaus filtration of G so that H = G/G3, and let [¢5].,
be the automorphism of G/Gy,41 induced by ¢5 as defined in (2.2.1). We aim to study
the p-power iterated action of [¢5],, on G/Gp,41 for all m > 1 by means of the p-Johnson
homomorphisms introduced in 2.2.

First, let us see how a different choice of a lift of ~ affects the action of a power of

[d)i]m o1 G/Gm+1

Lemma 3.2.1. Let 5, 7' be lifts of v in G and set x = ¥'5~1 € G as in (3.1.4). Suppose
x € Gy,. Then, for each integer e > 1, we have

1 'We thank Y. Mizusawa for informing us of this example.
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95 € Ag(m) <= ¢5 € Ag(m).
Proof. By (3.1.4), we have
0% (9) =y (9)y™", yi=xgs(x) - ¢S (2) € G,

for any g € G. Since elements of G/G,,+1 and Gy, /Gr1 commute, the assertion is
shown as follows

¢5 € Ag(m) & 95, (9)g~" € Gppy1 for any g € G
< Yo (9)y 97" € Gy for any g € G
< ¢5(9)g"" € Gy for any g € G
= Qﬁﬁ € Ag (m) O
Let gr(G) = @,>,81,(G), gr,(G) = G,/Gn1, be the graded Lie algebra over F)
associated to the Zassenhaus filtration of G as in (2.1.6), and let {Ag(m)}m>o0 be the
Andreadakis—Johnson filtration of Aut(G). For m > 1, let

Tm : Ag(m) — Homp, (H, gr,,,1(G))

be the p-Johnson homomorphism. The next Corollary follows immediately from
Lemma 3.2.1.

Corollary 3.2.2. Let 7, 7' be lifts of v in G and set x = ¥'3~1 € G. Suppose v € Gy
and ¢S € Ag(m) (e > 1). Then we have

Tm(95) = Tin (¢5)-
Proof. By Lemma 3.2.1, ¢5, € Ag(m). Since ¢S, = Inn(y) o ¢5 with
y=a¢s5(x) - ¢S (2) € Gy,
the assertion follows from Theorem 2.2.8 and Proposition 2.2.10. O
We fix a lift 4 € G of 7. Generalizing the p-period of [¢,] on H = G/G,,, we define

the p-period d(m) of ¢5 acting on G/Gpn41 for each m > 1 by the smallest integer d > 0
such that

¢§d € Ag(m). (3.2.3)

Thus we have non-decreasing sequence {d(m)},,>1 of integers.
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Lemma 3.2.4. For each integer m > 1, we have
d(m + 1) = d(m) or d(m) + 1.

Proof. By definition of d(m), we have d(m + 1) > d(m). Suppose qfiyd € Ag(m). Then
by Proposition 2.2.5 (2), we have gb?ide € Ag(m+1). Hence d(m +1) <d(m)+1. O

Now we introduce another sequence of integers {m(d)}4>o as follows. For each integer
d > 0, we define the integer m(d) > 1 by

¢ € Ag(m(d)), ¢% ¢ Aa(m(d)+1). (3.2.5)
It is a strictly increasing sequence. In fact, we have
Lemma 3.2.6. For each integer d > 0, we have
m(d+1) > m(d) + 1.

Proof. Since ¢gd € Ag(m(d)) for each d > 0, by Proposition 2.2.5 (2), we have (bf;d+1 €
Ag(m(d) 4+ 1). Hence, by definition (3.2.5), we have m(d+1) > m(d)+ 1. O

Then the sequence {Tm(d)(qf)gd)}dzo in Homp, (H, gr,,(4)1+1(G)) describes the action of
¢>§d on G/Gpya)41 for all d > 0. In Section 5, we give a cohomological interpretation of
d

Tm(d) (¢4 ) in terms of Massey products in Galois cohomology.

Remark 3.2.7. Let M the maximal unramified pro-p extension of k.. Ozaki ([25])
studied the I'-action on the graded pieces associated to the lower central series of
G = Gal(M/ko) and obtained arithmetic results. We also refer to Sharifi’s paper [28]
for a related work. Our approach is different from theirs.

4. p-Johnson maps for a free pro-p group

In this section, following Kawazumi ([16]), we extend the p-Johnson homomorphisms
in Section 2 to maps defined on the whole group of automorphisms when G is a free
pro-p group.

Throughout this section, let F' denote a free pro-p group on z1,...,x,. A fixed prime
number p is arbitrary in 4.1 and assumed to be odd in 4.2.

4.1. p-Johnson maps

We keep the same notations as in 2.1, only replacing G by F'. Let F,[[F]] be the
complete group algebra of F' over F,, with augmentation ideal Ip. Let {F),},>1 be the
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Zassenhaus filtration defined by F,, = FN(1+1}) and let H := F/F, = F/FP[F, F] be
the Frattini quotient of F. We write [f] for the image of f € F in H: [f] := f mod F5.
We denote [z;] by X; (1 < j <r) simply so that H is a vector space over F,, with basis
Xy, X,

H=F,X1& - ®F,X,.

As in 2.1, let gr(F) be the graded restricted Lie algebra over F, associated to the
Zassenhaus filtration {F},},>1 of F

gr(F) = @ er,(F), er,(F):=F,/Fp1.

n>1

It is the free Lie algebra over F), on X1, ..., X,. Its restricted universal enveloping algebra
Ugr(F) is given by the graded associative algebra gr(IF,[[F]]) (cf. (2.1.7))

Ugt(G) = gr(F,[[F]]) = €D v, (Fo[[F]]), g, (F[[F]) = I /I3

m>0

together with the injective restricted Lie algebra homomorphism

gr(0) = @D O : ex(F) — gr(F,[[F]]),

m>1
where 6, : gr,, (F) — gr,,(Fp[[F]]) is given by
O (f mod Fyy1) := f — 1 mod I,

By the correspondence z; — 1 mod I% € gr, (F,[[F]]) — X; € H, the universal envelope
gr(F,[[F]]) is identified with the tensor algebra on H over F, or the non-commutative
polynomial algebra F,(X1,..., X,) of variables X1,..., X, over F,

Ugt(G) = gr(F,[[F]) = € HE™

m>0

= Fp(X1,..., X,).

Here the graded piece gr,, (F,[[F]]) corresponds to H®™, the vector space over F, with
basis X;, -+ X, (1 < d1,...,4,m < r), monomials of degree m, and so 6,, may be
regarded as the injective IF,-linear map

O : gr,,(F) — H®™ (4.1.1)

In order to extend the Johnson homomorphisms in 2.2 to the maps defined on the
whole automorphism group Aut(F'), we work with the completion U of the universal
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envelope Ugr(F) = gr(Fp[[F]]) with respect to Ip-adic topology. So U is the complete
tensor algebra on H over F), which is identified with the F,-algebra F,((Xy,...,X,)) of
non-commutative formal power series of variables X, ..., X, over F, (In [16] Kawazumi
wrote 7' for [Af)

U= HH®m

m>0

=F,((X1,..., X))

Then the composite of 6, in (4.1.1) with the natural inclusion H®™ < U is nothing
but the restriction to F,, of the Magnus embedding

§:F U~ (4.1.2)

defined by 0(z;) =1+ X; (1 <j<r).
Forn > 1, we let

ﬁn = H gem

m>n

be the two-sided ideal of U corresponding to formal power series of degree > n. An
F,-algebra automorphism ¢ of U is then called filtration-preserving if gp(ﬁn) = U, for
all n > 0 and we denote by Autﬁl(ﬁ) the group of filtration-preserving IF,-algebra auto-
morphisms of U. The following useful Lemma, which we call Kawazumi’s lemma, gives a
criterion for a Fj,-algebra endomorphism of U tobe a filtration-preserving automorphism.

Lemma 4.1.3 (Kawazumi’s lemma). A F,-algebra endomorphism ¢ of Uisa filtration-
preserving automorphism of U, ¢ € Autﬁl(U), if and only if the following conditions are
satisfied:

(1) (U,) c U, for alln > 0.
(2) the induced Fp-linear map [¢] on Ui/Us = H defined by [p](h) := @(h) mod U,
(h € H) is an isomorphism.

Proof. Suppose ¢ € Aut™(U). Since ¢ is filtration-preserving, the condition (1) holds.
To show the condition (2), consider the following commutative diagram for vector spaces
over IF), with exact rows:

0— (72 — 171 — H — 0

L ¢lg, L #lg, )
0— Us — U, — H — 0.
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Since @(Un) = U, for all n > 0, we have Coker(y|g ) = 0 for i = 1,2, in particular. Since
 is an automorphism, we have Ker(¢) = 0, in particular, Ker(gp\ﬁi) =0 fori=1,2. By
snake lemma applied to the above diagram, we obtain Ker([¢]) = 0 and Coker([¢]) = 0,
hence the condition (2).

Suppose that an Fp-algebra endomorphism ¢ of U satisfies the conditions (1) and (2).
Let z = (z,) be any element of U with Zm € H®™ for m > 0. To show that ¢ is an
automorphism, we have only to prove that there exists uniquely y = (y,,) € U such that

z=p(y). (4.1.3.1)

Note by the condition (1) and (2) that ¢ induces an F,-linear automorphism of
Up /U1 = H®™ which is nothing but [¢]®™. Then, writing ¢(y;); for the compo-
nent of p(y;) in H® for i < j, the equation (4.1.3.1) is equivalent to the following
system of equations:

#2(y2) + ¢ (y1)2, (4.1.3.2)

Since [p]®™ is an automorphism, we can find the unique solution y = (y,,,) of (4.1.3.2)
from the lower degree. Therefore ¢ is an F,-algebra automorphism. Furthermore, we can
see easily that if zp = -+ = 2,1 =0, then yo = -+ = y,—1 = 0 for n > 1. This means
that ¢~ (U,) C U, and so ¢ is filtration-preserving. O

By Lemma 4.1.3, each ¢ € Autﬁl(ff) induces an Fj-linear automorphism [p] of H =
Uy /Uy and so we have a group homomorphism

[]: Awt™(0) — GL(H).
We define the induced automorphism group of U by

TA(U) :=Ker([ ).

We note that there is a natural splitting s : GL(H) — Aut™(U) of [ ], which is defined
by

s(P)((zm)) := (P®™(z,,)) for P € GL(H).

In the following, we also regard [P] € GL(H) as an element of Aut™(U) through the
splitting s and write simply [P] for s([P]). Thus we have the following
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Lemma 4.1.4. We have a semi-direct decomposition
Awt™(U) = IA(U) x GL(H)
given by @ = (po ], [¢]).
Let ¢ € IA(U ) Since ¢ acts on Ul/U2 H trivially, we have
©(h) —h €U, for any h € H,
and so we have a map
E : 1A(U) — Homg, (H,Us); ¢ — @l — ids,

where Homp, (H, [72) denotes the group of Fy-linear maps H — Uz. The following Propo-
sition will play a key role in our discussion.

Proposition 4.1.5. The map E is bijective.

Proof. Injectivity: Suppose E(p) = E(¢') for ¢,¢' € IA(U). Then we have ¢|g = ¢/| 5.
Since an [F)-algebra endomorphism of U is determined by its restriction on H, we have
p=¢"

Surjectivity: Take any n € Homp, (H Ug) We can extend 1 + idH H— (72 uniquely to
a [Fp-algebra endomorphism ¢ of U. Then we have obviously <p(U ) C U, for all n > 0.
Since Uy /U; = H and we see that

[¢](hmod Us) = ¢(h) mod Uy = h + 5(h) mod Uy = hmod Us,
we have [¢] = idy. By Kawazumi’s Lemma 2.1, we have ¢ € IA(U) and E(p) =7n. O
By Lemma 4.1.4 and Proposition 4.1.5, we have the following
Corollary 4.1.6. We have a bijection

E : Aut™(U) ~ Homg, (H,Us) x GL(H)

given by E(p) = (E(p o [¢]™1), [¢]).

The Magnus embedding 6 : F < U* in (4.1.2) is extended to an F,-algebra isomor-
phism, denoted by the same 6,

0:F,[[F)] = U, (4.1.7)

which satisfies
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O(I%) = U, form > 1. (4.1.8)

For m > 0, let 6,,, denote the component of # in H®™ as in (4.1.1):

0(@) =Y Om(a), Om(e) € HE™ (o € Fy[[F])).

m=0
Note that 0o(f) =1 and 61(f) = [f] for f € F. Further we can write 6,,(«) as

On(a) = D> elin-ima) Xy, - X, (4.1.9)

1<y, sim <

where the coefficient €(iy - - -i,,; ) is given in terms of the pro-p Fox free derivative
0/0x; : Ly[[F]] = Zp[[F]] ([10], [23, 8.3])

. ) Omé
€(iy - im; ) = €z, [[F]] (W) mod p,
11 Tm

where ez, (7)) : Zpl[F]] — Z, is the augmentation map and & € Z,[[F]] such that
amodp = a.

An Fj-algebra automorphism ¢ of F,[[F]] is said to be filtration-preserving if p(If) =
Iy for all n > 0 and we denote by Aut™(F,[[F]]) the group of filtration-preserving
automorphisms of F,[[F]]. By (4.1.7) and (4.1.8), we have an isomorphism

Autf (F, [[F]) ~ Aut™(U); ¢ — opod™. (4.1.10)

Now, let ¢ € Aut(F'). Then ¢ induces a filtration-preserving F,-algebra automorphism
¢ of F,([[F]]). In fact, ¢ induces an automorphism [¢],, of a finite p-group F'/F,, and hence
an Fp-algebra automorphism, denoted by the same [¢],, of a finite group ring F,,[F/F,,]

[Bln = Fp[F/F,] — F,[F/F,]

for each n > 1, which sends the augmentation ideal of F,[F/F,] onto itself. Taking the
inverse limit with respect to n, we obtain an [F,-algebra automorphism

¢ :=lim[g]n : Fy[[F]] = F,[[F]

such that ¢(Ir) = Ir. Thus we have an injective homomorphism
Aut(F) — Aut™(F,[[F]]); ¢ 6.

By composing with the isomorphism (4.1.10), we obtain an injective homomorphism

70 Aut(F) — Awt™(0); ¢ Hopob .
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Lemma 4.1.11. Let [¢] denote the Fy-linear automorphism of H induced by ¢ € Aut(F).
Then we have

under the semi-direct decomposition Aut™(U) = IA(U) x GL(H) of Lemma 4.1.4. We
set

K(¢) =R (¢)o[g] ' =0odob ofp] " (4 € Aut(F)). (4.1.12)
Now, we define the extended p-Johnson map
70 . Aut(F) — Homg, (H,Us) x GL(H)
by composing ¢ with E of Corollary 4.1.6, and we define the p-Johnson map
7. Aut(F) — Homg, (H, [72)
by the composing 7¢ with the projection on Homp, (H, ﬁg), namely, for ¢ € Aut(F),
7%(¢) :== E(r°(¢)) = £%(¢) |y — idp. (4.1.13)
For m > 1, we define the m-th p-Johnson map
70 . Aut(F) — Homg, (H, H®(mTD)

by the m-th component of 75:
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(¢) =) 1h(¢) (¢ € Aut(Q)). (4.1.14)

m>1

Unlike the p-Johnson homomorphisms (Theorem 2.2.8), the p-Johnson map 7¢ =
E ok’ : Aut(F) — Hom(H,Us,) is no longer a homomorphism. In fact, we have the

following
Proposition 4.1.15. We have
K7 (¢1 0 ¢2) = £7(91) o [¢1] 0 K7 (¢2) 0[] 7.
Proof. By (4.1.12), we have
K9 ($162) = 00 (6162) 0071 o [pr0] !
=0o0drodr007 o pa] o]t

—0ogr00 ' o [p1] "o [¢p1] 000 $2060to [pa] " o [p1] !
= k%(¢1) o [p1] 0 K% (¢2) o [pn] " ]

Proposition 4.1.15 yields an infinite sequence coboundary relations which Johnson maps
70 satisfies. Here we give the formulas for 7¥ and 7.

Proposition 4.1.16. We have

™ (f1¢2)
78 (1 ¢2)

(1) + [¢1]®% 077 (¢2) 0 [$1] 7,
3(¢1) + (71 (61) @ idp +idy @ 71 (¢1)) 0 [61]% 0 77 (¢2) © [¢n]
+ [01]%? 075 (¢2) o [pn] "

Proof. By definition (4.1.14), we have

T ($102) = > T (¢162). (4.1.16.1)

m>1

On the other hand, by Proposition 4.1.15 and (4.1.13), we have, for h € H,

70 (p162) = —h + K% (P162) (h)
= —h+ (K%(¢1) o [p1] 0 K% (¢2) 0 [$1] ") ()
= —h+ (%(¢1) o [p1] o (idm + 77(62))) ([¢1] " (h))

= —h+ (K°(¢1) o [$n]) ([m]—l(h) + ) (7 (¢2) 0 [¢1]‘1)(h)>
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m>1

— K (e) (h + 3 (% 0 7l (62) 0 wlxh))

= —h+(¢1)(h)

We note that
59(¢)‘H®m = (idH +70(¢))®m cH®™ 5 H x ijm
for any ¢ € Aut(F) and so we have the following congruences mod Uy:

=h 19(¢1)() 729(¢1)(h),

$1]%% 0 77 (¢2) o [¢1]1)())

1% 0 (92) 0 [$1] 1) (h)

77 (1) @ idy +idg @ 77 (¢1)) © [¢1]%2 0 77 () © [¢1] ) (h),
1172 07 (¢2) 0 [61] ) () = ([91]%% 0 73 (¢2) 0 [91] 1) (R).

Therefore we have

7 (¢162) ()

=71 (¢1)(h) + 75 (61)(h)
+ ([0:1]%% o 71 (¢2) © [p1]*)(R) (4.1.16.2)
+ (7 (¢1) @ id +idg ® 71 (¢1)) 0 [1]% 0 71 (¢2) 0 [¢n] ) (h)
+ ([61]%% 0 7 (¢2) o [1]7")(h)  mod U

Comparing (4.1.16.1) and (4.1.16.2), we obtain the assertions. O
Next, we compute the p-Johnson maps for inner automorphisms of F.

Proposition 4.1.17. Let f € F and h € H. For m > 1, we have

5, (f))(h) = O (F)h+ > > (= 1) 64 (f)0g, (f) - -~ bg, (f)-
j=1 qo+--+gj=m
9020,q1,...,q; 21

In particular, we have, for m = 1,2,
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Proof. Since [Im(f)] = idg, by (4.1.12), we have

#°(In(f))(z) = (6 o an(f) 0 671)(2)
= 0(/)20(/7)

14300 | 2 [ 14+ =1 X6,y

m>1 Jj=>1 g1
for z € U. Therefore, by (4.1.13), we have

7' (Inn(f))(h) = &”(Im(f))(h) —

o1
Z (f h+z Z (_l)jeqo(f)heth(f)"'eqj'(f)

j>1  q,>0.
q1,--,q; 21

for h € H. Taking the component in H®("+1) e obtain the assertion. O

Finally we give the relation between the p-Johnson maps and the p-Johnson homomor-
phisms in Section 2.

Proposition 4.1.18. The restriction of 70, to Ap(m) coincides with 0,,.1 o T,, for each
m > 1:

70 | Ap(m) = Omt1 0 T + Ap(m) — Hom(H, H®(m+Y),
where Oy, 11 is the injection gr,, (F) — H®MTY jn (4.1.1).
Proof. It suffices to show that for ¢ € Ar(m),
T (0)(X;) = Omir (T (9)(X;)) 1< j <

By (4.1.13) and [¢] = idy, we have

()(X;) = (+°(9)|u — idu)(X;)
= (00po0 ) (O(z;) — 1) — (6(x;) — 1)
= 0(¢(z;)) — 0(z;).
Therefore we see that

9 (¢)(X;) = the component in H®" D of §(p(x;)) — 0(x;).  (4.1.18.1)

On the other hand, since (b(xj)acj_l € Fu11, we have
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0(6(xj)a; ") =1+ O (6(25)2; ) = 14 Oyt (T (0) (X)) mod Upyyo.
Multiplying the above equation by 6(x;) from right, we have
0(6(7)) = 0(2;) + O (Tn(9)(X,)) mod Ty (41182)
By (4.1.18.1) and (4.1.18.2), we obtain the assertion. 0O
4.2. Examples in non-Abelian Twasawa theory

Let us come back to the arithmetic situation set up in 3.1 and keep the same notations.
So, as in (3.1.1) and (3.1.2), we have an exact sequence of pro-p Galois groups

1—-G—G¢G—T—1,
where
G = Gal(M/ks), G = Gal(M/k) and G = Gal(kx/k).
In order to apply the materials in 4.1, we assume that
(F) G =Gal(M/ks) is a free pro-p group F on z1, ..., Z;.
This condition (F) is satisfied for the following cases.
Example 4.2.1 (/13], [30]). Suppose that
(1) kis totally real,
(2) M := ks,

(3) the Iwasawa p-invariant of Ho, = G/[G, G] is zero.

Then the condition (F) is satisfied where the generator rank r is equal to the Iwasawa
A-invariant of H...

To give the following example, we introduce the notation. For a field K, K(p) denotes
the maximal pro-p extension of K.

Example 4.2.2 (/27], [31]). Suppose that

(1) k is a CM-field containing y, i.e., k = k*(u,) where kT is the maximal totally real
subfield of k,

(2) the completions k; of k* with respect to any prime p lying over p do not contain s,

(3) koo is the cyclotomic Zy-extension of k, and
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(4) the Iwasawa p-invariant of the maximal Abelian unramified pro-p Galois group over
koo 1S zero.

The condition (4) is known to be true if k is Abelian over Q ([8]). So, the above four
conditions are satisfied for the p-th cyclotomic field k = Q(p,), for instance.

A finite p-extension L/k is called positively ramified over S, if L, C kj (p)(up) for
any prime p over p. Since the composite of positively ramified p-extensions is positively
ramified again, the maximal positively ramified pro-p extension of k exists, and it contains
the cyclotomic Zy-extension k... We then let

M := the maximal pro-p extension of k£ which is unramified outside S
and positively ramified over S,.

Then the condition (F) is satisfied with
r=2A" + #(S(koo) \ Sp(kco)) — 1,

where A~ denotes the Iwasawa A\~ -invariant of k, and S(koo) (resp. Sp(keo)) denotes the
set of primes of ko, lying over S (resp. S,). The pro-p Galois group F = G = Gal(M /ko)
has the following presentation

F = <a1,b1, .. .,Cl)\—,b)\—,cfu(’U S S(koc) \ Sp(koo)) |

227

H Cy H[al,bz] = ].>

VES (koo )\Sp(koo)  i=1

We may take S to be S, U {q} such that there is only one prime of ko, lying over g
(there are infinitely many such q). Then F' and G may be seen as arithmetic analogues
of the fundamental groups of a one-boundary surface and a surface bundle over a circle
(a fibered knot complement), respectively.

We fix a lift 4 € G of a topological generator v of I' and consider the automorphism
¢5 = Inn(§) € Aut(F) as in (3.1.3). The p-power iterated action of [¢5]m on F/Fy, 41
is described by the m-th p-Johnson map

70 Aut(F) — Homg, (H, H®™ D) (m > 1).

For an integer d > 0, we can write

2NN = S @) ime DX K-

1<i1,.imy1 <1

d
Suppose that (ﬂ; € Ap(m). Then we can also write
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b o@D = Y )i i )X Xi, (423)

1§i17"'7i77l+1 <r

and, by Proposition 4.1.18, we have

d d
(G5 Vi1 -+ i1 Xj) = 7(05 ) (i1 iy 15 X;) € B

These coefficients are numerical datum encoded in the Johnson maps/homomorphisms.
In Section 5, we express these coefficients in terms of Massey products in Galois coho-
mology.

5. Massey products

In this section, we give a cohomological interpretation of p-Johnson homomorphisms
in terms of Massey products in Galois cohomology.

A fixed prime number p is arbitrary in 5.1 and assumed to be odd in 5.2.
5.1. Massey products and the Magnus expansion

Firstly, we recall some general materials on Massey products. For the sign convention,
we follow [7]. Let G be a pro-p group and let ay, ..., o, € HY(G,F,). A Massey products
(a1, ..., ) is said to be defined if there is an array

A={aj; € CY(G,Fy) [1<i<m+1,(i,j) # (1,m+ 1)}

such that

dajj = ayUay (j#i+1),

=1

where d denotes the differential on cochains and U denotes the cup product. An array
A is called a defining system for {aq,...,a.;,). Then we define (a1,...,n,)a by the
cohomology class represented by the 2-cocycle

m
E ay Uapmt-
1=2

A Massey product of ag, ..., a,, is then defined by
(a1, .. o) = {(a1,...,amn)a € H*(G,F,) | Aranges over defining systems}.

We recall some basic properties of Massey products, which will be used in 5.2.
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5.1.1. Onme has (a1,a3) = ay Uas. For m > 3, (ay,...,q;) is defined and consists
of a single element if («;,,...,a;) = 0 for all proper subsets {i1,...,4} of {1,...,m}.

5.1.2. Let ¥ : G — G be a continuous homomorphism of pro-p groups. Then
if (a1,...,am) is defined for a; € H'(G',F,) with defining system A = (a;;),
then so is (¥*(a1),...,¥*(yy,)) with defining system A* = (¥*(a;;)) and we have
U*({aq, ..., am)) C{P*(a1),..., T (am)).

Next, we recall a relation between Massey products and the Magnus expansion. Let
G be a finitely generated pro-p group with a minimal presentation

1—N-—F-5G—1,

where F is a free pro-p group on z1,...,xs with s = dimeHl(Q,IFp). We set g; :=
m(x;) (1 < i < s). Note that m induces the isomorphism H'(G,F,) ~ H'(F,F,).
We let tg : HY(N,F,)9 — H?(G,F,) be the transgression map defined as follows. For
a € HY(N,F,)9, choose a 1-cochain b € C'(F,F,) such that by = a. Since the value
db(f1, f2), fi € F, depends only on the cosets f; mod N, there is a 2-cocycle ¢ € Z*(G,F,)
such that 7*(¢) = db. Then we define tg(a) by the class of ¢. By Hochschild—Serre spec-
tral sequence, tg is an isomorphism and so we have the dual isomorphism, called the
Hopf isomorphism,

tg¥ : Hy(G,F,) = H1(N,F,)g = N/N?[N, F]. (5.1.3)

Then we have the following Proposition. The proof goes in the same manner as in [22,
Theorem 2.2.2].

Proposition 5.1.4. Notations being as above, let ay,...,a, € HY(G,F,) and A = (a;;)
a defining system for the Massey product {(o,...,cu,). Let f € N and set f :=
(tg¥)~1(f mod NP[N, F]). Then we have

<a1’ cee 7am>A(ﬂ)
=D (-t Y Yo anira(9i)  Amii—egmi (9l g f),
=1

1ot =m1<in, i <s

where c1,...,c¢j Tun over positive integers satisfying c1 +---+c¢; = m and g; == w(x;)
(1<i<s)ande(iy---i;; f) is the Magnus coefficient defined in (4.1.9).

5.2. Massey products and p-Johnson homomorphisms

We come back to the arithmetic situation in 4.2 and keep the same notations. So we
have an exact sequence of pro-p Galois groups
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1—F—G—T—1,
where
F =Gal(M/kw), G = Gal(M/k) and T’ = Gal(kw /k),
and F is a free pro-p group on z1,...,x,.. We fix a lift # € G of a topological generator
v of I" and let ¢5 := Inn() € Aut(F).
Let d(1) be the p-period of [¢,] on H as in (3.2.3) so that qﬁ?ﬁyd(l) € TA(F). If necessary,

we replace the base field k by the subextension kg1 of koo with degree [kq(1) : k] = pd)
and ’ypd(l) with v so that we may suppose that

¢’~Y € IA(F)a

namely, ¢5 acts trivially on H.
For each integer d > 0, let kq be the subextension of ke, with [ks : k] = pd and let

Ga := Gal(M/ky).
Then the pro-p group G4 has the presentation
1—Ng—F %Gy — 1

where F is the free pro-p group on x1, ..., %, x,.41 with mg(x,11) = *ypd and Ny is the
closed subgroup of F generated normally by

d .
Rja:= ¢ (z))(wrpizje )™t (1<5<r).

Lemma 5.2.1. For each integer d > 0, the homomorphism wy : F — Gq induces the
isomorphism of cohomology groups

HY(G4,F,) — H'(F,F,).
Proof. Since Gg = F /Ny, we have
H'Y(G4,F,) = Homc(Ga/Gh[Ga, G, Fp) ~ Home(F /Ny FP[F, F],Fp), (5.2.1.1)

d
where Hom, stands for the group of continuous homomorphisms. Since gbfy acts trivially

on H = F/FP[F, F], qb?iyd(xj)x;l € FP[F,F] and so Rj4 = ¢gd(!ﬂj)ﬂf;1[xj,xr+1] c
FP|F,F] (1 <j<r). Therefore we have

Ny C FPIF, F). (5.2.1.2)
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By (5.2.1.1) and (5.2.1.2), we have
H'(G4,F,) ~ Hom(F/FPF[F,F|,F,) = H'(F,F,). 0

By Lemma 5.2.1, Hochschild—Serre spectral sequence yields the Hopf isomorphism as in
(5.1.3)

tgv : HQ(gdv]Fp) — Hl(Ndv]Fp)gd = Nd/NcIl)[Ndv]:]’
and we define §; 4 € H2(Gq,F,) by
&.a = (tg¥) (R g mod NE [Ny, F]) (1<j<r).

We set g; := ma(x;) (1 <j <r+1)andlet g € H'(G4,F,) denote the Kronecker
dual to g;, namely g;(g;) = &;;.

For d > 0, let m(d) be the integer defined in (3.2.5). Since ¢5 € IA(F),
m(d) > 1. Let Tm(d)(qbfyd)(il “lim(d); Xj) be the coefficients of the m(d)-th p-Johnson
homomorphism defined in (4.2.3). The following theorem gives an interpretation of
Tm(d)((ﬁgd)(il “im(a); X;) in terms of the Massey product in the cohomology of Gg.

Theorem 5.2.2. Notations being as above, let i1,...,ipm@+1 € {1,...,7}. Then the

Massey product (g;,,- - - is uniquely defined and we have, for each d > 0,

*
’ giwt(d)+1 >

dy . . m * *
Tm(d) ((Z)?ﬁy )(’Ll S tm(d) 415 X]) = (_1) (d)+1<gi1 [ 7gim(d)+1>(€j,d)'

Proof. Let G/ be the pro-p group given by the presentation

1— N, —F %6 —1,
where N’ is the closed subgroup of F' generated normally by

d

G =5 (g)ayt (1<) <r).

We set gf = 7'(z;) (1 < j < r) and let g;" be the Kronecker dual to gj. As in
Lemma 5.2.1, 7/, induces the isomorphism tg : H'(G},F,) = H'(N/,F,)g and so we
have the Hopf isomorphism tg¥ : H2(G),F,,) = Hy (N}, F,). We define & a € Ha(Gy, Fp)

d
by (tg¥)~! (R} 4 mod N/P[N}, F]). Since o5 € Ap(m(d)), we note R ; € Frygy41 (1 <
Jj<r).
Suppose m(d) > 2. By Proposition 5.1.4, if I < m(d), we have

<g;1*a s 7g£L*>A/(€;')d) =0
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for any 41,...,4; € {1,...r}, 1 < j < r, and any defining system A’, because we
have €(iy ---i;; R} ;) = 0. Since R} ;’s generate Hy(Ny,Fy)gy, (gi,"---,9i,") = 0 for

any ii,...,4 € {1,...7r}. Therefore, by 5.1.1, the Massey product (ggl*, ... 7g’;ﬂkm(d)ﬂ) is

uniquely defined and, by Proposition 5.1.4 again, we have

<9§1*’ e ,g/:m(dHJ(f;' d) = (—1)m(d)+1€(i1 o 'im(d)+1; R;‘,d)

. e (5.2.2.1)
= (=)™ D (82 ) (i1 dm(ay15 X))

We define the homomorphism

\I/:Qd—>g;

so that we have
a=Yu(&a) 9 =V (g;) 1<ij<).

Then our assertion follows from (5.2.2.1) and the naturality 5.1.2 of Massey products as
follows:

(G0 ) (Ea.a) = (O (1), () (Pl a))
WG g D EL)
=95 9 i) G
= (=)™t (¢§d)(i1 Cim@e; Xg). O
Remark 5.2.3. (1) Theorem 5.2.2 may be regarded as an arithmetic analogue in non-
Abelian Iwasawa theory of Kitano’s result ([17, Theorem 4.1]).

(2) For Massey products in cohomology of a pro-p group, we also refer to [9], [20] and
[21].
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