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1. Introduction

From the famous Serre construction, we know that a codimension 2 submanifold 
X ⊂ P

n that is subcanonical (i.e. ωX � OX(l) for some l ∈ Z) can be seen as the zero 
locus of a section of a rank two vector bundle E. In particular, in that case, we have an 
exact sequence
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0 → OPn → E → IX(c1(E)) → 0.

There is a similar construction in codimension 3. By answering Okonek’s question 
(see [16]), Walter showed in [21] (see also [6]) that if n − 3 is not divisible by 4 then each 
locally Gorenstein subcanonical subscheme X of codimension 3 in Pn admits a Pfaffian 
resolution

0 → OPn(−2s− t) → E∗(−s− t) ϕ−→ E(−s) → IX → 0,

where the vector bundle E is of rank 2r + 1 and s = c1(E) + rt. Moreover, in that case

ωX = OX(t + 2s− n− 1). (1.1)

In such a situation, we shall say that E defines X through the Pfaffian construc-
tion, although X is in fact defined by an additional choice of a skewsymmetric map
ϕ : E∗(−s − t) → E(−s) or equivalently by a choice of a section σ ∈ (

∧2
E)(t). When 

such a σ is specified we shall write Pf(σ) for the Pfaffian variety defined by σ.
The Pfaffian construction was applied in [2] to construct canonically embedded sur-

faces of general type in P5, and in [19] and [18] to construct Calabi–Yau threefolds in P6. 
The latter examples will be referred to as Tonoli Calabi–Yau threefolds. The resulting 
examples of both papers have degrees 12 ≤ d ≤ 17. In particular, in the case of degree 17 
the authors of [19] and [18] discover three distinct families of Calabi–Yau threefolds.

Pfaffian Calabi–Yau threefolds, being one of the simplest Calabi–Yau threefolds which 
are not described as complete intersections in toric varieties, are good testing examples 
for the mirror symmetry conjectures. The simplest of them, i.e. those which are arith-
metically Cohen–Macaulay (or equivalently in this case those of degree d ≤ 14), have 
already been studied with partial success from this point of view (see [17,1,8]). An in-
teresting phenomenon occurs for those examples: the Picard–Fuchs equation admits two 
points of maximal unipotent monodromy. Those points correspond to mirror partners 
with equivalent derived categories. On the other hand, there is not a single representa-
tive in the huge database [20] of Picard–Fuchs operators whose invariants would match 
the invariants of any non-arithmetically Cohen–Macaulay Pfaffian Calabi–Yau threefold 
(i.e. of degree d ≥ 15). Motivated by this, we have tried to understand the geometry of 
these examples.

The construction of Tonoli families of degree 17 Calabi–Yau manifolds in P6 can be 
summarized as follows. Let W3, P7 be two vector spaces of dimension 3 and 7 respectively. 
Then P(W3⊗P7) contains a natural subvariety Seg consisting of classes of simple tensors. 
Seg is the image of the Segre embedding of P(W3) ×P(P7) into P(W3⊗P7). In particular, 
we have a map π : Seg → P(W3). For any point P in the Grassmannian G(16, W3⊗P7), we 
shall write LP for the corresponding linear space of dimension 15 in P(W3⊗P7). Observe 
that the projection π|LP∩Seg → P

2 has fibers which are linear spaces of dimension ≥ 1
and the generic fiber is a P1. Consider
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M̃k = {P ∈ G(16,W3 ⊗ P7) | π|LP∩Seg has exactly k distinct P
2-fibers

and no fiber of bigger dimension}. (1.2)

Observe now that a general point P ∈ G(16, W3 ⊗P7) defines a unique vector bundle of 
rank 13 on P(P7) in the following way. If P ∈ G(16, W3⊗P7) then there is a natural map 
LP ⊗ P ∗

7 → W3 defined up to composition with an automorphism of LP that defines a 
map

λP : LP ⊗OP(P7) → W3 ⊗OP(P7)(1).

If this map is surjective (which happens for general P ∈ G(16, W3 ⊗ P7)), its kernel is a 
vector bundle that we shall call EP or EλP

. Tonoli proves that, for each k = 8, 9, 11, the 
family of bundles EP parameterized by P in a non-empty open subset of M̃k defines a 
family of Pfaffian Calabi–Yau threefolds of degree 17. For a formal construction of this 
family we refer to Section 3.

The main result of this paper is a simple construction of Tonoli families of Calabi–Yau 
threefolds of degree d = 17. The main ingredient of this construction is the following 
theorem.

Theorem 1.1. For k ∈ {8, 9, 11}, with the above notation, let Bk be the set of all P ∈
G(16, W3 ⊗ P7) such that:

(1) k = 11 and LP contains the graph Γv1 ⊂ Seg ⊂ P(W3 ⊗ P7) of a linear embedding 
v1 : P(W3) → P(P7);

(2) k = 9 and LP contains the graph Γv2 ⊂ Seg ⊂ P(W3 ⊗ P7) of a second Veronese 
embedding:

v2 : P(W3) → P(P7);

(3) k = 8 and LP contains the closure of the graph Γv3 of a birational map v3 : P(W3) →
P(P7) defined by a system of cubics passing through some point.

Then Bk ∩ M̃k contains an open and dense subset of both Bk and M̃k.

We also discuss in Remark 5.7 what happens in the case k = 10; note that M̃10 
= ∅, 
but our construction does not give rise to a codimension 3 submanifold. The case k ≤ 7
is discussed in Remark 5.6; note that for k = 7 the construction leads to a Gorenstein 
threefold that is not smooth. Moreover, for k ≤ 6 we clearly have M̃k 
= ∅ but in this 
case again the construction does not lead to codimension 3 submanifolds.

Theorem 1.1 puts Tonoli’s construction in a geometrical context which makes it easier 
to work with Tonoli examples. In particular, an explicit construction that works in 
characteristic 0 (cf. [19, §4]) can be implemented in Macaulay 2; we provide in [12] the 
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Table 1
Vector bundles defining del Pezzo surfaces.

Degree Vector bundle defining projected del Pezzo surfaces in P
5

3 OP5 (−1) ⊕ 2OP5 (1)
4 2OP5 ⊕ OP5 (1)
5 5OP5

6 Ω1
P5 (1) ⊕ 2OP5

7 ker(ψ), where ψ : 11OP5 → 2OP5 (1) is a general map
8 ker(ψ), where ψ : 14OP5 → 3OP5 (1) is a special map with more syzygies
9 ker(ψ), where ψ : 17OP5 → 4OP5 (1) is a special map with special syzygies

Table 2
Vector bundles defining Tonoli Calabi–Yau threefolds.

Degree Vector bundle defining the Tonoli examples of Calabi–Yau threefolds
12 OP6 (−1) ⊕ 2OP6 ⊕ 2OP6 (1)
13 4OP6 ⊕ OP6 (1)
14 7OP6

15 Ω1
P6 (1) ⊕ 3OP6

16 ker(ψ), where ψ : 13OP6 → 2OP6 (1) is a general map
17 ker(ψ), where ψ : 16OP6 → 3OP6 (1) is a special map with more syzygies

necessary scripts. Moreover, the structure of the moduli space of those examples can be 
described (the unirationality of the families becomes clear). We also use our construction 
to recompute the dimensions of the Tonoli families of Calabi–Yau threefolds in P6, and 
point out an error in Tonoli’s computation. We prove that a Tonoli Calabi–Yau threefold 
of degree d = 17 corresponding to k = 11 has Picard group of rank ≥ 2.

Corollary 1.2. There exists a Calabi–Yau threefold of degree 17 in P6 with Picard group 
of rank ≥ 2.

We conjecture that the relevant Tonoli family of Calabi–Yau threefolds of degree 
d = 17 corresponding to k = 11 is locally complete, which implies in particular that the 
Hodge numbers of Calabi–Yau threefolds in this family are h11 = 2 and h12 = 24 (see 
Corollary 5.17).

A second result of this paper is the description of del Pezzo surfaces in P5 (embedded 
by a subsystem of the anti-canonical bundle) in terms of Pfaffians of vector bundles 
and the observation of an analogy between these descriptions and descriptions of Tonoli 
Calabi–Yau threefolds in P6. In Tables 1 and 2 we present the vector bundles correspond-
ing to these descriptions.

Observe that a Tonoli Calabi–Yau threefold of degree 12 is just a complete intersection 
of type (2, 2, 3) and is naturally described by the Pfaffians of OP6 ⊕ 2OP6(1). We have 
changed this vector bundle to an equivalent one (see the proof of [11, Lem. 3.4]) in 
order to make the analogy more transparent. Keeping this in mind, we associate to 
any del Pezzo surface D ⊂ P

5 a vector bundle ED from Table 1 defining it and in 
the same way to any Calabi–Yau threefold X a bundle FX from Table 2 defining it. 
Observe that the bundle ED (resp. FX) is uniquely determined by the degree deg(D)
(resp. deg(X)) when deg(D) ≤ 7 (resp. deg(X) ≤ 16). For del Pezzo surfaces of degree 8 



G. Kapustka, M. Kapustka / Journal of Algebra 509 (2018) 307–336 311
and Tonoli Calabi–Yau threefolds of degree 17, we in fact have ED = Syz1(HR(D))(−2)
and FX = Syz1(HR(X))(−3), where Syz1 denotes the sheafification of the first syzygy 
module of a given module, and HR is the Hartshorne–Rao module of a given variety 
(i.e. HR(X) =

⊕
j∈Z

H1(IX(j))).
The analogy can now be formalized by the following theorem.

Theorem 1.3. Let X ⊂ P
6 be a general element of a family of Tonoli Calabi–Yau three-

folds and let FX be as above. Then there exists a map FX → 2OP6 whose kernel E
restricted to any P5 defines a del Pezzo surface of degree deg(X) − 9. Conversely, for a 
general del Pezzo surface D ⊂ P

5 of degree deg(D) ≤ 8 with associated bundle ED there 
exists an extension E′

D of the bundle ED to P6 such that a general bundle F ′
d fitting into 

a short exact sequence

0 → E′
D → F ′

D → 2OP6 → 0

defines a Calabi–Yau threefold in P6 of degree deg(D) + 9.

This observation, rather straightforward for degree deg(X) ≤ 16 and deg(D) ≤ 7 (see 
Proposition 4.5), is nontrivial for deg(X) = 17 and deg(D) = 8 (see Section 7). Our 
proof in the latter case uses Theorem 1.1.

Taking one step further, we conjecture an upper bound on the degree of Calabi–Yau 
threefolds in P6. More precisely, by analogy to the case of del Pezzo surfaces, we expect 
that there are no smooth Calabi–Yau threefolds of degree d ≥ 19 in P6. Finally, we 
speculate about the possibility of constructing a degree 18 Calabi–Yau threefold with 
description analogous to the one of a del Pezzo surface of degree 9.

The structure of the paper is the following. In Section 2, we recall some basic facts from 
the theory of Pfaffians and provide some preliminary results. In particular, we describe a 
method to compute the dimensions of families of manifolds obtained as Pfaffian varieties 
associated to families of vector bundles. In Section 3 we recall Tonoli constructions in a 
slightly more general context and provide tools for the study of the resulting families. 
In particular we show how to compute the dimensions of these families. In Section 4, 
we quickly go through the constructions of del Pezzo surfaces of degree dD ≤ 7 and 
Calabi–Yau threefolds of degree dX ≤ 16. We observe that they are strictly related. In 
particular, Theorem 1.3 takes a stronger form in these cases. In Section 5, we provide var-
ious descriptions of the sets Mk, compute their dimensions and prove Theorem 1.1. We 
apply these results to the study of Tonoli families of Calabi–Yau threefolds of degree 17. 
In particular, we compute the dimensions of these families.

In Section 6, we describe anti-canonically embedded del Pezzo surfaces of degree 8 in 
P

5 in terms of Pfaffian varieties. In Section 7 we complete the discussion of the analogy 
between del Pezzo surfaces and Tonoli Calabi–Yau threefolds and finish the proof of 
Theorem 1.3.

In Section 8, we make the conjecture that 18 is the highest degree of a Calabi–Yau 
threefold in P

6.
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2. Preliminaries

In this section, we recall some basic facts of the theory of Pfaffians that will be needed 
in our construction. Let X ⊂ P

n be a Calabi–Yau threefold in P6 or a del Pezzo surface 
in P5. Then, by [21], the variety X can be described as a Pfaffian variety associated to 
some vector bundle EX of rank 2r + 1 on Pn. Consider the related Pfaffian resolution

0 → OPn(−2s− t) → E∗
X(−s− t) ϕ−→ EX(−s) → IX → 0,

with s = c1(EX) + rt. Observe that by changing EX to a suitable twist of it we may 
assume t = 1. Moreover, by Formula (1.1) for the canonical class, s = 3 for X being a 
Calabi–Yau threefold and s = 2 for X being a del Pezzo surface.

By [21] (or more precisely by an observation of Decker and Schreyer [4, §5] based 
on [21]), under the assumption hi(OX) = 0 for 0 < i < dimX, the bundle EX is, up to 
a possible direct sum of line bundles, the twist by OPn(−s) of the sheafification of the 
first syzygy module Syz1(M) of the Hartshorne–Rao module M =

⊕
j∈Z

H1(IX(j)).
In our constructions, we shall deal only with varieties satisfying a series of additional 

assumptions, which are believed to be satisfied by a general element of a Hilbert scheme 
of subcanonical codimension 3 varieties. For this reason, in this preliminary section, we 
shall also make these assumptions. In particular, we shall assume that the submanifolds 
under study satisfy the so-called maximal rank assumption stating that the restriction 
maps

H0(Pn,OPn(i)) → H0(X,OX(i))

are of maximal rank for i ∈ N. Moreover, the Hartshorne–Rao module will be assumed 
to be generated in its smallest degree. Its shift by s, which we shall usually denote by M

and call the shifted Hartshorne–Rao module, will then be generated in degree −1.
These assumptions restrict our attention to varieties whose shifted Hartshorne–Rao 

module M has a presentation

pSPn → qSPn(1) → M → 0, (2.1)
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with SPn being the coordinate ring of Pn. In this case, M is determined by the map in 
the presentation, which itself is given by a matrix of linear forms on Pn. If the matrix M
is general enough, then M is determined up to isomorphism by the associated embedding

P
p−1 ⊂ 〈Pn × P

q−1〉 = P
7q−1, (2.2)

where 〈Pn × P
q−1〉 denotes the linear span of the image of the Segre embedding. In the 

above context, the idea of our constructions will be to find a suitable family of projective 
subspaces Pp−1 ⊂ 〈Pn×P

q−1〉 determining some family of modules. The latter by [4, §5]
should give rise to a family of vector bundles which, by further choices, induces a family 
of Pfaffian manifolds associated to these bundles.

The first obstacle in the above is that in the remark of Decker and Schreyer the direct 
sum of line bundles is not determined uniquely. This problem is solved in the case of 
Calabi–Yau threefolds by the following lemma, which together with Formula (1.1) for 
the canonical class of a Pfaffian variety will give us the desired uniqueness in the cases 
studied.

Lemma 2.1. Let M be the shifted Hartshorne–Rao module of a Calabi–Yau threefold X
of degree d in P6. Assume that M has a minimal presentation

pSP6 → qSP6(1) → M → 0

with p, q ∈ N and p − q ≥ 3. Then X is defined as a Pfaffian variety Pf(σ) for some σ ∈
H0((

∧2
E)(1)), where E = Syz1(M) ⊕

⊕k
i=1 OP6(ai) for some k and some a1, . . . , ak ≥ 0.

Proof. Since, by definition, M has only finitely many nonzero graded components, the 
sheaf Syz1(M) is a vector bundle of rank p − q obtained as the kernel of the sheafified 
map in the presentation of M , i.e., we have

0 → Syz1(M) → pOP6 → qOP6(1) → 0. (2.3)

We know that E = Syz1(M) ⊕
⊕k

i=1 OP6(ai) for some k and ai. The only thing we need to 
prove is that ai ≥ 0. In the long cohomology exact sequence associated to (2.3) the map 
H0(pOP6) → H0(qOP6(1)) is the map in the presentation of M . We infer that Syz1(M)
has no section and c1(Syz1(M)) = −q. By analogous reasoning to [11, Lemma 3.5] and 
by Formula (1.1) for the canonical class we conclude that the number of negative ai’s, if 
nonzero, must be smaller than 3 − (p − q). The latter is non-positive by assumption so 
all ai ≥ 0. �
Remark 2.2. A similar lemma is true for anti-canonically embedded del Pezzo surfaces 
in P5 and p − q ≥ 2.
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Since we are sometimes working in parallel with threefolds and with their surface 
sections, it is good to keep in mind the following lemma relating the Hartshorne–Rao 
module of a variety to the Hartshorne–Rao module of its hyperplane section:

Lemma 2.3. Let Y ⊂ P
n be a variety satisfying h2(IY |Pn(j)) = 0 for any j ∈ Z. Let M

be the shifted Hartshorne–Rao module of Y . Assume that M has a presentation

pSPn(−1) m−→ qSPn → M → 0,

given by a matrix m of linear entries in the coordinate ring SPn of Pn. Let H be a 
hyperplane defined by a linear equation h = 0. Then the shifted Hartshorne–Rao module 
M ′ of X ∩H has a presentation

pSH(−1) m′
−−→ qSH → M ′ → 0,

with SH = SPn/〈h〉 = SPn−1 the coordinate ring of the hyperplane H, and m′ the image 
of m via the projection map SPn → SPn/〈h〉.

Proof. For each j, we have the exact sequence

0 → IY |Pn(j − 1) λ−→ IY |Pn(j) → I(Y ∩H)|H(j) → 0,

where λ is given by multiplication by h. From the associated cohomology sequence in 
each degree and the assumed vanishing h2(IY |Pn(j)) = 0, we obtain M ′ = M/(hM), and 
the presentation follows. �
3. Constructions of families of Pfaffian varieties

In this section we shall outline the main constructions of families of Pfaffian vari-
eties used throughout the paper. In particular, we put in a formal context the Tonoli 
construction of families of Calabi–Yau threefolds. We aim at constructing flat families 
P
n × S ⊃ X → S of subcanonical submanifolds of some projective space Pn.

3.1. Families given by a fixed vector bundle

The first construction of a family of Pfaffian varieties that comes to mind is to consider 
a vector bundle E of rank 2r + 1 such that h0(

∧2
E(1)) > 0 and consider all Pfaffian 

varieties of the form Pf(σ) with σ ∈ H0(
∧2

E(1)). More precisely, consider the open 
subset U ⊂ H0(

∧2
E(1)) defined by

U = {σ ∈ H0((
∧2

E)(1)) | codim(D2r−2(σ)) = 3}.
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The family of Pfaffian varieties parameterized by U is defined as follows. Let π1 : U ×
P
n → U and π2 : U×P

n → P
n be the natural projections. Consider the bundle π∗

2
∧2

E(1)
and its evaluation section

θ : U × P
n � (σ, x) �→ σ(x) ∈ (

∧2
E)(1).

Then X = Pf(θ) ⊂ U × P
n is a codimension 3 subvariety and π1|X : X → U is a 

flat morphism. Indeed, every fiber is a codimension 3 variety with the same Hilbert 
polynomial computed by the Pfaffian resolution involving the same bundle. In this way, 
we construct a family of Pfaffian varieties. This method is sufficient for the construction 
of locally complete families of Pfaffian Calabi–Yau threefolds of degree ≤ 16.

Example 3.1. Note that the Tonoli families of Calabi–Yau threefolds of degree ≤ 16 are 
all obtained via the above construction using bundles from the table in the introduction.

We shall now describe how to compute the dimensions of such families of Pfaffian 
submanifolds, i.e. the dimension of the image D of the forgetful map

φ : U → HilbXσ|Pn ,

where HilbXσ|Pn is the Hilbert scheme containing π2(π1|−1
X (σ)) for chosen σ ∈ U .

Proposition 3.2. The dimension of the family of varieties obtained as Pfaffian vari-
eties associated to a bundle E = ker(pOPn → qOPn(1)) ⊕

⊕k
i=1 OP6(ai) for ai ≥ 0

is h0(
∧2

E(1)) − dim Hom(E, E).

Before proving Proposition 3.2 let us formulate a preparatory result.

Lemma 3.3. Let Y be a smooth variety obtained as a Pfaffian variety associated to a 
bundle E on Pn. Then we have the following exact sequence:

0 → E∗(−s− t) → E(−s) ⊕ (S2E∗)(−t) → E ⊗ E∗ → (
2∧
E)(t) → NY |Pn → 0, (3.1)

where NY |Pn is the normal bundle of Y in Pn.

Proof. First arguing as in [13, Prop. 2.4] we deduce that NY |Pn = Ext1(IY , IY ) =∧2 IY (2s + t). Then from [22] we obtain the free resolution of the sheaf 
∧2 IY . �

Proof of Proposition 3.2. Let us keep the notation preceding Proposition 3.2. Let more-
over X = π2(π1|−1

X (σ)) for a fixed general σ ∈ U . Then the map H0((
∧2

E)(1)) →
H0(NX|Pn) in Lemma 3.3 is interpreted as the tangent map to the forgetful map φ at σ. 
We want to prove that the dimension of the image of φ is h0((

∧2
E)(t)) −dim Hom(E, E). 

It is enough to prove that the rank of this tangent map at the general point σ is 
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h0((
∧2

E)(t)) − dim Hom(E, E). Splitting the long exact sequence (3.1) into short ones, 
we get

0 → F → (
∧2

E)(t) → NX|Pn → 0,

0 → G → E ⊗E∗ → F → 0,

0 → E∗(−s− t) → E(−s) ⊕ (S2E∗)(−t) → G → 0,

for some bundles F , G on Pn.
Moreover, from the long cohomology sequences of the exact sequence

0 → E → pOPn ⊕
k⊕

i=1
OP6(ai) → qOPn(1) → 0, (3.2)

its twists, twisted duals, and the resulting resolution of (S2E∗)(−t) obtained from [22]:

0 →
(
q

2

)
OPn(−t− 2) → q

(
pOPn ⊕

k⊕
i=1

OP6(−ai)
)

(−t− 1)

→ S2

(
pOPn ⊕

k⊕
i=1

OP6(−ai)
)

(−t) → (S2E∗)(−t) → 0

we deduce that h0(G) = h1(G) = 0. It follows that h0(F ) = h0(E ⊗ E∗) =
dim Hom(E, E). Since h0(F ) is the kernel of the tangent map to φ at s, we deduce 
that the rank of this tangent map at σ is h0((

∧2
E)(t)) − dim Hom(E, E), which gives 

the assertion. �
3.2. Families of Pfaffians defined by a family of vector bundles

For our purposes, in particular for the description of families of degree 17 Calabi–Yau 
threefolds in P6 as well as del Pezzo surfaces of degree 8 in P5, we shall need a more 
general construction than the one proposed in Subsection 3.1. In this construction the 
bundle defining the Pfaffian varieties will be allowed to change. We proceed as follows.

Let E be a vector bundle on Pn ×B for some smooth affine variety B. Let us denote 
by π : Pn × B → P

n the natural projection. For all β ∈ B denote the restricted bundle 
E|Pn×{β} by Eβ . Moreover, by abuse of notation, write (

∧2 E)(1) for 
∧2 E ⊗ π∗OPn(1). 

Assume now that for some U ⊂ Σ ⊂ H0((
∧2 E)(1)), with U an open subset of a subvector 

space Σ, we know that for all σ ∈ U and all β ∈ B the restriction σ|Pn×{β} defines a 
Pfaffian variety (i.e. of codimension 3). Let

θ : U × P
n ×B � (σ, x, β) �→ σ(x, β) ∈ (

∧2 E)(1)

be the evaluation section of π∗
Pn×B((

∧2 E)(1)) with
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πPn×B : U × P
n ×B → P

n ×B

the natural projection and let

X = Pf(θ) ⊂ U × P
n ×B

be its Pfaffian locus. Finally, denote by πU,B the natural projection U×P
n×B → U×B.

Lemma 3.4. With the notation above, πU,B|X is a flat morphism.

Proof. The only thing we need to check is the equality of the Hilbert polynomials of 
each fiber. That follows from the Pfaffian exact sequence and the fact that all Eβ have 
the same Hilbert polynomial, since they are restrictions of E which is flat over Pn, being 
locally free over Pn ×B. �

Let us now make use of Lemma 3.4 in the context of the paper.

3.3. Tonoli construction

Consider vector spaces V , W and P of dimension p, q, n + 1 respectively. We have

V ⊗W ⊗ P = Hom(V ∨,W ) ⊗ P.

It follows that each element m ∈ V ⊗W ⊗ P induces a map

ϕm : V ∨ ×OP(P ) → W ×OP(P )(1),

which globally gives

ϕ : V ∨ ×OV⊗W⊗P×P(P ) → W × π∗(OP(P )(1)),

where π : V ⊗ W ⊗ P × P(P ) → P(P ) is the natural projection. Let B ⊂ V ⊗ W ⊗ P

be the open subset given by B = {m ∈ V ⊗ W ⊗ P | ϕm is surjective}. Then EB :=
(kerϕ)|B×P(P ) is a vector bundle.

For any k let now Bk ⊂ B be an algebraic subset of B such that for each b ∈ Bk we 
have

h0(
∧2 EB |{b}×P(P )(1)) = k.

Let Ek = E|Bk×P(P ). Then by Grauert semicontinuity [7, III Cor. 12.9] there is an open 
subset B′

k ⊂ Bk and a k-dimensional subspace Σk ⊂ H0(
∧2 Ek|B′

k×P(P )(1)) such that 
the natural map

H0(
∧2 Ek|B′

k×P(P )(1)) ⊃ Σk → H0(
∧2 Ek|{b}×P(P )(1))

is an isomorphism for each b ∈ B′
k.



318 G. Kapustka, M. Kapustka / Journal of Algebra 509 (2018) 307–336
Finally, if we know that for some b in B′
k there exists a section σ ∈ Σk ⊂

H0(
∧2 Ek|{b}×P(P )(1)) such that Pf(σ) is a smooth codimension 3 submanifold in P(P )

then by further restricting ourselves to an open subset B′′
k ⊂ Bk and to an open subset 

U of Σk ⊂ H0(
∧2 Ek|Bk×P(P )(1)), we may apply Lemma 3.4 giving rise to a flat family 

T(Bk,U,p,q,n) of smooth codimension 3 submanifolds in Pn. Note that in this way T(Bk,p,q,n)
is a smooth family over an open subset B′′

k ×U ⊂ Bk×Σk ⊂ Bk×H0(
∧2 Ek|Bk×P(P )(1)).

Definition 3.5. A family T(Bk,p,q,n) obtained as above will be called a Tonoli family of 
Pfaffian manifolds. Maximal Tonoli families for given k, p, q, n will be denoted Tk,p,q,n.

Example 3.6. The three families of Calabi–Yau threefolds of degree 17 in P6 constructed 
by Tonoli in [19] are examples of Tonoli families of Pfaffian manifolds of type T(k,16,3,6). 
Indeed, we choose V = V16, W = W3, P = P7 three vector spaces of dimensions indicated 
by the subscripts. We observe that we have a rational map Ψ : V ∨

16 ⊗ W3 ⊗ P7 →
G(16, W3⊗P7) and consider Bk = Ψ−1(M̃k) where M̃k is given by Equation (1.2) (note 
that in particular M̃k is irreducible). We then observe that the isomorphism class of 
the resulting (Ek)β depends only on Ψ(β). If Ψ(β) = P we shall denote (Ek)β by EP. 
It is then proven in [19] that h0(

∧2
EP(1)) = k for general P ∈ M̃k. The idea of the 

argument is as follows: each special P2 fiber produces a section of 
∧2

EP(1); we then 
check by a Macaulay 2 computation that these sections are independent and generate 
h0(

∧2
EP(1)) for a specific randomly chosen P ∈ Mk (see for example [12] for methods 

to perform such a check) and conclude by semicontinuity. By passing to open subsets we 
obtain a Tonoli family of Pfaffian manifolds T(Ψ−1(M̃k),16,3,6) which are the Calabi–Yau 
threefolds of degree 17 defined in [19].

We shall now present a method of computing the dimension of such Tonoli families of 
Pfaffian submanifolds, i.e. the dimension of the image DBk,p,q,n of the forgetful map

ϕ : B′′
k × U → HilbX(b,σ)|P6 ,

where X(b,σ) is the fiber of the family over the point (b, σ) ∈ B′′
k × U and HilbXb,σ|P6 is 

the Hilbert scheme containing Xb,σ for all (b, σ) ∈ Bk × U .

Proposition 3.7. Let T(Bk,16,3,6) be a Tonoli family of Pfaffian manifolds and let 
D(Bk,16,3,6) be the image of this family under the forgetful map ϕ to the Hilbert scheme 
as above. Then keeping the notation from the Tonoli construction above,

dimD(Bk,16,3,6) = dimBk + k − 162 − 32.

Proof. Since the dimension of the domain of the forgetful map ϕ is dimBk + k, in order 
to compute the dimension of the image D(Bk,16,3,6), we need to compute the dimension 
of the fiber of ϕ.
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Observe that in our case E(b,σ) = Syz1(X(b,σ)) for (b, σ) ∈ B′′
k × U . It follows that 

if ϕ((b1, σ1)) = ϕ((b2, σ2)), then there exists an isomorphism α : Eb1 � Eb2 . We know, 
moreover, that every such isomorphism α lifts to resolutions:

0 −−−−→ Eb1 −−−−→ V16 ⊗OP(V7) −−−−→
b1

V3 ⊗OP(V7) −−−−→ 0

α

⏐⏐� A

⏐⏐� B

⏐⏐�
0 −−−−→ Eb2 −−−−→ V16 ⊗OP(V7) −−−−→

b2
V3 ⊗OP(V7) −−−−→ 0

Now, from each fiber ϕ−1(ϕ((b1, σ1)) we have a map π1 : ϕ−1(ϕ((b1, σ1)) → U . By 
the above, the dimension of the image of π1 is equal to dim GL(V ) + dim GL(W ) −
dim Aut(E, E), whereas the dimension of the fiber of π1 is computed by Proposition 3.2
to be dim Aut(E, E). It follows that the dimension of the fiber of ϕ is dim GL(V ) +
dim GL(W ) = p2 + q2, which ends the proof. �
Remark 3.8. More generally we can show that the dimension of the Tonoli family

dimD(Bk,p,q,n) = dimBk + k − p2 − q2.

4. Del Pezzo surfaces of degree ≤ 7 and Calabi–Yau threefolds of degree ≤ 16

In this section we describe anti-canonically embedded del Pezzo surfaces of degree 
d ≤ 7 in P5 in terms of Pfaffians of vector bundles. Let us first make some general 
remarks on del Pezzo surfaces embedded in P5 via a subsystem of the anti-canonical 
class.

4.1. Del Pezzo surfaces in P5

Recall that an anti-canonical model of a smooth del Pezzo surface of degree ≥ 3 is a 
smooth surface of degree n in Pn for 3 ≤ n ≤ 9.

Consider anti-canonical embeddings of these surfaces in P5. More precisely, for 3 ≤
n ≤ 7, we consider varieties obtained as the image of the anti-canonical embedding of 
the del Pezzo surface of degree n composed with a general linear map Pn → P

5. For 
n = 8, we have two del Pezzo surfaces F1 and P1×P

1. So we have two types of del Pezzo 
surfaces of degree 8 in P5.

Let now D be a del Pezzo surface of degree n in P5 as above. Then D is clearly 
subcanonical, so by the theorem of Walter it admits Pfaffian resolutions, which we shall 
study.

It follows from the Kodaira vanishing theorem and the Serre duality that Hi(ID) = 0
for i > 1. This implies that the bundle E in the Pfaffian resolution of our del Pezzo surface 
D is the sheafification of the module Syz1(

⊕
k∈Z

H1(ID(k))) over the coordinate ring of 
P

5 plus a possible direct sum of line bundles (see Lemma 2.1).
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Lemma 4.1. The Hilbert function of the Hartshorne–Rao module of a del Pezzo surface 
D ⊂ P

5 of degree n is 0 for n ≤ 5 and for n ∈ {6, 7, 8, 9} takes the following values start-
ing from grade 0: (0, 1, 0, . . . ), (0, 2, 1, 0, . . . ), (0, 3, 4, 0, . . . ), (0, 4, 7, 0, . . . ) respectively. 
Moreover, these del Pezzo surfaces satisfy the maximal rank assumption.

Proof. We first check the maximal rank assumption by checking a random example and 
concluding by semicontinuity as in [9, Lemma 5.1]. The values of the Hilbert function 
are then computed from the Riemann–Roch theorem as in [19]. �
4.2. Constructions of degree ≤ 7 del Pezzo surfaces

We can now get a description of a general del Pezzo surface of degree n ≤ 7 in P5.

Corollary 4.2. A general del Pezzo surface of degree n ≤ 7 in P5 is described as a Pfaffian 
variety associated to the bundle:

(1) OP5(−1) ⊕ 2OP5(1) for n = 3,
(2) 2OP5 ⊕OP5(1) for n = 4,
(3) 5OP5 for n = 5,
(4) Ω1

P5(1) ⊕ 2OP5 for n = 6,
(5) ker(ψ) for n = 7, where ψ : 11OP5 → 2OP5(1) is a general map.

Proof. From Lemma 4.1 we know the bundles up to a direct sum of line bundles. We 
next use the results of [11, Section 3] and proceed analogously. �
4.3. Analogy with Tonoli Calabi–Yau threefolds of degree ≤ 16

Recall that Tonoli families of Calabi–Yau threefolds of degree k ≤ 16 are obtained by 
the construction described in Section 3.1 applied to the vector bundles on P6 character-
ized in Table 2. Comparing the vector bundles appearing in the Pfaffian constructions 
of del Pezzo surfaces and Tonoli Calabi–Yau threefolds, we observe that the description 
of a general del Pezzo surface of degree d in P5 is similar to the description of a general 
Tonoli Calabi–Yau threefold of degree d + 9 in P6. The relation is partially explained by 
the following.

Proposition 4.3. Let E and F be vector bundles on P5 and on P6 respectively, related by 
the exact sequence

0 → E → F |P5 → 2OP5 → 0.

Assume moreover that both bundles define smooth codimension 3 varieties X ⊂ P
6 and 

D ⊂ P
5. Then X is a Calabi–Yau threefold of degree d if and only if D is a del Pezzo 

surface of degree d − 9.
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Proof. This follows from Formula (1.1) for the canonical class implying that r +
c1(E) = 2, and from the following formula for the degree of a Pfaffian variety defined by 
a vector bundle in terms of Chern classes of the vector bundle.

Lemma 4.4 (See [16]). If E is a vector bundle of rank 2r+1 on Pn and s ∈ H0(
∧2

E(1)) a 
general section that defines, via the Pfaffian construction, a variety Y of codimension 3. 
Then

deg(Y ) = rc21(E) + c1(E)c2(E) + (r2 + r)c1(E) + c2(E) − c3(E) + r(2r + 1)(2r + 2)
12 .

In particular deg(Y ) − deg(D) = (r + c1(E) + 1)2.

Proof. The proof is based on a computation using the Hirzebruch–Riemann–Roch theo-
rem, the restriction of the Pfaffian sequence to a general P3, and the fact that the degree 
of a set of distinct points is equal to the Euler characteristic of its structure sheaf. �

�
Let us make the analogy more precise by proving Theorem 1.3 for d ≤ 7. Let D be 

a del Pezzo surface of degree d in P5, and ED be the vector bundle on P5 defining D
through the Pfaffian construction. Consider a Tonoli Calabi–Yau threefold X of degree 
d + 9 and its associated bundle FX by the Pfaffian construction.

Observe that, for d ≤ 7, the bundles ED and FX are determined by d up to a sum 
of rank 2 bundles of the form O(−i) ⊕ O(i − 1) (see the proof [11, Lem. 3.4]). For 
our purpose, we choose the bundles from Tables 1 and 2 and denote them Ed and Fd

respectively.

Proposition 4.5. For d ≤ 7, the bundle Ed is obtained as the cokernel of a general sur-
jective map Fd|P5 → 2OP5 . Moreover, the bundle Ed admits an extension E′

d to P6 such 
that Fd is a general bundle fitting into a short exact sequence

0 → E′
d → Fd → 2OP6 → 0.

Proof. For each of the bundles Fd for d ≤ 7 we compute the restriction to a general P5. 
We get

• F3|P5 = OP5(−1) ⊕ 2OP5 ⊕ 2OP5(1),
• F4|P5 = 4OP5 ⊕OP5(1),
• F5|P5 = 7OP5 ,
• F6|P5 = Ω1

P5(1) ⊕ 4OP5 ,
• F7|P5 = 2Ω1

P5(1) ⊕OP5 = ker(ψ′) for ψ′ : 13OP5 → 2OP5(1) a general map.
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Note that F7 as defined above is uniquely determined up to isomorphism. It is now easy 
to check the first part of the proposition. For the second part we take for E′

d one of the 
following:

• E′
3 = OP6(−1) ⊕ 2OP6(1),

• E′
4 = 2OP6 ⊕OP6(1),

• E′
5 = 5OP6 ,

• E′
6 = Ω1

P6(1) ⊕OP6 ,
• E′

7 = ker(ψ′′) for ψ′′ : 11OP6 → 2OP6(1) a general map.

It is clear that E′
d|P5 = Ed for a general P5 ⊂ P

6 and we conclude by observing that for 
each d there is an exact sequence

0 → E′
d → Fd → 2OP6 → 0,

and Fd is always the general element fitting in the exact sequence. Indeed, for d ≤ 6
we have Ext1(2OP6 , E′

d) = 0 and Fd = E′
d ⊕ 2OP6 , whereas for d = 7 any bundle F

appearing in the exact sequence

0 → E′
7 → F → 2OP6 → 0

is the kernel of some map θ : 13OP6 → 2OP6(1), hence F7 is general among them. �
Remark 4.6. The bundles Fd|P5 and E′

d for d ≤ 7 define through the Pfaffian construction 
general type surfaces in their canonical embedding in P5 and del Pezzo threefolds in their 
half-anti-canonical embeddings in P6 respectively.

Corollary 4.7. Theorem 1.3 holds for del Pezzo surfaces of degree ≤ 7 and Tonoli Calabi–
Yau threefolds of degree ≤ 16.

Remark 4.8. In view of Propositions 4.3 and 4.5, it is natural to construct Calabi–Yau 
threefolds and del Pezzo surfaces in pairs. In particular, having E or F one can try to 
reconstruct the other. The only thing missing and, in fact, the most important thing from 
the point of view of the cases with pairs of degrees (8, 17) and (9, 18) is the existence 
of a section of the newly constructed 

∧2
F (1) and 

∧2
E(1) defining a smooth Pfaffian 

variety (in particular of codimension 3).

In the next sections, we shall study this phenomenon for del Pezzo surfaces of degree 8
and Calabi–Yau threefolds of degree 17.

5. Constructions of Tonoli revisited—degree 17 Calabi–Yau threefolds

In this section our aim is to find a geometric interpretation for Tonoli constructions 
of Calabi–Yau threefolds of degree 17 in P6. By Example 3.6, these appear as Tonoli 
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families of Pfaffian submanifolds of the form TBk,6,16,3, where Bk = Ψ−1(M̃k) and 
Ψ : V ∗

16 ⊗W3 ⊗P7 → G(16, W3 ⊗P7) is the natural map associating to a matrix of linear 
forms the span of its columns. Let us keep this notation throughout the section.

The reinterpretation of Tonoli constructions of Calabi–Yau threefolds of degree 17 in 
P

6, claimed in the introduction, relies on finding good geometric constructions of the 
sets M̃k ⊂ G(16, W3 ⊗ P7).

Observe first that to any P ∈ G(16, W3⊗P7) we can associate a unique GP = cokerλP
on P(W3), where λP : 5OP(W3)(−1) → P7 ⊗ OP(W3) is any embedding induced by the 
five linear equations defining P15 ⊂ P(W3 ⊗ W7) (note that GP is independent of the 
choice of λP). Note that GP is generically locally free of rank one and not locally free at 
the points where the rank of λP drops. Now, the condition P ∈ M̃k is equivalent to the 
condition that the projectivization P(GP) has exactly k special fibers isomorphic to P2.

Now, defining CP by the exact sequence

0 → G∨∨
P → GP → CP → 0,

we can consider

Mk = {P ∈ G(16,W3 ⊗ P7) | CP is the structure sheaf of a scheme of length k}.

Since M̃k ⊂ Mk is a Zariski open subset, we shall look for good descriptions of Mk.
Let us first characterize each P ∈ Mk, for k = 8, 9, 11, by studying the sheaves GP

corresponding to its elements.

Proposition 5.1. If P ∈ G(16, W3 ⊗ P7) is a P15 in P(V3 ⊗ V7) then P ∈ Mk if and only 
if G∨∨

P is a rank two vector bundle isomorphic to:

(1) TP2(1),
(2) OP2(2) ⊕OP2(3),
(3) OP2(1) ⊕OP2(4),

for k = 8, 9 or 11, respectively.

Proof. Let us first assume that G∨∨
P is one of the above vector bundles for some k ∈

{8, 9, 11}. Then we have an exact sequence induced by λP:

0 → 5OP2(−1) λP−−→ 7OP2 → G∨∨
P → CP → 0.

By computing Chern classes it follows that rank(CP) = 0, c1(CP) = 0 and c2(CP) = k, 
hence CP is the structure sheaf of a scheme of length k.

For the other direction let P ∈ Mk. Then we have an exact sequence

0 → 5OP2(−1) → 7OP2 → G∨∨
P → CP → 0
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with CP the structure sheaf of a scheme of length k. From that sequence we deduce that 
c1(G∨∨

P ) = 5H, where H is the class of a line in P2 and c2(G∨∨
P ) = (15 − k)pt where pt is 

the class of a point in P2. Moreover, by the Bertini theorem, there exists a global section 
of G∨∨

P vanishing in codimension 2. This gives rise to an exact sequence

0 → OP2 → G∨∨
P → IZP

(5) → 0

where ZP is a locally complete intersection scheme of length 15 − k on P2. It follows 
that ZP satisfies the Cayley–Bacharach property for quadrics (we learned this method 
from [5]), which means in our cases:

(1) if k = 8 then ZP is a locally complete intersection scheme of length 7 with no 
subscheme of length 6 contained in a conic;

(2) if k = 9 then ZP is a locally complete intersection scheme of length 6 contained in 
a conic;

(3) if k = 11 then ZP is a locally complete intersection scheme of length 4 contained in 
a line.

We deduce that

• if k = 9 then ZP is a complete intersection of a quadric and a cubic, hence G∨∨
P =

OP2(2) ⊕OP2(3);
• if k = 11 then ZP is a complete intersection of a line and a quadric, hence G∨∨

P =
OP2(1) ⊕OP2(4).

It remains to handle the case k = 8. We have

0 → OP2 → G∨∨
P → IZP

(5) → 0.

Twisting by OP2(−2) we obtain h0(G∨∨
P (−2)) = 3 and G∨∨

P (−2) is generated by these 
three sections up to a codimension 2 subset. It follows that there is an exact sequence

0 → OP2 → G∨∨
P (−2) → Ip(1) → 0, (5.1)

with p ∈ P
2. This implies that for k = 8 we have G∨∨

P (−2) = TP2(−1). �
Corollary 5.2. In the notation of Proposition 5.1, if P ∈ Mk then there exists a map 
βP : 7OP2 → Lk surjective outside possibly a set of codimension at least 2, such that 
βP ◦ λP = 0 and where Lk is one of the following sheaves:

(1) L11 = OP2(1),
(2) L9 = OP2(2),
(3) L8 = Ip(3) for some p ∈ P

2.
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Proof. Let P ∈ Mk. Then by Proposition 5.1 we have an exact sequence

0 → 5OP2(−1) λP−−→ 7OP2 → G∨∨
P → CP → 0

and

(1) if k = 8 then G∨∨
P = TP2(1),

(2) if k = 9 then G∨∨
P = OP2(2) ⊕OP2(3),

(3) if k = 11 then G∨∨
P = OP2(1) ⊕OP2(4).

In each case we have a surjective map

σP : G∨∨
P → Lk.

Indeed this is clear for k = 9, 11, whereas for k = 8 it follows from the exact sequence 
(5.1). Since the map 7OP2 → G∨∨

P is surjective outside codimension 2, so is its composition 
with σP, giving rise to the desired βP. �
Remark 5.3. Note that we have a map σP : TP2(1) → Ip(3) for every p ∈ P

2.

Corollary 5.4. Let k ∈ {9, 11}. If there exists a surjective map βP : 7OP2 → Lk such that 
βP ◦ λP = 0, then P ∈ Mk.

Proof. Consider βP : 7OP2 → Lk and λP : 5OP2(−1) → 7OP2 such that βP ◦ λP = 0. 
It follows that we have a surjective map γP : GP = cokerλP → Lk. Now since Lk is an 
injective sheaf for k = 9, 11, we get in these cases a surjective map γ′

P : G∨∨
P → Lk. Its 

kernel is then a line bundle with known Chern class, hence the line bundle

Hk =
{
OP2(4) for k = 11,
OP2(3) for k = 9.

We can apply Corollary 5.1 �
Corollary 5.5. If there exists a surjective map βP : 7OP2 → Ip(3) for some p ∈ P

2 such 
that βP ◦ λP = 0 then we have two possibilities:

(1) λP is degenerate at p and P ∈ M9,
(2) λP is not degenerate at p and P ∈ M8.

Moreover for a general map βP : 7OP2 → Ip(3) a general λP satisfying βP ◦ λP = 0 is 
not degenerate at p.
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Proof. As in the proof of Corollary 5.4, the map βP induces a map γP : GP = cokerλP →
L8 = Ip(3). Now, γP extends to a map γ′

P : G∨∨
P → OP2(3). The latter is either surjective 

or not. If it is surjective we have G∨∨
P = OP2(2) ⊕OP2(3), implying P ∈ M9. When γ′

P
is not surjective then γ′

P maps onto Ip(3). Now, ker γ′
P is a line bundle with first Chern 

class of degree 2, thus OP2(2). It follows that G∨∨
P = TP2(1), which in its turn implies by 

Proposition 5.1 that P ∈ M8. Finally, γ′
P is surjective if and only if p is in the support 

of the sheaf CP = coker(GP → G∨∨
P ). The latter is equivalent to λP being degenerate 

at p. �
Remark 5.6. In order to characterize geometrically Mk for k ≤ 7 one can use the same 
approach as above. For example if k = 7 the exact sequence

0 → 5OP2(−1) λ7−−→ 7OP2 → G∨∨
7 → C7 → 0

shows that G∨∨
7 is a rank 2 vector bundle with c1(G∨∨

7 ) = −5H and c2(G∨∨
7 ) = 8 such 

that G∨∨
7 admits a section vanishing in a 0-dimensional scheme Z7 of length 8 satisfying 

the Cayley–Bacharach property for quadrics, i.e. no subscheme Z7 of length 7 lies on a 
conic. We get the exact sequence

0 → OP2 → G∨∨ → IZ7(5) → 0

and deduce that G∨∨(−2) has a 3-dimensional space of sections whose general element 
vanishes in codimension 2. This gives the sequence

0 → OP2 → G∨∨(−2) → IK2(1) → 0

for some scheme K2 of length 2. After tensoring by OP2(2) we get

0 → OP2(2) → G∨∨ → IK2(3) → 0.

The surjection in that sequence is used to obtain the map β7 : 7OP2 → IK2(3) such that 
β7 ◦ λ7 = 0. Everything being general, the map β7 will be a surjection. For the inverse 
direction starting from a surjection β7 : 7OP2 → IK2(3) a general map λ7 : 5OP2(−1) →
7OP2 satisfying β7 ◦ λ7 = 0 will correspond to an element in M7.

Remark 5.7. Note that M10 
= ∅. In fact, elements of M10 correspond to maps
λ : 5OP2(−1) → 7OP2 such that there exists a commutative diagram

5OP2(−1) λ−−−−→ 7OP2
⏐⏐ ⏐⏐�
4O 2

0
2
P (−1) −−−−→ 2OP
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with vertical arrows being embeddings. Indeed, the degeneracy locus of a general such 
λ is equal to the degeneracy locus of the restricted map 4OP2(−1) → 5OP2 which is a 
scheme of codimension 2 and degree 10. To prove that general elements of M10 arise in 
this way we proceed similarly to the cases k = 7, 8, 9, 11, i.e. if P ∈ M10 then we have 
an exact sequence

0 → 5OP2(−1) → 7OP2 → G∨∨ → C10 → 0

and it follows that a general section of G∨∨ vanishes in a subscheme Z5 of dimension 0 
and length 5 satisfying the Cayley–Bacharach property, hence contained in a line. We 
hence have an exact sequence

0 → OP2 → G∨∨ → IZ5(5) → 0.

But IZ5(5) has the following resolution:

0 → OP2(−1) → OP2 ⊕OP2(4) → IZ5(5) → 0.

The map G∨∨ → IZ5(5) inducing a map G → IZ5(5) gives rise to the following diagram:

0 −−−−→ 5OP2(−1) λ−−−−→ 7OP2 −−−−→ G −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ OP2(−1) −−−−→ OP2 ⊕OP2(4) −−−−→ IZ5(5) −−−−→ 0

This induces

5OP2(−1) λ−−−−→ 7OP2
⏐⏐ ⏐⏐�
4OP2(−1)

0−−−−→ OP2

Now, in case λ is general the degeneracy locus of λ is equal to the degeneracy locus of 
the restricted map

4OP2(−1) → 6OP2

the latter by an analogous argument is a scheme of dimension 0 and length 10 only if it 
factorizes through a map

4OP2(−1) → 5OP2 ,

which implies our general form of elements of M10.
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Remark 5.8. Observe that, a priori, for each k the set Mk may have several components. 
Theorem 1.1 concerns the components for which the map βP is general.

Remark 5.9. For k = 11 each element P ∈ Mk is of one of two types. One type has 
βP : 7OP2 → OP2(1) surjective. The second type has βP factorizing through the ideal of 
a point. In the latter case kerβP = 5OP2 ⊕OP2(−1). Since λP factorizes through the em-
bedding kerβP → 7OP2 , it must decompose as λP = λ1⊕λ2 with λ1 : 4OP2(−1) → 5OP2

and λ2 : OP2(−1) → 2OP2 . Such maps λP do not however give rise to families of Calabi–
Yau threefolds because the degeneracy locus of no skew-symmetric map E∨

λP
(−1) → EλP

is of expected codimension.

Remark 5.10. In the family of Calabi–Yau threefolds of degree 17 with k = 9 we can 
identify a subfamily obtained in the following way. Consider

ϕ : 7OP2 → OP2(3)

defined by Pfaffians of a skew-symmetric matrix. The syzygies of this map recover the 
skew symmetric map

θ : 7OP2(−1) → 7OP2 .

Considering the general map

ι : 5OP2(−1) → OP2(−2) ⊕ 7OP2(−1)

we find that

θ ◦ ι : 5OP2(−1) → 7OP2

defines a Calabi–Yau threefold of degree 17 with k = 9 (i.e. via λP = θ◦ ι). However, one 
can check that in this way we can get only special Calabi–Yau threefolds with k = 9.

5.1. Proof of Theorem 1.1

Let P ∈ Bk ⊂ G(16, V3 ⊗ V7), i.e. one of the following holds:

(1) k = 11 and LP contains the graph Γv1 ⊂ Seg of a linear embedding v1 : P2 → P
6;

(2) k = 9 and LP contains the graph Γv2 ⊂ Seg of a second Veronese embedding 
v2 : P2 → P

6;
(3) k = 8 and LP contains the closure of the graph Γv3 of a birational map v3 : P2 → P

6

defined by a system of cubics passing through some point.
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Then clearly the assumptions of Corollaries 5.5 and 5.4 also hold. Hence, P ∈ Mk by 
these corollaries. Moreover, Corollary 5.2 implies that Bk is Zariski open in Mk. Using 
Macaulay 2 (with [12]), in each case, among all P ∈ Bk we can find elements of M̃k. We 
conclude that Bk ∩Mk is a nonempty open subset of Mk. �
5.2. Another construction

Note that we also have an alternative way to describe P ∈ Mk. For k = 8, 9, 11, 
consider the projectivization of the bundle TP2(1), OP2(2) ⊕ OP2(3) or OP2(1) ⊕ OP2(4)
respectively. The bundle is embedded in P2 ×P

l ⊂ P
3l+2 with l = 14, 15, 17 respectively. 

For each of these cases, consider the projection P2 × P
l → P

2 × P
6 from the spaces 

spanned by P2 × P
k−1, where Pk−1 is spanned by k general points on the image of the 

projectivization of the bundle on Pl. We obtain in this way a P15 ⊂ P
20 containing k

special fibers, which are the proper transforms of the points from which we projected. 
From Proposition 5.1 a P15 in Mk must appear as the span of the projection of the 
corresponding bundle. The reason why the projection must be performed from points 
lying on the projectivization is the appearance of special fibers.

5.3. Dimensions of Mk (cf. [19, Prop. 3.5])

For each k = 8, 9, 11 we compute the dimension of Bk from Theorem 1.1, which is an 
open subset of an irreducible closed subvariety of G(16, W3 ⊗ P7).

Lemma 5.11. The dimension of the space Bk for k = 8, 9, 11 is given by:

dimBk =

⎧⎪⎪⎨
⎪⎪⎩

72 for k = 8,
71 for k = 9,
70 for k = 11.

Proof. We consider each case separately:

(1) The dimension of the space parameterizing graphs of linear embeddings P2 → P
6

is 20. The graph of each linear embedding spans a P5. The Grassmannian param-
eterizing all P15 containing a fixed P5 is of dimension 50. Since a general P ∈ B11
contains only one graph of a linear map, the dimension of B11 is 70.

(2) The dimension of the space of quadratic embeddings P2 → P
6 is 41. The graph of 

each such embedding spans a P9. Hence the dimension of the family of P15 containing 
the graph of a fixed Veronese embedding is 30. Now, since a general P ∈ B9 contains 
only one graph of a Veronese embedding, the dimension of B9 is 71.

(3) For a chosen point p ∈ P
2 we have a 62-dimensional family of graphs. A general graph 

spans a P13, hence we have a 10-dimensional family of P15’s for each of them. Since 
for a fixed p ∈ P

2 there is a unique graph, we conclude that B8 is of dimension 72. �
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5.4. Dimension of Tonoli families

The aim of this subsection is to estimate the Hodge numbers of Tonoli Calabi–Yau 
threefolds of degree 17 by proving the following theorem:

Theorem 5.12. Let Xk
17 be a Tonoli Calabi–Yau threefold defined as a general Pfaffian 

variety associated to a vector bundle EP for some general P ∈ Bk, where Bk is as in 
Theorem 1.1 and k ∈ {8, 9, 11}. Then

h1,2(Xk
17) ≥ dimBk − 57 + k.

Remark 5.13. We have not been able to compute the exact value of h1,2, but we expect 
that we have equality in the inequality above.

We shall need some preliminary results. Let X ⊂ P
6 be a Calabi–Yau threefold. Denote 

by HX the component of the Hilbert scheme HilbX|P6 containing X. The tangent space 
to HX at X is naturally identified to H0(NX|P6). Consider the following map locally 
around X ∈ HX :

HX
π−→ Def(X),

where Def(X) is the local deformation space with tangent space H1(TX).

Lemma 5.14. Let X ⊂ P
6 be a Calabi–Yau threefold. Then the natural map of tangent 

spaces τ : H0(NX|P6) → H1(TX) is a surjection. In particular the local deformations of 
X can be embedded into P6.

Proof. The statement follows from the long exact cohomology sequence constructed from

0 → TX → TP6 |X → NX|P6 → 0

and from the Euler sequence

0 → OX → OX(1) → TP6 |X → 0.

We also infer that H0(TP6 |X) = H0(TP6) is the kernel of τ . �
Let us now introduce some notation fitting with the notation in Section 3. If X is a 

Tonoli Calabi–Yau threefold we shall denote by TX the component containing X of the 
appropriate Tonoli family of Pfaffian varieties, and DX will stand for the image of the 
Tonoli family TX under the forgetful map to HilbX|Pn . In particular DX ⊂ HX .

Proposition 5.15. Let X ⊂ P
6 be a Tonoli Calabi–Yau threefold. Then h1,2(X) ≥

dimHX − 48 ≥ dimDX − 48.
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Proof. It follows from the proof of Lemma 5.14 that h1,2(X) = dimDef(X) ≥ dimHX−
h0(TP6) ≥ dimDX − 48. �

We can now prove Theorem 5.12.

Proof of Theorem 5.12. The theorem is a direct consequence of Propositions 5.15
and 3.7. �
Corollary 5.16. The deformation families of the constructed Tonoli Calabi–Yau threefolds 
are of dimensions ≥ 23, 23, 24 for k = 8, 9, 11 respectively.

Proof. We apply Theorem 5.12 and Lemma 5.11. �
Corollary 5.17. The rank of the Picard group of the family of Tonoli Calabi–Yau threefolds 
of degree 17 with k = 11 is not smaller than 2.

Proof. Since the degree of each Calabi–Yau threefold X in the family is 17, by the double 
point formula ([15, p. 467]) we get 2(h1,1(X) − h1,2(X)) = −44. But by Theorem 5.12
we have h1,2(X) ≥ 24. Thus h1,1(X) ≥ 2. �
Remark 5.18. We believe that the Picard number of Tonoli Calabi–Yau threefolds of 
degree 17 with k = 11 is in fact equal to 2 and that in the cases with k = 9, 8 it is 
equal to 1, but we cannot prove it at the moment. It would be interesting to study the 
example with k = 11 from the point of view of rationality of the rays of the Kähler cone 
as in [14].

Remark 5.19. The Tonoli Calabi–Yau threefold of degree 17 with k = 11 constructed 
above shows that the Barth–Lefschetz theorem cannot be generalized to subcanonical 
threefolds in P6. Another example of this phenomenon is the del Pezzo threefold of degree 
7 projected to P6. It is obtained as the projection to P6 of the second Veronese embedding 
of P3 from a P2 intersecting it in one point.

6. Descriptions of del Pezzo surfaces of degree 8 in P5

We shall now describe the Pfaffian resolutions of del Pezzo surfaces of degree d = 8. 
Our approach will be parallel to the case of Tonoli Calabi–Yau threefolds. We shall look 
for modules M with Hilbert function (3, 4, 0, . . . ) for gradation starting from −1 which 
admit a minimal resolution

14SP5 → 3SP5(1) → M → 0,

where SP5 is the homogeneous coordinate ring of P5. Observe that for such modules 
c1(Syz1(M)) = −3 and rk(Syz1(M)) = 11. It follows by Formula (1.1) for the canonical 
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class and the formula for the degree (see Lemma 4.4) that if 
∧2(Syz1(M))(1) admits 

a section defining a smooth Pfaffian variety D, then D must be a del Pezzo surface of 
degree 8 in its anti-canonical embedding (composed with a projection). Moreover, by 
Remark 2.2, if the shifted Hartshorne–Rao module of a smooth surface D is isomorphic 
to some M as above then D is defined by a Pfaffian variety associated to Syz1(M). To 
such a minimal presentation of M one associates an embedding

P
13 → P

17 = 〈P2 × P
5〉.

In this case, the intersection P13∩(P2×P
5) = P(G) can be seen as the projectivization 

of a sheaf G on P2 given by the cokernel of the embedding

4OP2(−1) → 6OP2

corresponding to the four linear equations defining the P13.
We can now adapt the notation from Section 5 to the case of del Pezzo surfaces.

MD
k = {P ∈ G(14, 18) | coker(G → G∨∨) is the structure sheaf of a scheme of length k}.

Proposition 6.1. If P ∈ G(14, 18) is a P15 in P(V3 ⊗ V6) then P ∈ MD
k if and only if 

G∨∨
P is a rank two vector bundle isomorphic to:

(1) OP2(2) ⊕OP2(2),
(2) OP2(1) ⊕OP2(3),

for k = 6, 7 respectively.

Proof. The proof is completely analogous to the proof of Proposition 5.1. �
Now, still analogously to the case of Tonoli Calabi–Yau threefolds, we deduce the 

following corollaries.

Corollary 6.2. In the notation of Proposition 6.1, if P ∈ MD
k then there exists a map 

βD
P : 7OP2 → LD

k surjective outside possibly a set of codimension at least 2, such that 
βD
P ◦ λD

P = 0 and LD
k is one of the following sheaves:

(1) LD
7 = OP2(1),

(2) LD
6 = OP2(2).

Corollary 6.3. Let k ∈ {6, 7}. If there exists a surjective map βD
P : 7OP2 → LD

k such that 
βD
P ◦ λP = 0, then P ∈ Mk.

Proposition 6.4. The Tonoli families Tk,14,3,5 of Pfaffian varieties for k = 6, 7 are mapped 
via the forgetful map to open subsets in the two components of the Hilbert scheme of 
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del Pezzo surfaces of degree 8 in P5 representing the two types P1 × P
1 and F1 respec-

tively.

Proof. By the formulas for degree and canonical class and by semicontinuity it is clear 
that in this construction we obtain a family of del Pezzo surfaces. We then use Proposi-
tion 3.7 to compute the dimension of the family of constructed surfaces inside the Hilbert 
scheme and compare it with the dimension of the Hilbert scheme of del Pezzo surfaces. 
We obtain that our family gives a component of the Hilbert scheme. We finish the proof 
by checking one example in each case using [12]. �
Remark 6.5. Geometrically, to construct a vector bundle defining a general del Pezzo 
surface of type P1 × P

1, one considers a general P13 ⊂ P
17 containing the graph of a 

second Veronese embedding of the projective plane in P2 × P
5 ⊂ P

17. To construct a 
vector bundle defining a general del Pezzo surface of type F1, one considers a general 
P

13 ⊂ P
17 containing the graph of a linear embedding P2 → P

5 in P2 × P
5 ⊂ P

17.

Remark 6.6. Observe that a general P13 ⊂ P
17 containing the graph of the second 

Veronese embedding in P2 × P
5 ⊂ P

17 contains a one-parameter family of such graphs.

7. The analogy in degrees (8, 17)

Let us now finish the proof that the constructions of del Pezzo surfaces and Calabi–Yau 
threefolds of codimension 3 are related.

Proof of Theorem 1.3. It remains to handle the case of del Pezzo surface of degree 
dD = 8 and Tonoli Calabi–Yau threefold of degree dX = 17. On one side we have two 
families, on the other three. Let us start with a general del Pezzo surface of degree 8. 
Its shifted Hartshorne–Rao module defining the bundle ED corresponds to a subspace 
of dimension 13 contained in P17 = 〈P2 × P

5〉 such that the intersection P13 ∩ (P2 × P
5)

contains either the graph of a linear map P2 → P
5 or the graph of a second Veronese em-

bedding P2 → P
5. Such a subspace is clearly the projection of a space P13 ⊂ P

20 ⊃ P
2×P

6

with the analogous property, i.e. P13 ∩ (P2 × P
6) contains either the graph of a linear 

map P2 → P
6 or the graph of a second Veronese embedding P2 → P

6. The general such 
choice of extension defines a bundle E′

D on P
6. A general extension between this bundle 

and 2OP6 corresponds to a space P15 ⊂ P
20 containing the P13, i.e., P15 ∩ (P2 × P

6)
contains either the graph of a linear map P2 → P

6 or the graph of a second Veronese 
embedding P2 → P

6. In particular, it corresponds to an element of B9 or B11 (notation 
as in Theorem 1.1). To prove that the corresponding bundle defines a Calabi–Yau three-
fold, we observe that a general element of B9 or B11 arises in this way. Indeed, for a 
general P ∈ B9 or B11 the corresponding LP contains the graph of a Veronese or linear 
embedding P2 → P

6 each of which spans a space of dimension smaller than 13. Hence LP
contains a P13 also containing these graphs. Finally the image of this P13 via a general 
projection
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P
2 × P

6 ⊂ P
20 → P

17 ⊃ P
2 × P

5

induced by a projection P6 → P
5 is a P13 defining a point in MD

6 or in MD
7 . The 

proposition is hence proven for Calabi–Yau threefolds with k = 9 or 11.
Let us now consider the case of Calabi–Yau threefolds of degree 17 with k = 8. In 

this case we consider a P15 such that G∨∨ = TP2(1); the latter admits a 2-dimensional 
family of surjections onto Ip(3) parameterized by p ∈ P

2. The appropriate composite map 
defines a P13 spanned by the graph of a rational map P2 ��� P

6 defined by a system of 
cubics passing through a point. We claim that the projection of this P13 ⊂ 〈P2×P

6〉 onto 
P

17 = 〈P2 × P
5〉 is a general element of MD

6 and hence defines a del Pezzo surface D1
8. 

Indeed, we just observe that the projected P13 is associated to a map 4OP2(−1) → 6OP2

whose cokernel admits a surjection on Ip(3). We then compute the Chern classes of this 
cokernel and deduce that we are in MD

6 . �
Remark 7.1. In Theorem 1.3, we relate Calabi–Yau threefolds to del Pezzo surfaces or 
more precisely appropriate vector bundles defining these varieties via the Pfaffian con-
struction in two steps, passing through a vector bundle E′

D on P6. One might wonder if 
there is a variety given by Pfaffians of this bundle. By Formula (1.1) and degree formulas 
such a variety if smooth would be a Fano threefold of index 2 and degree d − 9 in P6. 
And indeed for Calabi–Yau threefolds of degree d ≤ 16 the bundle E′

D defines a family 
of such smooth Fano threefolds. For d = 17 the situation is different. The only Fano 
threefolds of index 2 and degree 8 in P6 are projections of second Veronese embeddings 
of P3. Now, using our methods, one can easily check that such a second Veronese embed-
ding of P3 in P6 is associated to a P13 corresponding to a skew-symmetric map θ as in 
Remark 5.10. The restriction of the associated bundle to a general P5 defines a del Pezzo 
surface of type F1, whereas a general extension bundle with 2OP6 corresponding to a P15

containing our P13 defines a Calabi–Yau threefold from the special family discussed in 
Remark 5.10. We hence do not recover the whole family of Tonoli Calabi–Yau threefolds 
of degree 17 with k = 9. In the general case for any k = 8, 9, 11 the Pfaffians associated 
to a general section s ∈ H0(

∧2
E′

D) do not define a variety of expected codimension. 
Only after restricting to a general P5, do appropriate sections appear.

8. Problems

Assuming that the relation observed in Theorem 1.3 between Calabi–Yau threefolds 
in P6 and del Pezzo surfaces in P5 follows from a more general phenomenon it is natural 
to make the following conjecture.

Problem 8.1. There are no Calabi–Yau threefolds of degree d ≥ 19 in P6.

The most interesting case to be studied at the moment is the case of Calabi–Yau 
threefolds of degree 18. Since there is a del Pezzo surface of degree 9, we can try to 
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use it to construct Calabi–Yau threefolds of degree 18 in P
6 or canonical surfaces of 

degree 18 in P
5. Indeed, in [10], using the construction of del Pezzo surfaces of degree 9, 

we construct a family of canonical surfaces of degree 18 in P
5. We have so far been 

unable to find the description of a general such surface and unable to prove the existence 
of Calabi–Yau threefolds of degree 18 in P6. It seems that, to solve any of these two 
problems, the key is to find a geometric classification of all bundles on P5 which define, 
by the Pfaffian construction, del Pezzo surfaces of degree 9 in P5. We plan to address 
this problem in a subsequent paper. Note that F. Catanese [3] has recently constructed 
a surface of general type with irregularity 0 canonically embedded in P5 as a surface 
of degree 24. However, we can show that this surface is not a hyperplane section of a 
Calabi–Yau threefold in P6 since it is contained in a quadric (cf. [11]).
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