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1. Introduction

Let W be finite complex reflection group, for instance a finite Coxeter group. Let B
denote the braid group associated to W in the sense of Broué–Malle–Rouquier (see [8]), 
which in the case of a finite Coxeter group coincides with the Artin group attached to 
it. We denote π : B → W the natural projection.

The object of this paper is to introduce and analyze a family of algebras denoted 
C(W, L), where L is a finite join semi-lattice which lies inside the poset made of the 
full reflection subgroups of W , ordered by inclusion. Here a reflection subgroup of W
is called full if, for any reflection in this subgroup, all the (pseudo-)reflections with the 
same reflecting hyperplane belong to it. The semi-lattice L is additionally supposed to 
be stable under the natural action of W on the lattice of reflection subgroups, and to 
contain all the cyclic (full) reflection subgroups, and the trivial subgroup as well. Such 
a semi-lattice will be called an admissible semi-lattice.

Let A denote the hyperplane arrangement attached to W , namely the collection of 
its reflecting hyperplanes. Let k be a commutative ring with 1, containing elements aH,i

where H ∈ A, 0 ≤ i < mH where mH is the order of the cyclic subgroup of W fixing H, 
with the convention that aH,i = aw(H),i for every H ∈ A, w ∈ W and aH,0 is invertible 
inside k. Let R denote the generic ring of Laurent polynomials with integer coefficients 
Z[aH,i, a

±1
H,0], with the same conventions. Our conditions on k mean that it is a R-algebra. 

We now define k-algebras Ck(W, L), with the convention that C(W, L) = CR(W, L).
These algebras are defined as follows. First consider the algebra kL defined as the 

free k-module with basis elements eλ, λ ∈ L, and where the multiplication is defined 
by eλeμ = eλ∨μ. This is sometimes called the Möbius algebra of L. Elements of L can 
be identified with the collection of reflecting hyperplanes attached to them, and we let 
eH = e{H} denote the idempotent attached to the subgroup fixing H ∈ A. We shall use 
this identification whenever it is convenient to us.

By definition W acts by automorphisms on kL, hence so does B, and one can form 
the semidirect product kB � kL. The algebras Ck(W, L) are defined as the quotient of 
kB�kL by the two-sided ideal J generated by the elements σmH −1 −Qs(σ)eH where σ
runs among the braided reflections of B, s = π(σ) is the corresponding pseudo-reflection, 
H = Ker (s − 1), and Qs(X) =

∑mH−1
k=0 aH,kX

k − 1 ∈ k[X] (see section 2.3.2 for more 
details).
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Let JH is the ideal of kB generated by the σmH −1 −Qs(σ) = σmH −
∑mH−1

k=0 aH,kσ
k. 

This quotient Hk(W ) = (kB)/JH is by definition the Hecke algebra attached to W in 
the sense of Broué–Malle–Rouquier, and is the usual Iwahori–Hecke algebra of W when 
W is a finite Coxeter group. The following preliminary result explains the title, making 
our algebras appear as natural extensions of the Hecke algebra Hk(W ).

Proposition 1.1. Let L be an admissible lattice for W . There exists a surjective algebra 
morphism Ck(W, L) → Hk(W ), defining a split extension of Hk(W ).

Proof. The natural augmentation map η : kL → k defined by eλ �→ 1 induces surjective 
morphisms of k-algebras η : kB � kL → kB and Ck(W, L) → (kB)/JH = Hk(W ). 
The splitting comes from the fact that the assumptions on L imply that W belongs 
to L, as the join of all the full cyclic subgroups. Then, the non-unital algebra morphism 
kB → Ck(W, L) defined by b �→ beW is easily checked to factorize through Hk(W ) and 
to provide a splitting. �

When X is a finite set and A is a ring, we denote by MatX(A) the ring of |X| ×
|X|-matrices whose entries are indexed by the elements of X. Our first result is a structure 
theorem of the following form, where the kH̃x∗ are slight generalizations of the Hecke 
algebras attached to elements of L and x∗ ∈ L is a representative of the orbit X ∈ L/W .

Theorem 1.2. There exists an isomorphism of k-algebras

Ck(W,L) �
⊕

X∈L/W

MatX(kH̃x∗).

When L is the lattice of the reflection subgroups of a finite Coxeter group, the alge-
bras C(W, L) were introduced in [17], under the name CW and using a presentation by 
generators and relations, and proven to be generically semisimple. When W is the sym-
metric group, CW coincides with the diagram algebra of braids and ties of Aicardi and 
Juyumaya (see [1,2,20]). Therefore the above theorem is a generalization of a theorem 
of Espinoza and Ryom-Hansen (see [14]), and was actually motivated by it. Note that, 
when W is the symmetric group, the lattice of parabolic subgroups coincides with the 
lattice of reflection subgroups.

We now return to the general case. We let K denote the field of fractions of R and 
K̄ an algebraic closure of K. The BMR freeness conjecture states that Hk(W ) is a 
free k-module of rank |W |, and implies that Hk(W ) is generically semisimple. Up to 
extending the ring of definition R to a slightly larger Laurent polynomial ring Ru, an 
additional conjecture of Broué–Malle–Michel, which we recall in detail in section 3, states 
that Hk(W ) is a symmetric algebra when k is a Ru-algebra, with a trace enjoying some 
uniqueness conditions. Of course both conjectures are true when W is a finite Coxeter 
group.
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When L is the lattice of parabolic subgroups of a finite complex reflection groups, 
the algebra C(W, L) was introduced and called Cp

W in [17]. It was conjectured there that 
Cp
W is a free R-module of rank |W | × |Lp|, where Lp denotes the lattice of parabolic 

subgroups. A consequence of the above theorem is then the following one. We denote by 
Wx∗ < W the stabilizer of x∗.

Theorem 1.3. The algebra Ck(W, L) is a free k-module of finite rank if and only if the 
BMR freeness conjecture holds over k for every x ∈ L (this is in particular the case when 
W is a Coxeter group). In that case, its rank is |W | × |L|, and Ck(W, L) is semisimple 
when k is an extension of K, and

CK̄(W,L) � K̄W � K̄L �
⊕

X∈L/W

MatX(K̄Wx∗).

At the time of writing, the BMR freeness conjecture was proved for all irreducible 
reflection groups but the ones of Shephard–Todd types G17, G18 and G19 (see [3,4,
16,15,19,6,12,11,18]), and therefore the above statement was almost unconditional, and 
reduced the proof of conjecture 5.10 in [17] to the original BMR freeness conjecture. 
The last cases have been recently solved (see [23]), hence the above condition is always 
satisfied and the above statement is actually unconditional. Since the current proof of 
the conjecture is complicated and case-by-case, we prefer however to keep our statement 
in the present form.

We finally (conditionally) prove that these algebras are symmetric algebras. We call 
strong freeness conjecture for W the statement that HR(W ) admits a basis originating 
from elements of B. It turns out that the proof described above of the original BMR free-
ness conjecture actually proves this stronger form. By contrast, the Broué–Malle–Michel 
trace conjecture is still largely open.

Theorem 1.4. Assume that the strong freeness conjecture as well as the Broué–Malle–
Michel trace conjecture holds for all x ∈ L. This is in particular the case if W is a 
finite Coxeter group. Then, for any commutative Ru-algebra k, the algebra Ck(W, L) is 
a symmetric algebra.

As an immediate corollary, we get that the diagram algebra of ‘braids and ties’ is a 
symmetric algebra as well.

Acknowledgments. I thank J.-Y. Hée and S. Bouc for discussions about root systems 
and lattices. I thank M. Calvez, A. Navas and J. Juyumaya for their invitation at the 
SUMA’16 conference in Valparaiso, where the original idea of this paper emerged.
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2. Structure

2.1. Semidirect extensions of group algebras by abelian algebras

In this section, we first expose fairly general results, which are basically folklore, and 
which are needed in the sequel. To start with, the following proposition is an explicit 
version of what is known in the realm of the representation theory of finite groups 
as Mackey–Wigner’s method of “little groups” (see [21] §8.2). It can be seen as an 
explicit Morita equivalence (see [9] ex. 18.6). It is stated and proved in detail in [10], 
proposition 3.4, in the case G is finite. We explain below the additional arguments which 
are needed in the general case.

Proposition 2.1. Let G be a group acting transitively (on the left) on a finite set X. Let k
be a commutative ring with 1, and let A be the k-algebra G �kX where kX = ⊕x∈Xkεx is 
endowed with the product law (εxεx′ = δx,x′εx) and the action of G is induced by the one 
on X. Then any choice of x∗ ∈ X with stabilizer G0 ⊆ G and any choice of a “section” 
τ : X → G such that τ(x).x∗ = x for all x ∈ X, define a unique isomorphism

θ : A −→ MatX(kG0)

sending each εx ∈ kX (x ∈ X) to θ(εx) := Ex,x, and each g ∈ G to

θ(g) :=
∑
x∈X

τ(gx)−1g.τ(x)Egx,x

(where Ex,y ∈ MatX(k) is the elementary matrix corresponding to x, y ∈ X).

Proof. The proof given in proposition 3.4 of [10] that θ is a surjective morphism does not 
use any finiteness assumption on G. It therefore remains to prove that θ is injective. We 
prove this directly as follows. A k-basis of A is given by the gεα for g ∈ G and α ∈ X, 
and by definition

θ(gεα) =
∑
x∈X

τ(gx)−1gτ(x)Eg.x,xEα,α = τ(gα)−1gτ(α)Egα,α.

It follows that a general linear combination 
∑

g,α λg,αgεα belongs to Ker θ iff

0 =
∑
g,α

λg,ατ(gα)−1gτ(α)Egα,α

which means that, for all α ∈ X,
∑

λg,ατ(gα)−1gτ(α)Egα,α = 0.

g∈G
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Let us fix such an α ∈ X. For every β ∈ X we have

0 =
∑

g | g.α=β

λg,ατ(gα)−1gτ(α)Egα,α

namely

0 = τ(β)−1

⎛
⎝ ∑

g | g.α=β

λg,αg

⎞
⎠ τ(α)

which implies that, for all g ∈ G, we have λg,α = 0. Since this holds for every α ∈ X we 
get the conclusion. �

Let L be a join semilattice. That is, we have a finite partially ordered set L for which 
there exists a least upper bound x ∨ y for every two x, y ∈ L. Let M be the semigroup 
with elements eλ, λ ∈ L and product law eλeμ = eλ∨μ. Such a semigroup is sometimes 
called a band.

If L is acted upon by some group G in an order-preserving way (that is x ≤ y ⇒
g.x ≤ g.y for all x, y ∈ L and g ∈ G) then M is acted upon by G, so that we can 
form the algebra kM � kG. Up to exchanging meet and join, the algebra kM is the 
Möbius algebra as in [22], definition 3.9.1. We recall from [17] a G-equivariant version of 
the classical isomorphism kM � kL of e.g. [22], theorem 3.9.2. Here kL is the algebra 
of k-valued functions on L, that is the direct product of a collection indexed by the 
elements of L of copies of the k-algebra k. As before, to λ ∈ L we associate ελ ∈ kL

defined by ελ(λ′) = δλ,λ′ if λ′ ∈ L.

Proposition 2.2. (see [17], proposition 3.9) Let M be the band associated to a finite join 
semilattice L. For every commutative ring k, the semigroup algebra kM is isomorphic 
to kL. If L is acted upon by some group G as above, then kM � kG � kL � kG, the 
isomorphism being given by g �→ g for g ∈ G and eλ �→

∑
λ≤μ εμ.

By decomposing L as a disjoint union of G-orbits, by combining these two results one 
gets that kM � kG is isomorphic to a direct sum of |L/G| matrix algebras. This will 
turn out to be the main result from general algebra that is needed to prove our structure 
theorem.

2.2. Braid groups of reflection subgroups

Let W0 be a reflection subgroup of the reflection group W , and G a subgroup with 
W0 < G < W normalizing W0. For convenience we endow Cn with a W -invariant unitary 
form.

The hyperplane complement associated to W is denoted X = Cn \
⋃
A, and we let 

x0 ∈ X denote the chosen base-point, so that B = π1(X/W, x0). Let L ⊂ Cn denote 
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the fixed points set of W0, namely the intersection of the set AL of all the reflecting 
hyperplanes associated to the reflections in W0. Since G normalizes W0 we have g(L) = L

for all g ∈ G. We let X0 ⊂ L⊥ denote the hyperplane complement associated to W0
viewed as a reflection subgroup acting on L⊥. We have X0 = L⊥ \

⋃
AL.

Let X0 = Cn \
⋃
AL, and x00 the orthogonal projection of x0 on L⊥. We write 

x0 = x1 + x00, with x1 ∈ L. Since x0 /∈
⋃

AL we have x00 ∈ X0, and the braid 
groups of W0 < GL(L⊥) can be defined as P0 = π1(X0, x00), B0 = π1(X0/W0, x00). 
The inclusion map (X0, x00) ⊂ (X0, x00 + L) is a W0-equivariant deformation retract 
through (z, t) �→ zL⊥ + tzL where zL⊥ and zL denote the orthogonal projections of 
z on L⊥ and L, respectively. Since x00 + L is retractable to x0, it follows that this 
inclusion provides an isomorphism P0 � π1(X0, x0) and, because of W0-equivariance, an 
isomorphism B0 � π1(X0/W0, x0).

Since W0 is normal inside G, the projection map X/W0 → X/G is a Galois covering, 
and we get a short exact sequence 1 → π1(X/W0, x0) → π1(X/G, x0) → G/W0 → 1.

We consider the G-equivariant inclusion (X, x0) ⊂ (X0, x0). By standard arguments 
(see e.g. [13] proposition 2.2, or [5]) we know that the induced map P = π1(X, x0) →
π1(X0, x0) is surjective, and that its kernel K is normally generated by the meridians 
around the hyperplanes in Ac

L. Since the following diagram is commutative

1 1

1 K π1(X,x0) π1(X0, x0) 1

1 K π1(X/W0, x0) π1(X0/W0, x0) 1

W0 W0

1 1

with the two columns and the top row being short exact sequences, it follows that the sec-
ond row is exact and K = Ker (π1(X/W0, x0) → π1(X0/W0, x0)). Inside π1(X/W0, x0), 
the collection of meridians generating K become the collection of the elements σmσ where 
σ runs among the collection of (distinguished) braided reflections around the hyperplanes 
in Ac

L and mσ is the order of their image in W0 ⊂ W .
Since G stabilizes AL, the image of K under the injective map π1(X/W0, x0) →

π1(X/G, x0) is a normal subgroup of π1(X/G, x0), that we still denote K. We de-
fine the generalized braid group associated to G and denote BG the quotient group 
π1(X/G, x0)/K.
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Let us consider the projection map π : B → W . By the above description, BG

is the quotient of B̂G = π1(X/G, x0) = π−1(G) by K, and the short exact se-
quence 1 → π1(X/W0) → π1(X/G, x0) → G/W0 → 1 induces a short exact sequence 
1 → π1(X/W0)/K → BG → G/W0 → 1. Identifying π1(X/W0)/K with π1(X0/W0, K)
we get a short exact sequence 1 → B0 → BG → G/W0 → 1.

We now consider the central element π0 ∈ P0 defined as the class inside P0 =
π1(X0, x00) of the loop γ0(t) = x00 exp(2iπt). By the above identifications, it is iden-
tified inside π1(X0, x0) with the path γ1 � γ0 � γ

−1
1 , where γ1(t) = x00 + tx1 (recall that 

x0 = x1 +x00). We prove that it remains a central element inside BG = π1(X/G, x0)/K.
For this, let us consider a path γ : x0 � g.x0 inside X. We need to prove that the 

composite γ−1 � (g.γ1 �g.γ0 �g.γ
−1
1 )−1 �γ � (γ1 �γ0 �γ

−1
1 ), which is a path x0 � x0 inside 

X, belongs to K. This means that its class must be 0 inside π1(X, x0)/K = π1(X0, x0). 
Therefore we need to prove that γ �γ1 �γ0 �γ

−1
1 : x0 � g.x0 is homotopic to g.γ1 � g.γ0 �

g.γ−1
1 � γ inside X0. For this, consider the following map H̃ : [0, 3] × [0, 1] → X0 defined, 

for t, u ∈ [0, 1], by H̃(t, u) = γ(u)L⊥ + (1 − t)γ(u)L, H̃(1 + t, u) = γ(u)L⊥ exp(2iπt), 
H̃(2 + t, u) = γ(u)L⊥ + tγ(u)L. It is not difficult to check that indeed H̃(t, u) ∈ X0 for 
all t, u, and that H̃ is continuous. Moreover, the boundary of the rectangle [0, 3] × [0, 1]
has for image the union of the two paths we are interested in. It follows that these two 
paths are homotopic, which proves our claim.

2.3. Proof of the structure theorem

2.3.1. Generalized Hecke algebras
We now attach to an admissible lattice L the following data. To each x ∈ L we attach

• the ring Rx = Z[aH,i, a
±1
H,0] where H runs among all H ∈ x, and 1 ≤ i ≤ mH − 1.

• the stabilizer Gx < W of x ∈ L and the group B̂x = B̂Gx
= π−1(Gx) associated to 

W0 < Gx < NW (W0), where W0 is the full reflection subgroup associated to x ∈ L.
• the group Bx = BGx

as in the previous section.

The generalized Hecke algebra H̃x associated to x ∈ L is then defined as the quotient of 
the group algebra RxBx by the ideal generated by the Hecke relations σmH −

∑
aH,iσ

i

for σ a braided reflection with respect to an hyperplane in x. Equivalently, it is the 
quotient of the group algebra RxB̂x by the relations σmH −

∑
aH,iσ

i for σ a braided 
reflection with respect to an hyperplane of x and σmH = 1 for σ a braided reflection 
with respect to an hyperplane of A \ x.

Now recall the short exact sequence 1 → B0 → Bx → G/W0 → 1, and consider the 
induced injective map RxB0 → RxBx. We let h0 denote the ideal of RxB0 generated 
by the σmH −

∑
aH,iσ

i for σ a braided reflection with respect to an hyperplane of x. 
By definition the quotient algebra H0 = RxB0/h0 the usual Hecke algebra associated 
to W0. We let hx the ideal of RxBx generated by the same elements, and choose a 
system b1, . . . , bm of representatives inside Bx of Bx/B0 � G/W0. Since the generating 
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set of hx is stable under Bx-conjugation, we have hx =
⊕m

i=1 bih0. This implies that, 
as a right RxB0-module, H̃x =

⊕m
i=1(bi(RxB0))/(bih0) =

⊕m
i=1(bi(RxB0))/(bih0). Now, 

(bi(RxB0))/(bih0) contains (the class of) bi and is clearly a free H0-module of rank 1. 
This proves that H̃x = RxBx/hx is a free H0-module of rank |G/W0|. In particular, H̃x

is a free Rx-module of rank |G| if and only if H0 is a free Rx-module of rank |W0|. This 
latter assumption is exactly the BMR freeness conjecture for W0.

2.3.2. Image of the defining ideal
Let L be an admissible lattice. The group B acts on L via the natural projection map 

B → W . We denote J the ideal of kB�kL generated by the elements σm−1 −Qs(σ)eH
where

• s runs among the distinguished pseudo-reflections of W ,
• σ is a braided reflection attached to it,
• H = Ker (s − 1) is the fixed hyperplane, and
• eH ∈ kL is the idempotent attached to {H} ∈ L
• m is the order of s
• Qs(X) =

∑m−1
k=0 aH,kX

k − 1, where 
∏m

k=1(X − us,i) = Xm +
∑m−1

k=0 aH,kX
k.

Let s be a reflection, and m its order. Let 1 ≤ k < m. For any hyperplane H ∈ A, 
we have s(H) = H ⇔ sk(H) = H. It follows that, for every x ∈ L, we have s.x = x ⇔
sk.x = x. We consider the composite θ of the maps provided by Propositions 2.2 and 2.1

kB � kL → kB � kL → kB � kX → MatX(kB̂x∗)

where B̂x∗ = B̂Gx∗ = π−1(Gx∗) is the stabilizer of x∗ ∈ L and X is the orbit of x∗ under 
B (or W ). We have, for all r ∈ Z,

θ(eH) =
∑
x∈X
H∈x

Ex,x and θ(σr) =
∑
x∈X

τ(sr.x)−1σrτ(x)Esr.x,x.

Since H ∈ x ⇒ sr.x = x, this implies

θ(σreH) =
∑
x∈X
H∈x

τ(x)−1σrτ(x)Ex,x and θ(Qs(σ)eH) =
∑
x∈X
H∈x

τ(x)−1Qs(σ)τ(x)Ex,x

hence the image under θ of σm − 1 −Qs(σ)eH is equal to
∑
x∈X

H/∈x

τ(x)−1(σm − 1)τ(x)Ex,x +
∑
x∈X
H∈x

τ(x)−1(σm − 1 −Qs(σ))τ(x)Ex,x.

Now recall the elementary fact that, for any ring A with 1 (commutative or not), the 
twosided ideal of the matrix algebra MatN (A) generated by a collection Sα, α ∈ F of 



I. Marin / Journal of Algebra 503 (2018) 104–120 113
matrices Sα = (Sα
i,j)1≤i,j≤N is equal to MatN (I) where I is the twosided ideal of A

generated by the Sα
i,j for α ∈ F , 1 ≤ i, j ≤ N . If follows that image of the ideal J inside 

MatX(kB̂x∗) is MatX(JX) where JX is the ideal of kB̂x∗ generated by the σm
x − 1 for 

H /∈ x, x ∈ X and the σm
x − 1 − Qs(σx) for H ∈ x, x ∈ X, where σx = τ(x)−1στ(x). 

This is the same as the ideal of kB̂x∗ generated by the σm − 1 for σ a braided reflection 
around some H /∈ x∗, and the σm − 1 − Qs(σ) and σ for a braided reflection around 
some H ∈ x∗. Therefore kB̂x∗/JX = kH̃x whence, from the isomorphism kB � kL �⊕

X∈L/W MatX(kB̂x∗) we get the following.

Theorem 2.3. Let L be an admissible lattice. Then we have an isomorphism

Ck(W,L) �
⊕

X∈L/W

MatX(kH̃x∗).

The following corollary completes the proof of Theorem 1.3.

Corollary 2.4. The algebra Ck(W, L) is a free k-module of finite rank if and only if the 
BMR freeness conjecture holds over k for every x ∈ L. In that case, its rank is |W | ×|L|, 
and it is generically semisimple.

The fact that it is generically semisimple is a consequence of the fact that, under 
the specialization morphism ϕ : R → Q defined by aH,i �→ 0 if i > 0, aH,0 �→ 0, 
the algebra C(W, L) ⊗ϕ Q becomes isomorphic to a semidirect product QW � QL �⊕

L/W MatX(QWx∗), where Wx∗ < W is the stabilizer of x∗ ∈ L. By Maschke’s theorem 
we get that C(W, L) ⊗ϕ Q is semisimple, and therefore C(W, L) is generically semisimple 
as soon as it is a free R-module of finite rank. By Tits’ deformation theorem we get that

CK̄(W,L) � K̄W � K̄L �
⊕
L/W

MatX(K̄Wx∗).

Since the BMR freeness conjecture is now proved for all irreducible reflection groups 
(see the introduction) this proves the following.

Corollary 2.5. The algebra Ck(W, L) is a free k-module of rank |W | × |L|, and is generi-
cally semisimple.

3. Traces

In this section, we slightly extend the ring of definition, for convenience. For W a given 
complex reflection group, we denote Ru = Z[u±1

c,i ], where c runs among the conjugacy 
classes of distinguished pseudo-reflections, and i between 1 and the order of (a repre-
sentative of) c. We consider R as a subring of Ru where aH,i, H ∈ A is mapped to the 
(mH − i)-th symmetric function in the uc,k, where c is the conjugacy class corresponding 
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to the distinguished pseudo-reflection with hyperplane H. We let Hu denote the Hecke 
algebra of W defined over Ru, that is Hu = H(W ) ⊗R Ru.

3.1. Reminder on canonical traces

Let W be a complex reflection group, B its braid group, H = Hu its Hecke algebra, 
defined over the ring of definition Ru = Z[u±1

c,i ]. Let x �→ x̄ the automorphism of Ru

defined by uc,i �→ u−1
c,i . The group antiautomorphism g �→ g−1 on B induces an antiauto-

morphism of Z-algebras a : RuB → RuB such as a(λg) = λ̄g−1 for all λ ∈ Ru and g ∈ B. 
The Hecke ideal JH of RuB is stable by a hence a induces an automorphism of H. It has 
the property that, for all parabolic subalgebras H0 of H, H0 is a-stable and the restric-
tion of a to H0 coincides with the antiautomorphism associated to H0. Let t : H → R

be a linear form. We assume that H admits a Ru-basis whose elements are (images of) 
elements of B. This is the strong freeness conjecture, which is now known for all complex 
reflection groups. We denote π the natural central element of P = Ker (B � W ). We 
consider the following assumptions on t.

(1) t is a symmetrizing trace on H, that is t is a linear form on H such that t(xy) = t(yx)
for all x, y ∈ H, and the map x �→ (y �→ t(xy)) defines an isomorphism between H
and its dual.

(2) The trace induced on the specialization CW of H is the usual trace on the group 
algebra CW

(3) For all h ∈ H, we have t(a(h))t(π) = t(hπ).

In [7] proposition 2.2 it is proven that, if there exists a trace satisfying these assump-
tions, then it is unique. It is also proven there that, in case W is a Coxeter group, then 
the trace given by t(Tw) = 0 if w �= 1, t(T1) = 1, satisfies these assumptions.

3.2. Traces on generalized Hecke algebras

Let L be an admissible lattice, and x ∈ L. Let W0 denote the full reflection subgroup 
attached to x and H0 the corresponding Hecke algebra. We already proved that the 
generalized Hecke algebra H̃x attached to x is a free H0-module of the form 

⊕m
i=1 biH0

where the bi are (classes inside H̃x of) representatives of Bx/B0 � Gx/W0. Obviously 
one can assume b1 = 1 hence b1H0 = H0. Assume that we are given a trace t : H0 → Ru

satisfying the conditions of the previous section. We extend it as a linear form t : H̃x →
Ru by t(biH0) = 0 if i > 1.

Proposition 3.1. The extended linear form t : H̃x → Ru is a symmetrizing trace.

Proof. In order for it to be a trace one needs to check that for all a1, a2 ∈ H0 and i, j
we have t(bia1bja2) = t(bja2bia1). But clearly both terms are 0 if bj /∈ b−1

i H0. Therefore 
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we need to check that t(bia1b
−1
i a2) = t(b−1

i a2bia1) for all i and a1, a2 ∈ H0. But this 
means t(bia1(b−1

i a2bi)b−1
i ) = t(b−1

i a2bia1). Since a2 �→ b−1
i a2bi induces a bijection of 

H0 ↪→ H̃x this is equivalent to saying that t(bia1a2b
−1
i ) = t(a2a1) for all a1, a2 ∈ H0. 

But t(a2a1) = t(a1a2) whence we need to check that, for all i and all a ∈ H0, we have 
t(biab−1

i ) = t(a). This holds true for the following reason. Let b ∈ Bx, and consider the 
map a �→ t(bab−1). This is a trace on H0, which satisfies obviously the conditions (1) and 
(2) of the previous section. It also satisfies condition (3) if we can prove that bπ0b

−1 = π0
where π0 is the natural central element of the pure braid group P0 of W0. But this was 
proven in section 2.2 above. Therefore t is a trace on H̃x. Taking a basis e1, . . . , eN of 
H0 and letting e′1, . . . , e

′
N its dual basis, so that t(eie′j) = δij , we get that the biej form a 

basis for H̃x, with dual basis e′jb−1
i . Indeed, t(bieje′rb−1

s ) = t(b−1
s bieje

′
r) = 0 unless i �= s, 

and in that case it is equal to t(eje′r) = δjr. Therefore t is a symmetrizing trace. �
3.3. Symmetrizing trace

We recall the following standard property of traces on matrix algebras, the proof being 
easy and left to the reader.

Lemma 3.2. Let k be a commutative ring with 1, A a k-algebra and N ≥ 1. There is a 1-1 
correspondence between trace forms on A and trace forms on MatN (A) = MatN (k) ⊗kA, 
the correspondence being given by t �→ tr ⊗ t, where tr : MatN (k) → k is the matrix 
trace. Moreover tr⊗ t : MatN (k) ⊗k A → k⊗k k = k is symmetrizing if and only if t is 
symmetrizing.

From the isomorphism (kB � kL)/J �
⊕

X∈L/W MatX(kH̃x∗) we are able to con-
struct a trace form, as

⊕
X∈L/W

tx∗ ⊗ tr :
⊕

X∈L/W

MatX(kH̃x∗) =
⊕

X∈L/W

MatX(k) ⊗k kH̃x∗ → k

and by the above property it is a symmetrizing form. This proves the following.

Theorem 3.3. Let L be an admissible lattice for W , and k a commutative Ru-algebra. If 
the Broué–Malle–Michel trace conjecture holds for all x ∈ L, then the algebra Ck(W, L)
is a symmetric algebra. It is in particular the case when W is a real reflection group.

4. Main examples

We recall that a reflection subgroup W0 of W is called full if, for every reflection 
s ∈ W0, all the reflections with respect to the same reflecting hyperplane belong to W0. 
Such a reflection subgroup is uniquely determined by the set of its reflecting hyperplanes. 
Of course reflection subgroups of real reflection groups and, more generally, of 2-reflection 
groups, are full.
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Let L∞ denote the poset of all full reflection subgroups, ordered by inclusion. For 
convenience, we prefer to consider it as a poset of subsets of L, also ordered by inclusion.

Recall that a subset L ⊂ L∞ is called admissible if it is a sub-join-semilattice of L∞
which satisfies the following conditions:

(1) It is W -stable.
(2) It contains all {H}, for H ∈ A, as well as the trivial subgroup.

Because such an L always contains a minimal element (the trivial group), there is no 
ambiguity in the definition of the semi-lattice: the fact that a ∨ b exists for every two 
elements of L is in this case equivalent to saying that every finite subset of elements, 
including the empty one, admits a join. Moreover, since such an L is always finite, it is 
automatically a lattice. Therefore, we can equivalently talk about admissible lattices.

4.1. The category of admissible semi-lattices and maps

Let L and L′ be two admissible semi-lattices. A map L → L′ is called admissible if it 
is a W -equivariant morphism of join semi-lattices which is the identity on the cyclic and 
trivial reflection subgroups. The collection of admissible semi-lattices with morphisms 
the admissible maps forms a (small, finite) category CLW , and Ck(W, •) defines a functor 
from CLW to the category of (associative, unital) k-algebras. The category CLW admits 
a terminal object that we call L2: it is the subset of L∞ made of the trivial and cyclic 
reflection subgroups together with the whole group W . Obviously, for every admissible 
L there exists exactly one admissible map L → L2. In particular there exists exactly one 
admissible map L∞ → L2.

More generally, define the parabolic rank of a reflection subgroup W0 as the rank of 
the smallest parabolic subgroup containing W0, or equivalently as the codimension of its 
set of fixed points. Then, the sub-poset Ln made of all reflection subgroups of parabolic 
rank at most n plus the whole group is an admissible semi-lattice as soon as n ≥ 2, 
and there is an admissible map Lm → Ln when m ≥ n given by W0 �→ W0 if W0 has 
parabolic rank at most n, and W0 �→ W if W0 has rank at least n + 1. This applies to 
m = ∞ as well.

4.2. The semi-lattice L2

The W -orbits of L2 are {{1}}, {W} together with the bc = {{H}; H ∈ c} for every 
c ∈ A/W . It is immediately checked that kH̃1 = kW and kH̃W∗ = Hk(W ). From 
Theorem 2.3 we get that

Ck(W,L2) = kW ⊕Hk(W ) ⊕
⊕

Mat|c|(kH̃c∗)

c∈A/W
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A remarkable fact about the x = {H} ∈ L of rank 1, for any admissible poset, is that 
the generalized Hecke algebras H̃x are free deformations of the group algebra kG(H), 
where G(H) = {w ∈ W | w(H) = H}, without having to invoke the BMR freeness 
conjecture (or, said differently, it corresponds to the trivial case (rank 1) of the BMR 
freeness conjecture).

4.3. The case of finite Coxeter groups

Assume that W is a real reflection group, and let (W, S) be a Coxeter system attached 
to it. Then B admits a presentation as an Artin group, with generators bs, s ∈ S. The 
map B → W admits a natural set-theoretic section, called Tits’ section, and defined by 
w �→ bw = bs1 . . . bsn where si ∈ S and w = s1 . . . sn is an expression of w as a product 
of the generators of minimal length. The classical theory tells us that it is well-defined. 
We denote gw the image of bw inside C(W, L) under the natural R-algebra morphism 
RB → C(W, L).

Since the BMR freeness conjecture is true for all reflection subgroups of W , from 
Theorem 1.3 we know that C(W, L) is a free R-module of rank |W | ×|L|. More precisely, 
we have the following.

Proposition 4.1. Let W be a finite Coxeter group and L an admissible lattice. Then 
C(W, L) admits for basis the elements gweL for w ∈ W and L ∈ L.

Proof. Since the collection {gweL; w ∈ W, L ∈ L} has the right cardinality, it is sufficient 
to prove that it spans the free R-module of finite rank C(W, L). For this we consider its 
span that we denote V ; we remark that 1 ∈ V , and prove that it is a left ideal of 
the R-algebra C(W, L). Since the gs, s ∈ S and eL, L ∈ L generate RB � RL as an 
algebra, they also generate C(W, L) and therefore it is sufficient to show that gs.x ∈ V

and eL.x ∈ V for x running among a spanning set of V . Setting x = gweM for some 
w ∈ W, M ∈ L, we get eLgweM = gwew−1(L)eM = gwew−1(L)∨M ∈ V . Let � : W → N =
Z≥0 denote the classical length function. If �(sw) = �(w) + 1, then gsx = gsgweM =
gsweM ∈ V . If not, w can be written w = sw′ with �(w′) = �(w) − 1. Then gsgw =
g2
sgw′ = gw′ + (us − 1)e〈s〉(1 + gs)gw′ = gw′ + (us − 1)e〈s〉gw′ + (us − 1)e〈s〉gsgw′ =
gw′ + (us − 1)gw′e〈sw′ 〉 + (us − 1)e〈s〉gw, hence gsgweM = gw′eM + (us − 1)gw′e〈sw′ 〉eM +
(us − 1)e〈s〉gweM = gw′eM + (us − 1)gw′e〈sw′ 〉∨M + (us − 1)e〈s〉gweM ∈ V . This proves 
the claim. �

This proposition implies the following corollary, which could also be directly obtained 
from the approach of [17] – for instance by extending the left action of CW on itself to 
an action of C(W, L∞).

Corollary 4.2. If W is a finite Coxeter group, then CW � C(W, L∞).
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Proof. The elements gs, s ∈ S and eH , H ∈ A clearly satisfy inside C(W, L∞) the defining 
relations of CW , and from this we get an algebra morphism CW → C(W, L∞). From the 
above proposition and theorem 3.4 of [17] we get that it maps a basis of CW to a basis 
of C(W, L∞), and therefore it is an isomorphism. �

Therefore, the construction of C(W, L∞) indeed generalizes to the complex reflection 
group case the algebra CW of a finite Coxeter group introduced in [17].

4.4. The parabolic lattice

A W -stable subposet of L∞ is given by the collection Lp of parabolic subgroups. It can 
be identified with the arrangement lattice L(A), that is the collection of all intersections 
of hyperplanes in A, ordered by reverse inclusion. More precisely, there exists a map 
Fix : L → L(A) where Fix(x) is the intersection of all reflecting hyperplanes in x, and 
its restriction to Lp is a bijection.

Proposition 4.3. For x ∈ L∞ a reflection subgroup, let [x] ∈ Lp denote the parabolic 
closure of x. Then x �→ [x] is an admissible map L∞ → Lp inducing a quotient map 
C(W, L∞) → C(W, Lp).

Proof. First note that, for every E, F ⊂ W , we have Fix(E ∪ F ) = Fix(E) ∩ Fix(F ), 
Fix(E) = Fix(〈E〉), and Fix(x) = Fix([x]) if x is a reflection subgroup. From this we get 
that, for all x, y ∈ L, we have on the one hand Fix([〈x, y〉]) = Fix(〈x ∪y〉) = Fix(x ∪y) =
Fix(x) ∩Fix(y), and on the other hand Fix([〈[x] ∪ [y]〉])Fix(〈[x] ∪ [y]〉) = Fix([x] ∪ [y]) =
Fix([x]) ∩ Fix([y]) = Fix(x) ∩ Fix(y). Since Fix is a bijection Lp → L(A) this proves 
[〈x, y〉] = [〈[x] ∪ [y]〉], and this proves the claim, the W -invariance being obvious. �

From this we recover the definition of Cp
W = C(W, Lp) given in [17] in the case of a 

finite Coxeter group, and extend the map C(W, L∞) → Cp
W to the complex reflection 

group case.

4.5. Root systems

Let R be a reduced root system (in the sense of Bourbaki), W the associated real 
reflection group. To each α ∈ R we associate the corresponding reflection sα = s−α ∈ W . 
A root subsystem of R is by definition a subset R′ of R stable under every sα, α ∈ R′. 
The subgroup of W generated by the sα for α ∈ R′ is a reflection subgroup, and the map 
R′ �→ 〈sα, α ∈ R′ defines a bijection between the set LR of all root subsystems and L∞. 
The preordering induced by this bijection on LR is simply the inclusion ordering. We 
endow LR we the corresponding join semilattice structure. The cyclic reflection subgroups 
of W correspond to the root subsystems {α, −α} for α ∈ R.

We let Lc denote the subset of LR corresponding to the closed subsystems, namely 
the R′ ∈ L∞ for which ∀α, β ∈ R′ α + β ∈ R ⇒ α + β ∈ R′. Note that an intersection 
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of closed subsystems is a closed subsystem, and that the subsystems of the form {α, −α}
as well as the empty subsystem are closed. We have a map c : LR → Lc which associates 
to R′ ∈ LR its closure, namely the intersection of all closed subsystems containing it. It 
is immediately checked that c is W -equivariant and a join semilattice morphism. From 
this it follows that we get an admissible map L∞ � LR → Lc.

This proves the following.

Proposition 4.4. Let R be a reduced root system and W the associated finite Coxeter 
group. Under the identification L∞ � LR, the map c : LR → Lc induces a surjective 
morphism C(W, L∞) → C(W, Lc).

This proposition proves that the algebra C(W, Lc) is isomorphic to the algebra CR
W of 

[17], which generically embeds into the corresponding Yokonuma–Hecke algebra. Indeed, 
CR
W is defined as a quotient of C(W, L∞) = CW , and one gets immediately that the map 

CW � C(W, Lc) defined above factors through CW � C(R)
W . The induced surjective map 

C(R)
W → C(W, Lc) is then checked to be injective, since the natural spanning set of C(R)

W

is mapped to a basis of C(W, Lc). It is then immediately checked that the corresponding 
diagram of isomorphisms and natural projections is commutative.

CW
� C(W,L∞)

C(R)
W

� C(W,Lc)

C(p)
W

� C(W,Lp)

4.6. A priori unrelated examples

A computer-aided exploration shows that there are other admissible lattices not orig-
inating a priori from root systems, with Lp ⊂ L ⊂ L∞. In type A we have Lp = L∞, 
but in type Dn for n ≥ 4 we have Lp � L∞ while all root subsystems are closed. We 
checked for small n whether there are other admissible lattices in type Dn. This can be 
done as follows. First of all, one computes the W -orbits for the action on L∞ \Lp, since 
L∞ \ L has to be an union of them. For each such union of orbits we then test whether 
the obtained subset L satisfies the join semilattice property. In type D4, the action of 
W on L∞ \ Lp is transitive (and it the orbit of a reflection subgroup of type A4

1), so 
there is no intermediate admissible lattice. But in type D5, the action has 2 orbits, one 
of type A4

1 inherited from type D4, and the other one of type A1A3. By adding to Lp the 
orbit of type D4 one checks by computer that the corresponding poset L is admissible, 
every two elements admitting a join. This proves that examples containing the lattice of 
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parabolic subgroups and which are a priori not related to the theory of root systems do 
exist.
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